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Abstract—Phase Change Memory (PCM) is a non-volatile
memory technology that shows great promise as a potential
replacement for DRAM in main memory due to its scalability, low
read latency, and potential for high storage capacity. However,
as PCM—specifically Multi-Level Cell (MLC) PCM—becomes
denser, it becomes increasingly susceptible to errors, a problem
that current error correction strategies cannot efficiently address.
In response, we have developed a predictive model, ML-PreP,
specifically tailored for MLC PCM. This model is trained on
MLC PCM data, including write patterns, cell states, and elec-
trical input parameters, to understand the complex relationships
between these inputs, output parameters, and error occurrences.
Our model employs a multi-layer perceptron network and an
AdaBoost regression model to demonstrate high accuracy in
forecasting error types. Subsequently, a convolutional neural
network estimates the number of errors per line, while an
additional detection model pinpoints their locations, enabling the
efficient application of standard error correction mechanisms.
This approach underscores the potential of machine learning-
driven error prediction to significantly enhance the robustness
and efficiency of MLC PCM systems.

Index Terms—Multi Level Cell (MLC), Phase Change Memory
(PCM), Error Prediction, Accuracy.

I. INTRODUCTION

Phase-Change Memory (PCM) is one of the most promising
technologies among emerging non-volatile memories. It stands
out for its non-volatility, scalability, and comparable read
speeds relative to DRAM [1], [2]. PCM employs cells made
of a chalcogenide alloy (GST), which can switch between
crystalline and amorphous states, representing binary ’1’ and
’0’ respectively. These states are altered using heat and read
by measuring their differing electrical resistances [1]–[3].

Recent advancements in PCM include the development of
multi-level-cell (MLC) operation, allowing for storing multiple
bits per cell. However, current PCM is not without its faults.
Due to an asymmetry in the temperature needed for SET
(0 to 1, 500°C) and RESET (1 to 0, 650°C) operations,
Write Disturbance Errors (WDE) can arise, where heat from
a RESET operation dissipates into adjacent cells, potentially
triggering a SET operation if those cells are in a ‘0’ state
[4], [5]. Additionally, random bit flips, caused by factors like
stochastic switching, resistance drift, and thermal variation,
necessitate robust Error-Correcting Pointers (ECP) to maintain
data integrity [8]. WDEs and Bit Flip errors become more

prevalent as PCM cells are densely packed [6]. PCM also
has a limitation on the number of write cycles per cell,
typically around 107 - 108 cycles [7], considerably less than
the virtually unlimited 1015 cycles offered by DRAM. Once
a PCM cell reaches its end of life, it becomes stuck in its
last state, resulting in ’stuck-at’ errors or hard faults. These
endurance and reliability issues are exacerbated in multilevel
cell operations [8].

Existing techniques aim to reduce the number of writes
per cell or use wear-leveling mechanisms to evenly distribute
the write pressure across PCM cells, which helps prevent
them from wearing out quickly [4], [6], [8], [14], [21], [24].
Although these types of schemes reduce write traffic per
cell, they cannot significantly improve memory lifetime. In
addition to these approaches, some methods propose low-
energy and low-latency error correction schemes for Phase
Change Memory (PCM) using a combination of BCH codes
and Error-Correcting Pointers (ECPs) to address both transient
and permanent errors. Specifically, these methods provide error
correction and recovery mechanisms at the line level or page
level. However, they introduce complexity in implementation
and additional storage overhead [2], [9], [11], [12], [22], [23].

Addressing these challenges requires innovative solutions
that can accurately predict errors while enhancing the overall
reliability of PCM cells. Our proposed method, ML-PreP,
introduces a novel approach by leveraging advanced machine
learning techniques to predict error occurrences in PCM cells.
This method integrates deep neural networks (such as multi-
layer perceptron networks), ensemble learning models (such
as AdaBoost regression models), and convolutional neural
networks (CNNs) to achieve high prediction accuracy.

The deep neural network component of ML-PreP effectively
predicts error occurrences based on key input parameters,
including the read-to-write ratio, set energy, reset energy, the
percentage of 0s and 1s, and the total read and write counts.
While the neural network demonstrated strong predictive per-
formance, it was the implementation of an adaptive algorithm
with parameters finely tuned using grid search that achieved
near-perfect prediction accuracy. This novel application of
machine learning algorithms to PCM error prediction is critical
for enhancing the effectiveness of existing error correction
mechanisms, thereby significantly improving the reliability
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and performance of PCM technology. Building on this foun-
dation, the convolutional neural network (CNN) component of
ML-PreP adds granularity to error prediction, enabling precise
error predictions for each memory line. Additionally, ML-
PreP includes an error detection model specifically designed to
enhance accuracy and seamlessly integrate with existing error
correction algorithms.

The remainder of the paper is organized as follows: Section
II details the proposed method, including the integration of
NN model for optimizing write parameters in PCM. Section
III discusses the evaluation setup, including the environment,
parameter generation, initial findings from simulations con-
ducted using NVMain and current status of the research
and presents the results of our evaluation, highlighting the
effectiveness of our approach in acquiring minimum loss while
predicting write process metrics. Section IV concludes the
paper by summarizing our contributions and highlighting the
potential impact of our proposed methods on the advancement
of PCM as a next-generation memory technology. This section
also discusses further enhancements to our model and its
applications in PCM technology.

II. PROPOSED METHOD

In this section, we explain our proposed ML-PreP approach
in detail. We begin with a discussion on collecting data about
the write process, and read process followed by an explanation
of data preprocessing techniques to clean and prepare the data
for machine learning model training.

We then describe the development of adaptive learning
algorithm for optimizing error prediction by training machine
learning models with the collected data.

A. Data Collection

The first step in the process of error prediction was creating
workload files for NVMain, a simulator for MLC PCM inter-
actions [18], [19]. NVMain simulator is widely recognized
in academic research as a reliable and detailed simulator
for emerging non-volatile memory technologies. In our work
with NVMain, we use parameters derived from real PCM
devices and prior research to ensure that our simulation results
closely reflect realistic device behavior. We have also inte-
grated real-world constraints, including temperature effects,
process variations, and realistic endurance models, into our
simulations. These efforts help bridge the gap between the
simulated environment and actual device performance.

Our files, comprising of 100,000 operations each, dictate
whether an operation is a Read or a Write, the operation’s
number, and the data involved. We considered workload files
with the percentage of zeroes in the data ranging from 10-
90% and with Read operations from 0-100%, the rest being
Write operations. We also varied the sequence of operation
numbers - random, consecutive, or strided (steps from 1 to
5). Varying workload files is a crucial step to make sure that
our methods are robust to error occurrences for all types of
MLC PCM applications. After workload files were generated,
we injected each one with errors at different percentages. The

three types of error we considered were Write Disturbance
Errors (WDEs), Bit Flip errors, and stuck-at errors. WDEs may
occur when a RESET operation is completed and immediately
adjacent cells are in the ’0’ state, unintentionally setting them
to ’1’. We assume that the data is written continuously in
memory. For each RESET operation, we simulated a WDE
for each ’0’ state neighbor via single Bernoulli trial with
a given percentage. This percentage was calculated based
on set voltage, reset voltage, set pulse duration, and reset
pulse duration values. Bit Flip errors occur randomly, thus
after inserting the WDEs, Bit Flips were injected at a given
percentage with a single Bernoulli trial for each bit. This
percentage was calculated based on set pulse and reset pulse
duration values.

Bitflippercentage =
(Pulsereset −ResetPulsemin)

(ResetPulsemax −ResetPulsemin)
α1

+
(Pulseset − SetPulsemin)

(SetPulsemax − SetPulsemin)
β1 + γ1 (1)

WDEpercentage =

(
Ereset
Eset

− ERatiomin

)
(ERatiomax − ERatiomin)

α2

+
(Pulsereset −ResetPulsemin)

(ResetPulsemax −ResetPulsemin)
β2 + γ2

(2)

In order to keep our Bit Flip error and WDE occurrence
percentages within the target ranges of 10-30% and 10-40%
respectively, we used the following values for the constants:

The constants can be modified to adjust the error occur-
rence percentages, allowing for flexible adaptation to various
simulation scenarios. The last type of error we considered
was stuck-at errors. Stuck-at errors occur due to the limited
endurance of PCM, where a cell will die after a certain amount
of write cycles, resulting in the cell becoming stuck at its last
state. It has been found that counter-based modeling (e.g. after
1e8 writes, the cell dies) results in more accurate simulations
than probabilistic modeling(1e8 chance of cell death at every
write) [14], thus we did not explicitly insert stuck-at errors
into the workload, but considered them through changing the
endurance model in the NVMain simulator. We considered
a mean cell endurance of 1e8 and variances of 1e6, 1e7,
and 3e7 with a normal distribution. The possible error rates,
shown in Table I, were designed to include both experimentally
observed error rates and exceptionally high error rates to test
the robustness of our models.

TABLE I
PERCENTAGE RANGE OF ERROR TYPES.

Error Type Percentage Range
Bit Flip 10% - 30%

Write Disturbance 10% - 40%

The parameters α, β, and γ represent scaling factors that
influence the relationship between pulse durations and energy
ratios with error occurrence rates in the proposed model
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(Table II). Their values were determined based on extensive
experimental observations in our simulation environment.

In practical applications, these constants should be recali-
brated using real-world data from PCM chips to match the
specific hardware characteristics. This calibration could be
efficiently performed using techniques such as grid search,
Bayesian optimization, or random search, depending on the
observed error patterns in the system. By tuning these parame-
ters to the unique behavior of different PCM implementations,
the accuracy and effectiveness of the proposed model can be
maximized, ensuring its viability in real-world environments.

TABLE II
CONSTANT VALUES.

Constant Value
α1 0.10
α2 0.20
β1 0.10
β2 0.10
γ1 0.10
γ2 0.10

Once the errors were injected into the workloads, each
workload was run through the NVMain simulator for
100,000,000 cycles at each of the endurance rates and with
varying Set and Reset Energy values. Once completed, the
results were scraped and compiled into a CSV file via a
python script. For each NVMain simulation, a data entry is
created that contains the information used in the creation of
the associated workload file, the NVMain input parameters,
and the NVMain output parameters. Then, we removed the
Set Voltage, Reset Voltage, Set Pulse Duration, Reset Pulse
Duration values from each entry, as they are explicitly used
when calculating error percentages.

Finally, we trained two supervised multi-output learning
models to predict the percentages of Bit Flip and Write
Disturbance errors in each workload file. It is notable that trace
files were generated based on real application data to closely
represent actual workload patterns. By capturing typical data
access behaviors and diverse operational characteristics, we
ensured the trace files realistically simulate real-world scenar-
ios, enhancing the reliability of our evaluations in NVMain

In Figure 1, we prepared the feature correlation map based
on our observations from MLC data in the full system simula-
tor. Key inputs and target outputs are also summarized in this
figure. The output features with their respective input features
are shown in Table III.

B. Modeling

Due to the synthetic nature of our data, there were no
outliers, thus normalization could be done through Sklearn’s
StandardScaler. Initially, we explored several foundational
models including linear regression, polynomial regression,
and random forests to build a baseline understanding of the
data’s patterns. Building on these insights, we trained two
complex models to capture more insights into error occurrence
percentages, specifically a neural network and an AdaBoost

Fig. 1. Feature Correlation Map.

TABLE III
KEY INPUT AND TARGETS OF THE MODEL.

Key Input Features Targets

Read:Write Ratio WDE Percentage
Set Energy Bit Flip Error Percentage
Reset Energy
0 and 1 Percentages
Write Energy
Total Read and Write Counts

Regression model. All models were trained on a random 80:20
train/test split.

1) Static: The neural network that we trained was a multi-
layer perceptron (MLP) network with two outputs. The net-
work was constructed with the Keras Sequential API and
tuned using the Keras Tuner [20]. To mitigate overfitting,
a dropout layer with rate of 0.1 was placed after the final
hidden layer and the early stopping callback was used with a
patience value of 8 on the validation loss. The tuning of the
network’s hyperparameters was done through a combination of
grid search and 5-fold cross validation. This selected the best
combination of activation functions, neurons per layer, and
optimizer that would lead to the best MSE performance while
remaining generalizable to unseen data. The final structure of
the model is detailed below, and was trained with the ADAM
optimizer, learning rate of 0.001, and batch size of 10.

A simple diagram of the MLP NN is shown in Figure 2.
Table IV also summarizes the layer types and specifications.

2) Adaptive: In addition to the MLP, an AdaBoost Regres-
sion model was also trained for the same task as shown in
Figure 3. This architecture can be advantageous for MLC PCM
systems as it requires less data than the MLP and is flexible
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Fig. 2. MLP Network structure with input layers, hidden layers and output
layers.

TABLE IV
ARCHITECTURE OF THE MLP.

Layer Type Specifications
Input Layer 64 neurons, RELU activation, input shape of n features

Hidden Layer 64 neurons, RELU activation
Hidden Layer 64 neurons, RELU activation
Hidden Layer 64 neurons, RELU activation
Hidden Layer 32 neurons, RELU activation
Dropout Layer Dropout rate of 0.1
Output Layer 2 output dimensions (for each error type)

with regards to model updates. Adaboost works through a
combination of multiple weak learners, often decision trees,
each considering the mistakes of their predecessors with more
weight. The base learner for our AdaBoost model was a deci-
sion tree regressor with maximum depth of 6. Then, the model
has a maximum of 50 decision trees, each one correcting the
errors made by its predecessors. Due to the multi-output nature
of the problem, the AdaBoost Regressor was wrapped within
Sklearn’s MultiOutput Regressor to extend its capability to
handle multiple outputs.

Additionally, we employed 5-fold cross validation to con-
firm the generalizability of the model. The final structure is
detailed in Table V.

TABLE V
ARCHITECTURE OF THE ADABOOST REGRESSION MODEL.

Component Description
Base Estimator DecisionTreeRegressor, depth of 6

AdaBoost Configuration Number of estimators is 50
Multioutput Regressor Extends AdaBoost for multioutput

C. Estimation

The previous models inspect error occurrences at the work-
load level, providing valuable insights into overall error trends.
However, this approach is limited in granularity, as it does not
account for the varying number of errors that occur at the line
level, influenced by different operations and data patterns. To
address this limitation, we developed a third model for more

detailed analysis: a 1D convolutional neural network (CNN)
that operates at a per-line granularity. This model takes each
line of the workload file, along with the associated estimated
error percentages, to predict the specific number of each
error type present. To adapt the workload file for time-series
modeling, we standardized the data section to uniform length
and replicated the metadata (operation type, error percentages,
0:1 ratio) as static variables along each step of the series. Each
data point was of the dimension (512, 5) representing 512 steps
in the time series with 5 static features.

Fig. 3. The overall view of the AdaBoost model.

The CNN architecture consisted of two 1D convolutional
layers designed to capture patterns in the sequential data.
The first convolutional layer had 32 filters, while the second
used 64 filters, both with a kernel size of 3 and ReLU
activation functions to introduce non-linearity. These layers
progressively extracted higher-level features from the data,
capturing intricate relationships between operations and error
occurrences. After the convolutional layers, the data was
flattened and passed through a fully connected dense layer
with 64 neurons and ReLU activation, enabling the model to
make final predictions based on the extracted features.

To train the model, we used the ADAM optimizer, known
for its efficient handling of sparse gradients, along with
Mean Squared Error (MSE) as the loss function. Training
was conducted over 10 epochs with a learning rate of 0.001
and a batch size of 32, balancing learning stability with
computational efficiency. Table VI summarizes the details of
the 1D Convolutional Neural Network parameters.

Figure. 4 illustrates a flow chart summarizing the proposed
method’s overall architecture and processes.
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TABLE VI
ARCHITECTURE OF THE 1D CONVOLUTIONAL NEURAL NETWORK FOR

ESTIMATION.

Layer Type Specifications
Input Layer Input size of n features

Conv1D Layer 32 filters, Kernel size 3, RELU activation
Conv1D Layer 64 filters, Kernel size 3, RELU activation
Flatten Layer Flattens the input

Fully-Connected Layer 64 neurons, RELU activation
Output Layer Dense Layer with 2 neurons

Fig. 4. Data Pipeline of our proposed method.

III. EXPERIMENTAL EVALUATION

This section provides a detailed overview of the simulation
environment including its environment, simulator employed
with its configuration parameters and workloads utilized.

A. Simulation Environment

We implemented our proposed method in NVMain [18],
[19] which is a versatile, cycle-accurate memory simulator
that models both conventional DRAM and new non-volatile
memory (NVM) technologies like phase change memory

(PCM). It offers detailed simulations of memory timing,
energy consumption, and specific NVM traits such as limited
write endurance and multi-level cells. Additionally, NVMain
supports hybrid memory systems, fine-grained bank/subarray-
level parallelism, and allows for custom memory controllers
and address mapping schemes. For PCM, NVMain effectively
models key aspects like asymmetric read/write latencies, write
energy, and cell endurance, making it suitable for evaluating
PCM optimization strategies [18], [19].

The simulation setup is outlined in Table VII. The setup
includes a 20nm 1.8V 8Gb PRAM with 40MB/s program
bandwidth. It also includes parameters such as clock fre-
quency, bus width, CPU frequency, etc. These parameters were
kept unchanged in the default configuration file in NVMain to
mimic PCM as accurately as possible. These parameters are
essential for accurately simulating and assessing the perfor-
mance and energy consumption of the memory system under
various conditions.

TABLE VII
CONFIGURATION ENVIRONMENT.

Parameter Value
Memory Specifications

Technology node 20nm
Operating voltage 1.8V
Device capacity 8Gb

Program bandwidth 40MB/s
Interface Specifications

Clock frequency in MHz 400
Bus width in bits 64

Number of bits per device 8
CPU frequency in MHz 2000

MLC Parameters
Number of MLC levels 2

Memory Controller Parameters
Memory controller type FRFCFS

Address mapping scheme R:RK:BK:CH
Read queue size 32
Write queue size 32

Endurance Model Parameters
Endurance model type BitModel

Endurance distribution type Normal
Endurance distribution mean 1000000

Endurance distribution variance 100000

B. Experimental Results

Our experimental evaluation seeks to test the effectiveness
of the models developed for error prediction in MLC PCM.
We began by assessing the performance of the error percentage
prediction models. Using a dataset of 11,340 entries, these
models were trained and tested with a random 80:20 split.
Figures 5 and 6 show the prediction performance for bit flip
and WDE. Performance was evaluated through three metrics:
Mean Squared Error (MSE), Mean Absolute Error (MAE),
and the Coefficient of Determination (R2). MSE offers a
standard comparison to potential future models, MAE provides
interpretability and contrast to MSE, and R2 quantifies the
predictive strength of our models.

The results of both the MLP and AdaBoost models are
highly accurate, as shown in Table VIII. The graphs, however,
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Fig. 5. Bit Flip Prediction Performance.

Fig. 6. WDE Prediction Performance.

exhibit slight slopes across the data points. These variations are
attributed to the randomness inherent in the selection of testing
and training sets. By observing the scale on the y-axis, it is
clear that these slopes are largely inconsequential. Should the
models predict values across the entire dataset, it is expected
the resulting graphs would further approach a perfectly flat
line, as Write Operation Percentage has no impact on error
percentage. Another important aspect of this data is that in
both models, WDEs are more accurately predicted than Bit
Flips. This is an optimistic result, as Bit Flips are entirely
random. Thus, if we are to extend this study to more PCM
errors, which have an inherent pattern to their occurrence
similar to WDEs, they would likely be predicted at the same
or better rate than Bit Flip errors. It is also of note that the
AdaBoost model, despite have a large MSE, has smaller MAE
values. This likely indicates a slight over fitting of the MLP,
something that the AdaBoost model is more robust to. Another
interesting observation is that with our current dataset, the
metrics from the MLP and the AdaBoost Regression model are
comparable. Yet, when training with less data, the AdaBoost
Model consistently outperformed the MLP. This occurred up
until around 10,000 data points were gathered where the results
converged.

In Figure 7, we assessed the performance of our convo-
lutional neural network, which predicts the total number of
errors at a line granularity (512 bits). This model was trained

TABLE VIII
PERFORMANCE METRICS FOR MLP AND ADABOOST REGRESSION.

Metric MLP Network AdaBoost Regression

WDE Bit Flip WDE Bit Flip

MSE 8.36× 10−6 7.44× 10−5 6.20× 10−6 1.38× 10−4

MAE 0.0022 0.0045 0.0019 0.0093
R2 0.997 0.957 0.997 0.919

and tested with an 80:20 split on 2,520 time data points, each
with 512 steps.

Fig. 7. CNN Error Count Predictions.

TABLE IX
ERROR PREDICTION COUNT METRICS FOR WDE AND BIT FLIP.

Metric WDE Prediction Bit Flip Prediction

MSE 0.192 0.378
MAE 0.297 0.496
R2 0.999 0.999

The results here are highly accurate as well. As seen in
the plot, while Bit Flips stay constant as the percentage
of 0’s changes, as expected, WDEs increase. This is again
expected, as the more 0’s are written in the data, the more
opportunities WDEs have to occur. WDEs are slightly easier
to predict than Bit Flips, owing to the structure behind WDE
occurrences that the model can learn. Once again, this implies
that other PCM error types will have a similar or better error
prediction performance than Bit Flips. Additionally, as shown
in Figures 8 and 9, as the Write Percentage increases, WDEs
increase while Bit Flips remain constant. This is expected, as
WDEs occur only during Write operations, so we can expect
more WDEs in workload files with a higher number of Write
operations.

C. Detection Analysis

While the estimation model excelled at predicting er-
ror counts on individual lines of workload files, the de-
tection model enhances this by working at a finer resolu-
tion—evaluating 64-bit data blocks to detect the presence of
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Fig. 8. CNN WDE Predictions Per Write Percentages.

Fig. 9. CNN Bit Flip Predictions Per Write Percentages.

errors. This choice of block size was intentional: 64 bits is
large enough to capture meaningful error patterns without
imposing significant overhead, allowing efficient processing
even at this granular level. Additionally, a 64-bit block size
aligns with the standard for many error correction algorithms,
making it well-suited for seamless integration with correc-
tion algorithms following detection. It is also notable that
this method is designed with scalability in mind, making
it applicable to larger block sizes beyond the current 64-
bit block structure. The model’s architecture and detection
capabilities are expected to adapt effectively, enabling robust
error prediction and detection across larger memory blocks
while maintaining high accuracy and efficiency. Detection is
achieved through a flip mask, where each block is assigned a
mask value of 1 or 0, indicating the presence or absence of an
error, respectively. In this context, a mask value of 0 signifies
no detected error in the block, while a 1 denotes an error.

For this task, a dataset of 3,200,000 64-bit blocks was pro-
cessed enabling effective use during training and evaluation.
The model architecture is designed for binary classification,
identifying whether each 64-bit block contains an error. The
architecture consists of a 1D convolutional layer with 64 filters
(kernel size of 3) and ReLU activation to detect local patterns
indicative of errors, followed by a MaxPooling1D layer with a
pool size of 2 to reduce dimensionality and preserve essential

features. The flattened output then passes through a dense
layer with 128 neurons and ReLU activation, which further
refines the features for classification. Finally, a single neuron
with a sigmoid activation function in the output layer provides
a binary classification, labeling each block as error-free or
containing an error.

Table X summarizes the details of the 1D Convolutional
Neural Network parameters for Detection model. Compiled
with the Adam optimizer this model was trained for 30 epochs
with an 80-20 train-validation split, optimizing both per-
formance and generalization. Various thresholds were tested
during validation to fine-tune the model’s sensitivity, resulting
in high accuracy in detecting errors across data blocks, and
confirming its efficacy for precise error detection in large-scale
workload files. In the context of flip mask prediction for error
detection, applying a threshold to the model’s probabilistic
outputs enables precise classification of each data block as
either containing an error or being error-free. The threshold
acts as a confidence cutoff, where predictions above this value
indicate the likelihood of an error occurrence and are marked
in the flip mask as ‘1‘ (indicating a detected error), while pre-
dictions below the threshold are marked as ‘0‘ (indicating no
error). This approach is crucial for the effective identification
of Errors and allows for systematic differentiation between
blocks likely impacted by errors and those unaffected.

For example, if a model predicts that a specific 64-bit block
has a probability of 0.75 for containing an error, applying
a threshold of 0.9 would classify this block as error-free
(flip mask ‘0‘), while a threshold of 0.7 would classify it
as containing an error (flip mask ‘1‘). This flexibility in
threshold selection is beneficial for tailoring the error detection
sensitivity of the model, as higher thresholds may reduce
unnecessary flips by only flagging high-confidence predictions
as errors, while lower thresholds capture a broader range of
potential errors. Through this targeted threshold application,
the flip mask prediction process can be adjusted to meet the
reliability requirements of the error detection system.

TABLE X
ARCHITECTURE OF THE 1D CONVOLUTIONAL NEURAL NETWORK FOR

ERROR DETECTION.

Layer Type Specifications
Input Layer Input size of 64 bits per block

Conv1D Layer 64 filters, Kernel size 3, RELU activation
MaxPooling1D Layer Pool size of 2

Flatten Layer Flattens the input
Fully-Connected Layer 128 neurons, RELU activation

Output Layer Dense Layer with 1 neuron, Sigmoid activation

The analysis of Bit Flip accuracy across different thresholds
and error rates reveals consistent model performance. In the
Figure 10 , we see that accuracy remains around 60% across
thresholds ranging from 0.3 to 0.9, indicating that the threshold
level has minimal impact on Bit Flip prediction accuracy. This
stability suggests that the model’s ability to predict Bit Flips
is robust to changes in threshold.

Extending this analysis, Figure 11 shows Bit Flip accuracy
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Fig. 10. CNN Bit Flip Detection Accuracy Per 64-bit Block.

Fig. 11. CNN Bit Flip Detection with varying Bit Flip Error Percentages.

at various error rates (15%, 25%, and 35%), with accuracy
levels remaining stable regardless of error probability. Al-
though the accuracies across thresholds are similar, a threshold
of 0.5 consistently yields the highest accuracy across all
scenarios. This stability across threshold levels and error
rates underscores the model’s robustness in handling Bit Flip
errors, delivering reliable predictive performance even as error
characteristics vary.

Figure 12 analyzes WDE prediction accuracy across varying
thresholds, demonstrating that the model performs consistently
well, with stable accuracy levels as thresholds range from 0.3
to 0.9. A threshold of 0.5 notably yields the highest accuracy,
reinforcing its optimality for WDE prediction.

Figure 13 examines accuracy under different read:write
ratios, showing that scenarios with a higher frequency of write
operations (R < W ) yield the best accuracy, which aligns with
the nature of WDEs as they occur exclusively during write
operations.

Moreover, Figure 14 displays accuracy at different WDE
error probabilities (15%, 25%, and 35%), where the highest
error rate (35%) achieves the highest accuracy, especially at
lower thresholds. This trend suggests that the model becomes
increasingly effective at predicting WDEs as their probability
of occurrence rises.

Together, these results suggest that the model becomes in-

Fig. 12. CNN WDE Detection Accuracy Per 64-bit Block.

Fig. 13. CNN WDE Detection Accuracy with varying Read/Write Ratios.

creasingly effective at predicting WDEs both in environments
dominated by write operations and as the probability of WDE
occurrence rises.

Fig. 14. CNN WDE Detection Accuracy with varying WDE Error Percentage.

IV. CONCLUSION

Phase-Change Memory (PCM) faces challenges such as
high write energy, limited endurance due to repeated phase
transitions, and thermal crosstalk between adjacent cells. Ad-
dressing these challenges involves optimizing write algorithms
to reduce latency, developing error correction mechanisms to
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enhance endurance, and refining thermal management tech-
niques to minimize interference. Integrating machine learning
models can also improve predictive maintenance and adaptive
control, further extending PCM’s viability in memory applica-
tions. In this study, we introduced a novel machine learning-
based approach to error prediction in Multi-Level Cell Phase-
Change Memory based on observed patterns. Our models,
which include a multi-layer perceptron network, an AdaBoost
regression model, and a convolutional neural network, achieve
high accuracy in forecasting error information and facilitate
efficient error detection. This approach minimizes processing
overhead, making it highly suitable for high-performance
memory systems. Our results confirm the potential of machine
learning in emerging phase-change memory systems, laying
the groundwork for error correction mechanisms that enhance
both the accuracy and efficiency of these systems.

As future work, we aim to further refine our machine
learning-based error prediction for MLC PCM by expanding
our research to address additional error types, such as re-
sistance drift and crosstalk errors. Incorporating these error
types will enhance the robustness of our predictive models
and improve overall efficiency when combined with correction
techniques. Additionally, we plan to integrate our predictive
models and detection model with new error correction meth-
ods. This combined error prediction and correction system will
help identify practical challenges for real-world implementa-
tion and provide valuable insights into the system’s operational
efficiency.
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