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1 Introduction

In recent years, generalized and non-invertible symmetries in various dimensions have been
a very active field of investigation [1-57] providing valuable insight into the dynamics of
quantum field theories. At the core of these generalizations is the realization of symmetries
as (extended) topological operators and vice versa. In this picture, a natural question is
to find the holographic dual of these symmetry operators in the bulk. In theories with
weakly coupled holographic duals, it has been proposed that boundary topological operators
correspond to D-branes in the bulk [58-72] which, in certain limits, can become topological.
These proposals are based on anomaly inflow arguments. The goal of this paper is to put
forward a proposal for the holographic dual of topological operators in a setup with a strongly
coupled bulk theory using the AdS3;/CFTs correspondence.

In two-dimensional conformal field theories (CFT), non-invertible symmetries have a
long history starting with the work of Verlinde in rational CFTs [73], the construction of
topological defects in terms of projectors [74, 75], the construction of topological duality
defects [76, 77], and the topological field theory formulation of RCFTs [78] to name a few.
Orbifolds are a powerful way to obtain new CFTs from old ones [79, 80]. In this paper, we
focus on the so-called symmetric orbifold CF'T, where one takes the tensor product of N



copies of a seed CFT M and gauges the Sy symmetric group [81] that permutes the different
copies. A remarkable feature of these theories is that they observe a large- N factorization of
correlation functions [82-84], similar to the case of single-trace operators in large-N gauge
theories. Proposals for the holographic dual of symmetric orbifold CFTs go back to [85],
relating a type IIB AdSs x S% x My background, with My being either K3 or 7%, to the
N = (4,4) supersymmetric orbifold CFT M?N /Sn. This background allows for an exact
worldsheet description with only NS-NS flux. However, it has been a challenge to identify
the particular background which corresponds to the undeformed M$? /Sy orbifold [86].
Recently, such a dual was found for the AdSs x S x My background with the minimal
k = 1 unit of NS-fivebrane flux [87-91].

It is well known that gauging a group-like symmetry leads to a quantum symmetry in
the gauged theory [92, 93]. Hence, by construction, an orbifold CFT exhibits a universal set
of symmetries arising by the gauging of a discrete group. In the case of interest, the gauging
of the non-abelian Sy group leads to a universal set of non-invertible symmetries. In this
work, we look at these universal defects in two-dimensional symmetric orbifold CFTs. We
construct them by applying the projector construction of Petkova and Zuber [74], and use
the modular transformations of the partition function to identify the defect Hilbert spaces
of operators on which line-defects can end. Additionally, we propose a realization of the
defect operators in terms of non-gauge invariant operators under Sy. These defects, being
universal, depend solely on the group theory structure of Sy and not on the specifics of the
seed CFT. To illustrate their properties, we examine the simplest example that exhibits
non-invertible symmetries, i.e. N = 3.

In symmetric orbifold CFTs, universal defects are labeled by the representations of Sy.
We study these defects in the large-/V limit and analyze which representations remain non-
trivial. We argue that these defects correspond to topological defects on the worldsheet and
propose an explicit realization. While we verify some of their properties, further investigation
is required for a complete realization.

The structure of this paper is as follows: in section 2, we review some background
material, in particular non-invertible symmetries in RCFTs and the construction of symmetric
orbifold CFTs. In section 3, we construct the universal topological line-defect operators
in the symmetric orbifold CFTs that realize the Rep(Sy) fusion algebra. We use the
modular transformation of the torus partition function with a defect inserted to determine
the corresponding defect Hilbert spaces, and we construct the vaccum-state operators in
terms of non-gauge invariant twist fields. In section 4, we present a detailed example of the
Ss symmetric orbifold. This is one of the simplest examples where non-invertible symmetries
arise in CFTs. We determine the lines and defect operators, as well as the Ward identities
for two and three-point correlators of twist operators. In section 5, we discuss non-universal
topological defects, starting with a nontrivial topological defect operator in the seed theory
and constructing a “maximally fractional” defect, where all sectors are built on the same seed
CF'T defect in an Sy invariant manner. We show that such defects are consistent, in the sense
that they satisfy the Cardy-Petkova-Zuber [74, 75, 94] conditions. In section 6, we discuss
some aspects of the large- N limit of these defects, particularly whether a non-invertible defect
survives this limit. In section 7, we discuss the AdS/CFT dual of the symmetric orbifold [89],



which states that the AdS dual is a type IIB string theory on AdS3 x S x M, with one
unit of NS-NS fivebrane flux. We propose a worldsheet dual of the universal defects and
discuss some of their properties. In section 8, we close with some discussion of our results
and list some open questions and speculations. Some technical details of the S3 example
are relegated to appendix A.

2 Review

In this section, we review well-known material which will play an important role in the main
part of the paper. First, we discuss the construction of Verlinde lines in rational conformal
field theories, introducing key concepts of non-invertible symmetries in two-dimensional CFTs.
Second, we review the construction of the M® /Sy symmetric orbifold CFT, for which we
will construct the non-invertible symmetries in following sections.

2.1 Non-invertible symmetries in rational CFTs

Let us first look at the construction of topological line-defects in rational conformal field
theories (RCFTs). We will restrict our attention to the case of diagonal RCFTs and the
Verlinde lines [73] which are in one-to-one correspondence with the chiral primaries. The
torus partition function of such an RCFT is given by

Z(r,7) = 3_mig xi(T)%(7) (2.1)

where n;; = d;; and x;(7) denotes the character of a finite irreducible chiral algebra labeled
by the representation ¢. Under the modular S-transformation, the characters transform as
Xi(=1/7) = >2; Sij x;(7). The operator corresponding to a Verlinde line Z, associated to
the chiral primary |®,) is given by [74, 75]

Sai
L= Y &P, (2.2)

where Pj; is a projector acting on the space spanned by the i-th primary and its descendants:

Py =3 _li,n) ®i,a) (i,n| @ (i, 7] . (2.3)

Using the Verlinde formula [73],

Sai Sbi S
n’,y, = — 2.4
ab zz: SOi ( )
we can verify that the fusion algebra of the Verlinde lines is isomorphic to that of the
chiral primaries,

I, Ty =Y ny I, (2.5)
C

where n¢, is the non-negative integer fusion coefficient, which denotes the multiplicity with
which Z. appears in the fusion product of the defects. Given that the Verlinde lines act as
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Figure 1. Using the state-operator correspondence to depict the action of the line-defect on an
operator in the untwisted Hilbert space.

projectors on the modules of the chiral algebra, which includes the Virasoro algebra, they
commute with both the holomorphic and anti-holomorphic modes of the stress tensor,
Ln Ia = Ia Ln ) f/n Ia = Ia En ) (26>

and are therefore topological. Using the folding trick of [95, 96], the topological defects
have a realization as Ishibashi boundary states [94, 97] which characterize Zy permutation
branes [98-100]. If we start with the folded theory CFT ;) X CFﬁ@, the boundary state
defining a Zo permutation brane is given by

S(li . T\ . T\
| Ba)) = Z Sos > |2,1) (1) ® [i,m) 9 > |1,m) () ® [i,m) (1 (2.7)
such that they obey the following Virasoro gluing conditions:
1) 72 . —
(27 = L) Y lion) gy @ Tir ey = 0,

(L2 = LO)) S [ism) o) @ Tiym) gy = 0.

The quantum dimension of the topological defect operator is the eigenvalue of the defect
acting on the CFT vacuum state,

24 10) = (Za) [0) - (2.8)

For the Verlinde lines we obtain (Z,) = S,0/S00. It was pointed out in [1] that defects that
have a quantum dimension not equal to one are in general associated with non-invertible
symmetries. Note that in the boundary state representation (2.7) the quantum dimension
is obtained by (Z,) = (0 | By)).

Operators like (2.2) satisfying the Cardy-Petkova-Zuber [74, 75, 94] conditions can be
viewed as topological line-defects. The action of these line-defects can be visualized on the
complex plane mapped from the cylinder as in figure 1, where we insert the defect at a
particular point in time. We refer to the Hilbert space defined on S! for every point in
time as the untwisted Hilbert space.

The corresponding torus partition function is given by inserting the defect inside the
trace over the Hilbert space (see figure 2),

a -\ Lo—L —EO—L
ZUT,T) =trylZ, g0 24 ¢ 24], (2.9)
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Figure 2. States in the defect Hilbert space Hz, correspond to non-local operators attached to the
line-defect Z,.
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Figure 3. Lasso action of a topological line-defect.

2mT with 7 being the torus modular parameter. After performing a modular

where ¢ = e
S-transformation, the line-defect now extends in the time direction, and at every point in
time we obtain the defect Hilbert space, Hz,. The torus partition function is now modified
to trace over this defect Hilbert space corresponding to the defect Z,,

Za(_l _%) = trHIa [qLo—i 5&)-2*64] ) (210)

T

—2mi/T  Using the S-transformation of the characters, and the fact that the defect

where § = e
commutes with the chiral vertex algebra, we can expand the defect Hilbert space in terms

of the characters. The defect partition function can thus be written as

Za(1,7) = D Nap xo(T)Xe(7) (2.11)
b,c

where the non-negative integers N encode the degeneracy of the states in Hz,. Note that
even though we started with a diagonal theory, the defect partition function is not necessarily
diagonal, i.e. NJ need not be a diagonal matrix. This tells us that states in Hz, have
non-integer spins and correspond to non-local operators attached to the corresponding line Z,.

An important feature of non-invertible line-defects is the “lasso” effect [1] where, when a
topological line-defect is moved past a local operator, one obtains in addition to the symmetry
action on the local operator another topological line ending on a defect operator and a
junction of topological line operators (see figure 3). The mathematical structure describing
symmetry line-defects, defect operators, and their manipulations is called a tube algebra [27].

2.2 Symmetric orbifold CFT

In this section, we review the symmetric orbifold CFT. Consider N copies of a CFT M (not
necessarily rational). The tensor product CFT has an Sy symmetry that permutes the N
copies of the theory. We construct the Sy orbifold CFT by gauging this permutation symmetry.



Let’s denote the primary operators of the tensor product theory by Oy where I =1,2,..., N.
The spectrum of the orbifold theory consists of the untwisted sector constructed by taking
gauge invariant combinations of operators in the tensor product theory such as

N N
YN0, > 00y,.... (2.12)
I=1

I,J=1

Modular invariance additionally requires twisted sectors. We introduce the twist operators
o4 labeled by the elements of Sy by

O1(e*™2) 0,(0) = O,1(2) 0,4(0). (2.13)

These operators introduce non-trivial holonomies for the operators of the seed theory. However,
the operators o, are not gauge invariant. To define gauge invariant operators we define [83,
84, 101]

Olg] X Z Op=1gh s (2.14)
heSn

labeled by the conjugacy classes [g] of Sy. The proportionality constant can be fixed by
normalizing the two-point function of these operators [84]. A conjugacy class [g] is fixed by
giving the number [; of cycles of length i = 1,2,--- N.

[g] =122 . NV Nkl =N. (2.15)

Excited states are created by acting with operators of the seed theory on twisted states. For
example, consider the non-gauge invariant twist operator o, where g is a cycle of length n.
Given (2.13), the operators of the seed theory have fractional modes

1 m - M
O1(2) = =3 (Op)mzn o 2=l (2.16)

nm

The modes with fractional indices correspond to excited twist operators. Hence, in the
twisted sector corresponding to an element of Sy with a single cycle of length n, there
are n subsectors (the vacuum twist operator o, and exited states dressed with fractional
modes of the operators of the seed theory). More generally, in a twisted sector created by
04, twist operators are labeled by the centralizer of g. Thus, the torus partition function
can be written as follows [101, 102]

|1 Z hD T,T) (2.17)

gh hg

where g denotes the twisted sector and h an element of its centralizer. Each term in the
sum is equal to

W] =, (h 2mirtio—50) (—2miio=5)) (2.18)



The summation of elements h € Sy that commute with g imposes the projection onto states
that are invariant under the centralizer C[g]. Here |G| = N! is the order of Sy. Using the
fact that the torus partition function in the individual sectors transforms as follows under
1

modular transformations = — —=

hg(r,%) —>g19<—i,—71__) , (2.19)

it is straightforward to check that the orbifold partition function is modular invariant.

The spectrum of the twisted sectors can be obtained by expanding the partition function.
For a twisted sector labelled by a cycle [g] in (2.15), the conformal dimensions hcpr of the
universal twisted sector ground state is given by

csee 1
hept = Zl d (k - k) . (2.20)

These operators do not depend on the detalls of the seed CFT. In addition, there are twisted
sector states built on primaries in the seed theory with hgeeq > 0 as well as (fractional)
Virasoro descendants, but these states will not play an important role in the following.
Another way [81, 103] to look at the partition function is via a grand canonical generating
function. The modular invariant partition function of the seed theory is denoted as Z(7,T)

ZpNZN = exp [i PP Z (T, ?)] , (2.21)

N k=1
where Ty, is the Hecke operator

| ﬁ j)
TwZ(T,7T) - — + = . 2.22
! %; Z (F+153+1 (2:22)
Correlation function of twist operators can be calculated by going to the covering space [80,
83, 84, 104, 105]. Suppose we want to calculate a correlation function of twist operators.
Due to (2.13), correlation functions of non-gauge invariant operators have branch cuts. The
union of the different sheets forms the covering space. Although we consider the orbifold
theory on S2, the covering space does not necessarily have zero genus; its genus is determined
by the Riemann-Hurwitz formula [83].

3 Universal defects in symmetric orbifolds

We construct the orbifold CFT starting with a tensor product of IV copies of a seed theory
M and gauge the Sy symmetry that permutes the N copies. The gauged theory exhibits
a quantum symmetry Rep(Sy),! [5, 92, 93]. In this section, we construct these universal
topological defects using the projector construction of Petkova and Zuber [74]. In particular,
the details of the seed CFT will not play a role in the sense that the defect can be thought
of as being built on the trivial topological defect in the seed CFT, which always exists. In
addition to these defects, there may be other topological defects coming from the defects
of the seed theory itself. We discuss non-universal defects, which are based on nontrivial
topological defects in the seed theory, in section 5.

ntuitively, this symmetry is generated by the Wilson lines of the Sy gauge field.



3.1 Construction

Utilizing the folded permutation brane construction for a topological defect, a universal defect
corresponds to the following boundary state in the folded M®Y /Sy x M®N /Sy CFT

\BR>>=ZXR Z|n(1[g]®’” [g]Z’m [g]®’m> MK (3.1)

Here [g] denotes the twisted sector in the M®Y /Sy orbifold labeled by the conjugacy class
of Sy. The summation over n,m denotes the sum over all states in the [g]-twisted sector
including the sum over primaries of the seed theory as well as Virasoro descendants producing
an Ishibashi boundary state [97]. The folded boundary state, and thus the defect, is labeled
by the choice of representation R of Sy with xr([g]) being the character of the conjugacy
class [g] in the representation R. Consequently, the boundary state satisfies

(2 = L2) | Br)) = (L@ ~ L) | Br)) = 0, (3.2)
where L,(f),i = 1,2 are the modes of the stress tensor of the two copies of the M®N /Sy
orbifold after folding. After unfolding, the two copies of the CFT living on half-spaces are
separated by the defect operator

IR_ZXR )Py Py - (3.3)

The defect is expressed in terms of the 1dent1ty projectors in the [g]-twisted sector satisfying

[g] = Py and PP = 0 if [g] # [¢']. Tt is clear from the property of the projectors or the
unfolding of the boundary state condition (3.2) that the defect is topological, i.e. it commutes
with the holomorphic and anti-holomorphic modes of the stress tensor separately.

L,Ir=71IrL,, Lo,Ir=1Ir L,. (3.4)

Using the properties of the projection operators, one can calculate the fusion product of
two defect operators labeled by two representations Rj 2

IRIIR2 Z XR1 XRQ ])P[g] p[g]

—Z Zm 9)XR2(9)XRs(9) TR,

= Z N;; o IR - (3.5)
R3
Here N ngg are the Kronecker coefficients of the decomposition of the tensor product R; ® Ry
into representations Rs3. Since Sy for N > 2 is a non-abelian group, the topological line-
defects include non-invertible ones. This can also be seen from the fact that acting on a
state in the [g]-twisted sector one has

Ir | @) = xr([g]) | i) - (3.6)

In particular, this implies that the quantum dimension of a defect Zg is given by (Zg) =
Xgr(1) = dimp, i.e. the dimension of the representation. In general, for Sy with N > 2, apart
from the trivial and the alternating (or sign) representation, all other representations have
dimensions greater than one, hence giving rise to non-invertible defects.



3.2 Modular invariance and defect operators

In this section, we use modular invariance to identify the operators in the defect Hilbert
space which can end on topological lines. The starting point is to insert a defect Zr along
the spatial cycle in the torus partition function

_ 1

VAL T, T
(7,7) Il

Z tTHg (h ezWiT(LO_i) e—?m’?([_/o—i) IR)
gh=hg

:\én S xallo) B[ (7). (3.7)

gh=hg g

1_
=
7/, which exchanges the spatial and temporal cycles. Using the modular transformation (2.19),

The defect Hilbert space can be obtained by performing a modular transformation 7 — —

the defect partition function is given by

ZR(T’i’)—,é‘ % xalla) s 17,7, (3.8)

gh=hg

where we used the fact that the characters of Sy are real.

In the orbifold partition function, we decompose the elements h,g which commute
gh = hg by labeling the element g by its conjugacy class and h by the element of the
centralizer. However, one can do this the other way around, where h labels conjugacy classes
and g labels the centralizer of h.

The simplest and most relevant case to the large-/N limit is when h corresponds to a
single cycle of length [w]. The centralizer of such an element is Z,, X Sy_,. The group Z,,
contains elements 1,w,w?, - - w®~!, where w is the w-th root of unity. The defect partition

function corresponding to the single w-twisted cycle can be written as

1

Jw] = m xr(Clwl) C[w]%. (3.9)

Using the decomposition of Clw] = Z,, x Sn—y and dim Clw] = w(N — w)!, one gets

w—1
Znp = o 3 [l x g) 1 x [ ]+ 3 xalle x g)) o x [ ]] -
V=l el w] i ]

gESwa

(3.10)

To determine the number of defect operators, we want to pick out the ground state
contribution of the w-twisted sector from (3.10), which has the conformal dimension

h=h= " (w - 1) . (3.11)

As far as the Sy_,, permutation is concerned, the sector [w] is untwisted. Consequently,
the insertion of g € Sy_,, contributes the same factor to the ground state in the defect
partition function (3.10). The same holds for the 1,, and Wk k=1,2,---w — 1 insertions
since these enforce the h — h € Z projection, which is automatically satisfied for the twisted



ground state (3.11). This implies that the number of w-twisted defect ground states is simply
obtained by setting [J = 1 for all terms in the partition function (3.10), giving

L D DR SEv( )} (3.12)

where we included w® = 1,,. A vanishing n% implies that the Zr defect cannot end on a
bare twist operator in the w-twisted sector.

One way to understand the defect operators at the endpoints of topological line-defects
is to view these line-defects as open Wilson lines ending on non-gauge invariant opera-
tors [93]. A natural proposal for such operators involves using characters to project onto
the representation R

O—f = Ngr Z XR(h) Oh—=1gh » (313)
heSn

where we pick an element ¢ in the conjugacy class that labels the twisted sector and we focus
again on a single cycle of length w. We propose that the Zp line-defect can end on a defect
operator in the [g|-twisted sector if (3.13) does not vanish. We can decompose the sum over
h € Sy in (3.13) into a sum over the centralizer of g and the rest

w—1
ol =Nr| > > xn(Wt xW)og+-- | (3.14)
h'€eSN_, k=0

where the dots denote summation over other group elements in the conjugacy class of g.
Note that the coefficient multiplying o, in (3.14) is proportional to (3.12). Consequently, the
vanishing of one implies the vanishing of the other and the criterion for the existence of a
defect operator ending on a line-defect is the same. The vanishing of all the terms on the
right-hand side of (3.13) can be established by conjugating the group element g and using
the fact that the characters take the same value on all elements of the same conjugacy class.

It should be noted that for Sy with N > 4, the degeneracy of the twisted sector ground
states (3.12) can be larger than one. For the non-gauge invariant operators in (3.13), this
can be understood by the fact that the action of Sy on all elements g in a fixed conjugacy
class by conjugation g — h~'gh determines a (generally) reducible representation. The value
nfg gives the number of times the irreducible representation R appears in this representation.

In the next section we will further test this construction by evaluating correlation
functions of defect operators and check the Ward identities following from the non-invertible
symmetry Rep(S3).

4 Example: S3 symmetric orbifold

We now consider a simple example, the S3 orbifold theory of a seed CFT M with central
charge c¢. Upon gauging the S3 symmetry, a Rep(S3) quantum symmetry emerges. The
objects of Rep(S3) symmetry are topological lines which are labeled by the irreducible
representations of Sj.

,10,



The symmetric group S3 is a non-abelian group consisting of permutations of three
elements. The group-elements of S5 are

S5 = {e, (12), (23), (31), (123), (132)}, (4.1)

where e is the identity permutation, (12) is a 2-cycle representing the permutation 1 — 2 — 1,
(123) is a 3-cycle representing the permutation 1 — 2 — 3 — 1 and so on. There are
three conjugacy classes

[e] = {e}, [21={(12),(13),(23)}, [3] ={(123),(132)}. (4.2)

The character table of S3 is given below

where e denotes the trivial representation, A denotes the alternating representation, and
S denotes the standard representation.

In this case, the fusion rules of the universal defects defined in (3.3) follow from the
above character table and read

TaXTp=1,
IS XIAZIA XIS:IS,
Is XZIg=1+7Zpr+1Ig. (4.4)

We see that the line-defect associated with the standard representation is non-invertible.
Using (2.14), the gauge invariant ground state operators are

1
o] = 73 (0(12) + 0(23) + 0(13)) )
1
=5 (0(123) + 0(132>) ; (4.5)

where the proportionality constants were fixed by requiring that the two-point functions be
normalized to 1. The action of the defects on these operators is summarized in figure 4.

Next, let us discuss the defect Hilbert spaces. From (3.13), we observe that there are no
two-cycle ground states in Hz, and no three-cycle ground states in Hz,. In the appendix,
we verify this counting by analyzing the partition function. The twisted ground states in
the defect Hilbert space are

oty = Ns (2002 — 05 ~oq13))
Ufg] = Na (0'(123) - 0’(132)) . (4.6)

Here, without loss of generality, we choose o(19) and o123 as representatives of [2] and [3]
respectively. The constants N4, Ng can be fixed by normalizing the two-point correlators of the

— 11 —



Figure 4. Action of the universal line-defects. The red line denotes the invertible sign defect Z4
while the black line denotes the standard defect Zg.

Figure 5. Lasso diagrams where the right-hand side is obtained after shrinking the standard defect
loop which produces a defect operator.

non-gauge invariant operators with the line-defects inserted to 1. For example, demanding that

( U[Sz] —— U[Sz] ) = N3 <4<U(12)0(12)> + (0(23)0(23)) + (U(13)U(13)>> =6Ng =1, @)

gives us Ng = 1/6. Similarly, we get Ni = —1/2. To show this, we used that the two-point
correlator vanishes unless the permutation corresponding to the second twist operator is
the inverse of the first [83]. In the above correlator, we implicitly assumed that insertions
of the two operators are at the poles of the sphere.

Next, we determine the coefficients in the lasso diagrams. Since the defects are topological,
the scaling dimension does not change and the two possible diagrams are shown in figure 5.
In the following, we fix the coefficients o and f.

Consider the two-point correlator of the two-cycles encircled by the Zg line. We can
shrink the line-defect to a point by avoiding both operators, which gives us the quantum
dimension of the line (Zg). Alternatively, we can make use of the F-symbols [106, 107] in
figure 6 corresponding to the crossing relations of Rep(S3) to pull the line-defect through the

— 12 —



Figure 6. F-symbols of Rep(S3) .

operators and then shrink it to a point. Pictorially, the two ways of shrinking the defect are
(012 o) = 753 < (o)),

(4.8)
Requiring that the correlators on both sides are normalized to 1, we get o = 2+/2. Similarly,

%\

for the two-point correlator of the three-cycle ground states,

(013 0p3) = g <> +1yq @ _____

= j (o3 o) + T <0[A3]° .oy ),

ST

(4.9)

leads to %2 = 3.

We can now obtain selection rules for the three-point correlators in the presence of
the line-defects. The only non-trivial three-point correlators of bare twist operators are
(01210121073)) and (0(3)0(3)073))- To illustrate the procedure we focus on the former. As in the
case of two-point functions, the locations of the operators in the three-point correlators are
fixed using the SL(2,R) symmetry. Consider a line-defect Zg encircling only o). This is
equivalent to encircling both the oy operators on the sphere as illustrated in figure 7. The
second line in the figure is obtained by using the F-symbols in figure 6 and the lasso diagram
in figure 5. The correlator (o o03) can be expanded using (4.5) as follows

—<U[2]0’[2}0'[3]> 3\[< (0(12) + 023) + 0’(13))(0'(12) + 023y + 0(13))(0(123) + 0(132)) )
= —V/2 O3, (4.10)
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Figure 7. The Ward identity associated with Zs wrapping o(3;. We can shrink the line-defect the
other way on the sphere which gives the correlator with both the oy encircled.

O O > o <‘> g <a§] o[g]>

Figure 8. The Ward identity associated with Zg encircling all three operators giving rise to a junction.
Shrinking the line-defect by avoiding the operator insertions gives us (Zg) = 2.

where we have defined 0223 = <J(12)O'(23)0(123)> = <0(12)U(13)0(132)> = <J(23)U(13)U(123)>.
Meanwhile, the rightmost correlator in the second line of figure 7 can be computed us-
ing (4.6) as

11
2<‘7[32] —eo U[g} 0[3}> =2 6 E<(20(12) —0(23) — 0(13))(20(12) —0(23) — 0(13))(0(123) =+ 0(132))>
= —\/§ 0223 = —<U[2]O'[2]U[3]> . (4.11)

Hence, using the explicit expressions of non-gauge invariant twist fields, we can check the
Ward identity of Zg. Similarly, from figure 8, we can also use these defects to calculate
the following correlator

U%*———*“m

|
S

: BHopopo) - (4.12)
oy
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5 Non-universal defects

In section 3, we constructed universal defects labeled by an irreducible representation R of
the symmetric group Sy. As can be seen from the expression (3.3), the defect operator in
each twisted sector is proportional to the identity operator and hence does not depend on
the details of the seed CFT. Another way to look at this is that the topological defect one
starts with, in the seed theory, is the identity or trivial defect. It is an interesting question
whether one can start with a nontrivial defect in the seed theory and construct non-universal
defects which depend on the details of the seed theory and the topological defects present
in it. Similar questions arise in the construction of D-brane states in symmetric orbifolds,
as discussed in [108, 109], which we will build upon in the following section.

Here we only construct a simple example of a non-universal defect that is analogous
to the “maximally fractional” D-brane of [108]. A twisted sector (2.15) in the Sy orbifold
theory is labeled by a conjugacy class [g] which is fixed by giving the number ; of cycles
of given length i = 1,2,--- N. We focus on diagonal RCF'Ts discussed in section 2.1 as the
seed CFT. In particular, we use the defects Z, in the RCFT defined in (2.2). In the tensor
product states, we will use the same boundary state labeled by a for all factors to construct
a “maximally fractional” defect, which is automatically Sy invariant.? In a twisted sector
corresponding to a single w cycle, the doubled boundary state is given by

Sai . - (1)
\Ba>>(w)=Zs—gz|z,n>52)®|z,n an & Tt M) ) (5.1)

where the sum over n,m denotes the sum over all the descendants (including fractional

Virasoro modes) of the w-twisted sector primary |i>(w). Using these boundary states for
single cycles, we can construct a defect boundary state which is labeled by the representation
R of Sy as well as the choice of primary a of the RCFT as

N
B = > xr(aD T II I Bahiy- (5.2)

lgleSn J=lk;j=1
The consistency condition for the topological defects derived by Petkova and Zuber in [74]

is equivalent to the Cardy condition for the doubled boundary state (5.2). The cylinder

amplitude for two defect-boundary states is given by
q) =

ZEiBe(q) = (B | 10 H10 i P+ 6 | Bl

N L
> xm(l9) xr:(l9)) T1 (ZS S0 = xi(t/7) xz'(t/j)> : (5.3)

lgleSN Jj=1
The Cardy condition states that under modular transformation to the annulus channel, the
partition function has a consistent interpretation as an open string partition function, i.e. the
primary representations appear with integer multiplicities. Using the modular transformation
of the RCFT characters and the Verlinde formula, one obtains

L
ZE0(@) = > xr,(l9]) xR ([ H(Z b X (5t) Xs(ﬂ)> : (5.4)

l[gleSn

2For discussions on a more general construction of D-branes in symmetric orbifold CF'Ts see [109].
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where N ;° can be expressed in terms of the fusion coefficients n9, of the seed RCFT

N =Y SiiSbiSik SkjOjrSis
v Su Soj

= anb ngs. (5.5)
k

Consequently, the N _;/® are non-negative integers. The partition function appearing in (5.4)
Zan() = D Nap® xr(E) xs(2), (5.6)
rs

contains the characters of the folded RCFT with integer multiplicities and can be written as a
trace over a Hilbert space H,p in the doubled tensor product of the seed RCFT. Hence, (5.4)

can be written as

Z51@) = 3 XM o) X ([9) v (93075) (5.7)
[9€SN

and the character sum projects onto the representations of Sy in the N-fold tensor product
of the folded CF'T of Ry and Ry. It follows that the open string partition function will be
a sum over states with integer multiplicity. The maximal fractional boundary state (5.1)
satisfies the Cardy condition and, therefore, defines a consistent topological defect.

It follows from unfolding the boundary state (5.2) that the quantum dimension of the
maximally fractional defect Z, g labelled by a, R is given by

N
(T = {01 B = xalltl) (G2 55)

which is the product of the quantum dimension of the universal defect and the quantum
dimensions of the N copies of the topological defect in the RCFT present in the untwisted
sector. Similar considerations as presented above determine the fusion coefficients of the
defects as well as their defect Hilbert spaces.

The construction of the maximally fractional defects can straightforwardly be extended to
other seed CFTs including compact bosons, 7%, and K3 sigma models (see e.g. [77, 100, 110—
114]), where the RCFT defects in (5.2) are replaced by topological defects of the seed CFT,
which realize more general non-invertible symmetries. We leave the discussion of these
defects for future work.

6 Large-N symmetric orbifold

In this section, we discuss the universal defects of section 3 in the large-N limit. We
provide a criterion for a defect to be non-trivial in this limit. Then, we show that there
exist representations that pass this criterion. In the next section, we will argue that in
the AdS3/CFTy correspondence, these non-trivial defects correspond to topological defects
on the worldsheet.

Consider the topological defect Zr, the general action on twist operators is shown in
figure 9. This depends on the Kronecker coefficients Ngg ¥ as well the constants e p([9])-
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R i

[g] _ XR([g]) [g] ) v [g]
o = = ° + E § CRR/
dmR R'#1 v ([g]) IR’

Ir Tk Ir

Figure 9. Action of the topological defect Zr on twist operators. The vector v is an element in
Hom(R ® R, R'). The sum on the right-hand side is over R’ with Ngr ¥ # 0. We have omitted the
orientation of the defect since all the representations of Sy are real.

The former determines the representations R’ that appear in the sum. In principle, to
determine the constants cp([g]) we need to know both the Kronecker coefficients as well as
the F-symbols. At present, it is an open problem in mathematics to find explicit expressions
for the Kronecker coefficients for arbitrary representations. In fact, it is known that the
Kronecker coefficients in general are unbounded for large-N [115].

For a defect to be non-trivial in the large-N limit, it needs to satisfy?

i X010
N—oo dimp

<1. (6.1)

If this is not the case, in the limit N — oo the defect commutes with all the operators and
therefore the contributions of non-local operators are zero (see section 2.2.4 of [1]). We
conclude that for finite N the contributions of non-local operators on the right-hand side
of figure 9 are subleading.

Let us now comment on what representations lead to non-trivial Ward identities in the
large-N limit. Recall that as is the case for the conjugacy classes, representations of Sy
are also labeled by partitions of N,*

R: (’I"]_,TQ,...), r+ret+---=N. (62)

We can associate a Young tableau to each representation where the number of boxes in
the row i is equal to r;. For a representation R,> the character of a conjugacy class with
a single cycle has the following limit [116, 117]

lim xr([n]) = Za? — (=" Zﬁ?, (6.3)

N—o00 dimR P

A}im % is the number of boxes in row i divided by N. Similarly, 3; is the
— 00
number of boxes in the column 4 divided by N. As an example, let us look at the standard

where a; =

representation of Sy, which corresponds to the Young tableau

[ I ]

3Note the characters satisfy xr([g]) < dimp for any representation.

“Here we are using a different notation to label partitions of N compared to section 3 where I; is the
number of r;’s that satisfy r; = i.

®The representation needs to have a well-defined limit, see for example [116].

,17,



with the corresponding partition being (N — 1,1). We see that

N-11
a:]\}ijnw(N7N,O,O,...>:(1,0,O,...), (6.4)
and 5 1 1
6:$%XNWWN”>:amﬁWJ. (6.5)
Hence, in the large-N limit %n[fg) — 1. This can also be derived by calculating the character

of the standard representation for finite IV using the Frobenius formula. Therefore, we
conclude that the Ward identities of the standard representations are trivial in the large- N
limit and only constrain subleading contributions coming from higher genus covering spaces.

Examples of representations with nontrivial ratio %ﬂgﬁ)

diagrams with two rows and diagrams of hook-shape. For both of the above, the Kronecker

in the large- N-limit are Young

coefficients Ngg * are known [118-120]. For example, for the Young diagram with two rows

we have
11
a_<TTQm>,B_@ﬂ&“J, (6.6)
and therefore
xr([n]) 1
. 6.7
dimp - on—1 ( )

Thus, we expect the defect corresponding to this representation to be non-trivial in the
large-N limit.

7 Non-invertible symmetries and AdS;/CFT> duality

The tensionless limit of the type II AdS3 x S3 x My background with NS-NS flux is a
holographic setup where the non-invertible symmetries of the Sy orbifold CFT are realized.
In this section, we take some first steps in constructing the holographic duals of these defects.®

7.1 Tensionless limit

In recent years, an example of an exact AdS/CFT duality has been established, relating type
II string theory on AdS3 x S3 x My with k = 1 units of NS-NS flux to the symmetric orbifold
CFT M?N /SN in the large-N limit. Here, My is the CFT defined by the supersymmetric
sigma-model with target space 7% or K3. The characteristic feature of this duality is that
the string theory is defined on highly curved spaces far away from the supergravity limit,
yet a tractable worldsheet CFT exists. The worldsheet description is based on a product of
a PSU(1,1]|2) WZW model times a twisted My sigma model [88, 122]. The agreement of
the spectra on the AdS and CFT side was demonstrated in [88, 89], correlation functions

5See the recent paper [121] for related discussions.
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were identified in [105, 123], the torus partition function was related to thermal AdS in [124],
and D-branes on both sides were related in [108]. The identification of states on both sides
relates the vertex operators (’),(Lw) (z) for a CFT state in a single cycle twisted sector labeled
by w and a seed CFT state labeled by h, to a worldsheet vertex operator V,(x; z) where
w now denotes the w-spectral flow sector. This duality relates string amplitudes to the

orbifold worldsheet correlation function
(O (@) O (wa) -+ O (w0)) g2

:/M AV (w15 20) Vi (w25 22) -+ - Vil (Tns 2n) )y - (7.1)
g,n

g,n

The equality of both sides hinges on a remarkable localization property of the string path
integral. The integral over the moduli space M, ,, only contributes if a holomorphic covering
map exists from the worldsheet ¥, ,, to the spacetime S2. In this map, the vertex operator
locations z; on the worldsheet are mapped to the locations x; of the CFT operators. These
points have ramification indices w; for ¢ = 1,2, -+ ,n. The covering map behaves like

D(2) =z +al (z — 2)¥ + O((z — zi)wiH) , (7.2)

near z = z; and hence close to z; describes a w;-fold cover. The fact that the string worldsheet
path integral localizes was shown using worldsheet Ward identities in [91] (see [125-129] for
further discussions). In the following, we will focus on correlation functions at leading order
in large-N, where both the string worldsheet and the target space are two spheres. This map
allows us to reverse engineer the topological defect on the string worldsheet.

We recall that the topological defect operators associated with Rep(Sy) given in (3.3)
are projectors on the twisted sectors of the Sy orbifold, weighted by the character of the
representation

' = xr(l9)) Py Py - (7.3)
[9]
Single string states created by the vertex operators V;"”(z, z) in the spectral flow sector
w correspond to single cycle twisted states of length w. Limiting ourselves to the single cycle
twisted sector, a natural proposal for a worldsheet is the projector

# = xr([w])PuPy (7.4)

where P, is a projector on the w-spectral flow sector and xr([w]) is the Sy character of a
single cycle conjugacy class of length w in representation R.

Such a projector” can be constructed as an operator on the worldsheet using the free
field Wakimoto construction [135] of the SL(2,R) part of the worldsheet sigma model. As an
initial step, we define I[C] as a contour integral over the worldsheet bosonic field ®(z),?

dz
ICl=-2¢ — 0,P .
cl=-24 = 0.0, (75)

" Another proposal for I[C] is the boundary central term Z = f 2%% [130—-134]. This operator gives the
winding number of the covering map I'(z), but the winding number is only defined with respect to a base
point (z = 0 in the given formula) and does not lead to a viable worldsheet version of the topological defect.

81t has been shown in appendix C of [91] that the commutator of 9,® with the spacetime Virasoro generators

is a total derivative, hence I(C) is topological from the spacetime CFT perspective.
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Figure 10. Contour C of operator I enclosing a vertex operator localized at x;.

where the contour C is always oriented counterclockwise. The localization of the worldsheet
path integral [91, 125, 126], pictorially shown in figure 10, leads to a very special property of
the 0,9(z) field when inserted in string correlation functions [91]

0°T(2)

((— 28@(2))‘/];‘1’1 (z1;21) - Vo (s Zn)) = 32F(z) (Vi (w15 21) - - Vi (s zn)).  (7.6)

The expectation value of I(C) can then be evaluated using the following identity for the
covering map T

2r(z) wi—1 "=
0. I'(z) _; z—z (;1

2

-
-z

g

(7.7)

Here, z, are the location of the “secret poles,” which in general depend on the location of
the CFT operators x; and are necessary for the existence of the covering map. We have
placed the N-th secret pole at z = oo, which is always possible and doing so cancels the
background charge of ® at infinity as discussed in [91]. It is easy to verify that the residue
of 92T'/8,T at infinity is zero using the Riemann-Hurwitz formula. The value of I[C] for a
given contour can now be determined using the residue theorem.

We can now give a proposal for Zj3°[C], i.e. the worldsheet version of the topological
defect for contour C

IiPICl = xr(W)dy_1(c]

:wi;lXR(w)/o%;iiexp (ia(w—l—I[C’]))- (7.8)

Thanks to the localization formula (7.6) and (7.7), it is easy to see that (7.5) evaluates
to w; — 1 for a countour which encircles only z; and is independent of small deformations of
the contour. Hence, (7.8) is acting like the projector (7.4) when encircling a single vertex
operator. In particular, if the contour is inserted around a vertex operator in the untwisted
sector (this can be the ground state itself), we have w; = 1 and I[C] evaluates to zero and
hence ZW*[C] evaluates to x?([1]), i.e. the quantum dimension of the operator.

Consider now a two-point function of twist operators on the boundary. The dual correlator
is a two-point function of spectrally flowed vertex operators. It is not too difficult to check
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that the value of Z(°[C] around any of the two insertions is the same. This is consistent with
inserting the corresponding operator ZlgFT on the boundary around either operators which

I}%FT around

gives the same value. The more interesting case is when we insert the operator
a line that does not enclose any operator. This gives the dimension of the representation.
On the worldsheet, the corresponding operator Zj°[C] will be along a curve with no vertex
operator inside giving again the dimension of the representation. However, in this case, the
contour integral in I[C] with no poles inside is not equal to the sum of the contour integrals
around each of the vertex operators. This is because of the presence of the secret poles in (7.7).
On the worldsheet, we interpret this as the result of the lasso effect described in figure 3.

The sign (alternating) defect is an example of an invertible defect for which x“(w) =
(—1)»*!1. When inserted on the boundary, the defect enforces the selection rule that 3=, w;
is odd. Since the character of the sign representation on single cycles of length w satisfies
xa(w + 2) = xa(w), we see that Z}*[C] is blind to the secret poles (they contribute —2
to the contour integral) and, therefore, the contour integral can be written as a sum of
contour integrals around the ramification points reproducing the correct Ward identity on the
worldsheet. The same line of reasoning can be applied to the case of three-point functions
reproducing the corresponding Ward identities on the worldsheet.

7.2 Deformation away from the £k = 1 and the supergravity limit

Turning on RR-fluxes in the bulk corresponds to deforming the symmetric orbifold CFT
by an exactly marginal deformation [129, 136-145]. This deformation is proportional to a
two-cycle twist field which we denote by opyj. In the following, we argue that this deformation
breaks all the non-invertible universal defects associated with the representations of Sy.
Consider the action of a topological defect Zg on the twisted state created by oy

Tr o) = xr([2]) lojg) - (7.9)

The deformation breaks all the defects if and only if xr([2]) # dimpg. Below we
prove that no defect satisfies this and, therefore, all the universal defects are broken in
the supergravity limit.

Consider an element g in some representation R. Since all finite groups are unitariazable,
this is a dimp X dimp matrix whose eigenvalues satisfy |A;| = 1. Hence,

dimp

xr(9) = Y i, |N|=1. (7.10)
=1

We see that yr(g) = dimp if and only if \; = 1 V ¢ which is true only for the trivial
representation. Hence, we conclude that any marginal deformation involving twist operators
breaks all the universal defects. This means that all nontrivial symmetries do not survive
the deformation away from the £ = 1 point.

8 Discussion

In this paper, we investigated certain aspects of the universal topological defects of the
symmetric orbifold CFT M®Y /Sy. These defects are universal in the sense that they do
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not depend on the details of the seed CFT, and exist in any Sy orbifold theory. Using
modular transformations of torus partition function, we determined universal defect operators
on which the topological lines can end. These operators are built on the twisted sector
ground states. These states are derived from the vacuum of the seed CFT and hence do
not depend on the details of the seed CFT other than the central charge and the conjugacy
class labeling the twisted sector.

The non-invertibility of the symmetry leads to Ward identities which relate correlation
functions of local operators to (sums of) correlation functions of defect and local operators
with lines as well as junctions inserted. We illustrated this in the simplest example which
exhibits non-ivertible symmetries, namely the S3 symmetric orbifold.

In addition, we constructed an example of a non-universal defect which is built from a
topological defect in the seed CFT (which we took to be diagonal RCFTs with Verlinde lines).
This “maximally” fractional defect satisfies the Cardy constraints and it would be interesting
to see whether more general solutions (maybe along the lines of similar constructions for
D-branes in symmetric orbifolds in [109]) are possible. The maximally fractional defect we
constructed in the present paper can be, in some sense, viewed as a product of the RCFT
and symmetric orbifold defects.

We provided a criterion that determined which universal defects are non-trivial in the
large-N limit. This was possible due to the known asymptotic behavior of Sy characters. It
would be particularly interesting to study the Ward identities of non-trivial defects in the
large-IN limit. At this moment, this task looks daunting since there are no explicit expressions
for both the F-symbols as well as the Kronecker coefficients of Sy to our knowledge.

The universal defects of the orbifold CFT are interesting in the context of AdS3;/CFTy
correspondence. We argued that these defects correspond to defects on the worldsheet,
a case distinct from previous examples where boundary topological defects correspond to
D-branes in the bulk. This is a peculiarity of the tensionless limit. This idea has appeared
recently in other works [121, 146]. On the boundary, passing an operator though a topological
defect generally produces non-local operators. It would be interesting to understand the
holographic dual of these operators.

Away from the orbifold point, we showed that the universal defects are broken explicitly
by a marginal deformation. Hence, these defects do not generally exist in the supergravity
limit. It would be interesting to understand what happens when the deformation parameter
is infinitesimal and what role these softly broken defects might play in holography.

In this work, we focused on the tensionless limit with & = 1. This corresponds to the
smallest possible radius for AdSs. For higher values of k, it is believed that the boundary
theory is tensored with a Liouville factor but remains an orbifold CFT [134]. Hence, we
expect our universal defects to be present for higher values of k as well. It would be
interesting to understand the holographic dual of the universal defects in the large k limit
where semi-classical supergravity computations are more reliable.

The entanglement entropy in the presence of topological defects is an interesting observable
that has been calculated in some examples for topological defects [147, 148]. We plan to
generalize these calculations to the topological defects constructed in the present paper [149]
and it would be interesting to understand their implications for holography.
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A Defect Hilbert spaces in S3 orbifold

In this appendix, we verify the counting of defect operators in section 4. From (2.21), the
torus partition function of the S3 symmetric orbifold is

207) = 21 + 32000 + g 202tz + 520 (2 (3) + 2 (7))

)£ ()2 (5)

where for simplicity we only denoted the dependence on 7, and the dependence on its complex

conjugate 7 is implied. The partition function of the seed CFT can be divided into the
vacuum Virasoro module and the excited states

g 21q > :
Z2(1) = = = + excited states, (A.2)
-9 (-

where ¢(7) = €2™7. The vacuum states lead to the universal sector of the symmetric orbifold
CFT created by the bare twist operators ojg.

Let us denote the scaling dimension of primary operators in the seed CFT by hgeeq.
From the partition function, it can be seen that the bare twist operators for a single cycle

with length k have scaling dimensions,

wy_ ¢ (, 1
= < (k: k) , (A.3)

where ‘bt’ is the abbreviation for bare twists. In the S3 orbifold, k = 1,2,3. More generally,
the scaling dimension in the single k-cycle twisted sector is

_ ¢ 1 hseed
h_24<k: k)+ ol (A.4)

Let us now consider the defect Hilbert spaces Ha,Hg assosciated to the defects of

section 4. Using (3.7) and (4.3), we can write down the torus partition function with a
defect Z4 inserted along the spacial cycle,

=L st Sasn Yo (55) +5(251)
+;(Z<;)+Z(T;1)+Z<T;2)>- (A.5)
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Under modular transformation (2.19), the defect partition function becomes

T

ZA(r) = éZ(T)S — %Z(T)Z(QT) + %2(37) + %Z(T) (Z (2) —Z (T;r 1))

(e(5) () 2 (5.

Using (A.2) we can expand the above in powers of ¢ and ¢. For the 2-cycle twisted sector,

1 T T+1 e (B 3_ 3 s _
32(7) <Z(2>—Z< 5 )):(qq) © (¢2 +42 +q2q +9q2 + 3¢°¢* + 3¢ .. ),
(A7)

ol

and hence there is no bare twist-operator in H4 verifying (4.6). Similarly for the 3-cycle
we have that

1 1 2 c
(20 £ () £ (5) B0 n . 19

Finally for the 1-cycle sector,

1 1 1 eioa . s, 23 3 :
SZ(1)) + 2 Z(37) = SZ(1)Z(21) = (q0) 5 (6T + T + T + T + 36T +3¢'T ...),

6 3 2
(A.9)

which means that the is no operator with zero scaling dimensions and therefore Hom(Z4,Z4)
is trivial.

Similarly, we can study the Zg defect Hilbert space. There is no identity operator in
the Zg defect Hilbert space. There is a bare 2-cycle and no bare 3-cycle twist operators,
in agreement with (4.6).

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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