
C h a p t e r  12 
Competition of Many Searchers 

Sean D. Lawley 

Abstract First passage times (FPTs) are often used to estimate timescales in phys-
ical, chemical, and biological processes. FPTs generically describe the time it takes 
a random “searcher” to find a “target.” In many systems, the important timescale is 
not the time it takes a s ingle s earcher to find a target, but rather the time it takes the 
fastest searcher out of many searchers to find a target. Such fastest FPTs or extreme 
FPTs result from many searchers competing to find the target and differ markedly 
from FPTs of single searchers. In this chapter, we review recent results on fastest 
FPTs. We show how fastest FPTs depend on the mode of stochastic search (includ-
ing search by diffusion, subdiffusion, superdiffusion, and discrete jumps), the initial 
searcher distribution, and properties of the spatial domain. 

1 2 . 1  I n t ro d u c t i o n  

Many events in physical, chemical, and biological systems are initiated when a 
“searcher” finds a “target,” which is called a first passage time (FPT) [ 1]. Depending 
on the system, the searcher could be, for instance, an ion, protein, cell, or predator, 
and the target could be a receptor, ligand, cell, or prey. The majority of prior work in 
this area studies the FPT of a given single s earcher. However, the relevant timescale 
in many systems is the time it takes the fastest searcher out of many searchers to find 
a target, which is called a fastest or extreme FPT [ 2– 20 ] .  

Concretely, let . τ denote the FPT to a target .Utarget of a single searcher whose 
stochastic p o s i t i o n  a t  time.t ! 0 is denoted by .X(t). Mathematically, 

.τ := inf{ t ! 0 : X(t) ∈ Utarget}. (12.1) 
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Note that .Utarget may be a disjoint union of multiple sets (i.e., the “target” . Utarget
m a y  c o n s i s t  of “m u l t i p l e  t a rg e t s ” ) .  I f  t h e r e  ar e  .N ! 1 independent and identically 
distributed (iid) s earchers with respective FPTs.τ1, . . . , τN , then the fastest FPT is 

.TN := min{τ 1, . . . , τN }, (12.2 ) 

where .τ1, . . . , τN are .N iid realizations of . τ i n  ( 12.1). More generally, if we s et 
.T1,N := TN , then the. kt h  fas t e s t  F P T  i s  

.Tk,N := min
!
{τ1, . . . , τN }\ ∪ k−1

j =1 {Tj ,N}
"
, k ∈ {1, . . . ,N}. (12.3) 

I n  this c h a p t e r,  we  review r e c e n t  r e s u l t s  o n  t h e  distribution a n d  statistics of.TN and 
.Tk,N for .1 ≤ k & N. We consider searchers which move by diffusion in Sect. 12.2,  
superdiffusion in Sect. 12.3, subdiffusion in Sect. 12.4, and jumps on a discrete net-
wor k  in S e c t .  12.5. We conclude in Sect. 12.6 by discussing some closely r elated 
problems. 

12.2 Diffusion 

We now s tudy fastest FPTs f or diff usive searchers. We start with a s imple one-
dimensional example. 

12.2.1 A n  I n t r o d u c t o r y  Example: D i ffu s i o n  in One 
D i m e n s i o n  

Suppose.X = { X(t)} t !0 is a one-dimensional pure diffusion process with diffusivity 
.D > 0. Let . τ denote t he FPT of .X to t h e  origin (i.e.,. τ i s  i n  ( 12.1)  with .Utarget = 0). 
Assuming.X(0) = L > 0 ,  t h e  distribution of. τ is given in terms of the error function, 

.P(τ > t) = erf
# L

√
4Dt

$
. (12.4) 

Now, the mean of any nonnegative random variable.Z ! 0 is given by the integral 
of its survival probability, .E[Z] =

%∞
0 P(Z > z) dz. Hence, the mean time for a 

single s earcher to reach the origin is infinite, 

. E[τ ] =
& ∞

0
P(τ > t) dt = ∞,

due to the slow large-time decay of .P(τ > t) in (12.4),
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.P(τ > t) ∼ ( L/
√

πD)t1/2 ast → ∞, (12.5) 

where throughout this chapter,. f ∼ g denotes. f / g → 1. Further, 

.E[TN ] =
& ∞

0
[P(τ > t)] N dt , (12.6) 

since .P(TN > t) = P(min{τ 1, . . . , τN} > t) = [P(τ > t)] N , where we have used 
that .τ1, . . . , τN are iid. Therefore, (12.5) and ( 12.6) imply that .E[TN ] i s  i n fi n i t e  
if .N = 2 , but finite for .N ! 3 [ 21]. 

To  obtain t h e  l a rge  .N asymptotics of .E[TN ] , we combine ( 12.4) and (12.6) to  
yield 

.E[TN ] =
& ∞

0

'
erf

# L
√

4Dt

$( N
dt ∼

& ε

0

'
erf

# L
√

4Dt

$( N
dt asN → ∞ (12.7) 

for any.ε > 0 , since the part of integral from.t = ε to .t = ∞ va n i s h e s  exponentially 
fast as.N → ∞. Using the large.  z asymptotics of .erf(z), it follows  t hat  [  2]  

.E[TN ] ∼
L2

4D ln N
asN → ∞. (12.8) 

In t h e  next  two s u b s e c t i o n s ,  we review how  the result i n  (12.8) for this simple example 
extends t o  m u c h  m o r e  general s c e n a r i o s .  

12.2.2 Higher S p a t i a l  Dimensions 

T h e  b a s i c  r e s u l t  i n  (12.8) has been extended to bounded two-dimensional and three-
dimensional spatial domains using probabilistic methods to prove that the fastest 
searchers take a direct path to the target [ 17]. This r e s u l t  i s  e a s i e s t  t o  describe in the 
case that the s patial domain is a cylinder. Specifically, let the domain .U + R 3 be a 
cyl i n d e r  o f  radius.r > 0 and height.h > 0, 

. U :=
!
(x, y, z) ∈ R 3 : x2 + y2 < r 2, z ∈ (0, h)

"
.

Suppose the target is a disk of radius.a ∈ (0, r ) at the bottom of the cylinder, 

. Utarget :=
!
(x, y, 0) ∈ R3 : x2 + y2 < a2"

.

Suppose that .N ! 1 searchers are initially placed at .(0, 0, L) w i t h  .L ∈ (0, h) and 
then diff use in .U w i t h  diffusivity .D > 0 and reflecting boundary conditions. 

Let.Zn(t) ∈ [0, h] and.Rn(t) ∈ [0, r ] denote the height and radial position of the 
.n-th s earcher at time.t ! 0. The first time that the.n-th s earcher hits the target is
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. τ 3d
n := inf{ t > 0 : Zn(t) = 0, Rn(t) < a}, n ∈ {1, . . . ,N}.

The first time that the.n-th s earcher hits the bottom of the cylinder (regardless of the 
radial position) is 

. τ 1d
n := inf{ t > 0 : Zn(t) = 0}, n ∈ {1, . . . ,N}.

Hence, the first time that any s earcher hits the target and the first time that any searcher 
hits the bottom of the cylinder are, respectively, given by 

. T3d
N := min

n
{τ 3d

n }, T1d
N := min

n
{τ 1d

n }.

The next result s hows that the moments of.T3d
N and.T1d

N become i dentical as.N grows. 

Theorem 1 (From Ref. [ 17 ] )  For any moment.m ! 1 , we have that 

.E[(T3d
N )m] ∼ E[( T1d

N )m] ∼
# L2

4D ln N

$m
as N → ∞. (12.9) 

We make four comments on Theorem 1. First, the proof of Theorem 1 r e l i e s  on 
proving that the path of the first searcher to reach the target is almost a s traight line 
from the initial position to the target. In particular, the fastest searcher out of . N , 1
searchers never leaves a tube of radius.a > 0 connecting the starting location to the 
target, and therefore.T3d

N = T1d
N , and the large.N behavior of the moments of .T1d

N is 
already known since.T1d

N concerns diff usion in one space dimension [ 5] .  
Second, Theorem 1  holds for any fixed target size.a > 0 .  
Third, the cylinder is finite (i.e., .r < ∞ and .h < ∞) .  I n  fa c t ,  i f  .r = h = ∞,  

then ( 12.9) cannot hold s ince .E[T3d
N ] = ∞ for al l  .N ! 1. To prove this, note that 

each searcher has a s trictly positive probability of never reaching the target (i.e., 
.P(τ 3d = ∞) > 0) s ince three-dimensional Brownian motion is transient. Therefore, 
for any.N ! 1, there is a strictly positive probability that no searcher hits the target, 

. P(T3d
N = ∞) = [P(τ 3d = ∞)] N > 0,

and therefore .E[T3d
N ] = ∞ for al l  .N ! 1. This is distinct from the phenomenon 

where the mean FPT of a s ingle s earcher is infinite while the mean FPT of the fastest 
searcher is finite (see Sect. 12.2.1) .  

Finally, while Theorem 1  concerns a s pecialized spatial domain ( i.e., a cylinder), 
the argument can be extended to prove that ( 12.9) holds in much more general two-
and three-dimensional domains by considering a thin tube of length. L connecting the 
starting location to the target (see Theorems 5 and 10 in [ 17]  f o r  a  precise s t a t e m e n t ) .  
However, three restrictive assumptions of this argument are that (i) the searchers all 
start at a single point, (ii) the domain contains a s traight-line path from this single 
starting location to the target, and (iii) the searchers move by pure diffusion. The 
next section s hows that ( 12.9) still holds without these three assumptions.
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12.2.3 A Universal Moment Formula 

Looking back to the one-dimensional problem in Sect. 12.2.1, the formula f or 
.P(τ > t) i n  ( 12.4) yields the following short-time behavior of.P(τ ≤ t) on a logarith-
m i c  
scale, 

. lim
t→0+

t ln P(τ ≤ t) = − C < 0, whereC :=
L2

4D
> 0. (12.10 ) 

Due to Varadhan’s f ormula from large deviation theory [ 22, 23 ] ,  the s h o r t - t i m e  
behavior of the distribution of . τ in (12.10) holds in much greater generality [ 18]. 
In these more general scenarios, .D > 0 i s  a  c h a r a c t e r i s t i c  d i ff u s ivi t y  and . L > 0
is a certain geodesic distance between the searcher starting location(s) (possibly a 
distribution on a set of s tarting locations) and the target that (i) avoids any reflecting 
obstacles, (ii) includes any s patial variation or anisotropy in diffusivity, and (iii) 
incorporates any geometry in the case of diffusion on a curved manifold [ 18 ]. Further, 
. L is unaffected by deterministic forces on the diffusive searchers (i.e., a drift) or a 
partially absorbing target [ 18]. 

Since the large.N behavior of .E[TN ] depends only on the short-time behavior of 
.P(τ ≤ t) (see (12.7)), the general formula in ( 12.10) f or the s hort-time behavior of 
.P(τ ≤ t) for diffusive search suggests that the large.N asymptotics of.E[TN ] in (12.8) 
should extend to the aforementioned general scenarios in which (12.10) holds. The 
following theorem shows that this is indeed the case, and in fact the r esult extends 
to the. mth moment of the. kth fastest FPT.Tk,N for .1 ≤ k & N.  

Theorem 2 (From Ref. [ 18]) Let.{τn}∞
n=1 be a s equence of iid nonnegative random 

variables. Assume that 

.

& ∞

0

)
P(τ > t)

*N dt < ∞ for some N! 1, (12.11) 

and assume that there exists a constant.C > 0 s o  t h a t  

. lim
t→0+

t ln P(τ ≤ t) = − C < 0. (12.12) 

Then for any.m ! 1 and.k ! 1 , the. mth moment of .Tk,N i n  (12.3) satisfies 

.E[(Tk,N)m] ∼
# C

ln N

$m
as N → ∞. (12.13) 

Theorem 2  is a general result that applies to order statistics of any random vari-
a b l e  s a t i s f y i n g  (12.11)–(12.12). Therefore, Theorem 2  and the universal behavior in 
(12.10) f or diffusive search shows that ( 12.13) holds with .C = L2/(4 D) and the var-
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ious details in the problem (spatial dimension, drift, domain s ize, target size, searcher 
number. k, etc.) are irrelevant to the leading order statistics of .Tk,N as.N → ∞.  

However, the convergence rate of ( 12.13) is generally quite slow. Hence, it is 
important to identify how these various details affect the fastest FPT statistics at 
higher order. The next subsection computes these corrections using extreme value 
theory. 

12.2.4 Extreme Va l u e  Theory Approach 

Extreme value theory is a branch of probability theory and statistics dealing with 
extreme events in the t a i l s  o f  p r o b a b i l i t y  d i s t r i but i o n s .  T h e  t h e o r y  d a t e s  b a c k  nearly 
a century to Fisher, Tippett, Gnedenko [24 , 25 ] and is concerned with determining the 
distribution of the minima (or maxima) of a large s equence of iid random variables 
in terms of the short-time distribution of a single r andom variable. We now apply 
this theory to FPTs of diffusion. 

Looking back again to the simple example in Sect. 12.2.1, the formula in (12.4) 
yields the following short-time behavior of .P(τ ≤ t) on a linear scale ( i.e., more 
information than the logarithmic scale in (12.10) ) ,  

.P(τ ≤ t) ∼ At pe− C/ t ast → 0+, ( 1 2 . 1 4 )  

where .C = L2/(4 D) > 0, .A =
+

4D/( L2π ) , and .p = 1/2 . I t turns out that this 
short-time behavior of the s urvival probability of diff usive s earch extends to much 
more general scenarios, where .C = L2/(4 D) is the di ff u s i o n  timescale i n  (12.10) 
and.A > 0 and.p ∈ R depend on the details of the problem (spatial dimension, drift, 
target reactivity, etc.). The following theorem gives the distribution and statistics of 
.TN using the information in (12.14). 

Theorem 3 (From Ref. [ 19]) Let .{τn}n!1 be iid and assume that there exist con-
stants.C > 0 ,.A > 0 , and.p ∈ R so t h a t  ( 12.14)  holds. Then.  TN := min{τ 1, . . . , τN}
satisfies 

. 
TN − bN

aN
→ d X = d Gumbel(0, 1) as N → ∞,

where 

. aN =
C

(ln N)2 , bN =
C

ln N

#
1 +

p ln(ln( N))
ln N

−
ln( ACp)

ln N

$
. (12.15) 

If we assume further that.E[TN ] < ∞ for some.N ! 1 , t hen for each.m ∈ (0, ∞) ,
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. E
,-

TN − bN

aN

. m/
→ E[ Xm] as N → ∞, where X= d Gumbel(0, 1).

We note t hat Theorem 3  can be generalized to describe.Tk,N for .1 ≤ k & N ( s e e  
Theorems 4 and 5 in [ 19] ) .  

In Theorem 3 and throughout this chapter, .→ d denotes convergence in distribu-
tion [  26] and .= d denotes equality in distribution. Further, .Gumbel ( 0 , 1) denotes a 
random variable with a Gumbel distribution with location parameter.b = 0 and scale 
parameter .a = 0 . Generally, a random variable .X has a Gumbel distribution with 
location parameter.b ∈ R and scale parameter.a > 0 i f  1

.P(X > x) = exp
'

− exp
# x − b

a

$(
, for all x ∈ R. (12.16) 

Note that if .X = d Gumbel(b, a), t hen .E[X] = b − γ a where .γ ≈ 0.5772 is t h e  
Euler–Mascheroni constant, and.Variance(X) = π2

6 a2. Theorem 3  thus yields higher 
order estimates of statistics of .TN . In particular, 

. E[TN ] = bN − γ aN + o(aN),

Variance(TN) =
π2

6
a2

N + o(a2
N).

Roughly s peaking, Theorem 3 implies that.TN is approximately Gumbel with shape 
.bN and scale.aN . 

To  illustrate T h e o r e m  3, consider one-dimensional diff usive s earch as in Sect. 12.2.1,  
but now suppose t here i s a constant drift .V > 0 pushing the s earchers toward the 
target at.x = 0 . That is, the position of a searcher evolves according to the s tochastic 
diff erential equation, 

.dX = − V dt +
√

2D dW, X(0) = L > 0, (12.17) 

where .W is a s tandard Brownian motion. If . τ i s  t h e  F P T  t o  t h e  or i g i n  (i.e., (12.1) 
with .Utarget = 0 ), then the s urvival probability is 

.P(τ > t) =
1
2

,
1 + erf

# L − V t
√

4Dt

$
− e

V L
D erfc

# L + V t
√

4Dt

$/
, t > 0. (12.18) 

U s i n g  (12.18), one can check that (12.14) holds with .C = L2/(4 D),  
.A =

√
1/( Cπ )eLV /(2 D) , and.p = 1/2 . Hence, Theorem 3  implies that as.N → ∞,

1 A Gumbel di s t r i bu t i o n  is s o m e t i m e s  d e fi n e d  differently by saying that.− X has a Gumbel distri-
bution with shape.− b and scale.  a if (12.16) holds. 
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. E[TN ] =
L2

4D ln N

'
1 +

ln(ln( N))
2 lnN

−
# LV / D − ln π + 2γ

ln N

$
+ o((ln N)−1 )

(
.

(12.19) 

This result shows that increasing .V (i.e., increasing the drift toward the target) 
decreases.E[TN ] . This i s to be expected, but (12.19) s hows that the eff ect of increasing 
.V only affects.E[TN ] at third order as.N → ∞.  

We note t hat the analysis above of how .TN va n i s h e s  is a l l  i n  t h e  l i m i t  . N → ∞
for a fixed drift, fixed target size, etc. However, it is clear that.TN must diverge if we 
fix .N ! 1 (even a large value of .  N) and take, f or example, the size of the target to 
z e r o  (similarly,.TN diverges if we take the target reactivity to zero or take a repelling 
drift pushing the searchers away from the target to infinity). For an analysis of the 
“competing limits” of.N → ∞ ver s u s ,  say, a  va n i s h i n g  t a rg e t  ( o r  an  u n r e a c t ive  target 
or a large repulsive drift), we r efer the reader to Reference [ 27] .  

12.2.5 Uniform Initial Conditions 

The analysis above all assumes that the diffusive searchers cannot start arbitrarily 
close to the target. That is, even in the case where the searchers may have a continuum 
of possible s tarting locations (as in Sect. 12.2.3), the s upport of this s et of starting 
locations is a s trictly positive distance away from the closest part of the target. For 
ex a m p l e ,  t h e  one-dimensional ex a m p l e  i n  Sect. 12.2.1 could be modified so that the 
initial distribution of. X is uniform on the interval.[a, b] as long as.0 < a < b < ∞. I n  
this case, the moment formula in (12.13) holds with .C = L2/(4 D) and.L = a > 0 .  

How does the fastest FPT change if searchers can start arbitrarily close to the 
target? For example, suppose. X is initially u n i f o r m l y  d i s t r i but e d  on t h e  interval. [0, l ]
with targets at both.x = 0 and.x = l > 0 (i.e., . τ is i n  (12.1) with .Utarget = {0, l }). In 
this case, it was s hown back in the first work on fastest FPTs of diffusion that [ 2] 

.E[TN ] ∼
πl 2

8D

1
N2 asN → ∞, (12.20 ) 

which is of course much faster than the.1/ ln N decay seen in the s ections above for 
the case that searchers cannot start arbitrarily close to the target. 

The much faster decay of .E[TN ] for this problem stems from the following short-
time behavior of the distribution of . τ [ 27 ] ,  

.P(τ ≤ t) ∼ At p ast → 0+, (12.21) 

where .p = 1/2 and .A =
+

42D/( l 2π ), which is much slower than the short-time 
decay of .P(τ ≤ t) i n  (12.10). In fact, rather than just the mean in (12.20), it f o l l ow s  
f r o m  ( 12.21) and Theorem 4  that.( AN )1/ pTN c o nverg e s  i n  distribution to a  Wei bu l l  
random variable with unit s cale and shape. p as.N → ∞.
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The decay of .E[TN ] for this example slows from .1/ N2 in ( 12.20) t o  .1/ N if t h e  
targets at .x = 0 and .x = l > 0 a r e  partially a b s o r b i n g  w i t h  r e a c t ivi t y  .κ ∈ ( 0 , ∞) .  
Specifically, it was shown in [ 27, 28] t hat 

.E[TN ] ∼
l

2κ
1
N

asN → ∞. (12.22) 

The behavior in (12.22)  follows from the fa c t  that the s h o r t - t i m e  di s t r i bu t i o n  of . τ
satisfies ( 12.21)  with .p = 1 and .A = 2κ/ l [  27 ]. In fact, rather than just the mean 
in (12.22), i t  f o l l ow s  f r o m  ( 12.21) and Theorem 4  that .(2κ/ l )N TN converges in 
distribution to a unit rate exponential random variable as.N → ∞. 

Though we illustrated (12.20) and ( 12.22) in the case of diffusion in an interval, 
we emphasize that the.N−2 decay in (12.20) and the.N−1 decay in (12.22) ar e  g e n e r i c  
r e s u l t s  which a p p l y  t o  diffusive s e a r c h e r s  which a r e  i n i t i a l l y  uniformly distributed 
in the entire domain with either perfectly absorbing targets ( the case of (12.20)) o r  
partially absorbing targets ( the case of (12.22) )  [ 27, 28 ] .  

1 2 . 3  S u p e r d i f f u s i o n  

Section 12.2 concerns fastest FPTs of normal diffusion processes. Normal diffusion 
is marked by a s quared displacement that grows linearly in time. However, rather 
than normal diffusion, an anomalous form of diffusion called s uperdiff usion has 
been observed in a variety of physical and biological systems [ 29]. In t h i s  s e c t i o n ,  
we investigate fastest FPTs for a model of superdiffusion called a Lévy flight [ 30]. 
We note t hat a Lévy flight is superdiff usive i n t he sense that its squared displacement 
grows s u p e r l i n e a r l y  i n  time (see (12.26)), even though its mean squared displacement 
is infinite. 

12.3.1 L é v y  Flights 

A Lévy flight with stability index .α ∈ ( 0 , 2 ) can be obtained from the continuous-
time r andom walk model [ 29, 31] assuming that the waiting time between jumps 
of the walker has a finite mean .t0 ∈ (0, ∞) and the probability density of the jump 
distance has the f ollowing slow power law decay: 

. f (y) ∼
(l0)α

y1+α asy → ∞ for some lengthscalel0 > 0. (12.23) 

The probability density.p(x, t) for the position of a Lévy flight satisfies the following 
space-fractional Fokker–Planck equation [ 32],
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.
∂
∂t

p = − K (−() α/2 p, ( 1 2 . 2 4 )  

where.K = ( l0)α/ t0 > 0 is the generalized diffusivity and.(−() α/2 denotes the frac-
tional Laplacian [ 33] .  

A Lévy flight .X in .Rd can also be defined as the following random time change 
(i.e., a s ubordination) of a Brownian motion [ 32]: 

.X(t) := B(S(t)) + X(0) t ! 0, (12.25) 

where.B = { B(s)}s!0 i s  a.d- d i m e n s i o n a l  B r own i a n  m o t i o n  wi t h  unit diffusivity ( i . e . ,  
.E. B(s). 2 = 2 ds f o r  al l  .s ! 0) and .S = { S(t)} t !0 is an independent, .(α/2)-stable 
subordinator with Laplace exponent .)(β) = Kβα/2 ( i . e . ,  .E[e−β S(t) ] = e− t)(β) f o r  
all .t ! 0, .β ! 0 ). Observe that the Brownian s caling (where.= d denotes equality in 
distribution), 

. B(s) = d s1/2 B(1) for all s > 0,

and the.( α /2 ) -stable s ubordinator scaling, 

. S(t) = d t2/α S(1) for all t > 0,

imply that the Lévy flight defined in (12.25) s atisfies the f ollowing scaling: 

.X(t) − X(0) = d t1/α (X(1) − X(0)) for all t > 0. (12.26) 

Squaring (12.26) i mplies t hat the squared displacement of a Lévy flight grows super-
l i n e a r l y  i n  t i m e .  

The s earch efficiency of a Lévy flight has previously been investigated in terms 
of the FHT of a s ingle searcher to a target in a variety of one-dimensional [ 34–  36 ]  
or two-dimensional settings [ 37 ]. In the following section, we study the FHT of the 
fastest searcher of many Lévy flight searchers. 

12.3.2 Fastest F H T s  of L é v y  Flights 

Define the first hitting time (FHT) . τ of the Lévy flight .X i n  (12.25) to s ome t arget 
.Utarget + R d as in (12.1). We use the term FHT r ather than FPT since these two 
concepts can be distinct for Lévy flights due to their discontinuous sample paths [ 35,  
38 –  40 ]. As above, determining the s tatistics and distribution of .Tk,N for . 1 ≤ k & N
in ( 12.3)  requires d e t e r m i n i n g  the short-time di s t r i bu t i o n  of . τ .  

Assuming that.X( 0 ) cannot lie in the target.Utarget (meaning that the intersection 
of the support of .X( 0 ) and the closure of .Utarget is empty), it was proven in [ 41] that 
. τ has the universal short-time distribution,
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.P(τ ≤ t) ∼ ρ t ast → 0+, (12.27) 

where.ρ ∈ ( 0 , ∞) is the rate, 

.ρ :=
& ∞

0
P(B(s) + X(0) ∈ Utarget)

α/2
,(1 − α/2)

K

s1+α/2 ds. (12.28) 

If .X( 0 ) = 0 , then the Gaussianity of .B(s) means that.  ρ can be written as 

. ρ =
& ∞

0

1
(4πs)d/2

&

Utarget

exp
#−. x. 2

4s

$
dx

α/2
,(1 − α/2)

K

s1+α/2 ds

= 2 α,
#d + α

2

$ K

πd/2
α/2

,(1 − α/2)

&

Utarget

1
. x. α+ d

dx.

The following theorem yields the distribution and statistics of .TN i n  ( 12.2) f r om  
the short-time behavior in (12.27). Analogous results hold for .Tk,N in ( 12.3)  with 
.1 ≤ k & N (see Theorems 5 and 6 in [ 27]). 

Theorem 4 (From Ref. [ 27] )  Let .{τn}n!1 be an iid sequence of random variables 
and assume that for some.A > 0 and.p > 0 , we have that 

.P(τn ≤ t) ∼ At p as t → 0 + . (12.29) 

Then, the following rescaling of .TN := min{τ 1, . . . , τN } converges in distribution, 

. ( AN )1/ pTN → d Weibull(1, p) as N → ∞.

If we assume further that.E[TN ] < ∞ for some.N ! 1 , t hen for each.m ∈ (0, ∞) ,  

. E[(TN)m] ∼
,(1 + m/ p)

( AN )m/ p
as N → ∞.

Throughout this chapter, .X = d Weibull(t , p) means that .X is a Weibull random 
var i a b l e  wi t h  scale.t > 0 and shape.p > 0 , which means 

.P(X > x) = exp(−( x/ t) p), x ! 0. (12.30 ) 

Note that .Weibull(1, p) is exponential with unit rate if .p = 1. Therefore, applying 
Theorem 4 t o  ( 12.27) i m pl i es t hat  .(ρ N)TN converges in distribution to a unit rate 
ex p o n e n t i a l  r a n d o m  variable as.N grows [ 41]. Hence,.TN is approximately exponen-
t i a l l y  distributed with r a t e  .ρN. Furthermore, if .E[TN ] < ∞ for s ome .N ! 1, then 
Theorem 4  yields all the moments of .TN for large. N. I n particular, 

.E[TN ] ∼
+

Variance[TN ] ∼
1

ρN
asN → ∞. (12.31)
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Analogous results hold for (i) .Tk,N in (12.3) for any.1 ≤ k & N and (ii) the case that 
. S is any nondeterministic Lévy subordinator [ 41] .  

We now contrast ( 12.31)  with t h e  case of  n o r m a l  di ff u s i o n .  F i r s t ,  the.1/ N decay 
i n  (12.31) is much faster than the .1/ ln N decay for normal diffusion processes in 
Sect. 12.2. Further, fastest FPTs of diffusion depend on the s hortest path to the target 
since the fastest diffusive searchers follow this geodesic [ 18 ]. Indeed, fastest FPTs 
of diffusion are unaffected by changes to the problem outside of this path, such 
as altering the domain or target size or even the s patial dimension. In contrast, the 
expression for t h e  rate. ρ i n  (12.28) implies that fastest FHTs of Lévy flights depend 
on these global properties of the problem. I ndeed, the fastest Lévy flights do not take 
a direct path to the closest part of the target [ 41]. 

1 2 . 4  S u b d i f f u s i o n  

Another form of anomalous diff usion seen in a variety of physical and biological 
systems is s ubdiffusion [ 42 –  45]. Subdiffusion is marked by a mean-squared dis-
placement that grows according to the f ollowing sublinear power law: 

. E. X(t) − X(0). 2 ∝ tγ , γ ∈ (0, 1).

12.4.1 Subordination 

One common way to model subdiff usion is via a time-fractional Fokker–Planck 
equation [ 46 ], which derives from the continuous-time r andom walk model with 
infinite mean waiting times between jumps [ 31 , 47 ]. Such a time-fractional Fokker– 
Planck equation describes the distribution of a subdiffusive process.{X(t)} t !0 defined 
by subordinating a normal diffusive process .{Y(s)}s!0 [ 48 ] .  P r e c i s e l y,  i f  . {Y(s)}s!0
is a normal diffusion process s atisfying an Itô stochastic differential equation, then 

.X(t) := Y(S(t)), t ! 0, (12.32) 

where.S = { S(t)} t !0 is an independent, inverse.γ -stable s ubordinator. We emphasize 
that . S is an inverse stable s ubordinator in this section ( in contrast with Sect. 12.3), 
which is defined by 

. S(t) := inf{ s > 0 : T( s) > t},

where.{T(s)}s!0 i s  a.γ -stable s ubordinator. 
The definition of .X i n  ( 12.32) implies that if . τ and . σ are r espective FPTs of . X

and. Y to some t a rg e t ,  t h e n  the di s t r i bu t i o n  of . τ is
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.P(τ ≤ t) = E[ Fσ(S(t))], (12.33) 

where.Fσ(s) := P(σ ≤ s) is the cumulative distribution function of the FPT.  σ of the 
normal diffusion process. Y. I t f ollows immediately from (12.33) t hat 

.P(τ ≤ t) =
& ∞

0
P(σ ≤ s)

t

γ s1+1/γ lγ
# t

s1/γ

$
ds, ( 1 2 . 3 4 )  

since the probability density that.S(t) = s i s  

.
d
ds

P(S(t) ≤ s) =
t

γ s1+1/γ lγ
# t

s1/γ

$
, (12.35) 

where.lγ (z) is defined by its Laplace transform, 

. 

& ∞

0
e− r zlγ (z) dz = e− r γ , γ ∈ (0, 1), r ! 0.

12.4.2 Fastest F P T s  of S u b d i ffu s i o n  

By using (12.34), t h e  s m a l l  .  s behavior of .P(σ ≤ s), and the small . z behavior of 
.lγ (z) , we can develop a theory of fastest FPTs of s ubdiff usion that is analogous 
to the theory for normal diffusion in Sect. 12.2. I n particular, since . σ is an FPT of 
a normal diffusion process, then we have that under very general conditions (see 
Sect. 12.2.3) ,  

. lim
s→0+

s ln P(σ ≤ s) = − L2/(4 D) < 0,

where .D and . L are as in Sect. 12.2.3 for the normal diffusion process . Y (note that 
.Y = Y(s) is indexed by “internal time” .s ! 0 , which is not physical time, but rather 
has dimension .(time)γ and thus .D has dimension .(length)2(time)−γ ). Then, using 
(12.34) and the fact that [ 49, 50] 

. lim
z→0+

zγ /(1−γ ) ln l (z) = −(1 − γ )γ γ /(1−γ ) < 0, (12.36) 

we obtain the following universal behavior of FPTs of subdiffusion modeled by a 
time-fractional Fokker–Planck equation, 

. lim
t→0+

tγ /(2−γ ) P(τ ≤ t) = − C := −(2 − γ )γ
γ

2−γ (L2/(4 D))
1

2−γ < 0. (12.37) 

By a r esult analogous to Theorem 2  (see Theorem 6 in [ 51]), t h e  s h o r t - t i m e  
behavior on a logarithmic s cale in ( 12.37) implies that the . mth moment of .Tk,N in



294 S. D. Lawley

( 12.3) for subdiffusion s atisfies (assuming.E[TN ] < ∞ for some.N ! 1) ,  

.E[(Tk,N)m] ∼
-

tγ
(ln N)2/γ −1

. m

asN → ∞, (12.38) 

where.tγ > 0 is the characteristic subdiff usive timescale, 

. tγ :=
#
γ γ (2 − γ )2−γ L2

4D

$1/γ
> 0, γ ∈ (0, 1].

We can also generalize Theorem 3 to determine higher order corrections to (12.38) 
and the Gumbel probability distribution of .Tk,N , but we o m i t  t h e s e  r e s u l t s  f o r  br ev i t y  
(see Theorems 9, 10, and 11 in [ 51]). Note also that we focused here on the case 
when searchers cannot start arbitrarily close to the target, but one can also determine 
the fastest FPTs of s ubdiffusive s earchers which start uniformly in a bounded spatial 
domain (see the discussion section of [ 51] ) .  

12.4.3 Extreme S t a t i s t i c s :  S u b d i ffu s i o n  Is Fa s t e r  T h a n  
Normal Diffusion 

Comparing (12.38) w i t h  (12.13) in Sect. 12.2 for normal diffusion yields the coun-
terintuitive result that fastest FPTs of subdiffusion are faster than fastest FPTs of 
normal diffusion. Concretely, let.σnorm and.τ subdenote FPTs to a target in a bounded 
domain for normal diffusive and subdiff usive s earch, respectively. We generally have 

. E[σnorm] < E[τ sub] = ∞,

where.E[τ sub] = ∞ ow e s  t o  the slow d e c a y  of.P(τ sub > t) as.t → ∞ [ 52]. H ow ever,  
if .P(σnorm > s) decays at least as fast as a power l aw as.s → ∞, then (12.34 ) implies 
that (see Theorem 8 in [ 51]) 

. E[Tsub
N ] < ∞ for sufficiently large N,

where .Tsub
N := min{τ sub

1 , . . . , τsub
N } and .{τ sub

n }n are iid. Further, ( 12.38) and (12.13) 
imply 

. E[Tsub
N ] & E[. norm

N ] for sufficiently largeN,

where.. norm
N := min{σ norm

1 , . . . , σnorm
N } and.{σnorm

n }n a r e  iid.
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1 2 . 5  R a n d o m  Wa l k s  on N e t wo r k s  

In Sects. 12.2–12.4, we considered search processes on a continuous state s pace. 
We now follow [ 53 ] and consider searchers which move on a “network” of discrete 
s t a t e s .  

12.5.1 Random Wal k  Setup 

Each searcher moves on the network according to a continuous-time Markov chain. 
Hence, the waiting time between jumps is exponentially distributed, but this assump-
t i o n  on  the wai t i n g  t i m e  di s t r i bu t i o n  can b e  r e l a xed  ( s e e  S e c t .  I I I  in [ 53] for  m any  
searchers and also [ 54] for the case of a single s earcher). 

Concretely, let .X = { X(t)} t !0 be a continuous-time Markov chain on a finite or 
countably infinite state space. I . The process.X is a single s earcher and its dynamics 
are described by its infinitesimal generator matrix.Q = { q(i , j )} i , j ∈ I [  55 ] .  The off-
diagonal entries of .Q (i.e., .q(i , j ) ! 0 for .i 0= j ) are nonnegative and give the r ate 
that .X jumps from .i ∈ I to . j ∈ I . The diagonal entries of .Q a r e  nonpositive ( i . e . ,  
.q(i , i ) ≤ 0 f o r  al l  .i ∈ I ) and are chosen so that .Q has zero r ow sums. Assume that 
.supi ∈ I |q(i , i ) | < ∞ s o  that.X cannot take infinitely many jumps in finite time. 

12.5.2 Single F P T s  

Let . τ i n  (12.1) be t he FPT of .X to some target set .Utarget + I . Let  . ρ = {ρ( i )} i ∈ I =
{P(X(0) = i )} i ∈ I d e n o t e  the initial di s t r i bu t i o n  of . X. To avoi d  t r ivi a l  cases, as s u m e  
that .X cannot start on the target, which means that .Utarget∩ supp ( ρ ) = ∅, where 
.supp(ρ) + I denotes the s upport of . ρ (i.e.,.supp(ρ) := {i ∈ I : ρ (i ) > 0 } ) .  

As in the s ections above, determining the distribution of .TN in (12.2) and.Tk,N in 
( 12.3)  requires d e t e r m i n i n g  t h e  s h o r t - t i m e  distribution of . τ . Theorem 5 shows that 

.P(τ ≤ t) ∼
/
d!

td ast → 0+, (12.39) 

where .d ! 1 is the s mallest number of jumps that .X must take to hit the target and 
./ > 0 is a s um of the products of the jump rates along the s hortest path to the target. 

To make. d and. / i n  ( 12.39) precise, define a path. P of length.d ∈ Z !0 from. i0 ∈ I
to .id ∈ I to be a s equence of .d + 1 states in . I ,  

.P = (P(0), . . . , P(d)) = ( i0, i1, . . . ,id) ∈ I d+1 , (12.40 ) 

so that
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.q(P(k), P(k + 1)) > 0, for k ∈ {0, 1, . . . ,d − 1}. (12.41) 

The condition in (12.41) means that. X has a  s t r i c t l y  p o s i t ive  probability o f  f o l l ow i n g  
the path. P. Assume that there is a path from the support of . ρ to the target (otherwise, 
.P(τ = ∞) = 1 and the problem is trivial). 

For  a  path.P ∈ I d+1 , let.λ ( P ) be the product of the r ates along the path, 

.λ(P) :=
d−10

i =0

q(P( i ), P(i + 1)) > 0. (12.42) 

Let .dmin( I0, I1) ∈ Z !0 denote the length of the shortest path from.I0 + I to .I1 + I ,  

. dmin( I0, I1) := inf{ d : P ∈ I d+1 , P(0) ∈ I0, P(d) ∈ I1}.

That is,.dmin( I0, I1) is the smallest number of jumps that.X m u s t  t a ke  t o  g o  from . I0
to . I1. Define the s et of all paths from .I0 to.I1 with the length.dmin( I0, I1), 

. S( I0, I1) := {P ∈ I d+1 : P(0) ∈ I0, P(d) ∈ I1, d = dmin( I0, I1)}. (12.43) 

Define 

./(ρ, I1) :=
1

P∈S(supp(ρ), I1)

ρ(P(0))λ(P). ( 1 2 . 4 4 )  

To ex p l a i n  ./(ρ, I1) , s uppose first that .ρ( i0) = 1 for s ome .i0 ∈ I (i.e., .  supp(ρ) =
i0 = X( 0 ) ). If there is only one path with the minimum number of jumps.dmin(i0, I1) ,  
then./(ρ, I1) is the product of the jump r ates along this path (i.e.,.λ ( P ) i n  (12.42) ) .  
If there is more than one shortest path, then ./(ρ, I1) is the s um of the products of 
the jump rates along these paths. Finally, if . ρ is not concentrated at a single point, 
then./(ρ, I1) merely sums the products of the jump rates along all the shortest paths, 
where the sum is weighted according to . ρ . With these definitions in place, we can 
now give the short-time behavior of the distribution of .  τ .  

Theorem 5 (From Ref. [ 53 ] )  The s h o r t - t i m e  di s t r i bu t i o n  of. τ satisfies (12.39), where 

. d = dmin(supp(ρ),Utarget) ∈ Z >0 ,
/ = /(ρ, Utarget) > 0.

12.5.3 Fa s t e s t  F P T s  

Having determined the short-time probability distribution of a single FPT in Theo-
rem 5,  we  c a n  i m m e d i a t e l y  determine t h e  l i m i t i n g  di s t r i bu t i o n  a n d  statistics of  fastest
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FPTs for random walks on networks. In particular, define 

. A =
/
d!

> 0,

where.d ! 1 and ./ > 0 are as in Theorem 5. Theorem 4 implies that the f ollowing 
rescaling of .TN converges in distribution to a Weibull random variable, 

.( AN)1/ dTN → d Weibull(1,d) asN → ∞. (12.45) 

Furthermore, if .E[TN ] < ∞ for some.N ! 1, t hen for each moment.m ∈ ( 0 , ∞) ,  

.E[(TN)m] ∼
,(1 + m/ d)

( AN )m/ d
asN → ∞. (12.46) 

Compared to a single FPT .  τ , fastest FPTs .TN are faster and less variable since 
(12.46) i mplies t hat the mean and variance of .TN vanish a s  .N → ∞. Furthermore, 
fastest FPTs are independent of much of the properties of t he network. I n particular, 
(12.45) implies t hat the l arge .N distribution of  .TN is fully determined by .  N,  . /,  
and . d, which depend only on network features along the s hortest path(s) from the 
initial distribution to the target. Similar conclusions hold for .Tk,N f o r  . 1 ≤ k & N
(see Theorems 2 and 4 in [ 53]). 

1 2 . 6  Discussion 

In this chapter, we reviewed fastest FPTs out of many searchers for a variety of 
search processes. We found that such extreme FPTs tend to differ drastically from 
the behavior of a single FPT. We s howed that the s tatistics and distribution of fastest 
FPTs are determined by the short-time distribution of a single FPT. Hence, details in 
the problem (spatial dimension, domain s ize and geometry, s ome aspects of searcher 
dynamics, etc.) can become irrelevant to fastest FPTs in the many searcher limit. 
These details become irrelevant because the fastest FPTs typically correspond to 
searchers which take a direct path to the target. 

We now briefly mention a few closely related problems. The behavior of fastest 
searchers mimics so-called “mortal” or “evanescent” s earchers [ 7, 56– 61 ] which 
have been conditioned to reach the target before a fast inactivation time [ 53, 62, 63]. 
Conditioning on not being inactivated effectively filters out searchers which do not 
take a direct path to the target. 

In addition to FPTs, cover times of multiple searchers have also been investigated 
[  64–  68 ]. Cover times measure the speed of exhaustive search and are defined as the 
first time a searcher(s) comes within a s pecified “detection r adius” of every point in 
the target region (often the entire spatial domain). For diffusive s earch, it was r ecently 
proven that the asymptotic.L2/(4 D ln N) also holds for the time it takes.N , 1 iid
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searchers to collectively cover a target if . L is the s hortest distance from the searcher 
starting locations to the f a r t h e s t  part of the target [ 67] (see [  68] for results on cover 
times of many discrete random walkers on a network). Another statistic which is 
related to fastest FPTs was discussed in [ 69 ] in terms of first-crossing times for 
boundary local time processes of individual searchers. 

In the case of multiple targets, one can consider the probability that the fastest 
searcher hits a particular target first (the so-called s plitting probability or hitting 
probability). In the limit of many diff usive searchers, the fastest searcher always hits 
the nearest target, regardless of target size, domain geometry, drift, etc. [ 70 ] .  T h i s  
phenomenon has been shown to offer a way for biological cells to detect the location 
of the source of a diffusing signal [ 71, 72] and also offers insight into the choices 
made by the first deciders in large groups of decision-makers [ 73, 74 ] .  

Slowest FPTs have r ecently found application in ovarian aging and menopause 
t i m i n g  [  75, 76]. Women ar e  b o r n  with .N ∈ [105, 106] primordial follicles in their 
ovarian r e s e r ve,  and t h i s  r e s e r ve  then d e c a y s  u n t i l  only about.k = 103 follicles r emain 
which is thought to trigger menopause [ 77]. Further, there is a long history [ 78–  83 ]  
of models that assume that follicles leave the r eserve at iid random times.τ1, . . . , τN .  
Hence, the menopause age is .TN− k,N (using the notation in (12.3)), which means 
that menopause age is determined by the.k/ N ≈ 0 .2% slowest follicles to leave the 
reserve. This analysis has been used to offer an explanation for the so-called “waste-
f u l ”  over s u p p l y  of  f o l l i c l e s  [  75 ] and also to analyze a proposed surgical procedure f or 
delaying menopause [ 84]. Other instances of apparent “redundancy” in biological 
systems have been understood in terms of fastest FPTs [ 7, 10 –  16 ] .  

A  possible pr o b l e m  w i t h  t h e  a n a l y s i s  of fas t e s t  F P T s  of  di ff u s ive  s e a r c h e r s  in 
some scenarios is that the vanishing mean fastest s earch time, 

.E[TN ] ∼
L2

4D ln N
asN → ∞, (12.47) 

becomes unphysical. Specifically, if the searchers have a finite maximum speed 
.v > 0 , then no searcher can reach a target that is distance .L > 0 from t h e  s t a r t i n g  
location before time.L/v > 0 . That is, we must have.TN ! L/v > 0, which contra-
dicts (12.47) for sufficiently large. N. This contradiction s tems from the well-known 
[ 85] problem of approximating finite speed random walks by diffusion due to the 
infinite speed of propagation of s olutions to the diffusion equation [ 86 , 87 ] .  This dis-
crepancy between finite speed random walks and infinite speed diff usion can often be 
ignored in many applications, s ince the discrepancy occurs in the tails of the distribu-
tion. However, these tails determine fastest FPTs. For a discussion and analysis of (i) 
when (12.47 ) becomes unphysical and (ii) fastest FPTs of r un and tumble processes 
(i.e., finite speed random walks), we refer the reader to Reference [ 88]. 

In terms of practical application, an important question concerns the convergence 
rate of the asymptotic results reviewed in this chapter. Put simply, how large does the 
number of searchers. N need to be for t he asymptotics to be accurate? The convergence 
i n  (12.47) is generally quite slow, though the “sufficiently large” value of.N for which 
the approximation .E[TN ] ≈ L2

4D ln N is accurate depends strongly on the specifics of
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the s ystem. To illustrate in a concrete example, consider three-dimensional diffusive 
search confined in a sphere of radius.R > 0 with reflecting boundaries. Suppose the 
searchers s tart at the boundary of the sphere and the target is a concentric s phere with 
radius.εR. If we fix .ε ∈ ( 0 , 1) (even s mall a value of . ε) and take.N → ∞, t hen the 
mean fastest s earch time vanishes according to ( 12.47) where .L = (1 − ε) R. I f we  
instead fix .N (even a large value of . N) and take.ε → 0 , then the mean fastest s earch 
time diverges according to [ 27] 

.E[TN ] ∼
E[τ ]

N
∼

1
N

R2

3Dε
as ε → 0, (12.48) 

where .E[τ ] ∼ R2/(3 Dε) is the diverging mean FPT of a s ingle searcher. Hence, 
smaller targets require more searchers in order for ( 12.47) to be accurate. When is the 
system in the fast escape regime of (12.47) versus the slow escape regime of ( 12.48) ?  
If we fix .ε & 1 and increase . N, (12.48) implies that .E[TN ] i n i t i a l l y  decreases like 
.E[τ ]/ N. However, this rather rapid.1/ N decay cannot continue indefinitely since it 
m u s t  eve n t u a l l y  s l ow  t o  the.1/ ln N decay in (12.47). Since.E[TN ] is monotonically 
decreasing in . N, this argument suggests the following simple approximation: 

.E[TN ] ≈ max
2E[τ ]

N
,

L2

4D ln N

3
, (12.49) 

and thus 

.E[TN ] ≈
L2

4D ln N
if

E[τ ]
N

&
L2

4D ln N
. (12.50 ) 

The estimates (12.49)–(12.50) can be extended to more general scenarios assum-
ing that .L2/ D & E[ τ ] < ∞ [  27]. A more detailed investigation of when various 
approximations of fastest FPTs of diffusion are valid can be found in Ref. [ 27]. 
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