Ring expansion via one-pot conversion of lactone acetals to cyclic
enones. Synthesis of (+)-1-epi-xerantholide.
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ABSTRACT: Baeyer-Villiger oxidation of a-alkoxy ketones 1 provides lactone acetals 2, which react with the lithium salts of
dimethyl(alkyl) phosphonates in the presence of LaCl;*2LiCl to provide cyclic enones 3 in good to excellent yields after treatment
with dilute aqueous potassium carbonate. Thus, five-, six-, and seven-membered lactones are converted to five-, six-, and seven
membered cyclic enones. The utility of this two-step ring expansion method is demonstrated in the synthesis_of (+)-1-epi-xerantholide

from 5-methyl-2-cyclohexen-1-one.

Medium-ring carbocycles form the core of numerous natural
products and may be efficiently accessed by ring expansion
reactions.! Two of the most popular methods for accomplishing
this transformation include the Saegusa reaction,? involving the
thermal or FeCl;-mediated cleavage of silyloxy cyclopropanes,
and the addition of diazomethane or its derivatives to cy-
cloalkanones in the presence of Lewis acids (Scheme 1).'>*
Recently, we have shown that oxidative cleavage of allylic
phosphonates produce carbonyl-tethered [3-ketophos-phonates,
which undergo intramolecular Horner-Wadsworth-Emmons
(HWE) reactions* to produce cyclic enones and enals in good
yields.” Depending on the structure of the allylic phophonate
employed, the overall process results in either a ring expansion
(A—>4) or a ring contraction (B—>5). Drawbacks of this method
include the necessity of preparing and isolating the requisite
allylic phosphonates, as well as the use of ozone for the oxida-
tive cleavage step, which limits the substrate scope of the
process. In an attempt to improve the utility of this reaction
specifically for ring homologation, we envisioned that suitably
modified lactones could serve as direct precursors of the car-
bonyl-tethered p-ketophosphonate intermediates.® Inspiration
for this approach came from Corey’s previously reported enol
lactone to enone conversion.” To avoid the difficulties inherent
in the regioselective preparation of enol lactones, as well as to
expand the scope of enones prepared by this conversion (in-
cluding those containing stereochemistry at the y-carbon atom,
Scheme 1), we decided to explore phosphonate anion addition
to lactone acetals 2, which could be readily prepared by re-
gioselective Baeyer-Villiger oxidation® of cyclic a-alkoxyke-
tones 1.
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Herein we provide details of our investigations and an applica-
tion of this new ring-expansion protocol to the synthesis of
(2)-1-epi-xerantholide.

A series of a-alkoxy ketones (1a-1h), prepared by alkene or silyl
enol ether dihydroxylation and protection reactions (see Supporting
Information), were exposed to MCPBA at room temperature to
afford the corresponding lactones (2a-2f and 2h) regioselectively
and in good to excellent yields (Table 1).° The reaction allows
preparation of six-, seven-and eight-membered lactones from five-,
six, and seven-membered cyclic ketones, and substrates bearing
silyl ether or acetal oxygen protecting groups are well tolerated.
One challenging substrate was the quaternary center-containing
compound 1g derived from 3-carene, which provided less than 10%
yield of the corresponding lactone, likely due to steric hindrance at
the ketone carbonyl carbon. It was subsequently found that similar
lactones of the type 2j (Table 2) could be prepared by acid-cat-
alyzed cyclization of y-keto-acids in alcohol solvents.*
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Scheme 2. The effect of BF;*OEt, or LaCl;*2LiCl on addition of
phosphonate anions to lactones.

We next attempted the addition of the anion of dimethyl-
methyl phosphonate® to the representative lactone 2b (Scheme
2). Treatment of 2 equiv dimethylmethyl phosphonate in THF
at -78 °C with 2.2 equiv BuLi, followed by the addition of 2b
resulted in disappearance of starting material within 5 minutes
at -78 °C; after quenching the mixture with saturated NH,CI
solution, alcohol 9 was obtained in 50% yield as a mixture of
diastereomers (Scheme 3). Reduction of the number of equiva-
lents of phosphonate anion (1.1 equiv) yielded only 9 (35%) and
recovered 2b. Previous work by Lequeux" on the addition of o-
difluorophosphonate anion to lactones indicated the beneficial
effect of BF;eetherate on reaction yields. Following this proto-
col, we treated dimethylmethyl phosphonate (2 equiv) with n-
BuLi (2 equiv) at -78 °C in THF for 30 minutes, and then added
BF;OEt; (3 equiv) before addition of 2b (1 equiv). After stir-
ring the reaction mixture for 15 minutes, complete consumption
of the starting material was observed by TLC, whereupon sat-
urated NH,CI solution was added. Dissolving the crude oil
obtained after work up in 1:1 THF : H,0 (0.5 M) containing
K,CO; (4.5 equiv) provided cycloheptenone 3b in 72% overall
yield after 10 minutes stirring at room temperature. Utilizing
LaCls*2LiCl (2 equiv) in place of BF;*OEt, furnished 3b in 85%
isolated yeld.”? Thus, the addition of Lewis acids appears to
suppress premature opening of the lactol alkoxide intermediate
at -78 °C.

Table 1. Regioselective Baeyer-Villiger oxidations® of ketones 1

with MCPBA.
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“Isolated yields after column chromatography. ® Obtained as
a 1.6:1 mixture of anti:syn diastereomers.” ¢ Obtained as a
1.4:1mixture of anti:syn diasteromers.” ¢ Isolated yield of 2c.
*[solated yield of 2d. " Obtained as a 5:1 mixture of anti:syn
diastereomers.” & For the synthesis of 1g, see reference 23.

Due the lower equivalence of Lewis acid required and the
slightly higher yields obtained, commercially available THF
solutions of LaCl;*2LiCl (0.6 M) were utilized in our subse-
quent studies.



Table 2. The lactone (2) to enone (3) conversion.
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3j.

We next surveyed the scope of the two-step one-pot phos-
phonate addition/intramolecular HWE reaction on lactones
2a-2j. Five-, six, and seven-membered lactones can be trans-
formed cleanly into five-, six, and seven-membered cyclic
enones in good to excellent yields, with the reaction tolerating
the presence of TES (entry 5) and TBS ether (entries 1-3) pro-
tecting groups as well as ethoxymethyl acetals (entry 4)*' and
alkyl acetals (entry 7). Notably, the quaternary center-contain-
ing substrates 2f and 2j smoothly provided the corresponding
enone products 3f and 3j in 78 and 85% yields, respectively.
Only eight-membered lactone 2h failed to produce the corre-
sponding eight-membered enone 3h, likely due to the well-
known entropic penalty for cyclizations leading to eight-mem-
bered rings.

To explore the utility of this method for the prepara-
tion of a-substitued enones,” we next attempted the addition of
the anion of diethyl ethyl phosphonate to lactones 2i and 2j.
Gratifyingly, enone 3k was obtained in 61% yield and enone
3l, containing a tetrasubstitued olefin, was prepared in 92%
yield.
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Scheme 3. Formation of a-substitued enones with diethyl
ethylphosphonate.



The sesquiterpene lactone xerantholide was isolated from the
aerial parts of Xeranthemum cylindraceum by Hladon et al.”® and
was demonstrated to have significant cytostatic activity toward KB
and HeLa-type tumor cells;'* subsequently it was found to also
possess anti-gonorrheal and anti-plasmodium activities." To
demonstrate the synthetic utility of the seven-membered cyclic
enones available from the present ring-expansion protocol, we
undertook a synthesis of (+)-xerantholide proceeding from enone
3b. Exposure of the lithium enolate of 3b to 2-
methylenenitropropane according to the protocol of Alexakis'®
provided enone 11 as a 4:1 mixture of anti:syn diastereomers in
65% yield. Treatment of 11 with potassium tert-butoxide in THF
and t-BuOH at 40 °C for one hour provided cyclopentenone 12 in
82% yield."” Attempted 1,6-addition®® of the sodium salt of
dimethyl malonate to 12 met with limited success, even under
forcing conditions (sealed tube, 100 °C, 48 hours), with only
starting material recovered from the reaction. Following the
precedent of Ohmori," it was subsequently found that 1,4-addition
of dimethylmalonate to 11 under basic conditions proceeded
smoothly to furnish 13, which was immediately treated with a 1M
solution of potassium tert-butoxide in THF at room temperature to
provide 14 in 75% overall yield."” Compound 14 was treated with
TBAF (2 equiv) in THF to remove the silyl ether, and hydrolysis of
the methyl esters was accomplished with 2N NaOH in MeOH for 2
hours, to provide intermediate diacid 15.
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Scheme 4. Preparation of enone 14 from 3d.

Exposure of the diacid to diethylamine in the presence of
formaldehyde in CH;CN at 80 °C for 2 hours accomplished decar-
boxylative methylenation;* treatment of the crude hydroxy acid
with EDC and DMAP in CH,Cl, overnight furnished 16. Cross-
peaks (C.1<->C.8) observed in the NOESY spectrum of 16
confirmed the relative stereochemistry of the compound, which
possessed the epimeric configuration at C.1 relative to
xerantholide.

Attempted isomerization at C.1 to xerantholide via low-tem-
perature protonation of the cyclopentadienyl anion arising from
LDA treatment of silyl enol ether 17 failed, providing instead
extensive substrate decomposition. All other attempts to iso-
merize the C.1 position of compounds 11 and 12 under acidic
or basic conditions proved fruitless.

In summary, we have demonstrated the utility of a one-pot
lactone-acetal to enone conversion, leading to an efficient two-
step ring homologation protocol that avoids the use of ozone
and the isolation of phosphonate-containing intermediates. In
addition, this process extends the utility of Corey’s enol-lactone
to enone conversion by allowing the preparation of products

(for example, 3¢, 3d, 3e, and 3f, Table 2) containing stereocen-
ters at the enone y-position.
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