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Abstract. Automatic scoring of student responses enhances efficiency 
in education, but deploying a separate neural network for each task 
increases storage demands, maintenance efforts, and redundant compu-
tations. To address these challenges, this paper introduces the Gromov-
Wasserstein Scoring Model Merging (GW-SMM) method, which merges 
models based on feature distribution similarities measured via the 
Gromov-Wasserstein distance. Our approach begins by extracting fea-
tures from student responses using individual models, capturing both 
item-specific context and unique learned representations. The Gromov-
Wasserstein distance then quantifies the similarity between these fea-
ture distributions, identifying the most compatible models for merging. 
Models exhibiting the smallest pairwise distances, typically in pairs or 
trios, are merged by combining only the shared layers preceding the 
classification head. This strategy results in a unified feature extractor 
while preserving separate classification heads for item-specific scoring. 
We validated our approach against human expert knowledge and a GPT-
o1-based merging method. GW-SMM consistently outperformed both, 
achieving higher micro F1 score, macro F1 score, exact match accu-
racy, and per-label accuracy. The improvements in micro F1 and per-
label accuracy were statistically significant compared to GPT-o1-based 
merging (p = 0.04, p  = 0.01). Additionally, GW-SMM reduced stor-
age requirements by two-thirds without compromising much accuracy, 
demonstrating its computational efficiency alongside reliable scoring per-
formance. 
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1 Introduction 

Automated scoring systems have become indispensable in modern educational 
assessment, enabling efficient evaluation of students’ open-ended responses, par-
ticularly in science and STEM domains [ 15,17]. As curriculum frameworks such 
as the Next Generation Science Standards (NGSS) promote complex perfor-
mance tasks to assess multidimensional understanding [ 9], the demand for reli-
able and scalable automated scoring continues to rise. Deep learning models like 
BERT [ 3], offer robust performance in such tasks. However, deploying a separate 
fine-tuned model for each assessment item is often impractical due to high mem-
ory and inference costs—especially in resource-constrained environments such as 
browser-based student assessments or serverless educational platforms [ 29]. 

In large-scale assessments, models are frequently fine-tuned separately per 
task to align with domain-specific rubrics and expert scoring criteria [ 22]. Over 
time, educational organizations may accumulate numerous task-specific models. 
Unlike multitask learning setups where tasks are trained jointly from scratch, 
re-training or co-training becomes infeasible due to data silos, annotation incon-
sistencies, and vendor diversity [ 14]. While parameter-efficient tuning methods 
like LoRA [ 11], adapters [ 4], or knowledge distillation [ 5, 8] offer alternatives, 
they require retraining access and architectural constraints that are not always 
practical in real-world deployments. 

The problem we address is thus real and pressing: How can we consoli-
date multiple pre-trained scoring models, each trained on different tasks, into 
a smaller set of merged models without causing significant performance degra-
dation? This scenario frequently arises in automated essay scoring (AES) and 
short-answer grading (ASAG), particularly in cross-prompt trait scoring settings 
[ 12,28]. Prior works have explored joint training across prompts, transfer learn-
ing across similar tasks [ 16], and meta-learning for prompt generalization [ 7], 
but the question of post hoc model merging remains largely underexplored. 

To bridge this gap, we introduce Gromov-Wasserstein Scoring Model Merg-
ing (GW-SMM), a new algorithm that merges pre-trained models by align-
ing their learned response representations. In contrast to prior methods that 
rely on parameter similarity or prompt metadata, GW-SMM uses the Gromov-
Wasserstein (GW) distance, a structure preserving optimal transport metric 
[ 19,24], to measure alignment between model-specific student response fea-
tures. This strategy ensures that only models with structurally compatible inter-
nal representations are merged. It minimizes conflicts and maximizes knowledge 
transfer. 

The proposed method supports resource-efficient AI for education and other 
cost-sensitive domains, contributing to advancements in scalable, efficient model 
deployment. Our key contributions are summarized below: 

– We propose a novel model merging approach using GW distance to align deep 
semantic representations of student responses, enabling scalable deployment 
of scoring models without retraining.
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– We empirically validate GW-SMM on NGSS-aligned science assessments 
across nine tasks, demonstrating significant storage reduction with mini-
mal performance trade-offs, outperforming both human knowledge-based and 
GPT-derived merging strategies. 

– We also open-source the code on Github 1 repository for reproducibility. 

2 Gromov-Wasserstein Scoring Model Merging 

We propose Gromov-Wasserstein Scoring Model Merging (GW-SMM) to merge 
multiple task-specific scoring models into a reduced set while preserving per-
formance. Given T fine-tuned models trained on distinct NGSS-aligned science 
assessments, GW-SMM merges models by aligning their learned semantic fea-
tures of student responses. The workflow is shown in Fig. 1. 

Fig. 1. Overview of proposed GW-SMM, where models for tasks are merged based on 
the inter-feature GW distance. 

Task-Specific Representation Extraction. For each fine-tuned automated 
scoring model, we extract high-dimensional semantic features of student 
responses by passing task-specific data through the corresponding model and 
collecting the activations from the final hidden layer (pre-classification). In trans-
former architectures (e.g., BERT), this layer captures task-specific semantic pat-
terns critical for scoring decisions, as shown in prior work on model similarity 
analysis [ 3,20]. 

Structural Alignment via Gromov-Wasserstein Distance. To identify 
which models should be merged together, we assess similarity based on their 
extracted features, which reflect both student response information and under-
lying model structures. We compute pairwise distances between their feature 
spaces using the GW distance. The GW distance captures the geometric align-
ment of features, allowing comparison even when models encode responses in 
heterogeneous metric spaces, such as those with different dimensionalities or 
context-dependent semantics.
1 https://github.com/AI4STEM-Education-Center/MoE.git. 

https://github.com/AI4STEM-Education-Center/MoE.git
https://github.com/AI4STEM-Education-Center/MoE.git
https://github.com/AI4STEM-Education-Center/MoE.git
https://github.com/AI4STEM-Education-Center/MoE.git
https://github.com/AI4STEM-Education-Center/MoE.git
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Formally, let X ∈ Rni×di and Y ∈ Rnj×dj denote the extracted feature for 
model i and j, where ni, nj and di, dj may differ across models. Note that we 
work on a special case that each fine-tuned model has the same model archi-
tecture, i.e., di = dj , but the framework is generally feasible for settings with 
different di and dj . Let  Ci ∈ Rni×ni and Cj ∈ Rnj×nj denote intra-model cost 
matrices where Ci[k, l] =  distancei(xk, xl) and  Cj [m, n] =  distancej(ym, yn). 
To align the feature structures between two models, we introduce a coupling 
matrix π ∈ R ni×nj 

+ , where πk,m indicates the matching strength between the k-
th point in X and the m-th point in Y. The GW alignment is computed through 
the coupling matrix π ∈ R ni×nj 

+ solving: 

GW (Ci, Cj)2 = min 
π∈Π(p,q) 

ni∑

k,l=1 

nj∑

m,n=1 

πk,mπl,nL(Ci[k, l], Cj [m, n]), (1) 

where L is a distance measure with common choices and L(a, b) =  |a − b|p, p ≥ 
1, and Π(p, q) =

{
π | πk,m ≥ 0;∀k,

∑nj 

m=1 πk,m = pk;∀m,
∑ni 

k=1 πk,m = qm
}

enforces marginal constraints with p ∈ Rni , q ∈ Rnj as weights for points in 
X and Y (typically uniform: pk = 1/ni, qm = 1/nj ). 

Direct optimization of GW is challenging due to its non-convex and non-
smooth properties. Thus, we use entropy regularization [ 23], which renders the 
problem convex while maintaining geometric fidelity between feature spaces, 
with the optimal coupling computed via Sinkhorn iterations [ 2,25]. For theo-
retical guarantees, computational considerations, and extensions of the discrete 
GW formalism, we direct readers to [ 21,24]. 

Determination of the Merging Plan. Given the distance matrix and the tar-
get number T ′ of final merged models, we determine the optimal merging plan 
by maximizing the total similarity, L(M) =

∑
(i,j)∈M Si,j , where M denotes 

the set of merged pairs or groups, and Si,j is the normalized similarity between 
models i and j, defined as Si,j = 1  − di,j−dmin 

dmax−dmin 
, where di,j is the GW distance 

between models i and j, and  dmin, dmax are the minimum and maximum dis-
tances. We search for the optimal merging plan M∗ that minimizes L(M) over  
all possible merge plans that will result in T ′ final merged models. 

Model Merging. With the designed merging plan, we adopt TIES-MERGING 
[ 28] to merge task-specific models into a unified model while preserving perfor-
mance. Suppose we have T models that will be merged together. For model 
t ∈ {1, · · ·  , T}, we compute the parameter updates τt = θt − θ0, where θt 
denotes the parameters for the task-specific model t while θ0 denotes the param-
eters for the base model. With an alignment and pruning process to remove 
redundant parameters and conflicting parameters across different models via 
magnitude-based sparsification, we have the updated updates γt, and the final 
merged parameters are θmerged = θ0 +

∑T 
t=1 λtγt, where the coefficients λt are 

determined by the alignment and pruning process. By combining representa-
tion alignment with targeted pruning, TIES-MERGING effectively leverages shared 
knowledge across tasks while maintaining task-specific distinctions.



196 L. Fang et al.

3 Dataset Details 

This study utilizes expert-scored responses from approximately 1,200 middle 
school students across the U.S., completing nine NGSS-aligned, open-ended sci-
ence assessment tasks from the PASTA project [ 9,22]. These multi-label tasks, 
adapted from the Next Generation Science Assessment (NGSA) initiative, tar-
get physical science concepts under “Matter and Its Characteristics” domain 
and require students to integrate disciplinary core ideas (DCIs), crosscutting 
concepts (CCCs), and science and engineering practices (SEPs) [ 1]. Responses 
were anonymized and collected in diverse educational contexts, reflecting vari-
ability in instructional methods, digital access, and linguistic backgrounds. For 
example, in one task, students analyzed density and flammability data to iden-
tify unknown gases, applying SEP, CCC, and DCI reasoning. All responses were 
scored using a structured multi-dimensional rubric co-designed with educators, 
enabling nuanced evaluation of students’ scientific thinking [ 10]. Detailed dataset 
statistics and scoring rubrics are available on the project repository1. 

4 Experimentation and Results 

For each task, we have a fine-tuned BERT-base model [ 3] for multi-label classi-
fication of student responses, tokenized via WordPiece [ 27]. Each response was 
mapped to a fixed-length sequence with [CLS]/[SEP] tokens and encoded by 
BERT. Training used AdamW [ 18] (learning rate: 2e−5, batch size: 32) with 
binary cross-entropy loss per label and dropout regularization [ 26]. Early stop-
ping was applied based on validation loss. The training process was conducted 
for varying numbers of epochs (ranging from 10 to 20) on an NVIDIA GPU. For 
merging, we removed the classification head and extracted [CLS] token embed-
dings (dimension d = 768) from the final layer, forming a matrix (ni, d) for  
each task, where ni is the total number of student responses. Pairwise Euclidean 
distances between features were computed to inform model merging decisions. 

We evaluate each method using four multi-label metrics: Micro F1 (overall 
performance weighted by label frequency), Macro F1 (equal weight across labels), 
Exact Match (all labels must match exactly), and Per-label Accuracy (accuracy 
per label across instances). Together, they capture both overall and label-specific 
performance. Performance is averaged across nine tasks, using merged or original 
models as applicable. We compare GW-SMM with two baselines: (1) Human 
Knowledge: Merging plans based on task similarities identified by domain 
experts through content and rubric analysis - reflecting common practices in 
educational assessment; (2) GPT-o1: Merging plans are generated by prompt-
ing GPT-o1 to compare task descriptions, inspired by LLM-based semantic sim-
ilarity evaluation methods. As shown in Gatto et al. [ 6], such methods achieve 
strong performance in similarity tasks, making them reliable benchmarks. 

We note that GW-SMM is a data-driven approach that leverages all student 
responses to infer task relationships, whereas Human Knowledge and GPT-o1 
rely solely on task descriptions. This distinction stems from practical and com-
putational constraints: human experts cannot feasibly analyze large volumes of
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student responses manually, and GPT-o1 faces similar limitations due to data 
privacy concerns and the high cost of processing large-scale data [ 13]. 

Fig. 2. Performance results before and after merging using three methods (GW-SMM 
(Ours), human knowledge, and GPT-o1). 

Table 1. Statistical comparison of methods across metrics. Each value shows the t-
statistic and p-value for pairwise comparisons among GW-SMM, Human Knowledge, 
and GPT-o1. Statistically significant results (p <  0.05) are bolded. 

Metrics GW-SMM vs Human GW-SMM vs GPT-o1 Human vs GPT-o1 
T-Stat P-Value T-Stat P-Value T-Stat P-Value 

Micro F1 Score 0.869983 0.391454 2.106563 0.043925 1.190602 0.243465 
Macro F1 Score -0.187336 0.852702 1.273012 0.213125 1.604841 0.119365 
Exact Match Accuracy 1.363881 0.183098 1.173100 0.250302 0.062403 0.950670 
Per-label Accuracy 1.577693 0.125483 2.637638 0.013281 0.769699 0.447703 

In this study, we merged original models into T ′ = 3 merged models, reducing 
storage costs by 3x. As shown in Fig. 2, GW-SMM outperforms other methods, 
effectively aggregating models while retaining accuracy. Despite degradation ver-
sus the Pre-Merge baseline, GW-SMM achieves the optimal balance of efficiency 
and accuracy. Merging strategies and full results across metrics and tasks are 
available in our repository5. 

We also conducted paired t-tests to compare the effectiveness of each method 
(Table 1). The results reveal that GW-SMM and GPT-o1 exhibit statistically sig-
nificant differences on two metrics: Micro F1 Score (t = 2.107, p = 0.044) and 
Per-label Accuracy (t = 2.638, p = 0.013). These results indicate that GW-SMM 
outperforms GPT-o1 in these aspects. In contrast, no statistically significant dif-
ferences (p >  0.05) were observed between GW-SMM and Human Knowledge 
or between Human Knowledge and GPT-o1 across any metric. For instance,
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comparisons between GW-SMM and Human Knowledge yielded p-values rang-
ing from 0.126 to 0.853, while Human Knowledge versus GPT-o1 resulted in 
p-values between 0.120 and 0.951. These findings suggest that GW-SMM effec-
tively leverages model merging to enable robust and efficient scoring, performing 
comparably to, or even exceeding, Human Knowledge in some cases. 

5 Conclusion 

We propose GW-SMM, a novel model merging method for the scalable deploy-
ment of commonly featured automatic scoring models. The method uses the 
Gromov-Wasserstein distance to align task-specific feature spaces by measuring 
structural divergence in student response features. GW-SMM identifies compat-
ible models for merging while minimizing conflicts. Evaluated on nine NGSS-
aligned science tasks, GW-SMM outperformed both human expert-guided and 
GPT-o1-based merging strategies, achieving statistically significant improve-
ments in micro F1 score (0.6872 vs. 0.6271, p = 0.04) and per-label accu-
racy (0.8507 vs. 0.8255, p = 0.01). The method reduced storage costs by up 
to 3× while maintaining competitive performance relative to standalone models. 
Its data-driven approach, which leverages response patterns rather than task 
descriptions, ensures adaptability to diverse student responses. Future work will 
focus on advanced fusion techniques to further narrow the performance gap with 
pre-merged models. GW-SMM advances scalable, efficient deployment of AI in 
education, balancing accuracy and resource constraints. 
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