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Abstract

We study topological entropy of compactly supported Hamiltonian diffeomorphisms from
a perspective of persistent homology and Floer theory. We introduce barcode entropy, a
Floer-theoretic invariant of a Hamiltonian diffeomorphism, measuring exponential growth
under iterations of the number of not-too-short bars in the barcode of the Floer complex.
We prove that the barcode entropy is bounded from above by the topological entropy and,
conversely, that the barcode entropy is bounded from below by the topological entropy of any
hyperbolic invariant set, e.g., a hyperbolic horseshoe. As a consequence, we conclude that
for Hamiltonian diffeomorphisms of surfaces the barcode entropy is equal to the topological
entropy.
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1 Introduction

In this work we study topological entropy of compactly supported Hamiltonian diffeomor-
phisms from a perspective of Floer theory, using the machinery of persistent homology. We
introduce a Floer-theoretic invariant of a Hamiltonian diffeomorphism, which we call bar-
code entropy, measuring roughly speaking the rate of exponential growth under iterations of
the number of bars (of length greater than € > 0) in the barcode of the Floer complex. This
invariant comes in two forms: the absolute barcode entropy associated with the Hamiltonian
Floer complexes of the iterates of the diffeomorphism and the relative barcode entropy aris-
ing from the Lagrangian Floer complex of a fixed Lagrangian submanifold and its iterated
images.

Barcode entropy can be thought of as a Floer theory counterpart of topological entropy
and the two invariants are closely related. We show that the barcode entropy (absolute and
relative) is bounded from above by the topological entropy (Theorem A and Corollary A)
and, conversely, that the absolute barcode entropy is bounded from below by the topological
entropy of any (uniformly) hyperbolic invariant set, e.g., a horseshoe; see Theorem B. In
particular, as a consequence of these two bounds and a work of Katok, [68], we conclude
in Theorem C that the absolute barcode entropy is equal to the topological entropy for
Hamiltonian diffeomorphisms of closed surfaces.

The crux of the paper lies in the definition of barcode entropy and its connection to
topological entropy. The very existence of an invariant relating features of the Hamiltonian
or Lagrangian Floer complex to topological entropy is not obvious. The only prior indication
known to us that this is indeed possible in dimension two for relative barcode entropy comes
from the main theorem in [74] and also [63, Prop. 3.1.10] discussed in more detail in Remark
2.8.

@ Springer



Topological entropy of Hamiltonian diffeomorphisms... Page3of38 73

To detect topological entropy, one has to extract from the Floer complexes of the iterates
an amount of information, up to an e-error, growing exponentially with the order of iteration.
A priori it is unclear if the complexes carry this much information and, if so, how to extract
it. (The e-error clause is essential). For instance, it is not obvious how and if a high-entropy
horseshoe localized to a small ball would register on the level of Floer complexes. One
apparent difficulty is that in most cases the effective diameter of the action spectrum grows
sub-exponentially with the order of iteration; see Remark 3.4. One can think of Floer theory
as a filter or an intermediate device between a dynamical system and the observer, and it is not
clear if it lets through enough information to detect topological entropy in the Hamiltonian
setting. (See also Remark 2.14 for a different perspective).

To the best of our knowledge, there are only two other settings where connections between
topological entropy—type invariants and symplectic topology have been studied. The first
setting concerns topological entropy of Reeb flows and the growth of various flavors of
contact homology and, in a similar vein, the second one deals with topological entropy of
symplectomorphisms (or contactomorphisms) and again the growth of Floer homology. (We
do not touch upon slow entropy, for this is ultimately an invariant of a very different nature;
see, however, Remark 2.15). This is an extensively studied subject and we will elaborate
on the results in Remark 2.17. Here we only mention that the underlying theme is that
positivity of topological entropy is obtained as a consequence of exponential growth of some
variant of Floer or contact homology. By contrast, for Hamiltonian diffeomorphisms, the
Floer homology is independent of the order of iteration and there is no homology growth.
In fact, in the relative case, the Floer homology can even be zero. In our setting, topological
entropy is related to a non-robust (i.e., depending on the map) invariant of the Floer complex.

Barcode entropy, the key notion introduced in the paper, relies in a crucial way on the
language of persistent homology. Following [91], this machinery has become one of the
standard tools in studying the dynamics of Hamiltonian diffeomorphisms by symplectic
topological methods and, more generally, in symplectic dynamics, although the class of
problems it has been applied to is quite different from the exponential growth questions we
focus on here. The barcode of a Floer complex encompasses completely robust invariants of
the system, such as spectral invariants and Floer homology, and also more fragile features
via finite bars. We refer the reader to [90, 99] for a general introduction and to [9, 22, 27, 60,
75, 78, 94-96] for an admittedly incomplete collection of sample results. One key point in
some of these works and also in, e.g., [49, 51, 59, 86, 97, 98], not using barcodes directly,
is that finite bars, i.e., relatively fragile features of a barcode, carry information related to
interesting dynamical properties of the system. The present paper builds on this point.

The paper is organized as follows. In Sect.2 we state and extensively discuss the main
definitions and results. In Sect. 3 we set our conventions and notation and briefly review rele-
vant facts about filtered Lagrangian and Hamiltonian Floer homology and barcodes following
mainly [98, 99]. We return to the definition of relative barcode entropy in Sect.4, where we
state its minor generalization and also some of its properties. In Sect.5 we generalize and
prove Theorem A. Finally, Theorems B and C are proved in Sect.6, where we also touch
upon an a priori lower bound on the y-norm of the iterates in the presence of a hyperbolic
set; see Proposition 6.7.
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2 Key definitions and results
2.1 Definitions

The key new notion introduced in the paper—barcode entropy—comes in two versions:
absolute and relative.

Let us start by briefly describing the setting in which these variants of barcode entropy are
defined. Consider a symplectic manifold M and a closed monotone Lagrangian submanifold
L C M and a second Lagrangian submanifold L’ Hamiltonian isotopic to L. Denote by A
the universal Novikov field over the ground field F = [F,. Informally, A can be thought of
as the field of Laurent series with coefficients in [ with real (rather than integer) exponents.
The ambient manifold M is not required to be closed, but it has to have a sufficiently nice
structure at infinity, e.g., to be “tame” or convex. In addition, the minimal Maslov number
Ny, of L needs to be at least 2. We refer the reader to Sect. 3 for our conventions and notation,
precise definitions and further details.

Assuming first that L and L’ are transverse, we have the filtered Floer complex CF(L, L)
which is a finite-dimensional vector space over A generated by L N L’. (The grading of
the Floer complex and homology is immaterial for our purposes). Denote by B(L, L’) the
barcode of CF(L, L) over A; see Sect.3.3. Note that in this case (i.e., whenever L, L’ are
transverse) the barcode B(L, L') is a finite set. For ¢ > 0, let b (L, L) be the number of
bars of length greater than € in this barcode:

be(L, L") := |{ bars of length greater than € in B(L, L)}|. 2.1

This definition extends in a straightforward way, essentially by continuity, to the case when
the manifolds are not necessarily transverse. For instance, when € is outside the closure
D(L, L") of the action difference set (see Sect.3.2.3) we can set

be(L,L') =be(L, L"),

where L' th L and L’ is C*°-close and Hamiltonian isotopic to L'; see (4.2). We refer the
reader to Sect.4.1 and, in particular, (4.1) for the definition in the general case, and to [90,
Chap. 6] for other appearances of b.. Here we note that in the non-transverse case the barcode
B(L, L") may contain infinitely many bars. However, b. (L, L") < oo for all € > 0.

Let ¢ = ¢op: M — M be a compactly supported Hamiltonian diffeomorphism. Set
L* = ¢M (D).

Definition 2.1 (Relative Barcode Entropy, I) The e-barcode entropy of ¢ relative to L is

log® b (L, LF
he(@; L) := lim sup M

k— 00 k

and the barcode entropy of ¢ relative to L is

h(p; L) := 21\1‘% he(p, L) € [0, oo].

Here and throughout the paper the logarithm is taken base 2 and log™ := max{log, 0}.
Observe that A (¢, L) is increasing as € \, 0, and hence the limit in the definition of A(g, L)
exists although a priori it can be infinite. We also emphasize again that the Floer homology
HF(L) is immaterial for this construction beyond the fact that it is defined. For instance, L
can be a small circle in a surface with HF(L) = 0. We will extend this definition to pairs of
Lagrangian submanifolds in Sect.4.1.
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Remark 2.2 Definition 2.1 might feel somewhat counterintuitive. The underlying idea is that
the barcode counting function be (L, L’) gives a lower bound on the number of transverse
intersections, which is in some sense stable under small perturbations with respect to the
Lagrangian Hofer distanse dj;. For instance, assume that Lagrangian submanifolds L, L’ and
L" are Hamiltonian isotopic, L” m L and d; (L', L") < /2. Then, regardless of whether L
and L’ are transverse or not, we have

ILNL"| > beys(L, L

for any € > 0; see Sects. 3.3 and 4.1. This would not be true if we replaced be1s(L, L) by
|L N L’|: nearby intersections can be eliminated by a C*°-small perturbation.

Let now M be a closed monotone symplectic manifold and again let ¢ = pg: M — M
be a Hamiltonian diffeomorphism. Then we can apply the above constructions to L = A, the
diagonal in the symplectic square (M XM, —w® a)), with ¢ replaced by id x ¢, or directly
to the Floer complex CF(¢) of ¢ for all free homotopy classes of loops in M. For instance,
denoting by B(¢) the barcode of CF(¢) over A, we have

be(¢*) = |{ bars of length greater than € in the barcode B(¢*)}|

= be(L, LY),
where L = A and L is the graph of o~
Definition 2.3 (Absolute Barcode Entropy) The e-barcode entropy of ¢ is

log™ be (¢*
he (@) := lim sup Lé((p)

k— 00 k

and the (absolule) barcode entropy of () is
h(p) := lim h¢(p) € [0, oo
(®) 61\ (@) € ]

or, in other words,
h(p) := h(id x @; A).

Here again A (¢) is increasing as € \ 0, and hence the limit in the definition of /(¢)
exists. Note that in this definition, in contrast with the relative barcode entropy, we can work
with any ground field F as long as M is monotone.

In this paper we are primarily interested in absolute barcode entropy while relative entropy
plays a purely technical role, arising naturally in our approach to the proof of Corollary A
via Theorem A. We will revisit the definitions and briefly touch upon general properties of
barcode entropy in Sect. 4.

2.2 Main results

With the definition of barcode entropy in place, we are ready to state the main results of the
paper, which ultimately justify the definition.

Theorem A Let L be a closed monotone Lagrangian submanifold with minimal Chern num-
ber N, > 2 in a symplectic manifold M and let ¢ M — M be a compactly supported
Hamiltonian C*°-diffeomorphism. Then

Mp; L) < hy, ().
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Note that since ¢ is compactly supported, the lack of compactness of M, provided that it is
“tame” at infinity, causes no additional problems. We can set h;,,(¢) := R0, (@lsupp(p)) OT
equivalently 4,,,(¢) := h,,,(¢|x) for any compact set X D supp(¢). Variants of Theorem A
also hold in some other cases; see, e.g., Remark 5.2.

Since h,,,(id x ¢) = h,,,(¢), as an immediate consequence of Theorem A, we have the
following.

CorollaryA Let ¢: M — M be a Hamiltonian C°-diffeomorphism of a closed monotone
symplectic manifold M. Then

@) < higp(@).

Another interesting consequence of Theorem A, not obvious from the definitions, is that
h(p; L) < oo and, in particular, (@) < oo. In contrast with Theorem A, here and in
Theorems B and C the ground field IF can have any characteristic.

Remark 2.4 (Growth of periodic points) One cannot replace the number of bars b, (¢*) or
be(L, L¥) in the definition of barcode entropy by the total number of k-periodic points or
Lagrangian intersections, while keeping Theorem A and Corollary A. Indeed, in dimension
two, the number of periodic points can grow arbitrarily fast, and moreover super-exponential
growth is in some sense typical; see [15]. In higher dimensions, a smooth zero-entropy map
may have super-exponential orbit growth; [67]. Hence, in both cases the exponential growth
rate of the number of periodic points could in general be infinite.

Remark 2.5 (Idea of the proof of Theorem A) As in many results of this type (see, e.g., [83]),
Theorem A is ultimately based on Yomdin’s theorem relating topological entropy to the rate
of exponential volume growth; see [101] and also [55]. (Hence, the requirement that ¢ is C*°-
smooth is essential). Let us briefly outline the idea of the proof assuming that all intersections
are transverse. Forasmall € > 0, the barcode entropy is roughly the rate of exponential growth
of be (L, L") as k — oo. By Remark 2.2, this rate bounds from below the rate of exponential
growth of Nj (L) := |i N Lk| for any Lagrangian submanifold L Hamiltonian isotopic and
dy-close to L with the upper bound on dy; (L, L) completely determined by . We construct
a Lagrangian tomograph: a family of such Lagrangian submanifolds L = L, independent
of k and parametrized by s in some ball B, so that

/ Ni(Lg)ds < const - vol (Lk)
B

by a variant of Crofton’s inequality; cf. [13, 14] where a similar construction is used. Now
Yomdin’s theorem gives a lower bound on #,,,(¢). Note that in contrast with some other
arguments of this type (see, e.g., [7, 43] and references therein), the ball B can possibly have
very large dimension and the map W: B x L — M sending (s, x) to the image of x on L
need not be a fibration but only a submersion onto its image.

Remark 2.6 Instead of working with the class of monotone Lagrangian submanifolds L one
can require L to be oriented, relatively spin and weakly unobstructed after bulk deformation
as in [45] and replaced the coefficient field I, by a field of zero characteristic. We expect
Theorem A to still hold in this setting and the proof to go through word-for-word.

We do not view Theorem A or Corollary A as an effective method to calculate £,,,(¢), but
rather as a result connecting two notions of entropy lying in completely disparate domains.
Yet, this result would be meaningless and hold trivially if A(@, L) were always zero. (As
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an example, i(¢y) = 0 when H is an autonomous Hamiltonian on a surface. This fact is a
consequence of Theorem C below and is not directly obvious. An alternative approach would
be to show that in this case the volume of the graph of ¢* grows sub-exponentially and then
invoke the proof of Theorem A or, when H is real analytic or Morse, one can verify directly
that b (¢*) grows at most polynomially).

Here we focus on absolute barcode entropy, and the next two theorems show that often
h(¢) # 0 and, in fact, the two notions of entropy are perhaps (numerically) closer to each
other than one might expect.

In the next theorem we are concerned with (uniformly) hyperbolic invariant sets. Recall
that an invariant set K C M is said to be hyperbolic if for some Riemannian metric on M
there exist positive constants A— < 1 < A and a splitting Tx\M = E; @ E for every
x € K, invariant under D¢, such that

[Dglg- || < A and | De|g+ll = A4

for all x € K. We refer the reader to, e.g., [70, Sect. 6] for a detailed discussion of
hyperbolicity. Here such sets are required to be compact by definition.

TheoremB Let ¢: M — M be a Hamiltonian diffeomorphism of a closed monotone
symplectic manifold M and let K C M be a hyperbolic invariant subset. Then

(@) = heop(@lK)-

The key to the proof of this theorem is the fact that a Floer trajectory u asymptotic to a
periodic orbit x of any period with x(0) € K must have energy bounded away from zero by a
certain constant ex > 0 independent of u; see Proposition 6.3. The proof of the proposition is
based on the Crossing Energy Theorem, [52, Thm. 6.1], and the Anosov Closing Lemma, [70,
Thm. 6.4.15]. In contrast with other results of this paper, it would be sufficient in Theorem
B to assume that ¢ is only C2-smooth.

Among the examples of sets K meeting the requirements of Theorem B are hyperbolic
horseshoes and then 4,,,(¢|gx) > 0; see the discussion in Sect.6.2. Hence, whenever ¢ has
such a horseshoe, which is a common occurrence, i(¢) > 0.

In dimension two, h,,,(¢) is the supremum of £,,,(¢|x) over all K as in Theorem B; see
[68] and also [70, Suppl. S by Katok and Mendoza]. Hence, by Theorem A (or Corollary A)
and Theorem B, we have the following.

Theorem C Let ¢o: M — M be a Hamiltonian C°-diffeomorphism of a closed surface M.
Then

@) = hiy (). (2.2)

We will prove and further discuss Theorem C in Sect. 6.

A bonus consequence of the proof of Theorem B is that the y-norm, and hence the Hofer
norm, of the iterates <pk is bounded away from zero when, for instance, ¢ has a horseshoe or
sufficiently many hyperbolic fixed points and also in some other cases; see Sect.6.1.5 and
Proposition 6.7.

Another consequence of the proof of Theorem A and Theorem C is a relation between the
barcode and topological entropy of ¢ and the exponential growth rate of the volume of the
graph of ¢¥; see Sect.5.3.

Remark 2.7 Since this work appeared as a preprint, a variant of Theorem B for Lagrangian
intersections has been proved in [84].
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2.3 Discussion and further remarks

Our definition of barcode entropy is quite general and can be applied to any sequence of
persistence modules. (See, e.g., [24] and also [90] for an introduction to persistent homol-
ogy theory and further references). Then barcode entropy can be thought of as the rate of
exponential growth of information carried by this sequence, provided that we take b, as a
measure of the amount of information. With this in mind, we expect the notion to be useful in
some other settings. However, from a purely algebraic perspective the definition is also quite
primitive: in contrast with topological entropy, one cannot infer any interesting properties of
barcode entropy directly from the definition; cf. Sect.4.2.

Yet, Theorems A, B and C show that this is the “right” definition in the context of Floer
theory and that in this setting barcode entropy has numerous properties not formally following
from the definition. The reason probably is that Floer complexes have rich additional features,
and it would be interesting to understand what properties of Floer complexes “make this
definition work”—the proofs do not answer this question.

In the rest of this section we will further comment on our main results.

Remark 2.8 (Theorem A when dim M = 2) The assertion of Theorem A is already nontrivial
when L is an embedded loop (a Lagrangian submanifold) on a surface M, even when L = S
is the zero sectionin M = T*S! = S! x R or L is a meridian or a parallel in M = ' x S'.
However, in this situation, one might expect to have a more general criterion. Namely, the
results from [74] building on [21] indicate that when dim M = 2, for a broad class of loops
L, there could be a sufficient condition, aka a criterion, for A,,,(¢) > 0 expressed solely in
terms of CF (L, <p(L)) without using the iterates ¢, similarly to the forced entropy results.
(See, e.g., [12] and references therein). However, no such a criterion is known; nor if this is a
purely low-dimensional phenomenon. Furthermore, for a fixed L, such an entropy positivity
condition, even if it exists, could not be necessary, i.e., it cannot possibly always detect positive
entropy; see Example 2.9 below. Also note that [63, Prop. 3.1.10], based on [73], gives a
lower bound for the topological entropy of a Hamiltonian diffeomorphism ¢: S — 2 in
terms of the linear growth rate of the Hofer distance between L and ¢* (L), where L is the
equator. (To the best of our knowledge, there are no examples where this distance is shown
to grow linearly, although conjecturally such examples exist).

Example 2.9 (Strict inequality in Theorem A) In contrast with Theorem C, in the setting of
Theorem A the inequality can be strict even when dim M = 2 (and hence dim L = 1).
Indeed, assume that L is contained in a region where ¢ = id, but ¢ has a hyperbolic
horseshoe elsewhere. Then A(p; L) = 0, but A,,,(¢) > 0. Also note that in dimension
two h(p; L) < h(p) as a consequence of Theorem C, and it would be very illuminating to
understand if this is true in general.

Remark 2.10 (Non-compact version of Corollary A) The corollary readily extends to com-
pactly supported Hamiltonian diffeomorphisms ¢ = ¢y of symplectic manifolds M
sufficiently “tame” at infinity. For instance, M can be convex at infinity or wide in the
sense of [58]. To define the barcode entropy of ¢, we fix a proper autonomous Hamiltonian
Q without 1-periodic orbits at infinity and vanishing on supp H. (For instance, Q can be a
small positive definite quadratic form outside a large ball when M = R?"). Next, let ¢ be a
small non-degenerate perturbation of ¢ ¢* coinciding with ¢ atinfinity. The filtered Floer
complex of ¥ is defined and can be used in place of CF (gok) to define the barcode entropy
h(p) of ¢. (This complex depends on Q and the perturbation, but b (1) is independent of
the perturbation, although it might still depend on Q). Now the proof of Corollary A via
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Theorem 5.1 goes through, establishing the inequality A(¢) < h,,,(¢), when we let Ly be
the diagonal in M x M and replace L* by the graph of v/; see Sect.5.2. In a similar vein,
Theorems B and C also hold with the definition of barcode entropy suitably adjusted when
M is “open” but ¢ is compactly supported.

Remark 2.11 (Free homotopy classes of loops, I) The requirement that we work with the
Floer complex for the entire set 771 (M) of free homotopy classes of loops in M is absolutely
essential and without it the theorems would not hold; see Example 2.12. In the Lagrangian
setting, its counterpart is commonly assumed: the Lagrangian Floer complex CF(Lg, L1) is
usually defined for all free homotopy classes of paths from Lo and L. On the other hand,
the Hamiltonian Floer complex CF(g) is traditionally defined only for contractible loops.
This is not the case in Definition 2.3 where we use the Floer complex associated with the
entire collection 771 (M) of free homotopy classes of loops in M. In fact, one can associate
a variant of barcode entropy hy to any subset X C 7;(M), and clearly, hy < hyx when
Y C X. Then Theorem A would still obviously hold, for ix < h. However, Theorems B and
C would in general fail when X # 771 (M); see Example 2.12. This phenomenon is unrelated
to algebraic topological conditions for entropy positivity (e.g., the Entropy Conjecture or the
fundamental group growth; see [6, 69, 70, 101] and references therein): Theorem C holds for
M = §? and for M = T?. We will elaborate on this in Remark 2.13.

Example 2.12 (Failure of Theorems B and C for restricted free homotopy classes of loops)
Let U be a small disk in T? and let K be a time-dependent Hamiltonian with supp K C U
generating a positive-entropy time-one map ¢ . Next, let ' be an autonomous Hamiltonian
on T? such that under the flow (p} fortimet € [0, 1] every pointin U traces a non-contractible
loopinaclass ¢ € 71 (T?) = Z? and <p,1r |y = id. Define H by concatenating the Hamiltonians
Fand K,and setp = go}q. Thus |y = @k and @|12\; = @F |2y It follows that h,,, (¢) =
hip(9k) > 0. However, ix(¢) = 0 whenever |[X N ¢N| < oo. Indeed, pick ¢ € 7 (T?)
and assume that & is so large that r # kc. Then, since every k-periodic orbit of gy starting
in U is in the class k¢, the maps ¢y and ¢ have the same k-periodic orbits in the class ¢
and the actions are equal. A homotopy from H to F which phases K out does not affect
k-periodic orbits in the class r. As a consequence, (p’,‘_, and q)’; have the same filtered Floer
homology in this class and the same barcode; see, e.g., [48, Sect. 3.2.3] and references therein
for similar arguments. Therefore, hx () = hx(¢r) whenever X NcN s finite. By Theorem
C, h(¢Fr) = 0 and hence hx (pF) = 0.

Remark 2.13 (Free homotopy classes of loops, IT) All k-periodic orbits of ¢, have length
bounded from above by k||V H ||co. Therefore, for a fixed k € N only finitely many free
homotopy classes can be represented by periodic orbits with period up to k. By the Svar¢—
Milnor lemma, [37], these classes are contained in the ball of radius R = O (k), with respect
to the word length metric, in 771 (M) centered at the origin. The number of conjugacy classes
is known to have exponential growth for many hyperbolic-type groups, e.g., for 71 (M) when
M has negative sectional curvature; see [34, 62] and references therein. (We expect this to
also be true when M a symplectically hyperbolic manifold in the sense of [72, 89], but this
is not obvious). Hence, in this case, the number of classes populated by periodic orbits of ¢
with period less than k can grow exponentially. When ¢ is such that this is indeed the case,
we have h,,,(¢) > 0; see [65, 66] and also [6] and references therein. However, in general
this is not the source of positive entropy in Theorems B and C as Example 2.12 and the case
of M = §? show.
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Remark 2.14 (Theorem C, periodic orbits and topological entropy) As stated, Theorem C
fails when dim M > 4; see [26]. Our admittedly very optimistic conjecture is that (2.2) holds
in all dimensions C*°-generically for Hamiltonian diffeomorphisms.

Remark 2.15 (Slow entropy) Theorem A and Corollary A have analogues for polynomial
growth, slow entropy-type invariants (see, e.g., [43, 71, 89]) which can be proved essentially
by the same method with natural modifications. To be more specific, the polynomial growth
rate of be (L, LK), i.e., lim sup log™ b (L, L¥)/ log k, gives a lower bound on the polynomial
growth rate of the volume of L* and, likewise, the polynomial growth rate of b, (¢*) provides
a lower bound on the polynomial growth rate of the volume of the graph of ¢*.

Remark 2.16 (Lower barcode entropy) If we replaced the upper limit by the lower limit in
the definition of barcode entropy, Theorem A and Corollary A would obviously still hold for
the so-defined lower barcode entropy. However, the proof of Theorem B would break down
because of the upper limit in (6.7) and, as a consequence, we would not be able to establish
Theorem C.

Theorems A, B and C lead to several other questions completely left out in this paper.
One of them, alluded to in Example 2.9, is if there is a relation between absolute and relative
entropy. Another is a construction of a Floer theoretic analogue of dynamical Morse entropy
introduced in [19]. Also, there are several possible alternatives to our definition of barcode
entropy, some of which are examined in [29]. Furthermore, the definition of barcode entropy,
Corollary A and Theorems B and C generalize to symplectomorphisms symplectically iso-
topic to the identity with the Floer complex defined as in [79]; see [87]. Finally, it would
also be interesting to extend the definition of relative barcode entropy to a broader class of
Lagrangian submanifolds beyond the case when Lagrangian Floer homology is defined. Such
a generalization may have applications to dynamics.

Remark 2.17 (Topological entropy of Reeb flows and symplectomorphisms) As was men-
tioned in Sect. 1, connections between topological entropy of Reeb flows or symplectomor-
phisms and exponential growth of contact or Floer homology of various flavors have been
extensively studied. In the Reeb setting, these connections generalize well-known relations
between the topological entropy of the geodesic flow and the geometry or topology of the
underlying manifold; see [69, 70] for further references. This study was originally initiated in
[81] and since then the subject has been extensively developed in a series of papers by Alves
and his collaborators (see, e.g., [1, 2, 68, 10, 12] and also [83]). In many of these results,
positivity of topological entropy follows from exponential growth of contact or Legendrian
contact homology. For instance, in [10], the authors construct a contact structure on S§2n—1=17
such that every Reeb flow has positive entropy due to exponential growth of wrapped Floer
homology, which is a robust feature independent of the contact from. This approach is remi-
niscent of the Entropy Conjecture and other results where algebraic topological features of a
map give a lower bound on the topological entropy; see [69, 70, 101] for further references.
The case of symplectomorphisms or contactomorphisms is very similar in spirit and closely
related to the Reeb setting, and the results usually rely again on exponential growth of a vari-
ant of Floer homology; see, e.g., [35, 36, 44]. On the other hand, for compactly supported
Hamiltonian diffeomorphisms, there is no Floer homology growth. Topological entropy is
instead related to barcode entropy, a non-robust invariant of the Floer complex.

Remark 2.18 Since the first version of this work appeared as a preprint, significant progress
has been made in extending our results and constructions to Reeb flows. In particular, barcode
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entropy is defined and the analogues Theorems A, B and C are proved for geodesic flows
in [54]. More generally, for Reeb flows on the boundary of a Liouville domain, the barcode
entropy is defined in [39], where a version of Corollary A is also proved, and Theorems B
and C are established in [32]. Moreover, Theorem A for wrapped Floer homology is proved
in [40].

Remark 2.19 (Forcing and connections with Hofer’s geometry in dimension two) Connections
of topological entropy in dimension two with Hofer’s geometry have been recently explored in
[10, 33]. The main theme of the latter work is closely related to forcing of topological entropy;
see [77] and references therein. The key result of the former is Hofer lower semicontinuity
of topological entropy for Hamiltonian diffeomorphisms of closed surfaces.

3 Preliminaries
3.1 Conventions and notation

For the reader’s convenience, we set here our conventions and notation and briefly recall
some basic definitions; see, e.g., [98] for further details and references. The reader may want
to consult this section only as needed.

Throughout the paper we assume that the underlying symplectic manifold (M, w) is
either closed or “tame” at infinity (e.g., convex) so that the Gromov compactness theorem
holds; see, e.g., [82]. All Lagrangian submanifolds are assumed to be closed unless explicitly
stated otherwise, and monotone, i.e., for some k¥ > 0, we have (w, A) = k (ur, A) for all
A € my(M, L), where u; € H2(M, L; Z) is the Maslov class. Then M is also monotone
with monotonicity constant 2k, i.e., (w, A) = 2k (c1(TM), A) for all A € m(M). As in
[98], we define the minimal Maslov number of L as the positive generator Ny, of the subgroup
of Z generated by (i, w) for all maps w: A — M from the cylinder A := S x [0, 1]
to M sending the boundary dA to L. When this group is trivial, we set N = co. In what
follows, we require that Ny > 2 unless x = 0. Note that this definition allows [w] to vanish
on 2 (M, L) and thus includes weakly exact Lagrangian submanifolds.

Alternatively, as has already been pointed out, one can require L to be oriented, relatively
spin and weakly unobstructed after bulk deformation as in [45] and replaced the coefficient
field F = [, by a field of zero characteristic. We expect that Theorem A extends to this
setting.

A Hamiltonian diffeomorphism ¢ = g = ¢ }1 is the time-one map of the time-dependent
flow (i.e., a Hamiltonian isotopy) ¢' = <p}1 of a 1-periodic in time Hamiltonian H : § IxM —
R, where S! = R/Z. The Hamiltonian vector field X 5 of H is defined by ixyw=—dH.
All Hamiltonians are assumed to be compactly supported.

The k-th iterate ¢ is viewed as the time-k map of ¢y The k-periodic points of ¢ are
in one-to-one correspondence with the k-periodic orbits of H, i.e., of the time-dependent
flow ¢l;. A k-periodic orbit x of H is said to be non-degenerate if the linearized return
map Dx(o)gok: TyoyM — TyyM has no eigenvalues equal to one. A Hamiltonian H is
non-degenerate if all of its 1-periodic orbits are non-degenerate and strongly non-degenerate
when all of its periodic orbits are non-degenerate.

Recall that the Hofer norm of ¢ is defined as

= inf H;, — min H;) dt,
el = ind /Sl(mﬁx ¢ —min 1)
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where the infimum is taken over all 1-periodic in time Hamiltonians H generating ¢, i.e.,
¢ = op; see [61, 76, 88, 100]. The Hofer distance between two Hamiltonian isotopic
Lagrangian submanifolds L and L’ is

dy(L, L") =inf {lllly | o(L) = L'};

see [25].

3.2 Filtered Lagrangian Floer complex

In this section we very briefly spell out the definition of the filtered Lagrangian Floer complex
we use in this paper. There are various settings and levels of generality one could work
with here. For the sake of simplicity, we focus on the case of Hamiltonian isotopic closed
monotone Lagrangian submanifolds. (We will touch upon other settings in Remark 3.2). For
such Lagrangian submanifolds, Floer homology was originally defined in [85], albeit in a
somewhat different algebraic setting. In this short narrative we adopt the framework from
[98] with only minor modifications. We refer the reader to this work and, of course, to [45]
for a much more detailed treatment and further references.

3.2.1 Floer complex

Let M be a symplectic manifold which is supposed to be sufficiently “tame” at infinity (e.g.,
compact or convex) to guarantee that compactness theorems hold, and let L and L’ be closed
monotone Lagrangian submanifolds intersecting transversely. We assume that L and L' are
Hamiltonian isotopic to each other, i.e., there exists a Hamiltonian isotopy (p;, t € [0,1],
such that L’ = @ (L). For the time being we will treat the isotopy w} as a part of the data.
Furthermore, we require that Ny, > 2, where N;, = Ny is the minimal Chern number as
defined in Sect.3.1.

Let P(L, L') be the space of smooth paths in M from L to L’ and 71 (M; L, L") be the set
of its connected components. For instance, the intersection points of L and L’ are elements of
P(L, L'); however, these elements might be in different connected components of P(L, L').
Fix a reference path x. in each ¢ € 71(M; L, L"). A capping w of a path x € ¢ is a homotopy
of x to x. (with end-points on L and L"), taken up to a certain equivalence relation. Namely,
two cappings w and w’ are equivalent if and only if the cylinder v obtained by attaching
w’ to w with the reversed orientation has zero symplectic area and zero Maslov number.
Furthermore, we say that two such cylinders are equivalent when their symplectic areas and
Maslov numbers are equal. When w and w’ are not equivalent, we call v, taken up to this
equivalence relation, and also (x, w’) a recapping of (x, w) and write (x, w’) =: (x, w)#v.
We usually suppress a capping in the notation. One can assign a well-defined Maslov index
to a capped path from L to L’ by fixing also a trivialization of T M along x..

For the sake of simplicity, the ground field IF throughout the paper is [F,. (However, in the
Hamiltonian setting of Corollary A and Theorems B and C we can work with any ground
field F). The Floer complexes we mainly consider are finite-dimensional vector spaces over
the “universal” Novikov field A formed by formal sums

=Y fiTY, (3.1)

j=0

where f; € Fand a; € R and the sequence a; (with f; # 0) is either finite or a; — oo.
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The Floer complex CF(L, L), or just C for brevity, is generated by the intersections
L N L' with arbitrarily fixed cappings. The differential 8, is defined by the standard formula
counting holomorphic strips u with boundary components on L and L’, asymptotic to the
intersections with now all possible cappings and the symplectic area w (v) of the recapping
v contributing the term T®™ to the differential.

To be more precise, denote the generators by x;. Thus

C = @ Ax;. (3.2)

Then, assuming that the underlying almost complex structure is regular, we have

Opixi = Y Aijx), (3.3)
j

where

Mj=Y_ ATV eA (3.4)
v

Here the sum extends over all recappings v of x; such that the Maslov index difference of x;
and x;j#v is 1 and f, € I is the parity of the number of holomorphic strips « asymptotic to
x; and x j, and such that the original fixed capping of x; is equivalent to the capping obtained
by attaching x ;#uv to these strips.

This complex is not graded, due to our choice of the Novikov field, or only Z;-graded.
We denote the Floer homology, i.e., the homology of C, by HF(L, L) or just HF(L). This is
also a finite-dimensional vector space over A.

The complex C and its homology HF(L, L) split into a direct sum of complexes C, =
CF.(L, L") and homology groups HF (L, L") over ¢ € m{(M; L, L’).

3.2.2 Action filtration

To define the action filtration on C = CF(L, L’) it is beneficial to look at this complex from a
different perspective and this is where the condition that L and L’ are Hamiltonian isotopic,
which has not been explicitly used so far, becomes essential. Namely, applying the inverse
Hamiltonian isotopy ((p}) o paths from L to L” we obtain paths from L to itself and thus a
homeomorphism between P(L, L") and P(L, L) and a bijection between 71 (M; L, L") and
71 (M; L) := 71 (M; L, L). The intersections L N L’ turn into Hamiltonian chords from L
to itself for ((p;-)fl. Likewise, the reference paths x. become the reference paths y. from L
to L and a capping of y € P(L, L) is a homotopy from y € ¢ to y. with end-points on L up
to the same equivalence relation.
This procedure turns the Cauchy—Riemann equation into the Floer equation

ou ou VH

s +J o r(u)
where (s,7) € Rx [0,1]andu: R x [0,1] — M, and H; = —F; o (p} is a Hamiltonian
generating the inverse of the isotopy (p;: M — M from L to L’. Holomorphic strips with
boundaries on L and L’ and asymptotic to L N L’ become solutions u of the Floer equation
with boundary on L asymptotic to Hamiltonian chords. The Floer differential now counts
solutions of the Floer equation. The Hamiltonian action of a capped path y = (y, w) is given
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by the standard formula

1
Ay) = —/ a)-i—/o H;(y(t))dt. (3.5)

The Floer differential is strictly action-decreasing, and we obtain the required action filtration
on C with the convention that for A € A given by (3.1), we have

v(A) :=min{a;}, where f; # 0, 3.6)
and

A (Z kiyi) = max A yi), where A(A;yi) := A(yi) — v(A). 3.7

A few remarks are due at this point. First of all, the action filtration depends on the choice
of the reference paths x. (or y.). Namely, on every direct summand C. a change of the
reference path shifts the filtration by a constant. Thus the filtration is well-defined only up to
independent shifts on these summands. Clearly, this ambiguity does not affect the barcode
of C introduced in Sect.3.3.1. In particular, the bar length and the number of bars of a given
length and b (L, L") are independent of the choice of reference paths.

Furthermore, while the generators of C are (capped) intersections, the differential gen-
uinely depends on the background almost complex structure or, in the second interpretation,
on the almost complex structure and the Hamiltonian F'. However, the resulting complexes
are chain homotopy equivalent with homotopy preserving the filtration up to a shift. Thus,
the number of bars of a given length either and b¢ (L, L) are again well-defined.

The Floer homology HF(L, L’), as a vector space over I, inherits the action filtration from
C. To be more specific, we have a family of vector spaces HF?(L, L') over F, parametrized
by a € R, where HF*(L, L") is the homology of the subcomplex of C comprising the chains
> i yi with action less than a. The inclusion of subcomplexes fora < a’ gives rise to natural
maps HF(L, L") — HF (L, L).

Essentially by construction, we have the “Poincaré duality”. Namely, for a suitable choice
of the auxiliary data,

CF(L', L) = CF(L, L))* (3.8)

over A with “inverted” filtration. (Here we used the fixed basis {x;} to identify the vector
spaces CF(L’, L) and CF(L, L’) and their duals, and then the Floer differential in CF(L’, L)
turns into the adjoint of the Floer differential in CF(L,” L)). As a consequence, HF (L', L) =
HF(L, L')*.

We also note that whether or not L and L' are transverse, only a finite collection of elements
inm (M; L, L") = m(M; L) is represented by Hamiltonian chords. Thus C. = 0 for all but
a finite collection of ¢ € 7 (M; L, L") = 71 (M; L); this collection might however depend
on the Hamiltonian isotopy; cf. [98, Prop. 6.2].

Remark 3.1 In the situation we are interested in there is usually a natural choice of the
Hamiltonian isotopy. Namely, when L’ = ¢* (L) as in Sect. 2.1, the isotopy comes from @Yy
with time interval [0, k] scaled to [0, 1]. In Sect.4.1, L = Lo and L' = (pk (L1), where Lg
and L are assumed to be Hamiltonian isotopic, and the isotopy from L to L’ is obtained by
concatenating the two isotopies.

Remark 3.2 (Exact Lagrangians, I) Finally, note that there are of course other settings where
the filtration on C is defined and has the desired properties. One is when (M, w) is an exact
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symplectic manifold (i.e., w is exact) meeting certain additional requirements at infinity, and
L and L’ are exact Lagrangian submanifolds (i.e., the restrictions of a primitive of w to L and
L’ are exact), not necessarily Hamiltonian isotopic. Then A = F. In this case, sometimes we
can even allow one of the manifolds to be non-compact. For instance, L can be Hamiltonian
isotopic to the zero section in a cotangent bundle of a closed manifold and L’ can be a fiber.

3.2.3 Period group, the action spectrum and the action difference set

In this subsection we do not assume that L and L’ are transverse unless explicitly stated
otherwise.

For every class ¢ € w1 (M; L), denote by I'. the subgroup of R formed by the integrals
w(v) for all maps v: A = Sl x[0,11 - M sending dA to L and with the meridian
v({0} x [0, 1]) in c. (Such annuli v, with ¢ fixed, taken up to homotopy or the equivalence
relation discussed above, form a group of recappings of paths in ¢ and I'; is the group of
action changes resulting from recappings). The monotonicity condition forces this group to
be discrete for the “unit” class ¢ = 1 of the constant path. In general, ' depends on ¢ and
can be discrete for some classes ¢ and dense for other classes; see Example 3.3. In the former
case we denote by A its positive generator and call ¢ foroidally rational. As usual, we set
Ac = oo when c¢ is atoroidal, i.e., I = {0}. Finally, let I' C R be the subgroup generated
by the union of all I'.. We will refer to I as a period group and to I as the complete period
group. (Hypothetically it is possible that I" is dense even when all I are discrete, but we do
not have an example when this happens).

The action spectrum S¢(L, L’) C R (for aclass ¢) is the collection of actions for all capped
chords in ¢ or, equivalently, capped intersections L N L’ in the class c. Clearly, a change of
a reference chord y, results in a shift of S¢(L, L") by a constant. Furthermore, as we have
already mentioned, only a finite collection of free homotopy classes can contain Hamiltonian
chords, and hence S¢(L, L) = @ for all but a finite set of the classes ¢. In general, this
collection of classes depends on the Hamiltonian isotopy from L to L', and a change of the
isotopy results in action shifts and “relabeling” of the action spectra; cf. [98, Prop. 6.2]. We
denote by S(L, L") the union of the sets S¢ (L, L") for all c.

The following is a list of standard properties of the action spectrum which are relevant to
our purposes although not directly used in the proofs:

e The sets S¢ (L, L) are non-empty for only a finite collection of elements ¢ € 71 (M; L).
e The sets S.(L, L"), and hence their union S(L, L'), have zero measure.

The set S¢(L, L) is countable whenever the intersections L N L’ in the class ¢ are
transverse. (The converse is not true).

The set S (L, L') is invariant under translations by elements of I',.

The set S (L, L) # @ is compact if and only if I'. = {0}.

The set S¢(L, L) # @ is closed if and only if T, is discrete.

The set S¢(L, L’) # @ is dense if and only if T is dense.

We denote by D (L, L") C R the set comprising all action differences between the capped
intersections in ¢, i.e.,

DC(Lv L/) = SC(L’ L/) - SC(La L/) = {a - b | a, b € SC(L7 L/)}

This set is countable whenever the intersections L N L’ in the class ¢ are transverse, and dense
when T is dense. (The converse is not true in both cases). Furthermore, D¢ (L, L') is closed
if and only if S¢(L, L') is closed. An important point is that in general D, (L, L") need not
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be a zero measure set. (For instance, D.(L, L’) = [—1, 1] when S.(L, L) is the standard
Cantor set; see, e.g., [47, p. 87]). We also let D (L, L") to be the closure of Dc(L, L') and
D(L, L) stand for the union of the closures D (L, L') for all ¢ € 7r1(M; L). This union is
also closed since D (L, L") # @ only for a finite collection of classes c.

Applying these constructions to the Hamiltonian diffeomorphism id x ¢ of the symplectic
square (M xM, —a)@w) , weobtain the filtered Floer complex C := CF(¢) of ¢. This complex
is isomorphic to the standard Z,-graded Floer complex over A generated by 1-periodic
orbits in all free homotopy classes ¢ € 7;(M). This distinction from the more customary
construction limited to contractible orbits is essential; see Sect.2.3. The free homotopy class
of a k-periodic orbit of ¢}, is completely determined by the Hamiltonian diffeomorphism ¢z
and is independent of the isotopy. This is a consequence of the proof of Arnold’s conjecture
which in the monotone case was established in [42]. As we have already pointed out, in the
Lagrangian setting the situation is more complicated. The period group I'c C R is formed
by the integrals w (v) where now v: T2 = S! x §' — M with the meridian v({0} x S} in ¢,
and A is the postive generator of I'. when this groups is non-trivial and A, = 0 otherwise.
(The homotopy classes of such tori form a group). As above, we denote by I" the complete
period group, i.e., the group generated by the union of the groups I'..

Example 3.3 Assume first that M = T2 with area a and let as above 7 (M) be the set of free
homotopy classes of loops in M, i.e., conjugacy classes in 7t (M). Then 71 (M) = m1(M) =
7% and A, = a for every primitive class ¢ # 0 and, using additive notation, Az = kA for
every k > 0; see [86]. A similar description applies to T?* = T? x --- x T? equipped with
the standard symplectic structure for which all factors T2 have the same area a, although now
A¢ € aZ may depend on ¢ even when c¢ is primitive. A surface ¥ of genus g > 2 or, more
generally, a symplectically hyperbolic manifold (see, e.g., [72, 89]) is atoroidal, i.e,. I'c =0
for all ¢. Next, let M = T? x X. Then A, is completely determined by the projection of ¢ to
T2 and then calculated as in the previous example. Finally, let M = ’]I‘% x T2, where the first
torus has area 1 and the second has an irrational area a. Then classes ¢ lying in (T%) and
T (’JI‘%) are toroidally rational and A, is calculated as above. For other classes, the group I,
is dense in R.

Remark 3.4 (Growth of the action spectrum) As we have pointed out in the introduction, one
difficulty in thinking about topological entropy in terms of Floer theory is that in many cases
the “effective” diameter of the action spectrum S ((p" ) grows sub-exponentially with k even
when the cardinality of S (gok) grows super-exponentially (see Remark 2.4). For instance,
assume that o is atoroidal. Then it is not hard to show that for a suitable choice of reference
loops in 771 (M) the diameter of S ((pk) grows sub-exponentially when the pullback of w to the
universal covering of M has a primitive with sub-exponential growth. For instance, when M
is a surface of genus g > 2 or, more generally, M is symplectically hyperbolic, the diameter
grows linearly.

When M is simply connected and monotone, one can pin every finite bar to be contained
in the interval [0, Apr + [l@¥ 115 ] C [0, Apr + kll@ll ], where Ay is the rationality constant;
see [98] and Remark 3.6. (Moreover, under these assumptions on M, we can replace the
Hofer norm by the y-norm resulting in a bounded interval in some instances, e.g., for CP";
see [38, 75]). A similar upper bound holds for M = T2", but now one has to also use the
result from [86] mentioned in Example 3.3.

3.2.4 Floer package and shrinking the Novikov field

Purely formally, the above constructions can be summarized as the following “Floer package”:
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e The finite-dimensional vector space C over A with a fixed set of generators x;; see (3.2).
e The differential 9;;; see (3.3).
e The action filtration on C given by (3.6) and (3.7) such that 9, is strictly action decreasing.

We emphasize that in this package there are no algebraic constraints on the actions A(x;)
other than that 9, is required to be strictly action decreasing.

Next, observe that all exponents occurring in A;; in (3.4) are in I or in I'. when we focus
on C.. Thus we could have replaced in the construction the universal Novikov field A by
the field AT defined in a similar fashion, but with all exponents ¢; in (3.1) in I" (orin I').
Moreover, we could have worked with the field A for any subgroup G of R containing T,
resulting in the same barcode. (For instance, A = AR). When essential, we will write C(AT)
to indicate the Novikov field.

On a purely formal level of a Floer package, we can define I as a countable subgroup of R
generated by all exponents occurring in A;; and then use the field AS whenever I' C G.
(This group I" can potentially be smaller that the period group I' defined in Sect.3.2.3
geometrically).

Our choice to mainly work with A rather than AT is dictated by expository considerations:
it is convenient to have the Novikov ring independent of the geometrical setting.

3.3 Persistent homology and barcodes
3.3.1 Barcodes

In this section we briefly recall a few basic facts and definitions concerning persistent homol-
ogy and barcodes in the context of Floer theory. We refer the reader to [90] for a very
detailed introduction and a discussion in much broader context. Here, treating barcodes in
the framework of Lagrangian Floer complexes, we closely follow [99], with some minor
simplifications. (A different although equivalent approach to barcodes in this context is put
forth in [75]. That approach is, however, slightly less convenient for our purposes).

The key difference between the settings used here and in [99] is that Floer complexes in
[99] are Z-graded, while in this paper, as in [27], the complexes are ungraded (or Z;-graded),
i.e., in [99] the differential comprises maps between different spaces over A, while here 9,
is a map from C to itself. However, the constructions, results and proofs from [99] carry over
to our framework. For instance, one can apply these results to the “two-storey” Z-graded
complex

0 — C/ker 3y ~25 ker 9y — 0

over A.

As in Sect.3.2, consider the filtered Lagrangian Floer complex C := CF(L, L’) of a
transverse pair of closed monotone Lagrangian submanifolds L and L’. A finite set of vectors
& € C is said to be orthogonal if for any collection of coefficients A; € A we have

A (D nii) = max AG&),

where A is defined by (3.6) and (3.7). Itis not hard to show that an orthogonal set is necessarily
linearly independent over A.

Definition3.5 A basis ¥ = {a;, nj, y;} of C over A is said to be a singular value
decomposition if

@ Springer



73  Page 18 of 38 E. Cineli et al.

L4 8Flai = Oa

e Imyj = nj,
e the basis is orthogonal.

It is shown in [99, Sects. 2 and 3] that C admits a singular value decomposition. Ordering
the pairs (1, y;) by the action difference, we have

Ay — Am) < A(yz) — A(pp) < -+

This increasing sequence together with dims HF(L, L’) infinite bars (corresponding to the
basis elements ;) is referred to as the barcode of C and denoted by B(C) or B(L, L'). Fixing
a class ¢ we also obtain the barcode B¢ (L, L’). This is a multiset. As a consequence of the
discussion in Sect.3.2.4, B.(L, L") Cc D.(L, L") U {oo} if we ignore multiplicities. The
barcode is independent of the choice of a singular value decomposition and auxiliary data
involved in the construction of C; see, e.g., [99]. As in (2.1), we set

be(L, L") = be(C) = |{B € BC) | B > €}]. 3.9)
The complexes CF(L’, L) = CF(L, L")* and CF(L, L’) have the same barcode:
B(L,L)=B(LL);

cf. [99]. (This does not follow directly from (3.8) because a singular value decomposition for
CF(L, L") need not be a singular value decomposition for CF(L’, L) when the two spaces
are identified by fixing a basis of capped intersections). Hence,

be(L,L") =be(L, L). (3.10)

We also set b(C) = b(L, L") := |B(L, L')| to be the total number of bars in the barcode.
Then

[LNL'|=dimy CF(L, L") =2b(L, L") —dimpy HF(L, L") > b(L, L').
In particular, be (L, L") gives a lower bound for the number of intersections:
ILNL'| > be(L,L). (3.11)

We emphasize that here and throughout this section we have assumed that L th L’.
Clearly,

B(y(L), (L") = B(L, L")

for any symplectomorphism vy : M — M, and hence

be(¥ (L), ¥ (L)) = be(L, L. (3.12)

Furthermore, b (L, L') is constant as a function of € on any interval in the complement of
DL, L.

The longest finite bar Bmax (L, L") in B(L, L’) is called the boundary depth. As shown in
[98], Bmax (L, L") < dy(L, L")+ Bmax (L, L) and, in particular, Bmax (¢) < |l¢|5. (In general,
Bmax (L, L) can be non-zero. For instance, for a displaceable circle L bounding a disk of area
a inasurface, B(L, L) has only one bar, which has length a, and hence Bmax (L, L) = a > 0).

Remark 3.6 (Pinned bars) Our definition of a barcode is a simplification of the standard
one in which, when I' = {0}, a barcode is the collection of the intervals [A(n;), A(y;)]
and [A(w;), oo) rather than just their length; see, e.g., [90]. Hence, a bar is “pinned” to its
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beginning in R. When working over the universal Novikov field A, the situation is similar,
but now R is replaced by R/ I". Namely, with more care in the choice of a singular value
decomposition, a finite bar is determined by .A(y;), viewed as an element of R/ T", and the
difference A(y;) — A(n;), and an infinite bar is the pair A(¢;) € R/ T and oo; see [99].
Thus a bar is “pinned” to a point in S(L, L")/ T'. However, then the position of each bar
depends on the auxiliary data (reference paths and the Hamiltonian isotopy from L to L’),
and the shift resulting from a change of the data also depends on the connected component
cem(M; L,L"). Since here we are mainly concerned with counting bars of length greater
than €, the simplified definition is more convenient for our purposes.

The barcodes are fairly insensitive to small perturbations of the Lagrangian submanifolds
with respect to the Hofer metric. Namely, assume that dy; (L', L) < §/2. Then

bets(L, L") < be(L, L") < be—s(L, L'). (3.13)

We refer the reader to [75, 90, 99] for the proof.

These constructions apply verbatim to the direct summand CF.(L, L') for ¢ € 7w (M; L).

It is not hard to extend the notion of barcode to the situation where L and L’ are not
transverse. However, here we are interested only in counting bars of length above a fixed
treshold and we extend its definition to the non-transverse case in an ad hoc manner in the
next section.

Specializing to the case where L is the diagonal in M x M and L’ is the graph of a strongly
non-degenerate Hamiltonian diffeomorphism ¢: M — M, we obtain the barcode B(g) of
CF(g) (for all free homotopy classes of loops ¢ € 771 (M)), which is again insensitive to small
perturbations of ¢ with respect to the Hofer metric and hence to C*-small perturbations,
and B, (¢) C D¢ () U {oo}. Likewise, D(p) will stand for the union of the closures D, (¢),
etc.

Throughout this section we could have replaced the universal Novikov field A by a smaller
field AT as in Sect. 3.2.4 with exactly the same resulting barcode with the same properties. In
particular, this change would not affect b (L, L’). Moreover, it would lead to a small technical
advantage. Namely, assume that all intersections L N L’ have actions distinct modulo T, i.e.,
A(x;) # A(xj),i # j,in S(L, L")/ T. (This is a C*°-generic condition). For £ € c(AD),
write

E=fT%+...,

where the dots stand for lower-action terms and x is one of the capped intersections x; (and
f # 0).Itis easy to see that since the intersections have distinct actions modulo I" anda € T,
the term 7“x and the intersection x are unique. We will refer to 7¢%x, or sometimes just x,
as the leading action term in .

Example 3.7 Assume that the intersections have distinct actions modulo I'. Then it is easy

to see that the set & € C(A") is orthogonal if and only if the leading action terms x; are
distinct.

3.3.2 Bounding b (C) from below
The proof of Theorem B hinges on a lower bound on b, (¢) via the number of periodic orbits

which are in a certain sense energy-isolated. In this section we will deal with the algebraic
aspect of the argument.
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It is convenient, although strictly speaking not necessary, to introduce the Floer graph
G associated with a Floer package C; cf. [27]. The vertices of G are the generators x;. For
each non-zero term f7¢ in A;; (see (3.4)) we connect x; to x; by an arrow and label that
arrow by the exponent a. (Thus G is a directed graph with finitely many vertices but possibly
infinitely many edges). The length of an arrow is the action difference A(x;) — A(T%x;) =
A(x;) — A(xj) + a, i.e., the energy of any underlying Floer trajectory. We say that x = x;
is e-isolated if every arrow from or to x has length strictly greater that €. For instance, x is
e-isolated if every Floer trajectory asymptotic to x at 00 has energy strictly greater than €.
(The converse need not be true).

Proposition 3.8 Assume that G has p e-isolated vertices. Then b (C) > p/2.

Proof Let us switch from the universal field A to AT. Thus, throughout the proof, C :=
C(A"). By continuity, we can assume in addition that all generators x; have distinct actions
modulo I'. Indeed, a small change of actions .A(x;) does not affect b (C) and e-isolation, as
a consequence of (3.13) and the fact that in the definition of b, (4.2), the bars are required
to be strictly greater than €. Furthermore, as has been pointed out in Sect.3.3.1 this can be
achieved by a C*°-small perturbation. (In fact, since we are working in a purely algebraic
setting we can simply change the filtration of C by altering .A(x;) in the formal framework
of a Floer package; see Sect.3.2.4). Now Example 3.7 applies.

Next, recall from [99] that a non-zero element ¢ € im g is said to be e-robust if A(§) —
A(¢) > € for every & with 9 = ¢. A subspace W C im dp; is said to be e-robust if every
(non-zero) vector ¢ € W is e-robust. The key fact established in [99] that we will use in
this proof is that the number of finite bars of length greater than € is equal to the maximal
dimension of an e-robust subspace. Thus it suffices to find an e-robust subspace W with
dimW > p/2 —dimH(C).

Letxy, ..., xp be the e-isolated vertices and let V be their span. We will need the following
two observations:

(i) For every linear combination & of e-isolated vertices x;, we have A(§) — A(3r€) > €.

(ii) Let w; = x;j + ..., where the dots stand for lower action terms, be any collection of
vectors with x; distinct, i.e., w; are orthogonal. Then any exact (i.e., in the image of d,)
linear combination of w; is e-robust.

Next, from the short exact sequence

0 — ker(dgly) = V — 9m(V) — 0,
we have

dim V = dimker(dy|v) + dim 95, (V).

Let Y be an orthogonal complement of ker(ds|y) in V. (We refer the reader to [99, Sect.
2] for an extensive discussion of orthogonality in the nonarchimedean setting and further
references). Thus V = ker(dy|y) @ Y and 9, induces an isomorphism between Y and
(V).

Let us now modify Y. If all elements of dr;(V) are e-robust we do nothing. Assume
not: there is a vector £&; € Y such that d;,& is not e-robust, but A(&1) — A(3r,&1) > € by
Observation (i). Therefore, there exists ¢; with 9,1 = 9&1 and

A(¢1) — A(0r1) < €.

Then wy := & — ¢ is closed and A(w;) = A(&), i.e., the leading term in w; is the leading
term in &;. Let Y1 C Y be an orthogonal complement to &;. If every element of d,,(Y1) is
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e-robust the process stops. If not, we pick & such that dr,& is not e-robust, etc. Proceeding,
we will construct, for some s > 1, vectors &, ..., & in Y as above together with vectors w;,
and an orthogonal complement Y; to span(&y, .. ., &) in Y such that d,,(Ys) is e-robust and
dim 9z, (Y) = dim Y.

Each vector w; has the same leading term as &;, which we can assume to be one of e-
isolated generators x ;. The vectors w; are still orthogonal to ker(dr|v) and to each other
since so are the vectors &;. Hence, by Example 3.7, the leading terms x; of these vectors are
distinct and also distinct from the leading terms in any orthogonal basis in ker(d,|v ). Hence,
Observation (ii) applies to a an orthogonal basis in

Wo = ker(3p|v) @ span(wy, ..., wy).
Also set
W = 8F1(YS)-

Every element in Wy is closed, and every vector in W is exact and e-robust by construction.
Furthermore,

dim Wo +dim W) =dimV = p

and Wy has an orthogonal basis with distinct leading terms x ;.
Finally, let Wy be the subspace of exact vectors in Wy, i.e., the kernel of the natural map
Wo — H(C). Every element in Wy is e-robust by Observation (ii). Clearly,

dim Wyo > dim Wy — dim H(C).

One of the spaces Wy or W; has dimension at least p/2. If this is Wi, we set W = W} and
the proof is finished. If this is Wy, we set W = Wy, and then dim W > p/2 — dim H(C) and
every element in W is e-robust. O

4 Definitions revisited and general properties
4.1 Definitions: pairs of Lagrangian submanifolds

In this section we slightly generalize the definition of barcode entropy from Sect. 2.1, extend-
ing it to pairs of Hamiltonian isotopic Lagrangian submanifolds. Thus let M, L and L’ be as
in Sect.3: M is a symplectic manifold, compact or “tame” at infinity (e.g., convex), and L
and L’ are closed monotone Lagrangian submanifolds Hamiltonian isotopic to each other.

To extend the barcode counting function be (L, L') to the situation where L and L’ need
not be transverse, set

be(L, L") :=liminf b (L, L) eZ. 4.1
L'—L'

Here the limit is taken over Lagrangian submanifolds L’ th L which are Hamiltonian isotopic
to L’ and converge to L’ in the C*-topology (or at least in the C!-topology). Note that, as
a consequence, dy (f,’ , L") — 0. By (3.10), we could alternatively require that L’ is Hamil-
tonian isotopic to L, transverse to L’ and converges to L. Furthermore, since b (L, L') € Z,
the limit in (4.1) is necessarily attained, i.e., there exists L’ arbitrarily close to L’ such that
be(L, L") = be(L, L.
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Moreover, when € ¢ D(L, L'), the right-hand side of (4.1) stabilizes before the limit, i.e.,
be(L, L") =bc(L, L"), (4.2)

when L' M L and L' is C*°-close and Hamiltonian isotopic to L/, as is easy to see from
(3.13).

With this definition, b. (L, L') is monotone increasing as € \ 0, and (3.10), (3.12) and
(3.13) continue to hold. For instance, to prove the first inequality in (3.13), note first that in
(4.1) we could have replaced the lower limit over L’ — L’ by the lower limit over L — L.
Then

bets(L, L'y :=liminf beys(L, L") <liminf be(L, L") =: be(L, L"),
L—L L—L
as desired.

Furthermore, as has been mentioned in the introduction, b, (L, L) gives a lower bound on
the number of transverse intersections which is in some sense stable under small perturbations
with respect to the Hofer distance; cf. Remark 2.2. To be more precise, assume that Lagrangian
submanifolds L, L’ and L” are Hamiltonian isotopic, L” th L and d; (L', L") < §/2. Then,
regardless of whether L and L’ are transverse or not, we have

ILOL"| = be(L, L") = beys(L, L'). (4.3)

Here the first inequality follows from (3.11), and in the second we use (3.13) and the fact
that d,; (L', L") < §/2. These inequalities play a central role in the proof of Theorem A.

Let now ¢ = ¢y: M — M be a compactly supported Hamiltonian diffeomorphism.
Similarly to Definition 2.1, we have

Definition 4.1 (Relative Barcode Entropy, II) The barcode entropy of ¢ relative to (L, L")
is

B(p; L, L") == lim ke (¢; L, L) € [0, 00],
e\
where

he(@; L, L") := lim sup

k—o00

log® be(L, LF
% with L* := o (L),

Here, as in Definition 2.1, fic (¢; L, L") is increasing as € N\ 0, and hence the limit exists,
although a priori it could be infinite.

Remark 4.2 The key issue we have to deal with in these definitions is that the difference
set D(L, LX) can be dense, where as above L := ¢*(L’). When the closure D(L, Lk) is
nowhere dense for all k, a simpler approach is available. Namely, then we can require € \ 0
not to be in the union of D(L, LX) for k € N and for each k set be(L, L¥) := b (L, I:k),
where Zk is a C°°-small perturbation of LK, asin (4.2). The resulting definition of the barcode
entropy would be literally equivalent to the more general one given above.

Remark 4.3 (Exact Lagrangians, II) Continuing Remark 3.2, we note that these definitions

and constructions extend word-for-word to the case where L and L’ are exact Lagrangian
submanifolds.
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4.2 Basic properties

In this section we list, for the sake of completeness, some basic properties of barcode entropy.

Proposition 4.4 (Properties of Barcode Entropy) In the notation and conventions from
Sects. 3 and 4.1, we have the following:

(i) Foreveryk € N, we have F(¢*; L, L) < kk(p; L, L"). In particular, i(¢*) < kh(p).
(ii) Assume that the products Lo x Ly and Ly x LY in Mo x My are monotone. Then for
Hamiltonian diffeomorphisms @o: My — My and ¢1: My — M1, we have

R(po x @15 Lo x L1, Ly x L}) < R(po; Lo, Ly) + R(er; L1, LY).

In particular, I(@o x @1) < h(po) + M(e1).
(ili) We have R(g; L, L") = hi(¢~'; L', L) and, in particular, i(p~") = h(p).
(iv) For any symplectomorphism yr: M — M,

hi; L. L)) = h(yey ™ s ¥(L), ¥(L) and h(g) = h(yoy ).
As a consequence, for every k € N,
s L, L") = h(p; ¢* (L), *(L)).

(v) For a fixed Hamiltonian diffeomorphism @, the barcode entropy h(p; L, L") is lower
semicontinuous in the pair (L, L") with respect to the Hofer distance. In particular,
h(g; L) is lower semicontinuous in L.

Proof Assertion (i) is a direct consequence of the definition. To prove (ii) recall that the Floer
complex of the pair (Lox L1, Lyx L)) is the tensor product of the Floer complexes of (Lo, L)
and (L1, L’l) over A; see, e.g., [64, Sect. 2.6] and [80]. Then a singular value decomposition
for the product is obtained by taking the “product” of singular value decompositions of the
factors in a self-evident way. As a consequence, every pair of bars Sy € B(Lo, L;,) and
B1 € B(L, L) gives rise to two bars of length min{fo, g1} in B(Lo x L, L{y x L) when
both bars are finite. If one or both bars in a pair are infinite, the pair gives rise to one bar of
length min{By, B1}. Therefore,

be(Lo x L1, Ly x L) < 2be(Lo, Ly) - be(L1, L)),

which proves (ii).

Assertion (iii) follows from (3.12) and the Poincaré duality, (3.10). The first identity in
(iv) also follows from (3.12). The second identity is a consequence of the fact that when
¢ is non-degenerate ¢ and ¢ ! have isomorphic Floer complexes and hence the same
barcode. By continuity, B(¢) = B(y ¢y ~!) even when ¢ is degenerate. The last one follows
from the first identity by setting i/ = ¢* and using the fact that ¢ commutes with .

To prove (v), it suffices to show that

h(p; L, L'y > has(g; L, L), (4.4)

whenever dy (L, L) < 8 and dyy (L', L') < 8. Thus assume that L' = (L"), where [|[v/|| 5 <
8. Then dy (¢¥, ¥ /) < 8, and setting L* = ¢*(L') and L* = ¢*(L') as above, we have
dy (Lk, Zk) < §. Therefore, by (3.13),

he(p; L, L'y > heqas(@; L, L').

Passing to the limit as € \( 0, we obtain (4.4). ]
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Remark 4.5 By analogy with topological entropy, we would expect (i) and (ii) to actually be
equalities. Moreover, by Theorem C, h((pk) = kh(p) when M is a surface. Furthermore, in (v)
whenever L is wide one can replace the Hofer norm by the y-norm by the results from [75].
Also recall that, as was shown in [11], A,,,(¢) is lower semicontinuous in ¢ with respect
to the Hofer metric when dim M = 2. Hence, h(¢p) is also Hofer lower semicontinuous
for Hamiltonian diffeomorphisms of surfaces by Theorem C. This observation leads to the
question/conjecture if/that this is also true in all dimensions.

We also note that /i(gp; L, L), with ¢ fixed, is quite sensitive to deformations of L and L’
even by a Hamiltonian isotopy; cf. Example 2.9.

5 From barcode entropy to topological entropy

Our goal in this section is to prove Theorem A and further explore some of its consequences.
We will establish a slightly more general result.

5.1 Generalization of Theorem A

With the notation from Sects. 2.1 and 4.1, we have the following result generalizing Theorem
A to pairs of Lagrangian submanifolds.

Theorem 5.1 Let Ly and L be closed Lagrangian submanifolds of a symplectic manifold
M andlet p: M — M be a compactly supported Hamiltonian C*°-diffeomorphism. Assume
that Ly and L1 are monotone, Hamiltonian isotopic and Ny, > 2. Then

(s Lo, L1) = hiop(9). (3.1

Taking L = Lo = L, we obtain Theorem A. We emphasize that here M need not be
compact, but then it has to have sufficiently “tame” structure at infinity (e.g., convex) so that
the Gromov compactness theorem holds and ¢ is required to be compactly supported; see,
e.g., [82]. Note also that, as a consequence of Theorem 5.1, A(p; Lo, L1) < oo which is
otherwise not obvious.

Remark 5.2 (Exact Lagrangians, III) Theorem 5.1 holds in some other situations. For
instance, one of them is when Ly and L; are closed exact Lagrangian submanifolds in
an exact convex symplectic manifold; cf. Remarks 3.2 and 4.3.

5.2 Proof of Theorem 5.1
We break down the proof into three subsections. The first two of them—Sects.5.2.1 and
5.2.2—focus on the machinery of Lagrangian tomographs which the proof relies on; the

actual proofis given in Sect. 5.2.3. Throughout the argument we have an auxiliary Riemannian
metric on M fixed.

5.2.1 Lagrangian tomographs and Crofton’s inequality

The notion of Lagrangian tomograph and a variant of Crofton’s inequality, originating in
integral geometry, are the key tools used in the proof of the theorem. The framework described
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in this section is essentially contained in [13, 14] in the setting very close to ours, and
we include the proofs only for the sake of completeness. (See also [17, 28, 93] for other
applications in the context of symplectic dynamics). Furthermore, our setting is similar to
double fibrations utilized in integral geometry for generalizing and proving Crofton’s formula;
see [4, 5, 46].

Let L be a closed manifold, B a compact manifold possibly with boundary and ds a
smooth measure on B. In the situation we are interested in, B is the closed d-dimensional
ball B¢ and ds is the Lebesgue measure, and L will be the Lagrangian submanifold Lo.
Denote by w: E = B x L — B the projection to the first factor. We denote a point in B by
s. Furthermore, let

V:E—->M

be a submersion onto its image where M is a Riemannian manifold (see Remark 5.4). This
manifold need not be compact but, of course, W(E) C M is, since E is compact. We require
W, := W|;xr to be an embedding for all s, and hence Ly := W (L) is a smooth closed
submanifold of M.

In the spirit of integral geometry we will refer to W as a romograph and call L the core
of the tomograph. We say that W is a Lagrangian tomograph if all submanifolds Ly are
Lagrangian and Hamiltonian isotopic to each other.

Finally, let L’ be a closed submanifold of M with

codim L' = dim L.
Since W is a submersion, W, th L’ for almost all s € B. Hence,
N(s):=|LsNL

is a locally constant function on the complement to a zero measure closed subset of B. As a
consequence, N is an integrable function on B.

Lemma 5.3 (Crofton’s inequality) We have
f N(s)ds < const - vol(L'), (5.2)
B
where the constant depends only on ds, V and the metric on M, but not on L'.

Remark 5.4 Perhaps a clarification is due on how the submersion condition is to be interpreted
at d B. A way, which is sufficient and convenient for our purposes, is to assume that W is
defined on a slightly larger space B’ x L (or just E’ D E) where B’ is an open enlargement
of B (or E’ is an open enlargement of E).

Lemma 5.3 is proved in [13, 14]. The argument is simple and short, and we include it
below for the sake of completeness. This general framework and Lemma 5.3 are also very
much in the spirit of the Gelfand transform in integral geometry and various versions of
Crofton’s formula; see, e.g., [4, 5] and references therein. The key difference is that here
and in [13, 14] W is required to be only a submersion, not a fibration. Furthermore, we note
that in this generality, in contrast with the actual Crofton formula, one cannot expect an
inequality going in the direction opposite of (5.2). Indeed, the graph of a smooth map or even
of a diffeomorphism between two closed manifolds can have arbitrarily large volume but it
intersects every vertical slice at only one point.
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Proofof Lemma 5.3 Set ¥ = W—!(L’). This is a smooth submanifold of E and
codim ¥ = codim L' = dim L, i.e., dim ¥ = dim B.
By construction,
(s x LYNZ| =|L;NL'| = N(s). (5.3)

In the proof it will be convenient to equip E with two different auxiliary metrics: the first
metric adapted to 7 and the second metric to W.

We begin by fixing some metrics on B and L, and assuming first that E = B x L carries
the product metric and ds is the Riemannian volume form or, to be more precise, the volume
density. (It would be sufficient to require D to be an isometry on the normals to the fibers).
Then, by (5.3),

/ N(s)ds =/ m¥ds < vol(X).
B b

Here, v *ds is the pull-back measure or the pull-back density, but not the pull-back differential
form. The last inequality is a consequence of the fact that Dmy: TxE — Tr(x)B, x € E,
is an orthogonal projection along the fiber, and hence, when restricted to 7 X, it can only
decrease the dim B-dimensional volume. As a consequence, for an arbitrary metric on E and
an arbitrary smooth measure ds on B, we have

/ N(s)ds < const - vol(Z). 5.4
B

Next, let us equip E with a metric such that the restriction of DW to the normals to the fibers
of W (i.e., the inverse images U=l(y),y € M)isan isometry. Then, by Fubini’s theorem or,
more specifically, the coarea formula (see [23, Sect. 13.4.3]), we have

vol(X) = / vol (\IJ_l(y)) dy|pr < max vol (\IJ_I(y)) -vol(L"), (5.5)
1 YEW(E)
where in the first equality dy|;/ stands for the induced volume form on L’. Thus

vol(X) < const - vol(L'). (5.6)

For an arbitrary metric on E, (5.6) still holds, albeit with a different constant. Combining
(5.4) and (5.6), we obtain (5.2). ]

Remark 5.5 Note that by (5.5) and since the constant in (5.4) is independent of W, the constant
in (5.2) is continuous in W in the C'-topology. In our application L’ = L*, i.e., it ranges
through a countable collection of submanifolds of M. Then, by C!-perturbing W slightly, we
can ensure that N (s) is finite for all s. (This fact is inessential for our purposes, and we omit
a proof). Hence, the functions N (s) from Sect.5.2.3 can also be made finite for all s.

5.2.2 Existence of Lagrangian tomographs

As the second step of the proof we establish in this section the existence of Lagrangian
tomographs. Let L = L be a closed Lagrangian submanifold of M.

Lemma 5.6 A Lagrangian tomograph with core L and dim B = d exists if and only if L
admits an immersion into RY.
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Proof By the Weinstein tubular neighborhood theorem it is sufficient to prove the lemma
when L is the zero sectionin M = T*L.
Let¢: L — R be an immersion, and

fs=s181+ -+ 5484,

where s = (s1,...,s4) € R are the coordinate functions on R? and g; := s; o ¢ are the
restrictions of the coordinate functions to L. Let us now require s to be in a ball B ¢ R?
centered at the origin. Then, setting W (x) = dfs(x),x € L, we obtainamap W: B x L —
T*L. It is easy to see that the condition that ¢ is an immersion is equivalent to that W is a
desired tomograph.

Indeed, the immersion condition is equivalent to that dg1, .. ., dgs generate 7,7 L at every
point x € L. In other words, the map

D\IJ((),X)Z ToB® T, L — T(O,X)T*L = TX*L & T, L

is onto. Therefore, W is a submersion when B is sufficiently small if and only if
(g1,---,82): L — RY is an immersion. (This observation is already contained in, e.g.,
[57]). It is clear from the construction that the submanifolds L are embedded.

Conversely, assume that W: L x B — T*L is a tomograph with Wy = id. Then the
linearization A = dW,/ds is a linear map from Ty B to the space of exact sections of T*L.

Pick some functions {g¢} so that dgy = A(eg) where ey, ..., ey is a basis in ToB. Then
t=1(g1,--.,84) 1is an immersion L — R4, cf. [57]. This completes the proof of the lemma.
O

5.2.3 From barcodes to Lagrangian volume to entropy

Without loss of generality, we may require that 2(g; Lo, L1) > 0—otherwise there is nothing
to prove. We denote the Riemannian volume of L* := ¢ (L) by vol(LF).
Fix € > 0and @ < hoe(¢; Lo, L1). Then

bye(Lo, L*) > const - 2% (5.7)

for some sequence k; — oo. (Here and in what follows, the value of the constant const can
change from one formula to another and even in different parts of the same formula). By
Yomdin’s theorem (see [101] and also the survey [55]), it is sufficient to show that

vol(LK) > const - 2% (5.8)

with the constant independent of i, but possibly depending on « and €. Indeed, then «
h.op (). Passing to the limit as € — 0 and « — R(¢; Lo, L1), we obtain (5.1).

To prove (5.8), pick a Lagrangian tomograph with core Ly. Thus we have a family of
Lagrangian submanifolds L, smoothly parametrized by the closed d-dimensional ball B¢ =
B4(r) of radius r > 0 (for some large d). By shrinking B if necessary, we can ensure that
these submanifolds have the following properties:

IA

(i) The Lagrangian submanifolds L are Hamiltonian isotopic to Lo and the Hofer distance
between Lg and L is small:

dy(Lo, Ls) < €/2 (5.9)

(In fact, Ly can even be taken C°°-close to Lg).
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(ii) The Lagrangian submanifold L is transverse to L¥ for all k and almost all s € B?. Let
Ni(s) == |Ly N LK|

be the number of intersections of L, and L¥. Then Ny (s) is a measurable function, finite
for almost all s. (In fact, we can even have N (s) finite for all s € B9; see Remark 5.5).
Furthermore, by Crofton’s inequality (Lemma 5.3), we have

/ Ni(s)ds < const - vol(LY), (5.10)
Bd

where ds is the standard Lebesgue measure on B¢.

Note that all conditions in (i) and (ii), other than (5.9), are satisfied automatically; see
Sect.5.2.1. As we have already pointed out, to guarantee (5.9) we can simply shrink B.
Then, whenever L, h L¥, we have

Ni(s) = be(Ly, L¥) = boe (Lo, L*).

This is an immediate consequence of (4.3) with L replaced by L¥, L’ replaced by Lo and L”
replaced by L. Hence, by (5.7),

Ny, (s) = const - paki

for almost all s € B?, and (5.8) follows from (5.10), which finishes the proof of Theorem
5.1

We emphasize that this argument does not require Lo and L¥ to be transverse, but only
that Ls th L* which holds automatically for almost all s regardless of whether Lo th L¥ or
not.

5.3 Entropy and the graph volume growth

A consequence of the proof of Theorem 5.1 and Theorem C is a relation between the barcode
and topological entropy of ¢ and the exponential growth rate of the volume of the graph of
¢*. To be more precise, assume that M is compact and fix a Riemannian metric on M. Denote
by 'y C M x M the graph of ¢* and by vol(I'y) its volume. Set

log™ vol(T"
B (@) = lim sup log™ vol(T)
k— 00 k

Corollary 5.7 Let ¢ be a Hamiltonian C*-diffeomorphism of a compact monotone symplectic
manifold. Then

h((ﬂ) S hvol ((p) S h/op((p)~

Here the first inequality is an immediate consequence of the proof of Theorem
5.1, and the second one follows from Yomdin’s theorem, [101], and holds for general
C°°-diffeomorphisms. Combining these inequalities with Theorem C, we obtain

Corollary 5.8 Let ¢ be a Hamiltonian C*°-diffeomorphism of a closed surface. Then
hvol ((p) = htop ((0)

Surprisingly, this equality appears to be new. There are however similar results in the
holomorphic setting; see [56] and the comments therein by S. Cantat for further references.
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6 From horseshoes to barcode entropy

Our goal in this section is to prove Theorems B and C. Throughout the proofs, ¢’ := ¢},
will stand for the time-dependent Hamiltonian flow of H : SlxM->R,S!I=R /7, on a
(monotone) symplectic manifold M and ¢ := (p}i will be the Hamiltonian diffeomorphism
generated by H.

6.1 Crossing energy, the proof of Theorem B and the y-norm

In this section we prove Theorem B and also briefly touch upon an application of the proof
to establishing a lower bound on the y-norm of the iterates in the presence of a hyperbolic
set. We break down the proof of the theorem in a few simple steps, some of which might be
of independent interest.

6.1.1 Generalities and terminology

The iterate Hamiltonian diffeomorphism ¢* is the time-k map in the Hamiltonian isotopy (p?i
generated by H. In what follows, when working with the Floer equation for this iterate, it is
convenient to denote the Hamiltonian by H % and refer to it, somewhat abusing terminology,
as the iterated Hamiltonian; cf. [50, 52]. We emphasize that H #k is the same Hamiltonian
as H, but now viewed as k-periodic in time. Likewise, the solutions of the Floer equation,
(6.1), are allowed to be k-periodic in time rather than 1-periodic or, more generally, defined
on a closed domain X C R x S,!, where S,i = R/kZ, rather than a domain in R x S!. There
are, of course, other Hamiltonians, with easily adjustable period, generating ¢* and giving
rise to the same filtered Floer complex, but this is a natural and convenient choice from the
dynamics perspective. Moreover, this choice becomes essential for the proof of Theorem 6.1;
see [52].
Thus, consider solutions u: ¥ — M of the Floer equation

Josu = du — JVH™ (6.1)

for the iterated Hamiltonian H%: S| x M — R with S} = R/kZ, where © C R x S} isa
closed domain, i.e., a closed subset with non-empty interior and J is a background k-periodic
in time almost-complex structure. By definition, the energy of u is

E(u) = / l|su||* dsdt.
D)

where || - || stands for the norm with respect to (-, -) = w(-, J+), and hence || - || depends on
J. Recall that when ¥ = R x S,i and u is asymptotic to k-periodic orbits x at —oo and y at
00, we have

E(u) = A(x) — A(Y),

i.e., E(u) is the action difference between x and y. Here we treat x and y as capped k-periodic
orbits of H with the capping of y obtained by “attaching” u to the capping of x; see Sect.3.2.1.

Throughout the proof, it will be convenient to work with the extended phase space M =
S' x M with §' = R/Z. The time-dependent flow ¢’ lifts as the genuine flow ¢ on M given
by

@' ©0.p)=(0+1.¢"(p)
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generated by the vector field 99 + X g, where in the first term ¢ is viewed as an element of
S = R/Z. Likewise, anymapz: R — Morz: S,l — M lifts to the map z(¢t) = (¢, z(¢)),
and in a similar vein a solution u of the Floer equation lifts to a map ii: £ — M. If u is
asymptotic to x and y, the lift  is asymptotic to X and y in the natural sense. In what follows,
alift from M to M will always be indicated by the tilde and we will identify M with {0} x M.

A loop x: S,% — M is a k-periodic orbit of ¢! if and only if its lift X is a k-periodic
orbit of ¢’ and if and only if the sequence X = {x; := x(i) | i € Zx C S,i} formed by the
intersections of X with the cross-section M is a k-periodic orbit of ¢.

6.1.2 Crossing energy

Next let us recall the crossing energy theorem, [52, Thm. 6.1] (see also [50]), which is crucial
to the proof. Let K C M be a compact invariant set of a Hamiltonian diffeomorphism ¢ of
M . Recall that K is said to be locally maximal or isolated (as an invariant set) or basic if there
exists a neighborhood U D K such that for no initial condition p € U \ K the orbit through
p is contained in U, i.e., there exists k € Z, possibly depending on p, such that ¢*(p) ¢ U.
The neighborhood U is called an isolating neighborhood of K. Then any neighborhood of
K contained in U is also isolating, and hence such neighborhoods can be made arbitrarily
small. In other words, whenever U D V D K and U is an isolating neighborhood and V is
open, V is also an isolating neighborhood. For a flow, a locally maximal set is defined in a
similar fashion.

The set K naturally lifts to an invariant set K C M of the flow @', which is the union
of the integral curves through K = {0} x K. (Since K is invariant it suffices to take only
t € [0, 1]). The set K is locally maximal for ¢ if and only if K is locally maximal for the
flow.

As in Sect.6.1.1, let u: ¥ — M be a solution of the Floer equation, (6.1), where ¥ C
R x S,f is a closed domain. We say that u is asymptotic to K at oo (or at —oo) if for any
neighborhood U of K there is a half-cylinder [s;, 00) x S,: (or (—o0, s3] X S,:) in ¥
which is mapped into U by u. For instance, u is asymptotic to K whenever u(s, -) uniformly
converges as s — 00 Or § — —o0 to a k-periodic orbit x with x(0) € K (but not necessarily
with x(t) € K forall t € S,i). In this case, abusing terminology, we will also say that u is
asymptotic to the k-periodic orbit X := {x; := x(i) | i € Z} of ¢. We emphasize that here
the domain ¥ of u need not be a cylinder, although to be asymptotic to K it must contain a
half-cylinder.

_ Finally, fix a (sufficiently small) isolating neighborhood U of K. Set U := closure(U) \
U.

Theorem 6.1 (Crossing Energy Theorem, Thm. 6.1 in [52]) Fix a I-periodic in time almost
complex structure J on M. Let J' be a k-periodic in time almost complex structure on M which
is sufficiently C*°-close to J, depending on k, uniformly on U. Furthermore, letu: ¥ — M,
where & C R x S}, be a solution of the Floer equation for J' and H* asymprotic to K as
s — 00 or s — —00, and such that

(a) either 3% # @ and (%) C 9U
(b) or X =R x S} andii(L) ¢ U.

Then there exists a constant ¢, > 0, independent of k, J', u and T such that

E(u) > cxo.- (6.2)
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Here we are mainly interested in Case (b) of the theorem. It is easy to see that this case is a
consequence of the more general Case (a) which was actually established in [52]. However,
Case (b) can also be proved directly by an argument which is considerably simpler than the
original proof therein; cf. Remark 6.5.

Remark 6.2 1t is worth keeping in mind that the lower bound ¢, depends on the choice of an
isolating neighborhood U of K: a smaller neighborhood might necessitate a smaller lower
bound. The threshold on how close J” and J need to be for (6.2) to hold depends on k. Finally,
as readily follows from the proof, the lower bound c, can also be chosen to be stable with
respect to C*°-small perturbations of H % j.e., so that (6.2) holds for solutions of the Floer
equation for all k-periodic Hamiltonians C*®-close to H.

6.1.3 Energy bound for Floer trajectories asymptotic to K

Consider Floer trajectories u: ¥ = R x Sk1 — M for some k-periodic almost complex
structure J” sufficiently close to a fixed 1-periodic almost complex structure J as in Theorem
6.1 and asymptotic to k-periodic orbits x and y of ¢’ with x(0) € K. (It does not matter if
u is a asymptotic to x at oo or —oo, and whether y(0) is in K or not). The key to the proof
of Theorem B is the following result which is an easy consequence of Theorem 6.1 and the
Anosov Closing Lemma, [70, Thm. 6.4.15].

Proposition 6.3 Assume that K is a locally maximal hyperbolic invariant set of . Then
E() = |A(x) — A(y)| > €k, unless E(u) =0, (6.3)

for some constant eg > 0, independent of u and x and y, and also of k and J' as long as J’
is sufficiently C*°-close to J in the class of k-periodic in time almost complex structures on
M.

Proof Pick an almost complex structure J’ which is sufficiently close to a 1-periodic almost-
complex structure J and denote by d the distance on M with respect to an arbitrary
Riemannian metric. We will need the following standard fact:

Lemma 6.4 Letu: R x S,: — M be a solution of the Floer equation, (6.1). Assume that E (u)
is sufficiently small, i.e., E(u) < e with an upper bound e > 0 depending only on (M, w, J)
and H. Then for every s € R the set

2=z ==u(s, i) |i e Z)
is a periodic n-pseudo-orbit of ¢, i.e.,
d((p(z,-), z,-+1) < nforalli € Zx, (6.4)
where we can take

n=0(Ew'""). (6.5)

The key point of this lemma is that every “circle” in a Floer cylinder u for H*¥ is in essense
an n-pseudo-orbit with n = O(E )/ 4), provided that E(u) is below a certain threshold
e > 0 which depends only on (M, w, J) and H, but not u or k.
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Proof Recall that when E () is sufficiently small (with an upper bound e depending on M
and H but not u and k), we have the pointwise upper bound

lasull < const - Ew)'* = O(Ew)'/*), (6.6)

where the constant is again independent of u and k and of J” when J' is close to J; see [92,
Sect. 1.5] or [53, pp. 542-543] or, for a different proof, [20]. (Note that it is essential here
that the domain of u is the entire cylinder R x S ,1 ). Now, (6.4) and (6.5) follow from the Floer
equation, (6.1), and the triangle inequality. O

To prove the proposition, we consider two cases depending on the location of the orbit y.

The first case is when y(0) ¢ K. Then y is not entirely contained in any isolating
neighborhood of K. Applying Theorem 6.1 (Case b), we obtain (6.3) with €x = cco.-

The second case is when y(0) € K. Then both x and y := {y; := y(i) | i € Zy} are
k-periodic orbits of ¢ in K. Let us assume that u is asymptotic to x at —oo; the other case is
handled similarly. We will show that then x = y and E(#) = 0 when E () is below a certain
treshold which depends only on M, J, K and H, but neither on « nor x nor y nor k.

To this end, fix a sufficiently small isolating neighborhood U of K. In particular, we
may assume that the Anosov Closing Lemma applies to ¢ on U; see [70, Thm. 6.4.15].
Then, by Theorem 6.1, u is entirely contained in U. Hence, 7 is contained in UNM=U
for all s € R. Assume furthermore that E () is so small that Lemma 6.4 applies and thus
Z={u(s,i) | i € Zy}is a periodic n-pseudo-orbit in U for every s.

Therefore, by the Anosov Closing Lemma, there exists a true periodic orbit w in K
shadowing Z. Namely, we have d(z;, w;) < Cn, i € Z, for some constant C > 0, which
depends only on U and ¢. By [70, Cor. 6.4.10], ¢|x is expansive: there is a constant § > 0
such that any two distinct orbits {v; } and {v;} of ¢ in K are at least § apart, i.e., d(v;, v_//) >§
for some j € Z. It follows that when E (#) and hence n are small enough (e.g., 2Cn < §),
the orbit W is unique and depends continuously on Z and thus on s € R. Therefore, again
since ¢| is expansive, W is independent of s € R. Clearly, when s is close to —oco, we have
w = X, and w = y when s is close to co. Thus, x = y, and setting u (o0, 1) = x(t) = y(1),
we can view u as a Co-map from T2 = (]R U {oo}) X S,: to M. This map is smooth on the
complement to {oo} x S,i. Furthermore, it is easy to see from (6.6) and Lemma 6.4 that for
every s € R the loop ¢ > u(s, t) is C-close to the loop x = y pointwise uniformly in
s. Hence, the loop s +— u(s, t) lies in a small neighborhood of x(¢). As a consequence, u
contracts to x in M, and hence E (1) = 0. Indeed, E (1) is the difference of actions of capped
periodic orbits. Since x = y, this difference is the integral of @ over u. The cycle represented
by u is homologous to zero, and hence the integral is zero. O

Remark 6.5 The proof of Case (a) of Theorem 6.1 in [52] relies on a variant of the Gromov
Compactness Theorem from [41]. As has already been mentioned, Case (b) used here follows
from Case (a), but it can also be proved directly with somewhat simpler tools under the slightly
more restrictive requirement that, as in Lemma 6.4, J’ is sufficiently C*-close to J in the
class of k-periodic in time almost complex structures on M. Namely, arguing by contradiction,
assume that E(u) can be arbitrarily small, i.e., there exists a sequence uy: R x S,i - M,
where k = k; — oo with E(ux) — 0 such that the image of i is not entirely contained in
the closure of U. Consider the largest half-cylinder in R x § ,l whose image is contained in
the closure. By Lemma 6.4, the restriction of u to the boundary of this cylinder gives rise to
an n-pseudo-orbit with n = O (E (uk)) passing through a point close to dU. Thus we obtain
longer and longer two-directional n-pseudo-orbits with  — 0 passing through a point close
to dU . Passing to the limit as £ (u;) — 0, we obtain an entire orbit of ¢ which is contained in
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the closure of U, but not in K. The argument is spelled out in detail in a very similar context
in [31, 32].

Remark 6.6 Since this work appeared as a preprint, variants of Proposition 6.3 for geodesic
and Reeb flows were proved in [54] and in [31, 32], leading to Reeb analogues to Theorems
B and C and also of multiplicity results along the lines of [50]. A version of Proposition 6.3
for Lagrangian intersections has been recently proved in [84].

6.1.4 Proof of Theorem B

Recall that a compact invariant set K of ¢ is said to be locally maximal (or basic) if there
exists a neighborhood U D K, called an isolating neighborhood, such that K is the maximal
invariant subset of U or, in other words, x € K whenever the entire orbit {(pk x) | k e}
through x is contained in U or, equivalently,

K =) ).

keZ

By [16, Thm. 3.3] and the Variational Principle, [70, Thm. 4.5.3], for every hyperbolic set K
there exists a locally maximal hyperbolic set K’ with nearly the same entropy. (In fact, the
hyperbolicity condition is essential for [16, Thm. 3.3] but not for the Variational Principle).
To be more precise, for every § > 0, one can find K’ such that 4,,, (goIK/) > Ny (‘.0|1<) — 4.
As a consequence, we can assume the hyperbolic set K in the theorem to be locally maximal.

Denote by p(k) the number of k-periodic points of ¢|g. Since K is hyperbolic, by [70,
Thm. 18.5.1], we have

. log™ p(k)
B (@l ) = lim sup ~=— 22, 6.7)
k—o00 k
Hence, to prove the theorem, it is sufficient to show that
be(¢") = p(k)/2 (6.8)

when € > 0 is small. We will use Proposition 6.3 to prove this for € < €g.
Fix k > 1 andrecall from Sect. 4.1 that the limit (4.1) in the definition of b, ((pk) is attained,
i.e, there exists non-degenerate, arbitrarily C>-small perturbations ¥ of X such that

be(9*) = be(¥). (6.9)

All k-periodic points of ¢ in K are non-degenerate and hence persist as fixed points of ¥
or, equivalently, as k-periodic orbits S,} — M of the Hamiltonian flow v’. Moreover, by
Proposition 6.3, E(u) > €k for any Floer trajectory u asymptotic to such an orbit x of ¥
when 1 is sufficiently C®-close to ¢*.

Let /C be the collection of fixed points of ¥ corresponding to the k-periodic points of ¢ in
K. There are exactly p(k) of them: |[KC| = p(k). By Proposition 6.3 every such fixed point is
e-isolated in the sense of Sect.3.3.2 and, by Proposition 3.8 and (6.9),

be(¢") = be(¥) > |KI/2 = p(k) /2,

which proves (6.8) and completes the proof of the theorem. O
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6.1.5 Application to the y-norm of the iterates

The proof of Theorem B has an application to symplectic topology, relating the behavior
of the y-norm y ((pk) and the Hofer norm ||¢¥||; as k — oo to the existence of hyperbolic
locally maximal invariant subsets. Namely, recall from [75, Thm. A] that

Bmax () = v (@) = ll@lla,

where Bmax is the boundary depth; see Sect. 3.3 and [97, 98]. (Strictly speaking, the Floer com-
plex in [75] is restricted to the contractible free homotopy class by a background assumption,
but the inequality still holds without this restriction). Therefore, y (¢*) > € whenever b¢ (¢*)
is large enough to guarantee that there is a finite bar of length greater than €. For instance, since
the Floer persistence module has exactly dim H, (M ; F) infinite bars, to have the sequence
¥ (¢*) bounded away from zero it suffices to ensure that be (¢*) > dim H,(M; F) for some
€ > 0 and all large k.

This is the case, for instance, when ¢ has a locally maximal hyperbolic set K such that
for each large k the set K contains more than dim H, (M ; ) periodic points. For instance,
K can be a horseshoe in the sense of [70, Sect. 6.5] or, more generally, a hyperbolic locally
maximal invariant subset such that p(k) — oo in the notation of Sect. 6.1.4 or just a collection
of more than dim H, (M ; ) hyperbolic fixed points. Alternatively, it is enough to require that
dim Hyys(M; F) = 0 and K contains a periodic orbit of index m (k) such that m (k) —n is odd.
(For instance, this is so when K is a positive hyperbolic fixed point and M = S2. To prove
Proposition 6.7 below in this case, it is useful to (re)introduce the Z,-grading on CF(p)).
Summarizing these observations we obtain the following.

Proposition 6.7 Assume that ¢ has a locally maximal hyperbolic set K such that for every
sufficiently large k, one of the following two conditions is met:

(1) K contains more than dim H,.(M; ) k-periodic points; or
(i1) dimHygq(M; F) = 0 and K contains a k-periodic orbit of index m (k) such that m(k) —n
is odd.

Then the sequences y ((pk ) and || o~ || ., are bounded away from zero.

This result is new, although not entirely unexpected to the authors. Of course, the assertion
of Theorem B is much stronger than this proposition; for it guarantees exponential growth of
be(¢*) when h,,,(K) > 0. However, the proposition is more general. We also note that y (¢*)
is not bounded away from zero unconditionally when ¢* # id for all k € N. For instance,
y ((pk ) can be arbitrarily small for pseudo-rotations of CP"; see [52]. We revisit connections
between the y-norm and dynamics and refine Proposition 6.7 in [29, 30]. Overall, little seems
to be known about the behavior of the sequence y ((pk )

6.2 Proof of Theorem C

It suffices to show that

M) = hyp (@) (6.10)

whenever dim M = 2; for i(¢) < h,,,(¢) by Theorem A.
When M is a closed surface,

hyop (@) = sup {h,,, (@) | K is hyperbolic}, (6.11)

as a consequence of the results in [68], and (6.10) follows from Theorem B. O
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Remark 6.8 Note that in (6.11) it is enough to assume that ¢ is only C e _smooth. Further-
more, we can also require K to be locally maximal already by the results from [68]. To see
this, first recall from [18, Sect. 15.4] that in dimension two

Riop (@) = sup {h,(,,, (¢lx) | K is a hyperbolic horseshoe}. (6.12)

(This is a consequence of [70, Thm. S.5.9], based on [68], and two standard results: the
Variational Principle, [70, Thm. 4.5.3], and the Ergodic Decomposition Theorem, [70, Thm.
4.1.12], which allows one to restrict the supremum in the Variational Principle to ergodic
measures only).

Thus, to obtain (6.11) with K locally maximal from (6.12), we just need to make sure
that in this context hyperbolic horseshoes are locally maximal. The definition used in these
results is that a horseshoe is a closed invariant set K such that ¢|x is conjugate to a subshift
of finite type (aka, a topological Markov chain). To be more precise, there is a decomposition
K =KoU...UK,_;suchthat (K;) = K;11,i € Z, and ¢" |, is conjugate to a full shift
in s-symbols; see [70, Sect. S.5.d]. (In addition, here K is hyperbolic). Then K has a local
product structure: for any two nearby points the intersection of the local stable manifold
through one of them with the local unstable manifold through the other is transverse and
comprises exactly one point. This is equivalent to local maximality, see, e.g., [3, Sect. 5].
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