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Abstract. In the pursuit of structure-based drug discovery, the goal is
to find small molecules capable of binding to a particular target protein
and altering its function. Recently, deep learning (DL) has emerged as
a promising approach for crafting drug-like molecules. It excels in creat-
ing compounds possessing precise biochemical characteristics while being
influenced by structural features. Yet, their typical shortfall lies in the
neglect of a critical element: the intrinsic physics that governs the struc-
ture and binding of molecules within real-world contexts. In this study,
we explore and build on deep generative models informed by physics
principles for drug discovery. These models not only consider the bind-
ing site but also incorporate physics-derived features that describe the
interaction mechanism between a receptor and a ligand. We tested the
proposed models by generating corresponding drug molecule candidates
for a variety of protein-ligand complexes from the PDBBind dataset. On
average, more than 75% of the structures generated by our hybrid model
were stronger binders than the original experimental reference ligands
to the protein. In addition, they had higher values of AGping (binding
affinity) than molecules generated by the baseline methods by an average
margin of 1.39 kcal/mol. Moreover, drug-like attributes of the generated
molecules are evaluated in accordance with the Lipinski rules. To extend
the analysis, their synthesizability is evaluated using ASKCOS, elevat-
ing the evaluation to a more comprehensive level. This revealed that the
hybrid models notably excel in generating synthesizable molecules, with
scores suggesting a higher likelihood of successful synthesis. Adherence
to the Lipinski Rule of Five was also high, with compliance of 98.9%,
suggesting favorable drug-like properties and a reduced risk of devel-
opment failure due to poor bioavailability. This approach outperforms
previous works, indicating significant improvements in drug discovery by
enhancing both binding affinity and synthesizability.
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1 Introduction

Drug discovery is vital for improving healthcare outcomes, but has traditionally
been expensive (1.8 Billion) [38], slow (10 to 15 years) [6], and resource-intensive,
with failure rates of over 90% [28,40]. Finding drug candidates typically takes
3 to Hyears. However, with the advancement of new computational techniques,
this timeframe could be reduced to just a few weeks [23]. At the core of drug
action is the interaction between a protein and its ligand-a small drug molecule.
This crucial event involves molecular recognition and dynamic interplay within
the protein’s active site or binding pocket [26].

The search space for possible molecular structures is enormous and complex.
It is estimated that there are 10°° drug-like structures possible [35]. It can be
narrowed down by validating candidate molecules based on their chemical con-
straints, such as bond orders, molecular conformation, and valences. This search
space shrinks significantly when the objective is to find a suitable molecule that
precisely fits a designated binding pocket for goals such as receptor inhibition
for disease therapy, and targeted drug delivery mechanisms. The discovery of a
new molecular structure is divided into two main steps: (1) identifying promis-
ing compounds within a defined chemical space and (2) verifying their ability to
bind to the target site as predicted. The first step can take anywhere from three
to five years, rendering it a highly time-intensive process [3]. This deficiency
highlights the demand for computational systems capable of intelligently navi-
gating this restricted chemical search space and conducting virtual screenings of
compounds for their potential to bind successfully. Implementing such systems
could lead to considerable reductions in cost and expedite the drug development
process.

Artificial Intelligence (AI) and Deep Learning (DL) have been on track to
revolutionize computer-aided drug design by enhancing the efficiency and accu-
racy of the drug discovery process. These technologies can process and analyze
vast datasets far beyond human capability, identifying patterns and insights
that can lead to the discovery of new drug candidates. Some recent DL algo-
rithms have been designed to predict molecular behavior, optimize drug prop-
erties, and simulate how drugs interact with biological targets, all with never
seen before precision [16,20,22,32,34,36]. This ability to quickly generate and
evaluate potential drug molecules can significantly reduce the time and cost asso-
ciated with traditional drug development methods. Moreover, Al-driven models
continuously learn and improve from new data, promising increasingly effective
drug design strategies over time.

Although these recent developments marked a considerable advancement in
the creation of new drug candidates, they did not account for essential physical
attributes of the binding process. Specifically, they overlooked the protein-ligand
AGhing, encompassing both the enthalpic aspects (such as polar, non-polar,
and Van der Waals energies) and the entropic components [48]. While struc-
tural information, such as bond connectivity and atom arrangements, forms the
basis for molecular representations, they do not capture chemical systems’ intri-
cate and dynamic nature. A previous work [36], validated the effectiveness of
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integrating physics-based features into the molecular generation pipeline, which
enhanced the binding affinity of the predicted ligands. In this research, we
advance the prior achievements of [36] by first augmenting the design of the
generative model. This enhancement involves integrating a discriminator com-
ponent into the conditional variational autoencoder, thus evolving it into a
sophisticated conditional variational generative adversarial network (CVAE-
GAN) informed and directed by physics-based attributes. Furthermore, we con-
duct a more comprehensive analysis of the generated molecules’ quality by eval-
uating their binding affinity for a much larger number of binding pockets from
the PDBBind dataset. This evaluation is also expanded to include assessments
of drug-likeness and synthesizability, offering a deeper insight into the potential
practical applications of these molecules in therapeutics.

2 Related Work

Computer-Aided Drug Design (CADD) emerged to address Structure-Based
Drug Discovery (SBDD) limitations, revolutionizing pharmaceutical discovery.
This approach introduced innovative tools and methodologies that significantly
accelerated drug development while reducing costs and risks [24]. [33] intro-
duced the integration of Deep Learning (DL) into structure-based drug discovery,
demonstrating its potential using convolutional neural networks (CNNs) [18] for
pose-scoring functions. Subsequently, DL techniques have been applied to vari-
ous tasks, from optimizing molecular poses [33] to predicting binding affinities
[12], enhancing molecular docking strategies. However, these methods primarily
extend to screening existing structures. Initial works [7,13,37] generated new
molecular structures using DL with SMILES syntax [47] and graph-based repre-
sentations [10,17,30,39], but struggled to fully capture the 3D molecular struc-
ture.

3D Molecular Representation. Traditional handling of molecular data represen-
tations in a 2D space can be counterintuitive, as it does not fully reflect the
reality where molecular bonds have the ability to rotate, leading to diverse con-
formations of the molecule [43]. These various conformations play a crucial role
in influencing inter-molecular interactions, such as the binding of a molecule
to a receptor. To address these limitations, a 3D representation of molecules was
developed through the use of atomic density grids [41]. Each voxel represents
a distinct point in space in this system, meaning their identification relies on a
coordinate framework. Moreover, they possess permutation invariance, which
reduces the computational load required for comparisons. This makes them more
efficient for analytical purposes. This approach better captures molecules’ spatial
configurations and complexities, accurately depicting their behavior and inter-
actions.
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Receptor Conditioned Molecule Generation. Previous studies [34] employed
these 3D density grids for molecular representation and training a CVAE [42]
with a conditional input protein receptor and ligand pairs in order to find novel
structures. This approach allows for predicting new possible drug molecule struc-
tures that specifically bind to a particular binding pocket that is fed to the model
at inference. The CVAE hybrid model [36] built upon this work to show how
fusing physics-based information about the binding process of the protein-ligand
pairs to the conditional input can improve the learning capabilities of the net-
work which in turn generates better binders.

3 Materials and Methods
3.1 Dataset

For the purposes of this study, following the CVAE hybrid model [36], the pri-
mary dataset utilized is referred to as the PDBBind dataset [46]. This dataset
is widely recognized within the scientific community for its comprehensive col-
lection of known protein-ligand pairs, offering a rich resource for studies focused
on drug discovery and molecular docking. In this work, we use a subset of the
PDBBind-v19 known as the refined set, which has undergone additional opti-
mization outlined in [45] to improve its quality and reliability for research pur-
poses. Among the original 3,562 receptor-ligand complexes, 2,728 pairs had all
the required features and experimental values available. The dataset was then
divided into training and testing subsets in a random fashion, adhering to an
80:20 split. The purpose behind segregating a testing set was to eliminate the
risk of overfitting and to assess the efficacy of the model’s training by analyzing
its performance through loss metrics. Ultimately, proteins from the test set were
further used to predict drug molecule candidates. These candidates were subse-
quently assessed based on the evaluation metrics outlined in Sect. 4.2, providing
a comprehensive evaluation of their quality and viability.

3.2 Physics-Based Features

Implicit solvent modeling is one of the most popular computational methods
that consider the solvent (usually water) as one continuum component. Within
this framework, the calculation of binding free energy (AGyping) could be con-
ducted more efficiently compared to other computational models, e.g., explicit
solvents. Poisson-Boltzmann (PB) and generalized Born (GB) models are the
two main classes of implicit solvent models that have been used widely in
static and dynamic simulations of protein-ligand interactions [31]. In this work,
GBNSRE [8,9] and PBSA [21] in AmberTools20 [5] are used for fast yet accurate
calculation of AGping (see Table1). By integrating implicit solvents into the DL
model, it is more likely to generate feasible and strong binders.
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Table 1. Physics-based features calculated for complex, protein, and ligand struc-
tures using MM/PB(GB)SA tool. Entropy is calculated as the difference between the
experimental AGp;nqg and computational Enthalpy values. See [4] for details.

Parameter [Description Method |Count
1-4-EELEC|1-4 Electrostatic energy GB 3
VDWAALS|Van der Waals energy PB 3
EELEC Electrostatic energy GB&PB|6
ESURF Non-polar solvation energy GB 3
EGB Polar solvation energy GB 3
ECAVITY |Non-polar solvation free energy [PB 3
EPB Reaction field energy PB 3
Etot Computational calculated AAG GB&PB|6
Enthalpy |Total energy of a system GB 1
Entropy  |Entropy E* 1
AGhyind Binding free energy GB 1

3.3 Atomic Vector Representation

To facilitate the training of the deep generative neural network, molecular data
has to undergo transformation into a vector format. This process involves rep-
resenting each atom as an individual vector, resulting in each molecule being
depicted as a collection of atom-type vectors. We follow the same atom typ-
ing scheme as described in the CVAE and CVAE hybrid models [34,36], where
atom types are assigned using a set of IV, atomic property functions p and value
ranges for those properties v as done in [34,36]. The atomic properties used here
were element (different value ranges for ligands and receptors), aromaticity, H
bond donor and acceptor status, and formal charge. For every atom a, a one-hot
encoded vector p is created for each property, and then N, vectors are concate-
nated to create a final atom type vector t € RY¢. Hence, we get a 1 x 18 sized
vector per atom.

3.4 Molecule Density Grid Representation

Once a molecule has been atom-typed, choosing a representation that captures
its 3D spatial features becomes crucial. Therefore, we utilized a molecular grid-
ding library called libmolgrid [44] that creates a density grid representation of
molecules where atoms are represented as continuous densities with truncated
Gaussian shapes. Libmolgrid defines the density value of an atom at a grid point
by a kernel function f : R x R — R that takes as input the distance d between
the atom coordinate and the grid point and the atomic radius 7:

2 d< 1.57r
d,r) = 6= 1
f(dr) {0, d>15r )
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r was fixed to 1.0 A for all atoms, and the dimension of the cubic grid to 23.5
A with 0.5 A resolution to maintain consistency with [34,36], which results in
spatial dimensions of Nx = Ny = Nz = 48. Also, N is the total number of
atoms. In order to conserve computational resources, only those atoms that fall
within the spatial boundaries of the grid are included in the representation.

3.5 Atom Fitting and Bond Inference

Given that our generative models are developed and trained using data in the
format of molecular density grids, the model’s predictive output similarly man-
ifests as density grid representations. Now the problem remains of converting a
reference density grid G,.y back into a discrete 3D molecular structure, which
does not have an analytical solution [34] and is therefore solved with the following
optimization problem:

T*, C* = argmin||Gyer — g(T, C)||? (2)
T,.C

where ¢ is the function to convert a molecule’s atom type vector T and atomic
coordinate vector C into density grid G. The initial locations of atoms can be
found by selecting the grid points with the largest density values. By using lib-
molgrid, we can compute the grid representation of an atomic structure and
backpropagate a gradient from grid values to atomic coordinates. We use the
algorithm defined in [34] that combines iterative atom detection with gradi-
ent descent to find the best set of atoms that fit that reference density grid.
After identifying the atoms and their coordinates, the remaining step involves
establishing bonds among the atoms to create valid molecules. This process is
facilitated by a bond inference algorithm that uses a sequence of inference rules
that add bond information and hydrogens while trying to satisfy the constraints
defined by the atom types, a customized bond perception routine developed
within the OpenBabel framework [29] (Fig. 1).

3.6 Physics-Guided Deep Generative Hybrid Model

Previous work [36] introduced and started a family of sophisticated deep gen-
erative models that leveraged physics-informed guidance and improved the new
molecule generation process. The model introduced was built upon a Condi-
tional Variational Autoencoder (CVAE) framework. During its training phase,
it processes the molecular density grid representations of both the conditional
receptor protein’s binding pocket and the reference ligand. This is done alongside
integrating the physics-based characteristics of the interacting pair, enhancing
the model’s predictive accuracy and relevance in simulating molecular interac-
tions, which, in turn, better guides the generation process. The objective was
to learn a sample from a distribution p(lig|rec, feat) where lig, rec, and feat
are the ligand density grid, receptor density grid, and physics-based features,
respectively. The latent sample z was drawn from a standard normal distribu-
tion under the assumption that the binding interactions might follow it as a
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Fig. 1. Our physics-guided deep generative model pipeline overview. First, the docked
protein and ligand complex are transformed into atom-type vectors, which are then
converted into atomic density grids. Following this, the encoder branches of our physics-
informed CVAEGAN model process the input complex alongside the density grids
of the protein receptor and incorporate the physics-derived features. The input the
encoder produces a probabilistic latent vector sampled from z ~ N(u,0), and the
conditional encoder gives an encoded vector ¢, which is then concatenated to z and fed
into the decoder to produce an output-generated ligand density grid. This generated
molecular grid density is then fed to our discriminator subnetwork to classify it as
real or fake. The molecular density grid is then finally converted to a 3D molecular
structure by atom fitting and bond inference algorithms.

prior. In the generative process, they first drew a sample z ~ p(z) and then
generated liggen ~ po(lig|z,c), where pg is the same decoder neural network and
¢ is the encoding from the conditional encoder (Fig.2). To form the basis of this
incremental work, we have our input complex encoder that takes the molecu-
lar density grid representations calculated using libmolgrid [44] as inputs. The
input encoder transforms the inputs, specifically the receptor rec and ligand lig,
into a defined set of means i and standard deviations o similar to the CVAE
and CVAE hybrid models [34,36]. These parameters delineate the latent vari-
ables from which a latent vector z is sampled. Simultaneously, the conditional
encoder operates by mapping the identical receptor protein rec alongside the
physics-based features feat into a conditional encoding vector c. This process
encapsulates the contextual information provided by both the receptor and its
associated physical characteristics into a unified representation for guiding the
generative process. Following this, the concatenated vector of z and c is fed into
the decoder network. The decoder then processes this concatenated vector, ulti-
mately decoding it into a generated molecular density grid ligge, representing
the generated ligand molecule.
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Now, to enhance the quality of the generated molecular density grid represen-
tations, we integrated a sub-neural network functioning as a discriminator to the
whole pipeline. This discriminator network is tasked with distinguishing between
real and fake density grids generated by the model throughout the training pro-
cess. Concurrently, the CVAE assumes the role of a generator network. We adopt
an adversarial training methodology akin to that normally utilized in training
GANSs [14], refining the entire network to produce more accurate and realistic
molecular structures. Finally, liggen is passed through the discriminator net-
work to receive a label of a fake or a real molecule, which in turn forces the
generator network (i.e., the CVAE) to improve its performance by updating its
weights and produce more realistic molecular density grids, thus improving the
ultimate outcome. Hence, this network takes the form of a conditional variation
autoencoder generative adversarial neural network (CVAEGAN) [2].

4 Experimental Setup
4.1 Training and Optimization

To train the CVAE or the generator in this pipeline we follow the previous
work [36] where due to the difficult nature of estimating the naive maximum
likelihood to compute the latent posterior probability pg(z|rec,lig), we learn an
approximate input encoder model g4(lig|z, ¢) of the posterior distribution which
can be trained by the following two objectives:

. 1. .
L'r‘econ = —log pg(llg|Z,C) X §||l7’g - lzggen||2 (3)

Lir = Drr(gs(2[lig; ¢)|lp(2)) (4)

Liecon is the reconstruction loss term which maximizes the probability
that the latent samples from the approximate posterior distribution z ~
qs(z|rec, lig, feat) are decoded as close to the original ligand density lig that
was provided during the forward pass. L, is the Kullback-Liebler (KL) diver-
gence loss that forces the learned latent space probability distribution to be as
close as possible to a standard normal distribution, i.e., p(z) = N(0,1). With
the joint optimization of both these terms, we are able to learn a latent space
that follows a normal distribution, and we end up training a decoder that can
decode these latent vectors sampled from a normal distribution into realistic
ligand densities. Similar to the CVAE and CVAE hybrid models [34,36], we also
include the loss term called Steric Loss that minimizes steric clash in terms of
the overlap between the generated molecular density and the receptor pocket
density. The loss value is calculated by first summing across the grid channels,
then multiplying the receptor and ligand density at each point:
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Fig. 2. Our physics-guided deep generative hybrid model’s internal architecture.

N~ N
Lsteric == < Z rec;, Z liggen,i > (5)

Training the new discriminator subnetwork, while utilizing the CVAE output as
a generator, simplifies to a scenario where we aim to minimize a minmax loss. In
this setup, the generator’s objective is to synthesize molecules that are convincing
enough for the discriminator to classify as real, implying they originate from an
authentic distribution rather than being artificially generated. However, this
training approach, akin to that used in GANs [14], suffers from issues such
as mode collapse and vanishing gradients. To address these challenges, we employ
the Wasserstein GAN loss approach [1]. Unlike traditional GANs, where the
discriminator outputs probabilities, the Wasserstein approach assigns a clipped
score to both real and generated molecules. Consequently, our objective shifts to
minimizing the difference between these two scores, enhancing the stability and
reliability of the training process. Therefore the discriminator loss term becomes:

LDisc = D(m) - D(G(Z|C)) (6)
Hence, the final loss objective for the complete model becomes:
L= )\reconLrecon + )\KLLKL + AstericLsteric + )\dischisc (7)

The loss weights were kept consistent with [34,36] at Aecon = 4.0, Axr =
0.1,Asteric = 1.0 and Agjsc = 1.0, with the KL divergence loss weight increased
to 1.6 after 20,000 iterations. The model was fine-tuned using the RMSProp
optimizer with gradient clipping with a learning rate of 10=7 for 100,000 itera-
tions and a batch size of 4 using a computation cluster node with an NVIDIA
A30 GPU.

4.2 Evaluation Metrics

In order to assess the quality of ligands generated by different approaches, we
have adopted and applied a range of evaluation metrics. Similar to [34,36] as
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a base evaluation, we employed the metric known as AGjy;pq calculated using
the GNINA package [25], which represents the binding affinity value between
the receptor and ligand. A negative AGy;nq value indicates a favorable binding
interaction, suggesting a stronger affinity between the ligand and the receptor
[11]. In our evaluation of drug candidates produced by our deep generative model
for drug discovery, a critical factor we also consider is the synthesizability of
these molecules. Synthesizability refers to the ease with which a molecule can be
synthesized in a laboratory. This significantly affects a candidate’s practicality,
cost-effectiveness, and development timeline. To assess this quantitatively, we use
ASKCOS [27], an advanced organic synthesis planning tool powered by a neural
network trained on the comprehensive Reaxys dataset [15]. ASKCOS evaluates
synthesizability through a heuristic score. A higher heuristic score indicates that
a molecule is easier to synthesize, reflecting the neural network’s learned patterns
from extensive chemical reaction data. These insights are crucial for identifying
the most viable candidates for efficient and cost-effective drug development.
Within drug discovery, the main goal is to identify new drug molecules and
evaluate their potential as effective treatments. This evaluation is based on their
“drug-likeness” or “drugability” - key attributes that determine their suitability
for therapeutic use. Therefore, we also try to assess these properties using a rule-
based metric called Lipinski’s Rule of Five [19], which is a preliminary screening
tool in drug discovery that helps identify molecules that are likely to be orally
bioavailable. However, while useful, these rules are not definitive; exceptions can
still lead to successful drugs [49]. Lipinski’s Rule of Five states that a compound
is more likely to be absorbed if: (1) hydrogen bond donors (HBD) < 5, (2)
hydrogen bond acceptors (HBA) < 10, (3) molecular mass (m) < 500 daltons,
(4) octanol-water partition coefficient (log P) < 5.

5 Results

We compared our proposed model with two baselines: the CVAE model [34]
and the CVAE hybrid model [36]. Using each model, we generated 90 unique
molecules for every binding pocket in the testing set (546 proteins). We then
selected the top 5 molecules per pocket based on binding affinities and assessed
their structures using metrics for binding affinity, synthesizability, and drug-
likeness defined in Sec.4.2. Table2 presents averaged values for each metric,
while Fig.3 shows the distribution of these metrics and atom-type frequency
analysis across models. We see that in terms of AGyng (binding affinity), we
surpass the previous baselines, achieving an average AGp;nq of —10.70keal/mol,
whereas the CVAE [36] and CVAE hybrid model [34] achieved —9.79kcal/mol
and —8.91kcal/mol, respectively. This outcome aligns with our expectations,
given that the neural network is conditioned on the reference ligand and incor-
porates its physics-based features. Furthermore, as hypothesized, the discrim-
inator sub-network improves the quality of the generated molecular density
grids, thus enhancing the output’s sharpness. Such conditioning enables the net-
work to specifically generate molecules with enhanced binding affinity. Now, in
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Table 2. Comparing the average metric values for molecules generated by the models
for each binding pocket in the test set.

Model AGhina (1) ASKCOS Sc.(1)m  |LogP HBA/HBD
CVAE [34] —8.91 —2.33e4 321.041.15 [5.05 3.75
CVAE Hybrid [36] |—9.79 —~1.75e5 310.07—0.62/6.73 4.8
CVAEGAN Hybrid —10.70 | —2.17e4 358.47—0.35(7.42 4.91

T @ o 5"
£ g g o
L 3 £ .
CVAEGAN Hybrid  CVAE Hybrid CVAE CVAEGAN Hybrid CVAE Hybrid CVAE * c N o]
(a) AGhind (b) ASKCOS Score (¢) Atom Type Frequency

Fig. 3. Box plots illustrating and comparing the distribution of (a) AGping (kcal/mol),
(b) ASKCOS scores, and (c) Relative atom type frequencies for all molecules generated
by the three models for the binding pockets in the test set.

terms of synthesizability, we achieve comparable ASKCOS scores compared to
the baselines, achieving the second-best average ASKCOS score of —1.75e5. It’s
important to recognize that ASKCOS calculates synthesizability scores based
on known precursors and compounds. This methodology can yield unusual
and unrepresentative scores when dealing with the generation of novel com-
pounds that have never been previously encountered or recorded by a system
like ASKCOS. We believe this could be the reason for the unusually high negative
scores observed across all three models. Lastly, regarding drug-likeness, the met-
rics are similar across all models, particularly considering that neither the base-
lines nor our method explicitly impose or condition adherence to Lipinski’s rules
during training. We believe that the CVAE model [34] achieving slightly better
Lipinski values is attributable to the extensive size of their dataset. This includes
nearly 22.5 million protein-ligand pairs. This vast collection likely encompasses
a more diverse and druglike set of structures, implicitly conditioning the model
to generate molecules that more closely adhere to Lipinski’s rules. In contrast,
the CVAE hybrid model [36] and our model were trained on approximately 2,100
protein-ligand pairs from the PDBBind dataset, constrained by the availability of
physics-based features specific to these entries. This difference in dataset scope
and content significantly influences the training outcomes and the drug-likeness
of the generated molecules.

In Fig.4, we visualize the top-5 generated molecules by the three models
inside a single binding pocket of the protein ligh [beta-d-glucan glucohydrolase
isoenzyme exol] from the PDBBind test set. We observed that docked molecules
predicted by our CVAEGAN hybrid model have more feasible conformation and
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= C12H16FNOg CoH1404 C1gHaaFN202 C11H14N20 C11H1g05

Fig. 4. Visualisation of the Top-5 generated ligands inside the receptor pocket by the
baselines - LIGAN [33] and CVAE Hybrid [36] in comparison to our physics-guided deep
generative hybrid model - CVAEGAN Hybrid for the PDBBind protein ligb [beta-d-
glucan glucohydrolase isoenzyme exol] with their decreasing binding affinities (left to
right) and their RMSD values.

orientation inside the protein binding pocket. The corresponding better AGping
values also confirm that they are better binders all across.

6 Conclusion and Future Work

In this work, we demonstrated that incorporating physics-based data into deep
generative models enhances their ability to predict superior molecular struc-
tures for receptor proteins. This approach not only demonstrates great potential
but also promises to transform the field. By merging DL techniques with core
physical principles, we have successfully advanced traditional drug discovery
methods. Our hybrid physics-based CVAEGAN model generated realistic struc-
tures with higher AGy;,q compared to computational baselines and known refer-
ence ligands. The model also successfully predicted synthesizable and drug-like
molecules. However, we identified a key limitation: the lack of explicit condi-
tioning for drug-likeness. Future studies could enhance the model by integrating
drug-likeness and synthesizability constraints, improving its practical applica-
tions in drug development.
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