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Abstractirst passagéimes(FPTs)areoftenusedto estimatdimescalesn phys-
ical, chemical,andbiological processes:PTsgenericallydescribethetime it takes
arandom“searcher’to find a “target.” In manysystemstheimportanttimescales
notthetime it takesas ingles earchdp find atarget,butratherthetime it takesthe
fastesisearcheput of manysearcherso find atarget.Suchfastest-PTsor extreme
FPTsresultfrom manysearchergompetingto find the targetand differ markedly
from FPTsof singlesearchersln this chapterwe reviewrecentresultson fastest
FPTs.Weshowhow fastest-PTsdependon the modeof stochastisearch(includ-
ing searchoy diffusion, subdiffusion superdiffusionanddiscretgumps),theinitial
searchedistribution,andpropertiesof the spatialdomain.

12.Introduction

Many eventsin physical,chemical,and biological systemsare initiated when a
“searcherfindsa“target,”whichis calledafirst passagéime (FPT)[1]. Depending
on the systemthe searchercouldbe,for instanceanion, protein,cell, or predator,
andthetargetcouldbeareceptorligand,cell, or prey.Themajority of prior workin
this areastudiesthe FPT of agivensingles earcheHowevertherelevantimescale
in manysystemss thetimeit takesthefastessearcheoutof manysearcherso find
atarget,whichis calledafastestor extremeFPT[2-20 ] .

Concretely let T denote the FPT to a targetUarget Of a single searchemwhose
stochastip o s it adlimet ! 0 is denotedoy X(t). Mathematically,

T:=inf{ t10: X(t) € Usargel- (12.1)
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Note that Utarget may be a disjoint union of multiple sets(i.e., the “target” Utarget
magonsoB'multigbagetsfih e meeN ! 1independentandidentically

distributed(iid) s earchensith respectivdFPTsTy, . . ., &, thenthefastestFPTis
Ty =min{tT4, ..., &} (12.2)
whereTq, ..., % are N iid realizationsof Tin ( 12.1)More generally,if we s et

Tin = Ty,thenthekthfastelSP Ts

! n
Tow=min {rq, . RRNUSSH (T} . ke{t,... N} (12.3)

| nthisc h a p iereviewr e ¢ errets ud tish distributiona n statisticsof Ty and
Ti,n for 1 = k & N. Weconsidersearchersvhich moveby diffusionin Sect12.2,
superdiffusiorin Sect.12.3,subdiffusionin Sect.12.4,andjumpson a discretenet-
wor kin S e cl2.5. We concludein Sect.12.6 by discussingsomecloselyr elated
problems.

12.2 Diffusion

We now s tudyfastestFPTsf ordiff usivesearchersWe start with a s impleone-
dimensionakxample.

12.2.1 Anntrodu &xampleD i ffu s iio @ne
Dimension

SupposeX = { X(t)}:10 is aone-dimensiongburediffusion processwith diffusivity
D > 0. Let r denotet he=PTof X tot h erigin (i.e.,T i si n( 12.1with Utarget= 0).
AssumingX(0) = L > 0 ,t h distributionof T is givenin termsof theerrorfunction,

# 08
P> t)=erf +— . (12.4)
4Dt

Now,themeanofanynonnegativ;eandomvariablez 10 is givenbytheintegral
of its survival probability, E[Z] = , P(Z > z) dz. Hence,the meantime for a
singles earchdp reachtheorigin is infinite,

&,
Elt]= P(r> t)d ==,
0

dueto theslowlarge-timedecayof P(1 > t) in (12.4),
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v — 12
P(t> t)~(L/ mD)t ast - o, (12.5)

wherethroughouthis chapter,f ~ g denotesf/ g — 1. Further,

&,
E[Tn] = [P(r> t)Ndt, (12.6)
0
since P(Ty > t) = P(min{r4, ..., %}> t)=[P(1> )]V, wherewe haveused
thattq, ..., x areiid. Therefore,(12.5)and ( 12.6)imply thatE[Ty]isinfinite

if N =2 ,butfinitefor N3] 21].
To obtaint h éa rgéV asymptoticsof E[Ty] ,we combine( 12.4)and (12.6) to
yield

& % 8w & o S(y
E[TN]: erf "vﬁ dt ~ erf "v/: dt aSN-’OO(127)
0 4Dt 0 4Dt

for anye > 0, sincethepartof integralfromt = € to t = « va n i s h exponentially
fastasN - ». Usingthelargez asymptoticof erf(2), it follows t ha{2]

L2
E[Th] ~ ——— asN - «. (12.8)

4DIn N
Int h eexttwos u b s e ¢ Wwerevdgwhowtheresulti n(12.8)for thissimpleexample
extenddomucmorgenerascenarios.

12.2.2 HigherS p a tbDialensions

T h & a sii e s u h{12.8)hasbeenextendedo boundedwo-dimensionaandthree-
dimensionalspatialdomainsusing probabilisticmethodsto provethat the fastest
searchersakeadirectpathto thetargef[17]. Thisr e s u $¢ a s i léscriban the
casethatthe s patialomainis a cylinder.Specifically Jet thedomainU + R 3 bea
cyl i n defradiusr > 0 and heighth > 0,

U:= (x,y,2eR3>: x>+ y?<r? z¢ (0, h) .

Supposéhetargetis adisk of radiusa < (0, r) atthebottomof thecylinder,

I
Uarget:= (X, ¥, 0)eR¥: X2+ )2 < &% .

Supposehat N ! 1 searchersareinitially placedat (0, 0,L)with (0, h) and
thendiff usan U w i t biffusivity D > 0 and reflectingboundaryconditions.

Let Z,(t) € [0, h] and R,(t) € [0, r] denotethehheightandradial positionof the
n-th s earchattimet ! 0. Thefirsttime thatthen-th s earcherits thetargetis
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T:=inf{t>0: Z,(t)=0, Ry(t)< a}, ne{l,... N}

Thefirsttime thatthen-th s earchérits thebottomof thecylinder(regardlessf the
radialposition)is

T4:=inf{t>0: Z,(t)=0}, ne{l,... N}

Hencethefirsttimethatanys earchédntsthetargetandthefirsttimethatanysearcher
hits the bottomof the cylinderare,respectivelygivenby

T34 :=min{r 3%, T7l¢:=min{r 9.
n n

Thenextresults howthatthemomentsf T3¢ and T, @ becomé denticasN grows.

Theorerk (FromRef.[17 ] Foranymomenm ! 1 , we havethat

# LZ $m
4DIn N

E[(T3H)™ ~ E[( TAH™ ~ as N - . (12.9)

We makefour commentson Theorem1. First, the proof of Theorem1r e i ers
provingthatthe pathof thefirst searcheto reachthetargetis almostas traightine
from theinitial positionto thetarget.In particular thefastestsearcheoutof N , 1
searcherseverleavesatubeof radiusa > 0 connectingthe startinglocationto the
target,andthereforeT 3¢ = T,%, andthelarge N behaviorof themomentsof T,%is
aIreadyknownsinceT,J,d concerndiff usionin onespacedimension[5] .

Second;Theorem1 holdsfor anyfixed targetsizea > 0 .

Third, the cylinder is finite (i.e.,r <oand h<). Infactifr = h=ow,
then ( 12.9)cannothold s inceE[ T3] = = for al IN ! 1. To provethis, notethat
eachsearchethasa s trictlypositive probability of neverreachingthe target(i.e.,
P(139 =) >0) s incéhree-dimensiondBrownianmotionis transientTherefore,
foranyN ! 1, thereis astrictly positiveprobability thatno searchehits thetarget,

P(TH =) =[Pt *¥=wx)] N>0,

andthereforeE[T,S’,d] =xfor allN!1. Thisis distinct from the phenomenon
wherethemeanFPTof as ingles earchas infinite while themeanFPT of thefastest
searchers finite (seeSect12.2.1) .

Finally, while Theorem1 concernsa s pecializedpatialdomain( i.e.acylinder),
theargumentanbeextendedo provethat( 12.9holdsin muchmoregeneraltwo-
andthree-dimensionalomainsby consideringathin tubeof lengthL connectinghe
startinglocationto thetarget(seeTheorem$ and10in [17]f o aprecisestatement) .
Howeverthreerestrictiveassumptionsf this argumentrethat(i) thesearchersll
startat a single point, (ii) the domaincontainsa s traight-lingpathfrom this single
startinglocationto the target,and (iii) the searchersnoveby purediffusion. The
nextsections howshat ( 12.9ktill holdswithout thesethreeassumptions.
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12.2.3 A UniversaMomentFormula

Looking back to the one-dimensionabroblem in Sect12.2.1, the formula f or
P(t> t)in( 12.4yieldsthefollowing short-timebehavioof P(t < t) onalogarith-
mic
scale,

2
lim tinP(t1< t)=- C<0, whereC := L—>0. (12.10)
-0+ 4D

Due to Varadhan’s ormulafrom large deviationtheory [22, 23 ] theshort-time
behaviorof the distributionof 1in (12.10)holdsin much greatergenerality[18].

In thesemore generalscenariosD >0isacharactedif tisivehgL >0

is a certaingeodesidistancebetweenthe searchestartinglocation(s)(possiblya
distributionon asetof s tartindocations)andthetargetthat(i) avoidsanyreflecting
obstacles(ii) includesany s patialvariation or anisotropyin diffusivity, and (iii)
incorporatesnygeometnjin thecaseof diffusiononacurvedmanifold[18 ]Further,

L is unaffectecby deterministicforceson the diffusive searchergi.e., a drift) or a
partially absorbingarget[18].

Sincethelarge N behaviorof E[ Ty] dependonly on the short-timebehaviorof
P(T < t) (see(12.7)),thegeneraformulain ( 12.10¥ orthe s hort-timésehaviorof
P(t < t) fordiffusivesearctsuggestshatthelargeN asymptoticof E[ Ty ] in (12.8)
shouldextendto the aforementionedieneralkscenariosn which (12.10)holds.The
following theoremshowsthatthis is indeedthe case andin factther esulextends
to themth momentof the kth fastestFPT T, y for 1 < k & N.

Theorer (FromRef.[18]) Let{1,};-, beas equencefiid nonnegativeandom
variables.Assumehat
& ) N
P> t) Vdt <o forsome M1, (12.11)
0

andassumaehat thereexistsa constantC >0 sa hat

lim tInP(r< )=~ C<0. (12.12)

Thenfor anym! 1 andk ! 1 , themth momenbf Ty y i n(12.3)satisfies

# $n

EN(Tion)™ ~ % as N, (12.13)

Theorem?2 is a generalresultthatappliesto orderstatisticsof anyrandomvari-
ablsatisfyihy)—(12.12)Therefore,Theorem?2 andtheuniversabehaviorin
(12.10)f ordiffusivesearctshowsthat( 12.13holdswith C = L?/(4 D) andthevar-
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iousdetailsin theproblem(spatialdimensiondrift, domains izetargetsize,searcher
numberk, etc.)areirrelevantto theleadingorderstatisticsof Ty y asN — «.

However,the convergenceate of ( 12.13)s generallyquite slow. Hence,it is
importantto identify how thesevariousdetails affect the fastestFPT statisticsat
higherorder.The next subsectiorcomputeshesecorrectionsusing extremevalue
theory.

12.2.4 ExtremeVa | uTheoryApproach

Extremevaluetheoryis a branchof probability theory and statisticsdealingwith
extremeeventsn thet a i bsfp ro b a badliig yr i but iTonésh.e od 5 t & & criearly
acenturyto Fisher Tippett,Gnedenkd24 , 25gndis concernedavith determininghe
distributionof the minima (or maxima)of alarges equencef iid randomvariables
in termsof the short-timedistributionof a singler andonvariable.We now apply
this theoryto FPTsof diffusion.

Looking backagainto the simpleexamplein Sect12.2.1,theformulain (12.4)
yields the following short-timebehaviorof P(t < t) on a linear scale( i.e.,more
informationthanthelogarithmicscalein (12.10) ) ,

P(T< t)~ AtPe ¢l ast - 0+, (12.14)

+
whereC = L%/(4D)>0, A= 4D/(L2m) and p =1/2 . | tturns out that this
short-timebehaviorof the s urvivaprobability of diff usives earclextendsto much
more generalscenarioswhereC = L?/(4 D) is the di ff u s i tinmescalei n(12.10)
andA > 0 and p € R dependnthedetailsof theproblem(spatialdimensiondrift,
targetreactivity,etc.). The following theoremgivesthe distributionandstatisticsof
Ty usingtheinformationin (12.14).

Theore (FromRef. [19]) Let{T,}1 beiid and assumehat thereexistcon-

stantsC >0, A>0,andp € R sot h a(t12.14holds.ThenTy := min{t ¢, . . . , K}
satisfies
Tv—b
N N—>dX=dGumbeI(0,1)asN—>oo,
an
where
.. C ,_cC #1+pln(ln(N))_ In(acr) $ (12.15)
NTnN)Z N T N In N nN ‘

If weassumdurtherthatE[Ty] <~ forsomeN ! 1 , t herfor eachm € (0, ») ,
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” TN_bN. m/

ay

E - E[ X™ asN - o, where X=4 Gumbel(0, 1).

Wenotet hafTheorem3 canbegeneralizedo describeT, y for1< k& N (see
Theoremst and5in [19]) .

In Theorem3 andthroughoutthis chapter~ 4 denotesconvergencén distribu-
tion [26] and = 4 denotesequalityin distribution.Further,Gumbel ( 0, 1) denotes
randomvariablewith a Gumbeldistributionwith locationparameteb = 0 andscale
parametera = 0 . Generally,a randomvariable X hasa Gumbeldistributionwith
locationparameteb € R andscaleparametea > 0 i f’

' #x - b$(
P(X> x)=exp -exp — forall x e R. (12.16)

Note that if X =4 Gumbelp, a), t henE[X] = bz— y a wherey = 0.5772is the
Euler-MascherontonstantandVariancef) = %az. Theoren3 thusyieldshigher
orderestimateof statisticsof Ty. In particular,

E[Tn] = by -y anv *+ o(an),
TI-Z
Variance{y) = ga,z\, + o(az).

Roughlys peakingTheorem3 impliesthat Ty is approximatelyGumbelwith shape
by andscaleay,.

ToillustrateT h e o r&considepne-dimensionaliff usives earchsin Sect12.2.1,
but now supposé heré sa constantdrift V > 0 pushing the s earcher®wardthe
targetatx = 0 .Thatis, thepositionof asearcheevolvesaccordingo thes tochastic
diff erentiakquation,

N __
dX=- Vdi+ 2Ddw, X(0)= L >0, (12.17)

whereW is a s tandar@rownianmotion.If Tisth& P Toth erigi(nhe., (12.1)
with Utarget= 0 ), thenthes urvivaprobability is

Pr> t)= 1+erf% -ePerfo N, >0 (1218)

Usin 412.18), one can check that (12.14) holds with C = L?/(4 D),
A= T/(Cm V@D andp = 1/2 . Hence,Theorem3 impliesthatas N — o,

1A Gumbeldis tributi®am e tithefsn differently by sayingthat— X hasa Gumbeldistri-
butionwith shape- b andscalea if (12.16)holds.
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L2 +In(|n(N))_#LV/D—In1T+2y$ (

-1
ADINN 2InN In N +ol(in N))
(12.19)

E[Tn] =

This result showsthat increasingV (i.e., increasingthe drift toward the target)
decreasek[Ty] .Thisi sobeexpectedbut(12.19)s howthattheeff ecbfincreasing
V only affectsE[ Ty ] at third orderas N — «.

We notet hatthe analysisaboveof how Ty vanishseaslinth éimiN - «
for afixed drift, fixed targetsize,etc. Howeverijt is clearthat Ty mustdivergeif we
fix N1 1 (even alargevalueof N) andtake,f orexample the sizeof thetargetto
z e r(eimilarly, Ty, divergesf wetakethetargetreactivityto zeroor takearepelling
drift pushingthe searcher@awayfrom the targetto infinity). For ananalysisof the
“competinglimits” of N - » ver s u ssayavanis htiamrg e€danu nr e a darget
or alargerepulsivedrift), wer efethereaderto Referencd27] .

12.2.5 Uniforminitial Conditions

The analysisaboveall assumeshat the diffusive searchergannotstartarbitrarily
closetothetarget.Thatis, evenin thecasevherethesearchermayhaveacontinuum
of possibles tartindocations(asin Sect12.2.3),the s upporbf this s ebf starting
locationsis a s trictlypositivedistanceawayfrom the closestpart of the target.For
ex a m ptlle ene-dimensionaéx a m g h8ect.12.2.1couldbe modifiedsothatthe
initial distributionof X isuniformontheinterval[a, b] aslongasO < a< b <. In
this casethemomentformulain (12.13)holdswith C = L?/(4 D) andL = a>0.
How doesthe fastestFPT changeif searchergan startarbitrarily closeto the
targetForexamplesupposeXisinitially u ni f o r chils/t r i baing d anterval[0, /]
with targetsatbothx = 0 andx = [ > 0 (i.e., Tis i n(12.1)with Utarget= {0, /}). In
this casejt wass howrbackin thefirst work on fastestFrPTsof diffusionthat[2]

2 1
E[Ty]~ —— asN - «, 12.20
[ N] 8D N2 ( )
which s of coursemuchfasterthanthe 1/ In N decayseenin thes ectionabovefor
the casethatsearchersannotstartarbitrarily closeto thetarget.
Themuchfasterdecayof E[ Ty] for this problemstemsfrom thefollowing short-

time behaviorof thedistributionof T [27 ],

P(t1< t)~ AtP ast - 0+, (12.21)

+
wherep =1/2and A= 42D/(/?m),which is much slowerthanthe short-time
decayof P(1 = t) i n(12.10).In fact, ratherthanjustthemeanin (12.20),itfollow s
from12.21andTheoremd that(AN)"P Ty ¢ o nvergienglistributionto a Wei bu | |
randomvariablewith unit s cal@ndshapep asN — «.
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The decayof E[Ty] for this exampleslowsfrom 1/ N2 in (12.20)t&/N if the
targetsatx =0and x = | >0 areartiallyabsorbintheactivity 0, «).
Specifically it wasshownin [27, 28] t hat

E[Tn] ~ i% asN - o, (12.22)
The behaviorin (12.22)follows from thefa c thatthes hort-tdimeribu bfon
satisfies( 12.21with p =1 and A = 2k/ | [27 ].In fact, ratherthanjust the mean
in (12.22),itfo |l oW s0 i 12.21)and Theorem4 that (2k/ )N Ty convergesn
distributionto a unit rateexponentiatandomvariableas N — «.

Thoughwe illustrated(12.20)and( 12.22)n the caseof diffusionin aninterval,
weemphasizéhatthe N2 decayin (12.20)andtheN™" decayin (12.22)arggeneric
r e s uhich a p p t pdiffusives e ar c twaickar én i ti adniformly distributed
in the entiredomainwith eitherperfectlyabsorbingargets( thecaseof (12.20))o r
partially absorbingargets( thecaseof (12.22) J27,28 ].

12.8uperdiffusion

Sectiom 2.2concerndastestrPTsof normaldiffusion processedNormaldiffusion

is markedby a s quaredisplacementhat growslinearly in time. However rather
than normal diffusion, an anomalousform of diffusion called s uperdiff usiohas
beenobservedn a variety of physicalandbiological systemg29].Inthisection,
we investigatdastest-PTsfor a modelof superdiffusioncalleda Lévy flight [30].
Wenotet hatiLévy flight is superdiff usivent hesenséhatits squaredisplacement
growss u p e r | i nietinrd (gee(12.26)) eventhoughits mearnsquaredlisplacement

is infinite.

12.3.1 L é vRlights

A Lévy flight with stability indexa € (0, 2) cdoe obtainedfrom the continuous-
time r andomwalk model[29, 31] assuminghat the waiting time betweenjumps
of the walkerhasa finite meant, € (0, ) and the probability densityof the jump
distancehasthef ollowingslow powerlaw decay:

/ a
f(y) ~ ;1020 asy — » for some lengthscalelp > 0. (12.23)

Theprobabilitydensityp(x, t) forthepositionof aLévy flight satisfieghefollowing
space-fractionafokker—-Planclequation[32],
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0
ap=_;<(_() w2 p, (12.24)

whereK = (10)%/ to > 0 is thegeneralizedliffusivity and(—() %? denoteshefrac-
tional Laplacian[33] .

A Lévy flight X in R? canalsobe definedasthe following randomtime change
(i.e.,as ubordination)f a Brownianmotion[32]:

X(t) == B(S(t)) + X(0) t!0, (12.25)

whereB ={ B(S)}si0 i sad-dimensBamoan i tiwit lunitdiffusivity (i.e .,
E.B(s).?=2dsfourmlls!0) andS={S(t)};o is anindependent(a/2)-stable
subordinatomwith Laplaceexponent)(B) = KPB%? (i.eE[g 0] = ¢ B for
allt!10, B!0). ObservahattheBrownians calindgwhere= 4 denotesqualityin
distribution),

B(s) =4 s"B(1) foralls>0,
andthe( a /2 ) -stabdeubordinataoscaling,
S(t)=4t?951) forallt>0,
imply thatthe Lévy flight definedin (12.25)s atisfiethef ollowingscaling:
X(t) - X(0)=4t"(Xx(1) - X(0)) forallt>0. (12.26)

Squaring12.26)i mplies hathesquaredlisplacemendf aLévy flight growssuper-
lineairdtyime.

The s earclefficiencyof a Lévy flight haspreviouslybeeninvestigatedn terms
of the FHT of a s inglesearcheto atargetin a variety of one-dimensiondl34-36 ]
or two-dimensionabettingg 37 ].In thefollowing section,we studythe FHT of the
fastestsearcheof manyLévy flight searchers.

12.3.2 Fastesk H T efL é vRlights

Definethefirst hitting time (FHT) 1 of theLévy flight X i n(12.25)to s omé arget
Utarget* R d asin (12.1). We usethe term FHT r athetthan FPT sincethesetwo
conceptsanbedistinctfor Lévy flights dueto their discontinuousamplepathg[ 35,
38 40 ]As abovedeterminingthes tatisticanddistributionof Ty y for1 < k& N
in (12.3yequiresd e t e r m ithéshprt-timedis tribu bfo.n

Assumingthat X( 0 ) canndie in thetargetUiarget(Meaningthatthe intersection
of thesupportof X( 0 ) antheclosureof Utargetis empty),it wasprovenin [41] that
T hastheuniversalshort-timedistribution,
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P(r< t)~pt ast - 0+, (12.27)
wherep € ( 0, «) istherate,

” a/2 K
pi= P(B(s) + X(0) e Utarget),(,] —a;) s ds. (12.28)

If X(0) = 0thentheGaussianityof B(s) meanghatp canbewritten as

&y & #_ x.2% al2 K
P= e P Tas. Yo s ®
L *draS ka2 & 1

T2 T wmA-aR) g, xed

Thefollowing theoremyields the distributionandstatisticsof Ty i n( 12.2) fr om
the short-timebehaviorin (12.27).Analogousresultshold for Ty y in ( 12.3)with
1< k& N (seeTheoremss and6in [27]).

Theorem (FromRef. [27] )Let{T }n11 beaniid sequence®f randomvariables
andassumehatfor someA > 0 and p > 0, we havethat

P(thst)~ AtP ast-0+. (12.29)
Then,thefollowing rescalingof Ty := min{T 4, . . . , K} convergesn distribution,
(AN)YYPTy > g Weibull(1,p) as N - w.
If weassumédurtherthatE[Ty] <~ forsomeN ! 1 | t herfor eachm € (0, ») ,

(1+ mip)

(AN)m/P as N - o,

E[(Tn)™ ~

Throughoutthis chapter X = 4 Weibull(, p) meansthat X is a Weibullrandom
var i a bwid rscalet > 0 and shapep > 0 ,whichmeans

P(X > x) =exp(—=( x/t)P), x!0. (12.30)

Note thatWeibull(1, p) is exponentialwith unit rateif p = 1. Thereforeapplying
Theorem4 t o( 12.27) i m pli es {pa&t) Ty convergesn distributionto a unit rate
ex p one mbairad eaniableasN grows[41]. Hence,Ty is approximatelyexponen-
tial tistributedwith r a t@N. Furthermorejf E[Ty] <~ for some&V!1, then
Theoremd yields all themomentsof Ty, for largeN. | nparticular,

o 1
E[Ty] ~ Variancely] ~ p—N asN - «. (12.31)
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Analogousresultsholdfor (i) Ty y in (12.3)forany1 < k & N and(ii) thecasethat
Sis anynondeterministid.évy subordinatof41] .

Wenow contrast( 12.31with t h easeof nor mdiff u s i & mr. she 1/ N decay
i n(12.31)is muchfasterthanthe 1/ In N decayfor normaldiffusion processein
Sect12.2.FurtherfastestFPTsof diffusiondependnthes hortegtathto thetarget
sincethe fastestdiffusive searchersollow this geodesid 18 ].Indeed fastestFPTs
of diffusion are unaffectedby changeso the problemoutsideof this path, such
asalteringthe domainor targetsize or eventhe s patiatlimension.In contrastthe
expressioror t h eatep i n(12.28)impliesthatfastestFHTsof Lévy flights depend
onthesegglobalpropertiesof theproblem.| ndeedhefastestévy flightsdonottake
adirectpathto the closestpartof thetarget[41].

12.8ubdiffusion

Anotherform of anomaloudiff usionseenin a variety of physicaland biological
systemsis s ubdiffusiorf42 45]. Subdiffusionis markedby a mean-squaredis-
placementhatgrowsaccordingto thef ollowingsublineampowerlaw:

E. X(t) - X(0).2 « t¥, ye(0,1).

12.4.1 Subordination

One commonway to model subdiff usioris via a time-fractional Fokker—Planck
equation[46 ],which derivesfrom the continuous-timer andomwalk modelwith
infinite meanwaitingtimesbetweerjumps[31 , 47 Buchatime-fractionalFokker—
Planckequatiordescribeshedistributionof asubdiffusiveprocesg X (t)}:10 defined
by subordinatinga normaldiffusive procesgY(s)}sio [48 1P re ci sié{¥(s)}sio
is anormaldiffusion process atisfyin@n |t stochastidifferentialequationthen

X(t):= Y(S({t)), t!0, (12.32)

whereS = { S(t)};o0 isanindependeninversey -stables ubordinato¥Weemphasize
that Sis aninversestables ubordinatan this section( incontrastwith Sect.12.3),
whichis definedby

S(t):=inf{ s>0:T(s)> t},
where{T(s)}si0 i say -stables ubordinator.

The definition of X i n( 12.32)mplies thatif T and g arer espectivEPTsof X
andY tosometarg & h,ethedistribubfois
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P(T < t) = E[ F(S(1))], (12.33)

wheref;(s) := P(o = s) isthecumulativedistributionfunctionof theFPTo of the
normaldiffusion processy.. | tf ollowsimmediatelyfrom (12.33)t hat

&. i # . 8
P(r< t)= ) P(o< s)—— Vs Iy N ds, (12.34)
sincethe probability densitythat S(t) = sis
d # 8
d_sp(gt) = S) = YS1+1/V IV S»I—/V ’ (1235)

wherel, (2) is definedby its Laplacetransform,
&

©

e’ (2dz=¢€"", ye(0,1), r!o.

12.4.2 FastesEPTafSubdiffusion

By using (12.34),t h & m a4 behaviorof P(o < s), andthe small z behaviorof

Iy (2) ,we can developa theory of fastestFPTsof s ubdiff usiothat is analogous
to the theoryfor normaldiffusionin Sect12.2.1 nparticular,sincec is an FPT of

a normal diffusion processthenwe havethat undervery generalconditions(see
Sect12.2.3),

lim sinP(o<s) =~ L?/(4 D) <0,
s-0+

whereD andL areasin Sect.12.2.3for the normaldiffusion processY (notethat
Y = Y(s) isindexedby “internaltime” s ! 0 , whichis notphysicaltime, butrather
hasdimension(time)¥ andthus D hasdimension(length(time)™ ). Then,using
(12.34)andthefactthat[49, 50]

lim 20V nj(z)=-(1-y)y YUV <o, (12.36)
z-0+

we obtainthe following universalbehaviorof FPTsof subdiffusionmodeledby a
time-fractionalFokker—Planclequation,

lim Y@V pr< t)=- -2-vy)y Z(LY@4D)z7 <0. (12.37)

t-0+

By a r esultanalogousto Theorem2 (seeTheorem6 in [51]), thes hort-time
behavioron a logarithmics calén ( 12.37)mplies thatthe mth momentof Ty y in



294 S. D. Lawley

( 12.3¥or subdiffusions atisfieassuminge[Ty] < » for someN ! 1),

El(Ten)™ ~

W asN - 0, (1238)

wheret, > 0 is thecharacteristicubdiff usivéimescale,

# 2$
iy L= Py

= yY@2-y)»*Y— >0, ye(0, 1]

fy 4D

WecanalsogeneralizeTheorem3 to determinehigherordercorrectionso (12.38)
andtheGumbelprobabilitydistributionof Ty y, butweomitth e ses uflébrevity
(seeTheorems9, 10, and 11 in [51]). Note alsothat we focusedhereon the case
whensearchersannotstartarbitrarily closeto thetarget butonecanalsodetermine
thefastesFPTsof s ubdiffusive earchemshich startuniformly in aboundedspatial
domain(seethediscussiorsectionof [51] ) .

12.4.3 ExtremeStatisSicksdiffulsFapt€han
NormalDiffusion

Comparing(12.38)w i t f12.13)in Sect.12.2for normaldiffusion yields the coun-
terintuitive resultthat fastestFPTsof subdiffusionare fasterthan fastestFPTsof

normaldiffusion. Concretelylet "™ andr “° denoteF P Tsto atargetin abounded
domainfor normaldiffusiveandsubdiff usive earchiespectivelyWegenerallyhave

E[Gnorm] < E[T subJ = o,
whereE[T 5] = » ow e st atheslowd e ¢ afP(15"*> t) ast - » [ 52].H ow ever,
if P(0™™ > s) decaysatleastasfastasapowerl awass - », then(12.34 jmplies
that(seeTheorem8in [51])
E[TS"] < « for sufficiently large N,

where T3 := min{r 2, . . ., %%} and{r $"%}, areiid. Further,( 12.38jnd(12.13)
imply

E[TS] & E[. "™ for sufficiently large,

where. P :=min{o °™, ..., "™ and{g;°™}, a r &d.
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12.RandWanllosNetworks

In Sects12.2-12.4,we consideredsearchprocesse®n a continuousstates pace.
Wenow follow [53 Jandconsidersearchersvhich moveon a “network” of discrete
states.

12.5.1 RandoniWal Setup

Eachsearchemoveson the networkaccordingto a continuous-timéMarkov chain.
Hencethewaitingtimebetweerjumpsis exponentiallydistributed putthisassump-
tioonthewaitintgmeistributaolmerelaxéd e®e df lin [53] for m any
searcherandalso[54] for the caseof a singles earcher).

Concretelylet X = { X(t)}no bea continuous-timeéMarkov chainon a finite or
countablyinfinite statespacel . TheprocessX is asingles earcheandits dynamics
aredescribedy its infinitesimalgeneratomatrix Q = { q(/, j)}i je/ [55 1 Theoff-
diagonalentriesof Q (i.e.,q(i, j) ! 0 for i & j) arenonnegativeaandgivether ate
that X jumpsfromi € | to j € I. Thediagonalentriesof Q a r @eonpositive(i.e .,
qg(i,i)<0fonrlli € |)andarechosensothat Q haszeror owsums.Assumethat
sup., 1g(i, i) | < » s o that X cannottakeinfinitely manyjumpsin finite time.

12.5.2 SingleF P Ts

Lettin(12.1)bet heFPTof X to sometargetsetUiarget+ . Letp = {p( i)}ic) =
{P(X(0) = i)}ic; d e n ctheinitial di s t ri bu bf XnToavoi d r ivi @ésesas sum e
that X cannotstarton the target,which meansthat Utargetn supp ( p ) = @where
supp(p) + I denoteghes uppordf p (i.e.,supp(p) :={iel :p§)>0}).

As in thes ectionabove determiningthedistributionof Ty in (12.2)and Ty y in
(12.3yequiresd eterm itrhialg o rt - distributionof 1. Theoremb showsthat

Pr< t)~ %td ast - 0+, (12.39)

whered ! 1 is thes malleshumberof jumpsthat X musttaketo hit the targetand
/> 0is as unoftheproductsof thejumpratesalongthes hortegtathto thetarget.

Tomaked and/ i n ( 12.39precisedefineapathP oflengthd € Z,; fromig e /
toig € I tobeas equenacef d + 1 statesin /,

P=(P(0),...,P@)=(ioi1,...Jg)e 1%, (12.40)

sothat
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g(P(k), P(k+1))>0, forke{0,1,...d-1}. (12.41)

Theconditionin (12.41)meanghat X hasas tri cp bys i tjwebabilityoffollowin g
thepathP. Assumethatthereis a pathfrom thesupportof p tothetarget(otherwise,
P(t=»)=1and theproblemis trivial).

ForapathP e 19+ letA ( P ) btheproductof ther atesmlongthepath,

@—1
AP):=  q(P(i), P(i + 1)) > 0. (12.42)
i=0
Let dmin(/o, 11) € Zyp denotethelengthof theshortespathfrom /o + [ to 14 + 1,
Omin(lo, 11) :=inf{ d : P e 197 P(0) € Io, P(d) € I4}.

Thatis, dmin(/o, 1) is thesmallestnumberof jumpsthat X m u ¢ &8 kéog ofrom /
to 14. Definethes ebf all pathsfrom /g to /4 with thelengthdmin(/o, /1),

S(lp, 1) :={P € et P(0) € Ig, P(d) € I4,d = dmin(lo, 11)}- (12.43)
Define

1
(p, I1):= p(P(0))A(P). (12.44)
PeS(supp(p), /1)

Toexp lafip, [I4),s upposérst thatp(ig) =1 for s omeg e I (i.e., supp(p) =
io = X(0) I thereis only onepathwith theminimumnumberof jumpsdmin(io, /1) ,
then/(p, 14) is theproductof thejumpr atealongthis path(i.e.,A (P )i({12.42) ).
If thereis morethanoneshortestpath,then/(p, /1) is thes unof the productsof
the jump ratesalongthesepaths.Finally, if p is not concentratedt a single point,
then/(p, I1) merelysumstheproductsof thejumpratesalongall theshortespaths,
wherethe sumis weightedaccordingto p .With thesedefinitionsin place,we can
now give the short-timebehaviorof the distributionof T .

Theorer (FromRef.[53 | Thes h o r t - tli ;ite’ | bu bfogatisfieg12.39) where

d = Omin(SUPP(P), Utarged € Z >0,
/=1(p, Utarget) >0.

12.5.3 Fastd&PtTs

Havingdeterminedhe short-timeprobability distributionof a singleFPT in Theo-
rem5,wecaimm e d i aetehypind h &i m i tidi gt ribu airodbatisticsof fastest
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FPTsfor randomwalkson networks.In particular,define

/
= a>0,

whered ! 1 and /> 0 are asin Theoremb. Theorem4 impliesthatthef ollowing
rescalingof Ty convergesn distributionto a Weibullrandomvariable,

(AN)YV9Ty - 4 Weibull(1,d) asN — . (12.45)

Furthermoreijf E[Ty] <« for someN ! 1, t herfor eachmomentme (0, »),

,(1+ m/d)
E[(Tn)™ ~ “(AN)TT asN - «. (12.46)

Comparedo asingleFPT T, fastestFPTs T, arefasterandlessvariablesince
(12.46)i mpliest hathe meanandvarianceof Ty vanisha N » «.  Furthermore,
fastest-PTsareindependendf muchof thepropertiesof t henetwork.| nparticular,
(12.45)implies t hatthe | argeN distributionof Ty is fully determinedby N, /,
andd, which dependonly on networkfeaturesalongthe s hortespath(s)from the
initial distributionto the target.Similar conclusionshold for T,y for < k& N
(seeTheorems and4 in [53]).

1 2. Piscussion

In this chapter,we reviewedfastestFPTsout of many searcherdor a variety of
searchprocessesWe found that suchextremeFPTstendto differ drasticallyfrom
thebehaviorof asingleFPT.Wes howethatthes tatisticanddistributionof fastest
FPTsaredeterminedy theshort-timedistributionof asingleFPT.Hence detailsin
theproblem(spatialdimensiondomains izeandgeometrys omeaspect®f searcher
dynamics,etc.) canbecomeirrelevantto fastestFPTsin the many searchetimit.
Thesedetails becomeirrelevantbecausehe fastestFPTstypically correspondo
searchersvhich takea directpathto thetarget.

We now briefly mentiona few closelyrelatedproblems.The behaviorof fastest
searchersnimics so-called“mortal” or “evanescent’s earcherf/, 56-61 Jwhich
havebeenconditionedo reachthetargetbeforeafastinactivationtime [53, 62, 63].
Conditioningon not beinginactivatedeffectivelyfilters out searchersvhich do not
takeadirectpathto thetarget.

In additionto FPTs,covertimesof multiple searcherbavealsobeeninvestigated
[64-68 ].Covertimesmeasurehe speedf exhaustivesearchandaredefinedasthe
first time a searcher(sgomeswithin a s pecifieddetectionr adius’of everypointin
thetargetregion(oftentheentirespatialdomain) Fordiffusives earcht wasr ecently
proventhattheasymptoticL %/(4 D In N) alsoholdsfor thetimeit takesN , 1 iid
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searcherso collectivelycoveratargetif L is thes hortesfistancefrom thesearcher
startinglocationsto thef a r t h pasttof thetarget[67] (see §8] for resultson cover
times of many discreterandomwalkerson a network). Another statisticwhich is
relatedto fastestFPTswas discussedn [69 ]in termsof first-crossingtimes for
boundarylocal time processesf individual searchers.

In the caseof multiple targets,one canconsiderthe probability that the fastest
searcherhits a particulartargetfirst (the so-calleds plittingprobability or hitting
probability).In thelimit of manydiff usivesearcherghefastessearchealwayshits
the nearestarget,regardles®f targetsize,domaingeometrydrift, etc.[70] T his
phenomenomhasbeenshownto offerawayfor biologicalcellsto detectthelocation
of the sourceof a diffusing signal[71, 72] andalsooffersinsightinto the choices
madeby thefirst decidersin largegroupsof decision-maker§73, 74 ] .

SlowestFPTshaver ecentlffound applicationin ovarianagingand menopause
timifdgp, 76]. Womenar eb o rwith N  [10%, 10°] primordial follicles in their
ovariarr e s e ravelt h iree s e thend e ¢ awrstonly aboutk = 102 folliclesr emain
which is thoughtto triggermenopausg77]. Further thereis along history [78-83 ]
of modelsthatassumeéhatfollicles leavether eservatiid randomtimesty, . . ., %.
Hence,the menopausageis Tyn-x n (usingthe notationin (12.3)), which means
thatmenopausageis determinedy thek/ N = 0 .2% slowesfollicles to leavethe
reserveThis analysishasbeenusedto offer anexplanatiorfor theso-called‘'waste-
fuldversupofify | 1 c[l7®& gndalsoto analyzeaproposedurgicalprocedurd or
delayingmenopaus¢84]. Otherinstancesof apparentredundancy’in biological
systemshavebeenunderstoodn termsof fastestFPTs[7, 10 46 ] .

A possibleproblemmtbhha@analycfifasteBP T diffusiseearchrers
somescenarioss thatthe vanishingmeanfastests earctime,

2

4DIn N

E[Tn] ~ asN - o, (12.47)
becomesunphysical.Specifically,if the searchershavea finite maximum speed
v > 0, thenno searchecanreacha targetthatis distanceL >0 from thetarting
locationbeforetime L/v > 0 . Thatis, we musthaveTy ! L/v >0, whichcontra-
dicts(12.47)for sufficientlylargeN. This contradictions temfrom thewell-known
[85] problemof approximatingdfinite speedrandomwalks by diffusion dueto the
infinite speedf propagatiorof s olutionso thediffusionequatior{86 , 87 Thisdis-
crepancyetweerfinite speedandomwalksandinfinite speedliff usiorcanoftenbe
ignoredin manyapplicationss incéhediscrepancyccursin thetails of thedistribu-
tion. Howeverfhesdails determindastesFPTs.Foradiscussiorandanalysisof (i)
when(12.47 pecomesunphysicalbnd(ii) fastest-PTsof r unandtumbleprocesses
(i.e.,finite speedrandomwalks), we referthereaderto Referencg88].

In termsof practicalapplication animportantquestionconcerngheconvergence
rateof theasymptotiaesultsreviewedn this chapterPutsimply,howlargedoesthe
numbef searchersl needobefort heasymptoticdobeaccurate Theconvergence
i n(12.47)is generallyquiteslow,thoughthe“sufficiently large”valueof N for which

theapproximationE[ Ty] = ﬁ is accuratedependsstronglyon the specificsof
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thes ystemTloillustratein a concreteexampleconsiderthree-dimensionaiffusive
searchconfinedin a sphereof radiusR > 0 with reflectingboundariesSupposéhe
searchers tarbttheboundaryof thesphereandthetargetis aconcentrics pherwith
radiuseR. If we fixe € (0, 1) (evea malavalueof €) andtakeN — », therthe
meanfastests earchime vanishesaccordingto ( 12.47wherelL = (1 —€) R. | fwe
insteadfix N (evenalargevalueof N) andtakee — 0 , thenthemeanfastest earch
time divergesaccordingto [27]

B 1R

E[Ty] ~
("W~ =N~ N3pe

ase- 0, (12.48)

whereE[r]~ R?/(3 Dg) is the divergingmeanFPT of a s inglesearcherHence,
smallertargetsequiremoresearchers orderfor ( 12.47)o beaccurateWhenisthe
systemn thefastescapeegimeof (12.47)versugheslowescapeegimeof ( 12.48) ?
If wefix € & 1 and increaseN, (12.48)impliesthatE[Ty] initi adégreasebke
E[r )/ N. Howeverthis ratherrapid 1/ N decaycannotcontinueindefinitely sinceit
m u eve n t u slllogwothe 1/ In N decayin (12.47).SinceE[ Ty] is monotonically
decreasingn N, this argumensuggestshefollowing simpleapproximation:

2 2 3
Elr] L
E[Tn] = == 12.4
[Tn] = max N ADIhN (12.49)
andthus
L2 . E[T] L2
E = f . 12.
™= 26w ™ N & 2DmnN (12.50)

The estimateq12.49)—(12.50)can be extendedo more generalscenariosassum-
ingthat L% D & E[T] <= [ 27]. A moredetailedinvestigationof when various
approximationf fastestFPTsof diffusion arevalid canbefoundin Ref.[27].
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