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1 Introduction

Entanglement is one of the most important features of quantum theories and a specific
measure of entanglement, namely entanglement entropy, has played an important role in
many areas of physics ranging from quantum mechanics, condensed matter physics, quantum
information theory to quantum field theory and quantum gravity, holography and the black
hole information paradox, see [3-5] for a selection of reviews of some of these topics.

Topological defects in two dimensional conformal field theories (CFTs) [6-10] are among
the best understood examples of non-invertible symmetries, displaying a fusion algebra
structure, defect lines ending on defect operators, junctions of defect lines, etc. More recent
ideas are the constraints on RG-flows from non-invertible symmetries, symmetry topological
field theories, and half gauging among others.!

In this short note, we calculate the entanglement entropy for topological defects in
symmetric orbifold CFTs which were recently constructed in [1, 2], using the methods
developed for topological defects in rational CFTs in [14-16]. The defect entropy we calculate
can be viewed as a measure of the complexity of the defect. Furthermore, it provides an
observable which may be of use in calculating the entanglement entropy holographically
using the dual AdS3 x S* x My background with the minimal & = 1 unit of NS-fivebrane
flux [17-21]. Such a calculation may provide a further check on the proposals of the dual
of the topological defect operators put forward in [1, 2].

We review the formalism to calculate entanglement entropy in the presence of (topological)
defects in section 2 and the construction of topological defects in symmetric orbifold CFTs

'See [11-13] recent lecture notes for more details and a comprehensive list of references.



in section 3. We calculate the entanglement entropy both for universal and non-universal
defects in section 4. We close the note with a brief discussion of some future research
directions in section 5.

2 Engtanglement entropy and topological defects

In two dimensional CFTs, the simplest example of entanglement entropy is given by considering
the theory in its vacuum and a single spatial interval A. The entanglement entropy is then
given by the von Neumann entropy of the reduced density matrix p4 = tr 7]0)(0|, where
we trace over the states in the complement of A.

Sp=—trpalnpy. (2.1)

The replica trick allows the entanglement entropy to be calculated from Rényi entropies
Sa=-Oxtrplf| . 2.2
A K Py 1 (2.2)

The K-th Rényi entropy can be calculated by a path integral over a Riemann surface with K
sheets, with branch cuts along the interval A connecting the sheets in a cyclic fashion. The
entanglement entropy for the CFT in its ground state can be obtained from the partition
function Z(K) over the K-sheeted Riemann surface, by the following expression

Su=(1-0x)In Z(K)’K - (2.3)
In the evaluation of the path integral one has to introduce an ultraviolet cutoff ¢ and the
terms which survive the limit of the cutoff going to zero are

C

SA3

L
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where ¢ is the central charge of the CFT. The constant term is not universal in the case
of the CFT defined on a real line in the ground state. However, it can become physical
in the presence of a boundary or interface [22-24] and is sometimes called the g-factor or
boundary entropy [25]. In the following we would like to calculate this g-factor for topological
defects in symmetric orbifold CFTs.

2.1 Entanglement of symmetric defect

The g-factor (2.4) also appears in boundary CFTs, where the partition function of a CFT
is defined on an interval of length L, with boundary conditions labeled by a and b at the

two ends of the interval.
cm L

InZ = Intre #Hab ~ In(gagp) + 573 +oe (2.5)

which is valid in the limit L > 3. After a modular transformation from the open string annulus,
the partition function can be viewed as a closed string cylinder between two boundary states

Z = ({ale”"e1]b)). (2.6)
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Figure 1. Conformal map for the replicated worldsheet for defects at the entangling surface, figure
from [16].

One can extract the g-factors by inserting the ground state and taking the L — oo limit.
It follows that

ga = (0la)) . (2.7)

It has been shown [23] that for an entangling surface A which starts at the boundary,
the g-factor appearing in the entanglement entropy (2.4) is given by (2.7). So far we have
considered a boundary CFT. For a conformal interface, one can use the folding trick [26, 27]
where an interface between CFT; and CFTs is turned into a boundary CFT by folding
CFT; x CFTy, which can be represented by a boundary state |B)). It was argued in [23, 24]
that the g-factor for the entanglement entropy for a conformal defect which is symmetric
(i.e. in the middle of the entangling region A) is given by (2.7), where | a)) is the boundary
state representing the defect in the folded CFT.

2.2 Entanglement entropy of defects at the entangling surface

In order to describe the defect located at the boundary of the entangling region A and its
complement (see the left-hand side of figure 1), we can introduce the K sheeted covering
map with z = Inw. We introduce a UV cutoff € at the boundary of A and an IR cutoff
L as the length of the branch cut. In general, we have to impose boundary conditions at
the cutoff surfaces with the simplest one being to identify the cutoff surfaces periodically,
which produces a toroidal worldsheet.? It is possible to place a conformal interface at the
boundary, which in the replicated surface will turn into K copies of Z and K copies of the
conjugate defect Z' placed equidistant on the torus

Z(K) = tr[(Ze M Tfe ) "] (2.8)
The Euclidean time ¢t can be expressed as
272
t=—- 2.
InL/e’ (29)

2More general conformal boundary conditions have been considered in constructions of symmetry resolved
entanglement entropy in [22, 28-30].



the simplest choice € = 1/L is made in [14] and the limit € — 0 corresponds to removing
the UV cutoff as well as taking L to be large. For conformal defects, the replica partition
function has only been calculated for simple cases such as free bosons and fermions as well as
minimal models [14, 31-33]. In all examples, the entanglement entropy behaves as follows?

L
SA:C%HIH;—I—lngA, (2.10)

where in general cog is not the central charge ¢ of the bulk CFT but instead depends, in a
complicated fashion, on the details of the conformal interface (see [35] for a recent discussion
on universal properties of cef).

For topological defects, the expression (2.8) simplifies since the defects commute with
the Hamiltonian and they can be combined

Z(K) = tr[ (Z2) " e KM (2.11)

The entanglement entropy derived from this partition function has the form (2.10) with
cef = c. Hence, the leading term in the entanglement entropy does not depend on the defect
and all information is in the sub-leading g-factor which contains information about the ground
state degeneracy of the interface. It is the goal of the present paper to calculate this quantity
for the topological defects in symmetric orbifolds constructed in [1].

3 Topological defects in symmetric orbifolds

In [1] the present authors constructed topological defects in symmetric orbifold CFTs. In
this section, we will briefly review the main results of that paper and refer the reader to
it for more details.

The MY /Sy symmetric orbifold is constructed from a seed CFT M by taking the
N-fold tensor product and gauging/orbifolding the Sy permutation symmetry. There are
two kinds of defects that have been constructed: first, the so-called universal defects, which
do not depend on the details of the seed theory such as the spectrum, fusion coefficients,
etc. In [1] (see also [2]), in addition to the universal defects, one kind of non-universal defect
was constructed, which is built on a single nontrivial topological defect in the seed CFT and
was called “maximally fractional” following a similar construction for boundary CFTs in
symmetric orbifolds as in [36]. In the following, we will briefly review both constructions.

3.1 Symmetric orbifold

An Sy symmetric orbifold CFT is constructed by taking N copies of the seed CFT M
and gauging the permutation symmetry. The untwisted sector is obtained by projecting
out all operators in M®" which are not invariant under Sy. Examples of gauge invariant
operators are

N N
ZO[, Z 00y, ..., (3.1)
= 1,0=1

3The coq/6 differs from (2.4) by a factor of 1/2, this is caused by taking the limit L — oo and only taking
the entanglement of one side of the entangling surface into account, see [34] for a discussion on this issue.



where I labels the copy of the seed CFT in the tensor product. Modular invariance enforces
the presence of twisted sector fields o,, where g € Sy, which acts on an operator in the I-th
copy as a permutation when moved around a twist field

01(e?™2) 04(0) = Oy.1(2) 04(0). (3.2)
To define gauge invariant operators, we sum over all conjugations by elements of Sy [37-39]

J[g] X Z Oh=1gh » (33)
heSn

which are labeled by the conjugacy classes [g] of Sn. These classes are completely determined
by giving the number I; of cycles of length ¢ = 1,2,--- N in a permutation.

[ =122 NI, (3.4)

where the [ are a partition of N, i.e. they satisfy > k I = N. The torus partition function
can be written as follows [40]

Z:|é‘ S W[ )7, (3.5)

gh=hg 9

where |G| = N! is the order of Sy. Here g denotes the twisted sector and h represents
elements of its centralizer. Each term in the sum is equal to

W[ ] (r,7) = tr, (he2mirtio =) =2min(o=51)) (3.6)
g

The summation of elements h € Sy which commute with ¢ imposes the projection onto
states that are invariant under the centralizer C|[g] and ensures the gauge invariance of all the
states. Using the fact that the torus partition function in the individual sectors transforms
1

as follows under the modular transformations 7 — -

hg(r, T) = g_lg(—i, —;), (3.7)

it is straightforward to check that the orbifold partition function (3.5) is indeed modular
invariant.

3.2 Universal defects

Here, we employ the folded permutation brane construction for topological defects [41-43].
Utilizing this construction, a universal defect corresponds to the following boundary state in
the folded MY /Sn x MY /Sy CFT, where states in the two factors are labeled by subscripts

i = (1),(2).

| Br) =Y _xr(g) > [ m)ayg @[ n) @ g 2 @) @ m)ay g (3.8)
(9] " m

here [g] denotes the twisted sector in the M* /Sy orbifold labeled by the conjugacy class [g].
The summation over n, m denotes the sum over all states in the [g]-twisted sector including



the sum over primaries of the seed theory as well as (twisted) Virasoro descendants and
produces an Ishibashi-like boundary state [44, 45]. The folded boundary state satisfies

(£ =19) 1 Br)) = (22 = L) | Br)) =0, (3.9)

where L( ) ,i = 1,2 are the modes of the stress tensor of the two copies of the M” /Sy orbifold
after folding the defect. After unfolding the two copies of the CFT living on half-spaces, one
gets a single copy of the MY /Sy orbifold CFT with a defect operator

IR_ZXR )Py Py - (3.10)

Here, P is the identity projector in the [g]-twisted sector. It is clear from the property
of the projectors or the unfolding of the boundary state condition (3.9) that the defect
is topological, i.e. it commutes with the holomorphic and anti-holomorphic modes of the
stress tensor separately.

LnIr =TIrL,, L,Ir =ZIrL,. (3.11)

3.3 Non-universal defects

The universal defects discussed in the previous section are written as projectors. They are
proportional to the identity operator in each twisted sector. This implies that they do not
depend on the details of the seed CFT, or put it in another way, they are built upon the
trivial or identity defect in the seed CFT.

Here we will review the construction [1] of an example of a non-universal defect which is
analogous to the “maximally fractional” D-brane of [36].* A twisted sector (3.4) in the Sy
orbifold theory is labeled by a conjugacy class [g] which is fixed by giving the number I; of
cycles of given length i = 1,2,--- N. In addition, we will use a diagonal rational conformal
field theory (RCFT) as the seed CFT. The partition function is given by

(7’,7') :Z(Sij Xi(T))Zj(f), (3.12)
%,

where ¢ = 1,2, -+ ,n labels the finite irreducible chiral vertex algebra with character x;(7).
Under the modular S-transformation, the characters transform as x;(—1/7) = 37, Sij x;(7),
where S;; is the modular S-matrix. The topological defects we will consider are Verlinde
lines Z, [6], which are labeled by a denoting the primaries and can be constructed in terms
of projectors [7, §]

T, = Z ﬂP— (3.13)

In the tensor product states, we will use the same a for all factors to construct a
“maximally fractional” defect, which is automatically Sy invariant.® In a twisted sector

“See also [2] for a more detailed discussion of these defects, in particular for the trivial and alternating
representation of Sy.
®For a more general construction of D-branes in symmetric orbifolds, see [46].



corresponding to a single w cycle, the doubled boundary state is given by

Sy ) 1 —(2) ) 2 . (1)
| By =2 g DI n)oy @ 6y O i) @ i m ) (3.14)

m

where the sum of n, m denotes the sum over all the descendants (including fractional Virasoro
modes) of the w-twisted sector primary ]i)(w). Using these boundary states for the cycles,
we can construct a defect boundary state which is labeled by the representation R of Sy
as well as the choice of primary a of the RCFT.

N
B = > xr(aD II II I Bl (3.15)

lgleSn J=lk;=1

where the product goes over all conjugacy classes of Sy labeled as in (3.4). In [1] it was
shown that these boundary states satisfy the Cardy conditions and therefore also define
consistent topological defects in the sense of [7, 8] after unfolding the boundary state (3.15).

4 Entanglement entropy with symmetric orbifold defect

In this section, we will use the formulas reviewed in section 2 to calculate the entanglement
entropy in the presence of the topological defects whose construction was reviewed in section 3.

4.1 Universal defects

Recall that the universal defects constructed in section 3.2 are labeled by the irreducible
representation R of Sy. Using the folded boundary state (3.8), it follows from (2.7) that the
sub-leading contribution to the entanglement entropy for a symmetrically placed topological
defect is given by the logarithm of the g-factor, which in turn is calculated by the overlap
of the boundary state with the vacuum

ga = (0] Br)) = xr(1) = dim(R). (4.1)

Note that g4 is given by the quantum dimension of the defect, which is simply the dimension
of the irreducible representation R. For conformal defects, this result is only valid for the
symmetrically placed defect. For topological defects, we can move them away from the
middle and the result will not change unless we come very close to the boundary of the
entangling region.

Note, however, that this is not true for the topological defect at the boundary of the
entangling surface as discussed in section 2. For the universal topological defects, one finds

Z(K) = tr[ 72K e=2K1]

= [E]: [xa(lg])]*" tr (P Pge 5t | (4.2)

where we used the reality of the characters which implies that Z' = Z. The modular
parameter is given by

2K
- (4.3)




The partition function can be expressed as a sum over twisted sectors using the notation
introduced in (3.6)

Z(K)zé‘ ) [XR<[g]>]2th<w>. (4.4)

hg=gh
We can view this as a summation over twisted sectors labeled by ¢ and a projection on Sy
invariant states implemented by h, where h runs over the centralizer of g, i.e. all elements
which commute with g. Taking the cutoff L — oo implies that 7 — 0, so we have to perform
a modular transformation of the torus partition function

|G\Z > [l 2K9‘19(—i,—i). (4.5)

9 heCg)
Note that the limit 7 — 0 implies that the argument of the modular transformed partition
function behaves as —% — oo. Hence, the partition function is dominated by the sector
with the primary of the lowest conformal dimension. For the symmetric orbifold, this is
the untwisted vacuum sector.

Note that in the centralizer C[g] of any element g € Sy, the identity is always present
since it trivially commutes with any element. Hence, the partition function in the 7 — 0
limit is dominated by the untwisted sector

. . 1 2K
lim Z(K) N}lg}) Z el [xr(| gD —— = (4.6)
where we also used the reality of the character to replace g_1 by ¢ in the torus partition
function. In the limit 7 — 0 each term in the partition function contributes the same leading
term, which is independent of g.
1 1 2mi(_ c

c 27

lim (f,’ft) —e T (—24)6?(—ﬂ)+...

= exp (162I1(ln€> {1+O(ef%ln%)}, (4.7)

where the central charge is ¢ = Ncgeed-

The argument for this is as follows: the modular invariant partition function of the
seed theory is Z(7,7). Consider an element g € Sy which is given by k cycles of lengths
ni,na, - --n, with > pnp = N. In the tensor product theory, the partition function with
g inserted is

(_77_f) = HZseed(_ni;a_nz’i)- (48)

In the limit 7 — 0 the partition function of the seed theory is dominated by the vacuum

contribution

: 1 1 —2m 24,2 24

hm (_77 _ H e nlcseed/ nzcseed/

T7—0 T 7'

1 i=1
~ o~ ZEENCseed/24 o Neseea /24
c 1 L

~ exp <12K In e) , (4.9)
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(a) Defect entropy In g4 for N = 25. (b) In g4 sorted by magnitude for N = 25.

Figure 2. Plots of defect entropy for N = 25.

where we used ) ;n; = N. Putting these ingredients together we obtain

i In Z(K) = 5 0+ (X 15 Denlla)]™) (1.10)
geo

7—0

Consequently, the entanglement entropy in the limit where L is very large can be calculated
using (2.3) and one obtains

L
SAZEm; + (1 - 0g) ln<z N7) le=r - (4.11)

This expression can be simplified using the orthogonality formula of characters and the fact
that characters of Sy are real

‘(1;, S xr(lg)"xs(lg]) = brs - (4.12)

We arrive at the final expression for the entanglement entropy of a topological defect at
the entangling surface.

Sa=CmT - ) i el n (en(a))?). (4.13)

€

Note that the expression for the g-factor is considerably more complicated than the symmetric
one (4.1) which is not surprising since most of the entanglement is localized close to the
boundary of the entangling surface.

We can evaluate the defect entropy from the character table of Sy and the number of
elements in each conjugacy class, which can be calculated using the GAP software package [47]
for large values of V. In figure 2 we present the results for two cases of N = 25 for which there
are 1958 irreducible representations. In the plot on the left the representations are dominance
ordered, i.e. for two partitions A, u of N, one has AD> pif Ay +Xo+-- -4+ X > pr+po+-- -+,
for all 4. In addition, we give the Young diagram associated with the representation which
has the largest absolute value of Ing 4. In the plot on the right, we plot In g4 in order of
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(a) Defect entropy In g4 for N = 35. (b) In g4 sorted by magnitude for N = 35.

Figure 3. Plot of defect entropy for NV = 35.

magnitude. In figure 3 we present the same plots for N = 35, for which there are 14883
irreducible representations.

We can recognize a Zs symmetry in these plots due to the fact that in general a new
irreducible representation can be obtained from an irreducible representation by acting with
the one-dimensional alternating representation. The characters of these two representations
differ only by signs. Since the characters in the formula (4.13) appear squared, we get the
same g4 for both representations.

We can obtain a bound on the defect entropy In g4 given in (4.13) using the fact that
xr(9) < xr(1) for all g € Sy

Z |61;‘ [XR([Q])]an ([XR([Q])F) < Z ‘é’ [XR([Q])]2 In ([XR(l)]Q)

< 2In (dim(R)), (4.14)

where we used character orthogonality (4.12) as well as xg(1) = dim(R). In [48] an asymptotic
bound for the dimension of the representation dim(R) was derived

In (dim(R)) < NInN = N = VN, (4.15)

where c is a constant ¢ ~ 2.5651. This result bounds the absolute value of the defect entropy.
Numerical evaluation for NV < 35 seems to indicate that this bound is not very strong and
it is an interesting question whether a stronger bound exists, but we have not been able
to find one in the mathematics literature.

4.2 Non-universal defects

For the non-universal defect, the defect symmetric entropy is given by taking the logarithm
of the g-factor for the folded boundary state (3.15)

N
9ra = (0] Bi)) = xr(1) (gzg) : (4.16)

which follows from the fact that in the untwisted sector we have IV copies of the RCFT defect.

,10,



For the calculation of the entanglement entropy at the defect, we have to evaluate the
replicated partition function (2.11) with the defect Z which is obtained from unfolding the
folded boundary state (3.14). Writing down the complete partition function is somewhat
cumbersome due to the summation over the centralizer of g, but we should note that following
the same strategy for calculating the entanglement as in section 4.1 still applies and the
leading contribution is obtained from the partition function in the h = 1 sector, before
modular transformation, which gets mapped to the dominant untwisted sector after modular

@) e

The limit 7 — 0 of Z is evaluated by an S-modular transformation using the transformation

transformation

20 = ki) T (5

=1\

Sai
Soi

(2

of the RCFT characters given in section 3.3.

l.
Sai 2K * 1N 1 ’
S0, Sik Sz Xk (—]T> Xk <_J7__)> Feee

(4.18)

N
lim Z(K) ~ lim |C1;’<XR([9]))2KH (Z

T—0 T7—0 . <
g J=1 \i,k,k

The dominant contribution in the 7 — 0 limit in (4.18) comes from the vacuum character

Cseed __ Cseed

X0, which behaves like ¢~ 72¢ ¢~ "2¢ as ¢ — 0. Using this expansion, and the fact that
>.ilj = N for all permutations g € Sy, one obtains

1 1. L

liny 2(8) ~ 3 g (el (£ Sul150? ) exp (e D)+ (@19

Taking the logarithm produces three terms

; _cl, L 1 g 2K 2K o 2—2K
Jimy 0 Z(K) = g5 g g+ (3 g D)) + M In (SIS0l 0 *2) -
(4.20)

Consequently, the entanglement entropy in the limit where L is very large can be calculated

2
) , (4.21)

where we have repeated the calculation of section 4.1 to obtain the second term and used the

using (2.3) and one obtains

sa=Sml_ > i Der(aD] o ([xnl(oD)?) = N 218l In ng

unitarity and symmetry of the modular S matrix, in particular 3°; |Se;|* = 1 as in [15, 16].
It is interesting that for the “maximally fractional” universal defect, the defect entropy In g4
is the sum of the contribution of the universal defect (4.13) and N times the contribution
of the RCFT topological defect [15, 16]. This together with the result for the symmetric
entanglement entropy (4.16) indicates that the maximally fractional defect can be in some
sense viewed as a product of the RCFT and symmetric orbifold defect. It would be interesting
to see whether more general constructions, maybe along the lines of constructions for D-branes
in symmetric orbifolds presented in [46], are possible and lead to a more complicated interplay
between the RCFT defect and the universal defect.

— 11 —



5 Discussion

In this note we have calculated the sub-leading constant term (the g-factor or defect entropy)
of the entanglement entropy of a single interval in the presence of topological defects for
symmetric orbifold CFTs. For the symmetrically placed topological defect (or away from
the boundary of the entangling region), this is simply the quantum dimension of the defect.
For the defect placed at the boundary, the behavior of g4 is more complicated, with a
formula that is reminiscent of a classical Shannon entropy with the characters of Sy and the
modular S matrix taking the role of a probability distribution. We used numerical methods
to evaluate the defect entropy for Sy with N < 35. It would be interesting, in particular
for applications to holography, to investigate whether one can take the N — oo limit of
the characters using the machinery of [49, 50].

We considered non-universal defects that use both the universal Rep(Sy) defects and
topological defects in the seed CFT. It would be interesting to consider topological defects in
seed CFTs relevant for AdS/CFT, namely supersymmetric sigma-models in 7% or K3. The
behavior of the entanglement entropy for non-universal defects factorizes, it would also be
interesting to find defects that have a more complicated interplay between Sy and the seed
CFT, although the construction of defects which satisfy the Cardy-Petkova-Zuber [7, 45]
consistency condition is a challenge at this point.

The behavior of the entanglement entropy with topological defects is particularly simple
in the sense that the logarithmic divergence depends only on the central charge of the orbifold
CFT. For conformal defects, the central charge is replaced by an effective central charge which
depends on the details of the defect in a complicated fashion [14]. It would be interesting
whether there are simple conformal defects sharing properties of our universal topological
defects for which the effective central charge can be computed. This would be particularly
interesting in the light of AdS/CFT since these defects should correspond to branes in the
bulk [36, 46] with finite tension.

We leave these interesting questions for future work.
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