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Abstract. In the pursuit of structure-based drug discovery, the goal is 
to find small molecules capable of binding to a particular target protein 
and altering its function. Recently, deep learning (DL) has emerged as 
a promising approach for crafting drug-like molecules. It excels in creat-
ing compounds possessing precise biochemical characteristics while being 
influenced by structural features. Yet, their typical shortfall lies in the 
neglect of a critical element: the intrinsic physics that governs the struc-
ture and binding of molecules within real-world contexts. In this study, 
we explore and build on deep generative models informed by physics 
principles for drug discovery. These models not only consider the bind-
ing site but also incorporate physics-derived features that describe the 
interaction mechanism between a receptor and a ligand. We tested the 
proposed models by generating corresponding drug molecule candidates 
for a variety of protein-ligand complexes from the PDBBind dataset. On 
average, more than 75% of the structures generated by our hybrid model 
were stronger binders than the original experimental reference ligands 
to the protein. In addition, they had higher values of ΔGbind (binding 
affinity) than molecules generated by the baseline methods by an average 
margin of 1.39 kcal/mol. Moreover, drug-like attributes of the generated 
molecules are evaluated in accordance with the Lipinski rules. To extend 
the analysis, their synthesizability is evaluated using ASKCOS, elevat-
ing the evaluation to a more comprehensive level. This revealed that the 
hybrid models notably excel in generating synthesizable molecules, with 
scores suggesting a higher likelihood of successful synthesis. Adherence 
to the Lipinski Rule of Five was also high, with compliance of 98.9%, 
suggesting favorable drug-like properties and a reduced risk of devel-
opment failure due to poor bioavailability. This approach outperforms 
previous works, indicating significant improvements in drug discovery by 
enhancing both binding affinity and synthesizability. 
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1 Introduction 

Drug discovery is vital for improving healthcare outcomes, but has traditionally 
been expensive (1.8 Billion) [ 38], slow (10 to 15 years) [ 6], and resource-intensive, 
with failure rates of over 90% [ 28,40]. Finding drug candidates typically takes 
3 to 5 years. However, with the advancement of new computational techniques, 
this timeframe could be reduced to just a few weeks [ 23]. At the core of drug 
action is the interaction between a protein and its ligand-a small drug molecule. 
This crucial event involves molecular recognition and dynamic interplay within 
the protein’s active site or binding pocket [ 26]. 

The search space for possible molecular structures is enormous and complex. 
It is estimated that there are 1060 drug-like structures possible [ 35]. It can be 
narrowed down by validating candidate molecules based on their chemical con-
straints, such as bond orders, molecular conformation, and valences. This search 
space shrinks significantly when the objective is to find a suitable molecule that 
precisely fits a designated binding pocket for goals such as receptor inhibition 
for disease therapy, and targeted drug delivery mechanisms. The discovery of a 
new molecular structure is divided into two main steps: (1) identifying promis-
ing compounds within a defined chemical space and (2) verifying their ability to 
bind to the target site as predicted. The first step can take anywhere from three 
to five years, rendering it a highly time-intensive process [ 3]. This deficiency 
highlights the demand for computational systems capable of intelligently navi-
gating this restricted chemical search space and conducting virtual screenings of 
compounds for their potential to bind successfully. Implementing such systems 
could lead to considerable reductions in cost and expedite the drug development 
process. 

Artificial Intelligence (AI) and Deep Learning (DL) have been on track to 
revolutionize computer-aided drug design by enhancing the efficiency and accu-
racy of the drug discovery process. These technologies can process and analyze 
vast datasets far beyond human capability, identifying patterns and insights 
that can lead to the discovery of new drug candidates. Some recent DL algo-
rithms have been designed to predict molecular behavior, optimize drug prop-
erties, and simulate how drugs interact with biological targets, all with never 
seen before precision [ 16,20,22,32,34,36]. This ability to quickly generate and 
evaluate potential drug molecules can significantly reduce the time and cost asso-
ciated with traditional drug development methods. Moreover, AI-driven models 
continuously learn and improve from new data, promising increasingly effective 
drug design strategies over time. 

Although these recent developments marked a considerable advancement in 
the creation of new drug candidates, they did not account for essential physical 
attributes of the binding process. Specifically, they overlooked the protein-ligand 
ΔGbind, encompassing both the enthalpic aspects (such as polar, non-polar, 
and Van der Waals energies) and the entropic components [ 48]. While struc-
tural information, such as bond connectivity and atom arrangements, forms the 
basis for molecular representations, they do not capture chemical systems’ intri-
cate and dynamic nature. A previous work [ 36], validated the effectiveness of
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integrating physics-based features into the molecular generation pipeline, which 
enhanced the binding affinity of the predicted ligands. In this research, we 
advance the prior achievements of [ 36] by first augmenting the design of the 
generative model. This enhancement involves integrating a discriminator com-
ponent into the conditional variational autoencoder, thus evolving it into a 
sophisticated conditional variational generative adversarial network (CVAE-
GAN) informed and directed by physics-based attributes. Furthermore, we con-
duct a more comprehensive analysis of the generated molecules’ quality by eval-
uating their binding affinity for a much larger number of binding pockets from 
the PDBBind dataset. This evaluation is also expanded to include assessments 
of drug-likeness and synthesizability, offering a deeper insight into the potential 
practical applications of these molecules in therapeutics. 

2 Related Work 

Computer-Aided Drug Design (CADD) emerged to address Structure-Based 
Drug Discovery (SBDD) limitations, revolutionizing pharmaceutical discovery. 
This approach introduced innovative tools and methodologies that significantly 
accelerated drug development while reducing costs and risks [ 24]. [ 33] intro-
duced the integration of Deep Learning (DL) into structure-based drug discovery, 
demonstrating its potential using convolutional neural networks (CNNs) [ 18] for  
pose-scoring functions. Subsequently, DL techniques have been applied to vari-
ous tasks, from optimizing molecular poses [ 33] to predicting binding affinities 
[ 12], enhancing molecular docking strategies. However, these methods primarily 
extend to screening existing structures. Initial works [ 7,13,37] generated new 
molecular structures using DL with SMILES syntax [ 47] and graph-based repre-
sentations [ 10,17,30,39], but struggled to fully capture the 3D molecular struc-
ture. 

3D Molecular Representation. Traditional handling of molecular data represen-
tations in a 2D space can be counterintuitive, as it does not fully reflect the 
reality where molecular bonds have the ability to rotate, leading to diverse con-
formations of the molecule [ 43]. These various conformations play a crucial role 
in influencing inter-molecular interactions, such as the binding of a molecule 
to a receptor. To address these limitations, a 3D representation of molecules was 
developed through the use of atomic density grids [ 41]. Each voxel represents 
a distinct point in space in this system, meaning their identification relies on a 
coordinate framework. Moreover, they possess permutation invariance, which 
reduces the computational load required for comparisons. This makes them more 
efficient for analytical purposes. This approach better captures molecules’ spatial 
configurations and complexities, accurately depicting their behavior and inter-
actions.
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Receptor Conditioned Molecule Generation. Previous studies [ 34] employed 
these 3D density grids for molecular representation and training a CVAE [ 42] 
with a conditional input protein receptor and ligand pairs in order to find novel 
structures. This approach allows for predicting new possible drug molecule struc-
tures that specifically bind to a particular binding pocket that is fed to the model 
at inference. The CVAE hybrid model [ 36] built upon this work to show how 
fusing physics-based information about the binding process of the protein-ligand 
pairs to the conditional input can improve the learning capabilities of the net-
work which in turn generates better binders. 

3 Materials and Methods 

3.1 Dataset 

For the purposes of this study, following the CVAE hybrid model [ 36], the pri-
mary dataset utilized is referred to as the PDBBind dataset [ 46]. This dataset 
is widely recognized within the scientific community for its comprehensive col-
lection of known protein-ligand pairs, offering a rich resource for studies focused 
on drug discovery and molecular docking. In this work, we use a subset of the 
PDBBind-v19 known as the refined set, which has undergone additional opti-
mization outlined in [ 45] to improve its quality and reliability for research pur-
poses. Among the original 3,562 receptor-ligand complexes, 2,728 pairs had all 
the required features and experimental values available. The dataset was then 
divided into training and testing subsets in a random fashion, adhering to an 
80:20 split. The purpose behind segregating a testing set was to eliminate the 
risk of overfitting and to assess the efficacy of the model’s training by analyzing 
its performance through loss metrics. Ultimately, proteins from the test set were 
further used to predict drug molecule candidates. These candidates were subse-
quently assessed based on the evaluation metrics outlined in Sect. 4.2, providing 
a comprehensive evaluation of their quality and viability. 

3.2 Physics-Based Features 

Implicit solvent modeling is one of the most popular computational methods 
that consider the solvent (usually water) as one continuum component. Within 
this framework, the calculation of binding free energy (ΔGbind) could be con-
ducted more efficiently compared to other computational models, e.g., explicit 
solvents. Poisson-Boltzmann (PB) and generalized Born (GB) models are the 
two main classes of implicit solvent models that have been used widely in 
static and dynamic simulations of protein-ligand interactions [ 31]. In this work, 
GBNSR6 [ 8, 9] and PBSA [ 21] in AmberTools20 [ 5] are used for fast yet accurate 
calculation of ΔGbind (see Table 1). By integrating implicit solvents into the DL 
model, it is more likely to generate feasible and strong binders.
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Table 1. Physics-based features calculated for complex, protein, and ligand struc-
tures using MM/PB(GB)SA tool. Entropy is calculated as the difference between the 
experimental ΔGbind and computational Enthalpy values. See [ 4] for details. 

Parameter Description Method Count 
1-4-EELEC 1-4 Electrostatic energy GB 3 
VDWAALS Van der  Waals energy PB 3 
EELEC Electrostatic energy GB&PB 6 
ESURF Non-polar solvation energy GB 3 
EGB Polar solvation energy GB 3 
ECAVITY Non-polar solvation free energy PB 3 
EPB Reaction field energy PB 3 
Etot Computational calculated ΔΔG GB&PB 6 
Enthalpy Total energy of a system GB 1 
Entropy Entropy E∗ 1 
ΔGbind Binding free energy GB 1 

3.3 Atomic Vector Representation 

To facilitate the training of the deep generative neural network, molecular data 
has to undergo transformation into a vector format. This process involves rep-
resenting each atom as an individual vector, resulting in each molecule being 
depicted as a collection of atom-type vectors. We follow the same atom typ-
ing scheme as described in the CVAE and CVAE hybrid models [ 34,36], where 
atom types are assigned using a set of Np atomic property functions p and value 
ranges for those properties v as done in [ 34,36]. The atomic properties used here 
were element (different value ranges for ligands and receptors), aromaticity, H 
bond donor and acceptor status, and formal charge. For every atom a, a one-hot 
encoded vector p is created for each property, and then Np vectors are concate-
nated to create a final atom type vector t ∈ RNt . Hence, we get a 1 × 18 sized 
vector per atom. 

3.4 Molecule Density Grid Representation 

Once a molecule has been atom-typed, choosing a representation that captures 
its 3D spatial features becomes crucial. Therefore, we utilized a molecular grid-
ding library called libmolgrid [ 44] that creates a density grid representation of 
molecules where atoms are represented as continuous densities with truncated 
Gaussian shapes. Libmolgrid defines the density value of an atom at a grid point 
by a kernel function f : R × R → R that takes as input the distance d between 
the atom coordinate and the grid point and the atomic radius r: 

f (d, r) =

{
e−2( d r )

2 
, d  ≤ 1.5 r 

0, d  >  1.5 r 
(1)
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r was fixed to 1.0 Å for all atoms, and the dimension of the cubic grid to 23.5 
Å with 0.5 Å resolution to maintain consistency with [ 34,36], which results in 
spatial dimensions of NX = NY = NZ = 48. Also, N is the total number of 
atoms. In order to conserve computational resources, only those atoms that fall 
within the spatial boundaries of the grid are included in the representation. 

3.5 Atom Fitting and Bond Inference 

Given that our generative models are developed and trained using data in the 
format of molecular density grids, the model’s predictive output similarly man-
ifests as density grid representations. Now the problem remains of converting a 
reference density grid Gref back into a discrete 3D molecular structure, which 
does not have an analytical solution [ 34] and is therefore solved with the following 
optimization problem: 

T∗, C∗ = argmin 
T,C  

||Gref − g(T, C)||2 (2) 

where g is the function to convert a molecule’s atom type vector T and atomic 
coordinate vector C into density grid G. The initial locations of atoms can be 
found by selecting the grid points with the largest density values. By using lib-
molgrid, we can compute the grid representation of an atomic structure and 
backpropagate a gradient from grid values to atomic coordinates. We use the 
algorithm defined in [ 34] that combines iterative atom detection with gradi-
ent descent to find the best set of atoms that fit that reference density grid. 
After identifying the atoms and their coordinates, the remaining step involves 
establishing bonds among the atoms to create valid molecules. This process is 
facilitated by a bond inference algorithm that uses a sequence of inference rules 
that add bond information and hydrogens while trying to satisfy the constraints 
defined by the atom types, a customized bond perception routine developed 
within the OpenBabel framework [ 29] (Fig. 1). 

3.6 Physics-Guided Deep Generative Hybrid Model 

Previous work [ 36] introduced and started a family of sophisticated deep gen-
erative models that leveraged physics-informed guidance and improved the new 
molecule generation process. The model introduced was built upon a Condi-
tional Variational Autoencoder (CVAE) framework. During its training phase, 
it processes the molecular density grid representations of both the conditional 
receptor protein’s binding pocket and the reference ligand. This is done alongside 
integrating the physics-based characteristics of the interacting pair, enhancing 
the model’s predictive accuracy and relevance in simulating molecular interac-
tions, which, in turn, better guides the generation process. The objective was 
to learn a sample from a distribution p(lig|rec, f eat) where lig, rec, and  feat  
are the ligand density grid, receptor density grid, and physics-based features, 
respectively. The latent sample z was drawn from a standard normal distribu-
tion under the assumption that the binding interactions might follow it as a



22 D. Sagar et al.

Fig. 1. Our physics-guided deep generative model pipeline overview. First, the docked 
protein and ligand complex are transformed into atom-type vectors, which are then 
converted into atomic density grids. Following this, the encoder branches of our physics-
informed CVAEGAN model process the input complex alongside the density grids 
of the protein receptor and incorporate the physics-derived features. The input the 
encoder produces a probabilistic latent vector sampled from z ∼ N (μ, σ), and the 
conditional encoder gives an encoded vector c, which is then concatenated to z and fed 
into the decoder to produce an output-generated ligand density grid. This generated 
molecular grid density is then fed to our discriminator subnetwork to classify it as 
real or fake. The molecular density grid is then finally converted to a 3D molecular 
structure by atom fitting and bond inference algorithms. 

prior. In the generative process, they first drew a sample z ∼ p(z) and then 
generated liggen ∼ pθ(lig|z, c), where pθ is the same decoder neural network and 
c is the encoding from the conditional encoder (Fig. 2). To form the basis of this 
incremental work, we have our input complex encoder that takes the molecu-
lar density grid representations calculated using libmolgrid [ 44] as inputs. The 
input encoder transforms the inputs, specifically the receptor rec and ligand lig, 
into a defined set of means μ and standard deviations σ similar to the CVAE 
and CVAE hybrid models [  34,36]. These parameters delineate the latent vari-
ables from which a latent vector z is sampled. Simultaneously, the conditional 
encoder operates by mapping the identical receptor protein rec alongside the 
physics-based features feat  into a conditional encoding vector c. This process 
encapsulates the contextual information provided by both the receptor and its 
associated physical characteristics into a unified representation for guiding the 
generative process. Following this, the concatenated vector of z and c is fed into 
the decoder network. The decoder then processes this concatenated vector, ulti-
mately decoding it into a generated molecular density grid liggen representing 
the generated ligand molecule.
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Now, to enhance the quality of the generated molecular density grid represen-
tations, we integrated a sub-neural network functioning as a discriminator to the 
whole pipeline. This discriminator network is tasked with distinguishing between 
real and fake density grids generated by the model throughout the training pro-
cess. Concurrently, the CVAE assumes the role of a generator network. We adopt 
an adversarial training methodology akin to that normally utilized in training 
GANs [ 14], refining the entire network to produce more accurate and realistic 
molecular structures. Finally, liggen is passed through the discriminator net-
work to receive a label of a fake or a real molecule, which in turn forces the 
generator network (i.e., the CVAE) to improve its performance by updating its 
weights and produce more realistic molecular density grids, thus improving the 
ultimate outcome. Hence, this network takes the form of a conditional variation 
autoencoder generative adversarial neural network (CVAEGAN) [ 2]. 

4 Experimental Setup 

4.1 Training and Optimization 

To train the CVAE or the generator in this pipeline we follow the previous 
work [ 36] where due to the difficult nature of estimating the naive maximum 
likelihood to compute the latent posterior probability pθ(z|rec, lig), we learn an 
approximate input encoder model qφ(lig|z, c) of the posterior distribution which 
can be trained by the following two objectives: 

Lrecon = −log pθ(lig|z, c) ∝ 1 
2
||lig − liggen||2 (3) 

LKL = DKL(qφ(z|lig, c)||p(z)) (4) 

Lrecon is the reconstruction loss term which maximizes the probability 
that the latent samples from the approximate posterior distribution z ∼ 
qφ(z|rec, lig, f eat) are decoded as close to the original ligand density lig that 
was provided during the forward pass. LKL is the Kullback-Liebler (KL) diver-
gence loss that forces the learned latent space probability distribution to be as 
close as possible to a standard normal distribution, i.e., p(z) =  N(0, 1). With 
the joint optimization of both these terms, we are able to learn a latent space 
that follows a normal distribution, and we end up training a decoder that can 
decode these latent vectors sampled from a normal distribution into realistic 
ligand densities. Similar to the CVAE and CVAE hybrid models [ 34,36], we also 
include the loss term called Steric Loss that minimizes steric clash in terms of 
the overlap between the generated molecular density and the receptor pocket 
density. The loss value is calculated by first summing across the grid channels, 
then multiplying the receptor and ligand density at each point:
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Fig. 2. Our physics-guided deep generative hybrid model’s internal architecture. 

Lsteric =

〈
NT∑
i 

reci, 
NT∑
i 

liggen,i

〉
(5) 

Training the new discriminator subnetwork, while utilizing the CVAE output as 
a generator, simplifies to a scenario where we aim to minimize a minmax loss. In 
this setup, the generator’s objective is to synthesize molecules that are convincing 
enough for the discriminator to classify as real, implying they originate from an 
authentic distribution rather than being artificially generated. However, this 
training approach, akin to that used in GANs [ 14], suffers from issues such 
as mode collapse and vanishing gradients. To address these challenges, we employ 
the Wasserstein GAN loss approach [ 1]. Unlike traditional GANs, where the 
discriminator outputs probabilities, the Wasserstein approach assigns a clipped 
score to both real and generated molecules. Consequently, our objective shifts to 
minimizing the difference between these two scores, enhancing the stability and 
reliability of the training process. Therefore the discriminator loss term becomes: 

LDisc = D(x) − D(G(z|c)) (6) 

Hence, the final loss objective for the complete model becomes: 

L = λreconLrecon + λKLLKL + λstericLsteric + λdiscLdisc (7) 

The loss weights were kept consistent with [ 34,36] at  λrecon = 4.0, λKL = 
0.1,λsteric = 1.0 and  λdisc = 1.0, with the KL divergence loss weight increased 
to 1.6 after 20,000 iterations. The model was fine-tuned using the RMSProp 
optimizer with gradient clipping with a learning rate of 10−7 for 100,000 itera-
tions and a batch size of 4 using a computation cluster node with an NVIDIA 
A30 GPU. 

4.2 Evaluation Metrics 

In order to assess the quality of ligands generated by different approaches, we 
have adopted and applied a range of evaluation metrics. Similar to [ 34,36] as
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a base evaluation, we employed the metric known as ΔGbind calculated using 
the GNINA package [ 25], which represents the binding affinity value between 
the receptor and ligand. A negative ΔGbind value indicates a favorable binding 
interaction, suggesting a stronger affinity between the ligand and the receptor 
[ 11]. In our evaluation of drug candidates produced by our deep generative model 
for drug discovery, a critical factor we also consider is the synthesizability of 
these molecules. Synthesizability refers to the ease with which a molecule can be 
synthesized in a laboratory. This significantly affects a candidate’s practicality, 
cost-effectiveness, and development timeline. To assess this quantitatively, we use 
ASKCOS [ 27], an advanced organic synthesis planning tool powered by a neural 
network trained on the comprehensive Reaxys dataset [ 15]. ASKCOS evaluates 
synthesizability through a heuristic score. A higher heuristic score indicates that 
a molecule is easier to synthesize, reflecting the neural network’s learned patterns 
from extensive chemical reaction data. These insights are crucial for identifying 
the most viable candidates for efficient and cost-effective drug development. 
Within drug discovery, the main goal is to identify new drug molecules and 
evaluate their potential as effective treatments. This evaluation is based on their 
“drug-likeness” or “drugability” - key attributes that determine their suitability 
for therapeutic use. Therefore, we also try to assess these properties using a rule-
based metric called Lipinski’s Rule of Five [ 19], which is a preliminary screening 
tool in drug discovery that helps identify molecules that are likely to be orally 
bioavailable. However, while useful, these rules are not definitive; exceptions can 
still lead to successful drugs [ 49]. Lipinski’s Rule of Five states that a compound 
is more likely to be absorbed if: (1) hydrogen bond donors (HBD) < 5, (2) 
hydrogen bond acceptors (HBA) < 10, (3) molecular mass (m) < 500 daltons, 
(4) octanol-water partition coefficient (log P) < 5. 

5 Results 

We compared our proposed model with two baselines: the CVAE model [ 34] 
and the CVAE hybrid model [ 36]. Using each model, we generated 90 unique 
molecules for every binding pocket in the testing set (546 proteins). We then 
selected the top 5 molecules per pocket based on binding affinities and assessed 
their structures using metrics for binding affinity, synthesizability, and drug-
likeness defined in Sec.4.2. Table 2 presents averaged values for each metric, 
while Fig. 3 shows the distribution of these metrics and atom-type frequency 
analysis across models. We see that in terms of ΔGbind (binding affinity), we 
surpass the previous baselines, achieving an average ΔGbind of −10.70 kcal/mol, 
whereas the CVAE [ 36] and CVAE hybrid model [ 34] achieved  −9.79 kcal/mol 
and −8.91 kcal/mol, respectively. This outcome aligns with our expectations, 
given that the neural network is conditioned on the reference ligand and incor-
porates its physics-based features. Furthermore, as hypothesized, the discrim-
inator sub-network improves the quality of the generated molecular density 
grids, thus enhancing the output’s sharpness. Such conditioning enables the net-
work to specifically generate molecules with enhanced binding affinity. Now, in
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Table 2. Comparing the average metric values for molecules generated by the models 
for each binding pocket in the test set. 

Model ΔGbind (↓) ASKCOS Sc.(↑) m LogP HBA HBD 
CVAE [34] −8.91 −2.33e4 321.04 1.15 5.05 3.75 
CVAE Hybrid [36] −9.79 −1.75e5 310.07 −0.62 6.73 4.8 
CVAEGAN Hybrid −10.70 −2.17e4 358.47 −0.35 7.42 4.91 

Fig. 3. Box plots illustrating and comparing the distribution of (a) ΔGbind (kcal/mol), 
(b) ASKCOS scores, and (c) Relative atom type frequencies for all molecules generated 
by the three models for the binding pockets in the test set. 

terms of synthesizability, we achieve comparable ASKCOS scores compared to 
the baselines, achieving the second-best average ASKCOS score of −1.75e5. It’s 
important to recognize that ASKCOS calculates synthesizability scores based 
on known precursors and compounds. This methodology can yield unusual 
and unrepresentative scores when dealing with the generation of novel com-
pounds that have never been previously encountered or recorded by a system 
like ASKCOS. We believe this could be the reason for the unusually high negative 
scores observed across all three models. Lastly, regarding drug-likeness, the met-
rics are similar across all models, particularly considering that neither the base-
lines nor our method explicitly impose or condition adherence to Lipinski’s rules 
during training. We believe that the CVAE model [ 34] achieving slightly better 
Lipinski values is attributable to the extensive size of their dataset. This includes 
nearly 22.5 million protein-ligand pairs. This vast collection likely encompasses 
a more diverse and druglike set of structures, implicitly conditioning the model 
to generate molecules that more closely adhere to Lipinski’s rules. In contrast, 
the CVAE hybrid model  [  36] and our model were trained on approximately 2,100 
protein-ligand pairs from the PDBBind dataset, constrained by the availability of 
physics-based features specific to these entries. This difference in dataset scope 
and content significantly influences the training outcomes and the drug-likeness 
of the generated molecules. 

In Fig. 4, we visualize the top-5 generated molecules by the three models 
inside a single binding pocket of the protein 1igb [beta-d-glucan glucohydrolase 
isoenzyme exo1] from the PDBBind test set. We observed that docked molecules 
predicted by our CVAEGAN hybrid model have more feasible conformation and
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Fig. 4. Visualisation of the Top-5 generated ligands inside the receptor pocket by the 
baselines - LiGAN [33] and CVAE Hybrid [36] in comparison to our physics-guided deep 
generative hybrid model - CVAEGAN Hybrid for the PDBBind protein 1igb [beta-d-
glucan glucohydrolase isoenzyme exo1] with their decreasing binding affinities (left to 
right) and their RMSD values. 

orientation inside the protein binding pocket. The corresponding better ΔGbind 
values also confirm that they are better binders all across. 

6 Conclusion and Future Work 

In this work, we demonstrated that incorporating physics-based data into deep 
generative models enhances their ability to predict superior molecular struc-
tures for receptor proteins. This approach not only demonstrates great potential 
but also promises to transform the field. By merging DL techniques with core 
physical principles, we have successfully advanced traditional drug discovery 
methods. Our hybrid physics-based CVAEGAN model generated realistic struc-
tures with higher ΔGbind compared to computational baselines and known refer-
ence ligands. The model also successfully predicted synthesizable and drug-like 
molecules. However, we identified a key limitation: the lack of explicit condi-
tioning for drug-likeness. Future studies could enhance the model by integrating 
drug-likeness and synthesizability constraints, improving its practical applica-
tions in drug development.
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