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We describe the cluster of large deviations events that arise when one
such large deviations event occurs. We work in the framework of an infinite
moving average process with a noise that has finite exponential moments.

1. Introduction. Equity premium is a common notion in finance. It is the difference
between long-term cumulative returns on the stock and the safe interest rate returns (see,
e.g., Goyal and Welch (2003)); it enters as input into stock options issued on a regular basis.
Long-term persistence in climate refers to the phenomenon where climatologically relevant
parameters (e.g., the temperature) take higher than usual mean values over multiple time long
periods (see e.g., Rybski et al. (2006)). What these diverse themes and many others like them
have in common is that in the critical cases one observes a time series over long intervals
where it averages out to “unexpected” values. These unexpected values cluster. What type of
probabilistic analysis should address such phenomena?

A very crude classification of how we analyse random systems might split the work into
distributional analysis and large deviations analysis. The distributional analysis deals with
the “usual” deviations of a system from its “average” state, while the large deviations analy-
sis deals the “unusually large” deviations, that are, by necessity, rare (but may have a major
impact). The idea of clustering is a major idea in how we look at random systems. Cluster-
ing typically means that certain related events occur “in proximity to each other” and, when
it happens, the impact of the events may be magnified, as in the situations we started with.
Clustering is also interesting in its own right because it may shed light on certain structural
elements in a random system. Clustering is most frequently studied in distributional analysis;
an important example is clustering of extreme values; see, for example, Embrechts, Kliippel-
berg and Mikosch (2003). In the above examples, however, one is interested in clustering of
“unexpected” values over long time periods. The point of view of large deviations is, there-
fore, called for.

In this work we discuss clustering of large deviations events. From a different point of
view, we would like to understand whether or not a (rare) large deviations event is likely to
cause a cascade of additional large deviations events and, if so, what does this cascade look
like. Literature on large deviations analysis is vast, however to the best of our knowledge,
clustering has not been considered even in the i.i.d. case; the applications we have in mind
call for models with dependence. The nature of large deviations is known to be different in
stochastic systems with “light tails” and with “heavy tails”. The texts such as Dembo and
Zeitouni (1998) or Deuschel and Stroock (1989) describe large deviations of light-tailed sys-
tems, while Mikosch and Nagaev (1998) will give the reader an idea of how large deviations
occur in heavy-tailed systems. Large deviations are affected not only by the “tails” in a ran-
dom system, but also the “memory” in that system, in particular by whether the memory is
“short” or “long”. The change from short to long memory in a system can be viewed as a
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phase transition (see Samorodnitsky (2016)), and it affects large deviations as well. In this
work we study clustering of large deviations in a light-tailed system, but we will consider
both short memory and long memory situations.

Let us now be more specific about the class of stochastic models we will consider. We will
consider centered infinite moving average processes

o
(1.1) Xo= Y aiZp_i, nel,
1=—00

where (Z, : n € Z) is a collection of i.i.d. nondegenerate random variables (the noise) with
distribution Fz satisfying

(1.2) / e'*Fz(dz) <oo forallteRR,
R

and
(1.3) A;ze(dz) =0.
For future reference we denote
(1.4) o2 = /R 2Fy(dz).

Let...,a_1,a9,ai,az...be real numbers satisfying

o0
(1.5) Y aj <o
j=—00

Since the assumption (1.2) implies that the noise variables have a finite second moment, the
zero mean property assumed in (1.3) and the square integrability of the coefficients (1.5)
imply that the infinite sum in the right hand side of (1.1) converges in L? and a.s. and defines
a zero mean stationary ergodic process. Therefore, for ¢ > 0 the event

1n71
Eo(n, ) = :; DX ze}
i=0

is, for large n, a rare, large deviations, event. We would like to understand whether occurrence
of this event may cause a cascade of related events. Specifically, for j > 0 we denote

1n—i—j—l
(1.6) Ej(n,S)Z{; ; Xi28},

so that each event E(n, ¢) is equally rare, and we would like to know how many of the
events for j “reasonably close to j = 0" occur if Ey(n, €) occurs (the reason for the qualifier
“reasonably close to j = 0 is that by ergodicity, the events E(n, ¢) will keep recurring
eventually, regardless of the structure of the system).

The difference between short memory infinite moving average processes and long memory
infinite moving average processes lies in the rate the coefficients (a,) converge to zero (sub-
ject to the square summability, of course). This will lead to markedly different cascading of
the events E;(n, ¢), conditionally on the event Eq(n, £) occurring. In this paper we consider
the short memory processes; the long memory case is studied in another paper—Chakrabarty
and Samorodnitsky (2023). Specifically, we describe the limiting distribution of the large de-
viation cluster caused by the rare event Eg(n, ¢) as well as the behaviour of the size of that
cluster as the overshoot & becomes small. It turns out that for such ¢ the size of the cluster is

of the order 2.
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Our main results on the cluster of large deviations for short memory infinite moving aver-
age processes are in Section 2. They are presented in a somewhat more general way than dis-
cussed so far. Even though the “causal” point of view encourages us to consider the “forward”
large deviation events Ej(n, ¢) in (1.6) for j > 0, in certain situations it is also interesting
to look at the “backward” large deviation events E(n, ) with j < 0, and this is included
in Section 2. The concluding Section 3 contains a discussion of the results we obtain and
connects them to what one may expect when the memory becomes long.

2. Short memory moving average processes. We follow the common terminology and
say that the infinite moving average process (1.1) has short memory if

o0 .¢]

2.1 > lanl<oo and ) a, #0.

n=—00 n=—00

Large and moderate deviations for such processes have been studied in, for example, Jiang,
Wang and Rao (1992) and Djellout and Guillin (2001).

We investigate the clustering of the rare events (E(n, £)) in the following way. We will
show that the conditional law of the process of occurrences of the large deviation events,

2.2) ((Ej(n,e), j € Z)),

given Eg(n, ¢) has a nondegenerate weak limit and describe that limit. This will show, in
particular, that for fixed K_, K4 € Z the joint conditional law of the total numbers of occur-
rences among the last K_ of the events (E(n, £)) before 0 and the first K of the events
(Ej(n,¢)) after 0,

-1 Ky
(2.3) vn(K,K+,8)(-):P[< > 1(Ej(n,e)),21(Ej(n,e)))e-|E0(n,e)}

Jj=—K_ Jj=l1

has a weak limit. That weak limit itself converges weakly, as K_, K4+ — 00, to an a.s. finite
random variable that we interpret as the size of the cluster of large deviation events containing
a large deviation event at time zero. An interesting regime is that of a small ¢ > 0, and we
show that a properly normalized size of the cluster of large deviation events converges weakly,
as ¢ — 0, to an (interesting) limit. As we have explained above, the limits should be taken in
this specific order.

To state the main results of this section we need to introduce some notation first. Denote

—1

0 [e.e]
(2.4) A= Y ay= ) an+ Y ap:=A" + A"

n=—oo n=—0oo n=0

In the sequel we will assume that A > 0. Note that, in view of (2.1), this introduces no real
loss of generality because, if the sum is negative, we simply multiply both (Z,) and (a,) by
—1 and reduce the situation to the case A > 0 we are considering. Further, forn =0, 1,2, ...
we write

n n
(2.5) A, =) a_j, A=Y "a;.
j=1 j=0
Next, we let

(2.6) wz(1) =10g<_/Re’ZFz(dz)), relR
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be the log-Laplace transform of a noise variable. For 6 € R we denote by Gg the probability
measure on R obtained by exponentially tilting Fz as follows:

2.7) Go(dx) = e ?2OHxF (4x),  xeR.
Further, let
so=sup{x e R: Fz(x) < 1} € (0, 0]

be the right endpoint of the support of a noise variable. We will consider the events (E(n, €))
for ¢ satisfying

(2.8) 0<e/A < sp.

The function ¢z is infinitely differentiable, and its first derivative ¢/, strictly increases from
0 atr =0 to sg as t — oo. Therefore, for ¢ satisfying (2.8), we can unambiguously define
T(¢) > 0 by

(2.9) 97 (T(e)) =¢/A.

We now introduce a collection {Z 7 : j € Z,u =+ or —} of independent random variables
with the following laws:
20~ Grear-atpar JZ 1L
Zj ~Greyarrarya J 20
(2.10) N .
Zoj~ Groap ranyar 121

+ o ;
Zj ~Greya—apyn J20.

Finally, let T* be an exponential random variable with parameter 7 (¢)/A, independent of the
family (2.10).
It is elementary to check that for any j € Z and u = + or —,

E(\zy|)5/R|x|GA,.AT(8)(dx)+/R|X|G_A,,Ar(s)(dx)<oo,

where
_ o0
A= )" layl
n=—oo
Therefore, the infinite series
o0
(2.11) U =Y aZ,, neZ,
1=—00
o0
(2.12) Uf= > &z, nek
1=—0Q

converge in L' and a.s. We define

(2.13) Vi(e) =
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REMARK 2.1. Itis instructive to see what the above random objects become in the i.i.d.
case ag = 1, a; =0 for all i # 0. Then U__j = Z:j ~G,j>1, Uj_ = Zj_ ~ G, ] =0,
Ut =27, ~Gre),j =1, U =Z] ~G, j 0. The processes Y U —Ub), =1
and ) _;_ :1 j (Ul-+ —U;7), j <0 become independent random walks with the same step distribu-
tion, that of the difference A — B of independent random variables, A ~ G (), B ~ G. That

is, V;(¢) for both positive and negative j are equal to 1 as long as these random walks stay
below level T, and then they vanish.

We are now ready to state the main theorems of this section. They rely on a technical
assumption, excluding the case of a lattice-valued noise. We assume that

(2.14) ‘/ e Fy(dz)| < 1 for any ¢ # 0 where i = v/ —1.
R

Our first result describes the behaviour of the sequence of conditional laws of the process
of the overshoots of the level ne by the partial sums of length n. This leads to the limiting
behaviour of the sequence of conditional laws of the process of occurrences of the large
deviations events (2.2) and of the sequence (2.3) of the total number of occurrences among
the first K of the events (E | (n, ¢)). The weak convergence of sequences of random variables
stated in this theorem occurs in the usual topology of finite-dimensional convergence in R*
(or its restriction to {0, 1}°°).

THEOREM 1. Assume that (2.1) holds and A > 0 in (2.4). Assume, further, that the char-
acteristic function of the noise variables satisfies (2.14). Let € be as in (2.8). Then, as n — o0,

j+n—1
P(( > Xi—na,jeZ) e-lEo(n,8)>
i=j

-1 -1
(2.15) :>(T*+ZU;—ZU?J=---,—2,—1,
i=j i=j

j—1 j—1
— + T
T*_E U, —i—E Ui,]_0,1,2,...>
i=0 i=0
in R, In particular,

(2.16) P((L(Ej(n,¢), j €Z)) € -|Ep(n,e)) = P((V(e), j €Z) €")
in {0, 1}°°. Furthermore, for every fixed K_, Ky > 1, the conditional laws (v,(K_, K4, €))
in (2.3) satisfy
-1 Ky
217  va(K_, K4, 8)() = P[( > Vi, Y, Vj(s)> € } asn — oo,
j=1

j=—K_

REMARK 2.2. The limiting process of overshoots appearing in the right hand side of
(2.15) has a remarkable property. Define

~1 ~1
exp{T* +Y U7 - ZUi+}’ J
i=j

i=j

j—1 j—1
exp{T*— YU+ ZU,*}, Jj=0,1,2,....
i=0 i=0

) _2’ _1’

(2.18) Y; =
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We claim that the process Y = (Y, j € Z) satisfies the following time change formula:
(2.19) E[H(tB/Y)I(Y_; > 1/)] ="/ E[H(Y)1(Y; > 1)]

for every j € Z, t > 0 and every measurable bounded functional H on [0, c0)*°. Here B is
the usual backward shift operator on [0, c0)*°.

The time change property (2.19) has been known to be an important property of the so-
called tail process in extreme value theory. Specifically, if (W, j € Z) is a nonnegative sta-
tionary process with multivariate regularly varying tails with exponent « > 0, then the con-
ditional law of (W; /Wy, j € Z) given Wy > w has a weak limit, as w — oo. This limit is the
law of the tail process, described by Basrak and Segers (2009), who also discovered the time
change property, with the exponent 7 (¢)/ A replaced by « (allowing nonnecessarily nonnega-
tive values, and in dimensions greater than 1). This property has become the subject of further
investigations; we refer the reader to its recent presentation in a book form in Theorem 5.3.1
in Kulik and Soulier (2020).

The tail process in extreme value theory arises in the distributional context of tail behaviour
of stationary processes with regularly varying tails. The limiting process Y in (2.18) arises in
the context of large deviations of stationary moving average processes, without any presence
of regular variation in the underlying model. This makes appearance of the time change prop-
erty here unexpected. It would be interesting to investigate how widespread this phenomenon
is in the realm of large deviations, but we are not pursuing this question any further in this
paper.

In order to prove that the process Y in (2.18) satisfies (2.19), suppose first that j > 0. It is
elementary that the Pareto-distributed random variable W = e’ * has the property

(2.20) 1" OAER(W)L(W > 1)] = E[h¢W)1L(W > 1/1)],
valid for any ¢ > 0 and any bounded measurable function /. Using this property we have
" OAE[HY)1(Y; > 1)]

-1

= tf(g)/AE|:H<Wexp{ > (U7 - U,-+)}, ki=...,-2,-1,

i=ky

ky—1
Wexp[ > (U - U;)},kzzo, 1)

i=0

x 1<Wexp{§(Ui+ — U;)} > z)}

i=0

-1
=E|:H<tWeXp{Z(Ui_ —Ul.+)},k1 =...,—2,—1,

i=ky

ky—1
tWexp{ > (Ut - Ul._)},kz =0,1,.. )

i=0

x exp{¥ E(U;L — U;)}l(w exp!S(Ui_ - Uﬁ)} > 1/;)}.

i=0

=l

The factor
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under the expectation in the right hand side introduces additional exponential tilting into
the random variables Z;lt in (2.10). Specifically, it is a matter of straightforward calculus to
check that, distributionally, Z; becomes Z and zZ7t 4 becomes zZ7 d—j for every d € Z. That

is, distributionally, U becomes Un_ j for every n € 7. Therefore,

t"OAE[HY)1(Y; > 1)]

—1
:E[H(tWexp{Z(Ui__j —Uitj)},kl =...,—2,—1,

i=k|

ko—1
tWexpl Z (Uitj — Ui_j)},kz =0, 1,...)

i=0

x 1<Wexp{§(Ui_—j - Uitf)} - l/t)}

i=0
= E[H(tB’Y)1(Y_; > 1/1)],

with the last step following from a rearrangement of indices. This proves (2.19) for j > 0.
Finally, if j < 0, then we apply (2.19) to j = —j, f = 1/t and H(-) = H(tB’-), proving
(2.19) in this case as well.

REMARK 2.3. The conditional limiting behaviour described in Theorem 2.1 reflects the
nature of large deviations for weighted sums of random variables with exponentially light
tails: the terms in the sums “conspire to change their distributions just right” to make the rare
event happen (and the change in distributions is reflected in the exponential tilting). As the
tails become heavier, the nature of large deviations gradually changes from a “conspiration”
to a “single extraordinary value” phenomenon. This will result in a change of how large
deviation events cluster. We outline it in a simple example and leave a full discussion to a
different occasion. Consider the finite moving average X, = Z,, + Z,,—1, n € Z, where (Z,)
are i.i.d. 0 mean random variables whose right tail is regularly varying with exponent « > 1.
Then

n—2

Sh=Z_1+7Z,1 +22 Zi,

i=0
and the event Eg(n, ) is, asymptotically, equivalent to the event that (exactly) one of the Z;
withi =0,1,...,n — 2 is larger than ne/2, with equal probabilities (it also possible that Z
or Z,_1 > ne, but the probability of this goes to 0 as n — 00). For any j > 1, the probability
that this exceptional i is in the range j, ..., n — 2 converges to 1, and the corresponding term
2Z; is also a part of the sum Zj:?fl Z ;. Therefore, the conditional probability of E;(n, ¢)
given that Eg(n, €) occurs converges to 1 for every j > 1, as n — oo.

It is natural to interpret the statement of Theorem 1 as saying that a large deviation event
Ey(n, &), upon occurring, leads to random clusters of large deviation events in the past and
in the future. The limiting (as n — 00) total sizes of these clusters have the joint law of

(2.21) (D7, D) = (Z Vi(e), ZV(S)) e>0.

j=—00

Our second result of this section shows that for small & > O these total cluster sizes are a.s.
finite and describes their joint limiting behaviour as the overshoot ¢ — 0.
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THEOREM 2. Under the assumptions of Theorem 1, the total cluster sizes D, , D} are
a.s. finite for ¢ > 0 small enough. Further, as ¢ — 0,

oo
(e2D;,e’Df) = <A20§ /O 1(To > (V2B +1))dt,
o
A%%/O 1(To > (V2B +t))dt>,

where A is the sum of the coefficients (2.4) and O'% is the noise variance (1.4). Furthermore,
Ty is a standard exponential random variable independent of two independent standard Brow-
nian motions (B;E 1t >0).

We prove Theorem 1 first, and so ¢ > 0 (satisfying (2.8)) is for now fixed. The proof is via
several technical lemmas, and we first sketch the flow of the argument. To simplify the nota-
tion we will write E; instead of E(n, ¢) throughout. We start by deriving a nonlogarithmic
asymptotic formula for the probability of E(, which we use to show that, conditionally on
Ey, all noise variables remain uniformly bounded in L and, further, jointly weakly converge
to the appropriately exponentially tilted laws. This allows us to prove that the sums of finitely
truncated moving averages converge weakly, and this takes us very close to the finish.

We now embark on the technical details.

LEMMA 2.1. Denote

n—1
(2.22) Se=>_Xi, nx=1,
i=0
and let
(2.23) Yn(t) =n"'log E(e"S"), teR,n>1.

Then for all large enough n there exists a unique 6, > 0 such that

‘//;;(Qn) =é&.

Furthermore,

C
P(Eg) ~ - exp(—n(Ope — ¥, (6n))), n— oo,

NG
with

1
C= ,

T(e),/2m (T (e))

and ¢z and 7 (&) defined, respectively, in (2.6) and (2.9).

PROOF. We write

n—1 e’}
S, = Z(A,j_l_j +A7)Zj+ Z(AJ_ — A7 ,)Z,
Jj=0 j=n

(2.24)
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with A}, A, defined by (2.5) and check the conditions of Theorem 3 in the Appendix. As a
first step we show that

(2.25) lim /(1) = A%l (Ar)

locally uniformly in ¢ € R. Indeed, by (2.24),

1 n—1 00
0= 1| Son Ay + A7+ Soal(a7 470

(2.26)

+Z¢Z ]+n1 Aj—l)t)]'

It is easy to see that

n—1

1
(2.27) lim = > (AF 4+ A7) 0h((AF__; + A7)r) = A%l (An).

n—o0
e

Indeed, for every 0 < n < 1/2,

[(1=m)n]

1
> (A AT R (A + A — (=2 A%p5(AD),
J=[nnl]

since the terms in the sum converge uniformly to the limit. Furthermore, since ¢’ is locally
bounded,

1[nn]1 5 N
"
Z nlj )QOZ((An1]+A))<Cn

for some finite constant C. Since the second remaining part of the sum in (2.27) can be
bounded in the same way, by letting first n — oo and then n — 0 we obtain (2.27). Further-
more, as n — 0o,

o0

S (AT AT (AT~ A (Z ot = A7)

j=1 =1

j=1 i=j
n oo
= 0<ZZ|aj|) =o(n).
i=1j=i
Since the second sum in (2.26) can be estimated in the same way, and all these steps are
locally uniform in # € R, (2.25) follows. Since this argument also shows that v, is, uniformly

in n, locally bounded, and the values of v, ¢z and their respective first derivatives at O are
0, we also conclude that v, is, uniformly in n, locally bounded and for every ¢ > 0,

lim v, (1) = Agz (A1),
Jim (1) = pz(AD).

The assumption (2.8) together with (2.28) implies that for large n there exists a unique 6, > 0
such that ¥/, (6,) = ¢, and that

(2.29) lim 6, = A"z (o).
n—oo

(2.28)
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We choose n; so large that for n > ny, 6, is well defined, A/2 < Ajl'_l_j + A/T < +/2A for
alln/3 < j <2n/3 and 6, < V2t(e)/A.
We claim next that for fixed §, A > O there exists 1 € (0, 1) such that
1 .
(2.30) sup |————E (et = 0(n"), n— oo,
s<lr|=26,| E (€%5n) ( )|=0)

with the convention that the supremum of the empty set is zero. To see this, note that ¢ :
R? — C defined by

E(e(e—i-it)Z),

0.0 = a7

is continuous. For a fixed 0 € R, ¢ (0, -) is the characteristic function of the distribution Gy
in (2.7). By (2.14), Gy is not a lattice distribution and, hence, for any fixed A, § > 0 and 6,

sup |p @, 1) <1.
A8/2<|t|<2rt(e)
A standard compactness argument and (2.29) imply that

ni= sup | (0n (AJr

_ 1/3
n—l—j+Aj)’t)‘> <1,
n>n1,n/3<j<2n/3,A8/2<|t|<2At(¢)

while the choice of n| implies that for n > j > ny and § < [t]| < AG,,

A8/2 < |(Ay_ _j + A7)t <24t (e).

Therefore, by (2.24) and the triangle inequality,
[2n/3]

%) < T @A+ A7) (A7 +47))
j=[n/3]+1

1
E (ePnSn)
<",

establishing (2.30).
We have now verified all conditions of Theorem 3 for 7,, = S,,, a, =n, m, =€ and 1, =
6, and (A.7) gives us the statement of the lemma. [J

We proceed with showing uniform boundedness of conditional moments of all noise vari-
ables.
LEMMA 2.2.  We have

2.31) sup  E(|Z]|Eo) < oc.
n>1,jeZ

PROOF. Fix j € Z and define
Sn,j=Sn_,Bn,ij, n>1,

where
AT — AT, 1<n<j,
Bnj=1, % " _ .
A _jTA;,, nzj+1
if j > 0and
ﬁn,j=Ajl__1_j—Ai_j_1, n>1
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if j < —1, with S, is as in (2.22). It follows from (2.24) that S, ; and Z; are independent.
We define

(2.32) Un j(t) =n""og E(e7), teR.

Since the numbers (B, ;) are bounded uniformly in j and n, it follows that the functions in
(2.23) and (2.32) satisfy

Yn(0) =, ;(0)+0(1/n),

with O(1/n) uniform over j and 8 in a compact interval. The same argument as in Lemma 2.1
shows that for large n there exists a unique 6, ; > 0 such that

%,j(én,j) =¢.
Since ¢/, is locally bounded away from zero, it follows from (2.28) that
(2.33) On.j = On + O(1/n)
with O(1/n) uniform over j. This also implies that
(2.34) Yn(On,j) = Yu(6n) + O(1/n).

For large n we can write
E(I1Z;|1(Ep)) = /RlzlP(Zj € dz)/Rl(s + Bn,jz=ne)P(Sy,,j €ds)
= exp{—1(0n.j& — Y On )} /;R Izle:”’fﬁ"’sz(Z:,j €dz)
X /[n.s—ﬂ,,,jz,oo) exp(—0y, (s — ne))P(S, ; €ds),

where S,f i and Z;’l‘ jare independent random variables with Z,’: j having distribution G9~ B
, N ) n,jPn,j
and

1
 E(exp(Bn,;Sn.j)
It follows from (2.33) and (2.34) that, uniformly over j,

exp{—n(én,je — wn(én,j))} = O (exp(—n(0pe — ¥n(6n))))
= O(+v/nP(Ep)),

with the second line implied by Lemma 2.1. Therefore, to complete the proof it suffices to
show that, uniformly in j,

P(S;; e ds) i P(S, ; eds).

/ |Z|efén,jﬂn.]'ZP(Z:’j € dz)/ exp(—6,,j(s —ne)) P(Sy ; € ds)
(235 'R [ne—PBn, j2,00) -

= O(n_l/ 2).
This will follow from the following claim: there is C” > 0 such that for all n large,

(2.36) P(y<S;;<y+1)<Cn”'2 yeR,
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uniformly in j. Indeed, suppose that this is the case. Then for large n and every z € R,

/ exp(—én,j(s - ns))P(S;l"j €ds)
[ns—ﬁn,jz,oo) ’

oo ~ .
< Ze—Qniyj(j—l_ﬁn,jZ)P(S:’j —ne— By jzelj—1, j))
j=l1

1

’

< C’n_l/zeé"’jﬁ’LfZ(I — e_é”J)_
which shows (2.35).
It remains to prove (2.36). We start by observing that for M > 0
P(Sy i >nM) <exp{n[Pn,jOnj+ 1) = ¥n j6nj) — MOy j]}.
Since the values of both lﬁn, j(én, j+1) and 1},1 j(6~?,,, j) remain within a compact set inde-

pendent of n and j, while 6, ; converges, uniformly in j, to A~l7(e) > 0, we see that by
choosing M large enough we can ensure that there is ¢ > 0 such that for all n large enough,

P(S, ;>nM)<e™™ forall j.

An identical argument shows that, if M > 0 is large enough, then there is ¢ > 0 such that for
all n large enough,

P(S, ; <—nM)<e™ " forall j.

That means that it suffices to prove that (2.36) holds for all |y| <nM, uniformly in j.
Notice that by part (b) of Theorem 3, for any & > 0 there is C}, > 0 such that

(2.37) Py<Si<y+h)<Cmn 2 yeR,

where S is a random variable with the law

* 1 Ons
P(S¥eds)= —————e"P(S, eds).
E(exp(6,Sy))
Write
E@exp(@n,jSu.;)) 1

P(y<S:<y+h)=

E(exp(6,51)) E(exp(én,an,j))
X / exp{(Oy — 0. )s )1 P (S, € ds).
[y.y+h]

By (2.33), the factor exp{(6, — 6. ;)s} above is uniformly bounded away from zero over
s €[y,y+hl, |yl <nM and j.Furthermore,

E(exp(n,jSn,))
E(exp(6,Sn))
and it follows from (2.34) and uniform boundedness of the argument of ¢ that the ratio

above is bounded away from zero over n and j. We conclude that for some ¢ > 0, for all n
large enough and |y| <nM,

= exp{—n[¥n 1) — ¥uOn. )] — 072G, i Bu. )}

1
E(exp(én,an,j))
>cPO<B;Z<h—DP(y<Si;<y+1).

Since B, ; is uniformly bounded, we can choose & large enough such that P(0 < 8, ;Z <
h — 1) is uniformly bounded away from zero, and (2.36) follows from (2.37). O

Ply<S,<y+h)=c

/ s p(s, e ds)
[y,y+h]

The next, final, lemma is a major ingredient in the proof of Theorem 1.
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LEMMA 2.3. For a fixed k > 1, the conditional law of (S, — ne,Z_g,... ... A
Zn—ky---, Zntk) given Eqy converges weakly, as n — 00, to the law of

(T*Z 4. 20,25, Z).

PROOF. Consider the following truncated version of Sj;:

i’l—k—] o0
Se= Y (Ar_;+AD)Zi+ )Y (A7 —A7)Z;
j=k+1 j=n+k

o0
+ Z (A;'r+n—1 —A;F_I)Z_j,
j=k+1

n > 2(k + 1). We claim that there exists ¢, > 0 such that for any x € R and any sequence
Xy —> X,

(2.38) P(S, > ne + x,) ~ cpe ¥TE/A,
To show this we proceed as in the proof of Lemma 2.1. Let
Va(t) = n_lE(ets"), treR.
Repeating the argument in Lemma 2.1 shows that
(2.39) Jim 7/ (6) = A% (AD)
locally uniformly in ¢ € R, and that for large n there exists 6, > 0 such that

Ul (6,) =,

2.40 _
(240) lim 6, = A7z (o)
and
(2.41) Py > ne) ~ = exp(—n(foe — Fu@), 1 —
. W > NeE ﬁexp n(6,e — ¥, (6,))), n— oo,

with C as in Lemma 2.1. The same argument shows that, if x, — x, then for large n there
exists 6 x > 0 such that

‘Lr/l(én,x) =&+ n_lxn,
(2.42) ) _ 1
lim 6, ,=A""t(¢)
n—00

and
(2.43) P(Sy > ne +x,) ~ % exp(—n(fnx(e +n1x0) — ¥u(Bnr))), n—> o0
n

The mean value theorem applied to (2.40) and (2.42), together with (2.39) implies that
Azw%(f(e‘))(én,x — ) =n""x, + O(fl_]) =n"lx+ o(n_l),

We use this fact together with another application of the mean value theorem. Keeping in
mind (2.40) and the locally uniform boundedness of the second derivative implied by (2.39),
we see that

1 &ex

T A N o d_ L -1
VnOn) = ¥nOn) = 2y +ol ).



3240 A. CHAKRABARTY AND G. SAMORODNITSKY

Putting together the above two displays, we see that
(én,x - e_n)g - 1/_fn(én,x) + l;[_/n(én) = O(n_l),

which in conjunction with (2.43) establishes (2.38) with ¢, given by the right-hand side of
(2.41).
Finally, for > 0 and a compact rectangle R C R¥*+2,
P([Sn —ne>t,(Z_p,.... 2k, Zn—ky.-.r Znyk) € R] N E())
= P(Sn —ne>t,(Z_py.... Ziy Zn—ky---r Znyk) € R)

k
= P(S‘nZns—i-t—Z(A;l"l A7)
(X—fyenns XksY—ks--s VK)ER =0
k k k
- Z(A;r+n—1 AT x—j - Z 1T AL —->.(A ntj j)
j=1 j=1 =0

(2.44)
Fz(dx_i)...Fz(dx)Fz(dy—t) ... Fz(dyy)

k
_ () _
~cpe T(S)’/A/ exp —<E (A* +A7)x;
" (X—kseees Xk, Y—kre-s E)ER A 7

j=0
k k k
+Y (AT = AT x4+ D (AT A )y + ) (AT - A;)yj>}
j=1 j=1 j=0
Fz(dx—y)...Fz(dxp) Fz(dy—t) ... Fz(dyr)

as n — oo. In order to justify the asymptotic equivalence above, note that for each fixed
X kyeees Xy Yeksvrs Vks C 1 times the integrand of (2.44) converges, by (2.38), to

exp{ <I+Z A+—|-A xj—i—z ; )X=j

k k
Y (AT +A )+ (AT = A_;)yj) }
j=1 j=0

The absolute value of each of the variables x_g, ..., xx, y—k, ..., yx in the rectangle R has
a finite upper bound. Replacing each of these variables by the corresponding upper bound
of its absolute value and using (2.38) once again, provides a bound to use in the dominated
convergence theorem.

Continuing to keep k an arbitrary fixed positive integer, we claim that, as n — oo,

k k
P(Ep) ~ ¢, AWH exp{%(Z(AJr + A]T)xj + Z(A+ _ A;.L_l)x_j
j=1

j=0

(2.45) k k
+Y (AT +A )+ (A7 - A;)yj)}

j=1 j=0
Fz(dx_i)...Fz(dxi)Fz(dy—x) ... Fz(dy).
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Once this has been established, the claim of the lemma will follow from (2.44) and (2.45),
completing the argument. To prove (2.45), we notice that by (2.38) and Fatou’s lemma,

liminfc, ' P(Ep)
n—o0

‘L’(S) k B k
=/ exp{ e (Zw A+ (AT AL )
(2.46) =0 j=1

i TLHAY) y,+z A;)yj)}

— =0
X Fz(dx_p) ... Fz(dxi)Fz(dy—x) ... Fz(dyk).

By Lemma 2.2 the sequence of the conditional laws of (Z_g, ..., Zk, Zy—k, ... .. s Zntk)
given Ey is tight in R**2 Let v be a subsequential limit of this sequence. It follows from
the above inequality and (2.44) with ¢ = 0 that

VR <P(Z74,.... 2, 25, ....Z) eR)

for any compact rectangle R in R*+*2_ which can only happen if v is, in fact, the law of the
random vector (Z_;, ..., Z; , ka, e Z,:’). Therefore, (2.46) must hold as an equality. [J

We are now ready to prove the first of our main theorems.

PROOF OF THEOREM 1. We start with showing that for every fixed k > 1, conditionally
on Eg as n — o0,

(Sn — he, X—k, LR Xk’ Xn—k» REN] Xl’l+k)
(2.47)
= (T*U,.... U, U",....UY),

with (U, ) and (Uk+) defined in (2.11). For all i > 1 let
‘ i
X,(qi)= ZajZm_j, m € 7.
j=—i

Lemma 2.3 implies that for a fixed i,

(So—ne. X0 xO XD XD )
converges weakly as n — oo, conditionally on Ej, to

(r*,u-",... u; P Ut Ut

where

Ui(’)— Zal m—j> me 7.
j=—i
Note that by Lemma 2.2, for every § > 0,
: 1
sup sup P(|X’(7’l) — Xm| > 8|Ep) < E[ sup  E(|ZnllEo) ] Z laj| — 0

n>1mez n>1,meZ 1jl>i

as i — 00. Since the two series in (2.11) converge in probability, the claim (2.47) follows
from Theorem 3.2 in Billingsley (1999).
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Notice that

j+n—1
I(Ej) = 1( > X 2n8)
i=j

n+j—1
( ne—ZX—i— Z X >0) if j >0,
(S —ns—I—ZX — Z Xi >0> if j <0.

i=n+j

We conclude by (2.47) and the continuous mapping theorem that for K > 1,
((Ej),j=—K,...,K)

-1 -1
= <1<T*+ZU,.——ZUfzo),j:—K,...,—l,
i=j i=j
j—1 j—1
1<T*—ZUi+ZUi+20>,j=1,...,K)
i=0 i=0

=(Vj@e),j=—K,...,K)

as n — 0o, where the law of the vector in the left hand side is computed conditionally on Ey.
Indeed, the continuity of the exponential random variable 7* means that the boundary of the
K -dimensional set above has limiting probability zero. This proves (2.16). [

Finally, we prove our second main result.

PROOF OF THEOREM 2. We take the stochastic process

(e) [te72]
wih) = — Y U -Uf), =0
i=0

and its version in the direction of the negative time and prove for them joint functional weak
convergence. The claim of the theorem will then follow by an application of the continuous
mapping theorem. We start with some variance calculations. For a large m,

Var(go Ui_) - Var(i i a,-ka_> +Var<i iaikz,j>

i=0k=—00 i=0k=0

oo /m+tk 2 m
= Z(Z “i> Var(ZZ,) + D (A + Ap)? Var(Z;)

k=0
0o /m—k 2
+ ) ( > ai> Var(Z;).
k=m+1 \i=—k
It is elementary that
Var(Z;) — 03 ase—0

uniformly in k € Z. Therefore,

m

> (A k+Ak) Var(Z;) ~aZZ k+Ak) ~ mo3 A?
k=0 k=0
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as ¢ = 0, m — oo. Furthermore,
oo /m+k 2 oo /m+k 2
Z(Za,) Var ~a§2<2ai) =o(m)
k=1 k=1 \i=k

as ¢ — 0, m — oo, with the last statement an easy consequence of the absolute summability
of (a;). Similarly,

00 m—k 2
Z ( Z ai> Var(Z,') = o(m)
k=m+1 \i=—k
ase — 0,m — oo.

The same argument shows that we also have

m m

Y o(An i+ Ap) Var(Z]) ~ o} D o(AS L+ AL )? ~mo} A,
k=0 k=0
oo /m+k 2 oo /m+k 2
Z(Z a,) Var(ZF,) ~ o2 Z(Z a,-) = o(m),
00 m—k 2
Z ( Z ai) Var(Z}) = o(m)
k=m+1 \i=—k

as ¢ —> 0, m — o0o. We write
(2.48) W (t)=We(r)

[te2]
T(e) _
(2.49) =— > (U7 -Uuh)
i=0
[re2] —1 [te -1
T(¢) T(¢)
Z[T 2 ai ka——Z 2. ai kai|
i=0 k=—o0 i=0 k=—00
B ][18 T(S) [te ][tf
.\ zz Lz -y za,kz}
L i=0 k=0 i=0 k=0
r(&) r(s)
e R
L i=0 k=[te—2]+1 i=0 k=[re=2]+1

=W +WP0)+wP@), e>0,1>0.

For typographical convenience we will omit the superscript in W™ for now and bring it back
at a certain point later on. The assumption £Z = 0 and (2.9) imply that, as ¢ — 0,

(2.50) g/A ~ r(s)ga%(O) = a%r(e).

‘We have, therefore, verified that Var(Wg(j )(t)) — 0 ase— Oforeverytand j =1, 3, so for
every such j,

(2.51) Wi (1) — E(WY (1)) = 0 in probability as & — 0.

Furthermore, for every ¢, as ¢ — 0,

@
Var(W;7 (1)) — e
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A similar calculation shows that for 0 <s <,

; 2 @) —
ell_l;%COV(Wg (s), W2 (1)) = Ao

Observe next that the third absolute moment of both (Z; ") and (Z,j) is bounded uniformly
in ¢ and k. Therefore, the Lindeberg condition is satisfied by the triangular array defined by
any finite linear combination of the type 6 Wg(z)(tl) + -+ 6y W€(2) (t7). Applying the Lin-
deberg central limit theorem (see, e.g., Theorem 27.2 in Billingsley (1995)) and the Cramér—
Wold device we conclude that the finite-dimensional distributions of Wg(z) ) — E (We(z) 1))
converge to those of (Aoz)~'/2B,, where B, is a standard Brownian motion. It follows
from (2.51) that the finite-dimensional distributions of W () — E(W,(t)) converge to the
same limit.

Next, let0 <s < 7. Ife2 > (t —s), then for any s <r <t either

We(t) — E(We (1)) = We(r) — E(We(r)) as.
or
We(s) — E(We(9)) = We(r) — E(We(r))  ass.,
so that
E[(We(t) — Wo(r) — E(Wo(t) — Wo(r)))?
X (We(r) — We(s) — E(We(r) — We(s)))*] =
Suppose now that ¢2 < (f — s). We have
E[(We(t) = We(s) — E(We() — We(9)))*]
< RE[(WD (1) = WD (s) — EWD (1) — w(s))*]
+ RE[(W2 () — WP () — EW2 (1) - WP (5)))*]
+ RE[(WR 1) — WP(s) — E(WP (1) — WP (9)))*].

For a positive constant C independent of ¢, s, ¢, that may change from appearance to appear-
ance,

(S st -

i=0 k=0
se”2) [se72 4
Z > ailzg E(Z,:))))]
k=0
(2.52)

[se [re—2]—k 4
§C84E<Z ) Dl a,~>

k=0 i=[se—2]—k

A [re~2] [1e=2—k \ 4
+ Ce E( > (Zg —E(zy) >, a,').

k=[se2]+1 i=—k
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Since the fourth moments of (Z, ) are bounded uniformly in ¢ and k, and the coefficients
(a;) are absolutely summable, the first term in the right hand side can be bounded by

[se~2] , [te—2]—k 4
cet Y E(Zp - E(Z)) ( > lwl)
k=0 i:[ssfz]—k

[se2] ) lte=21—k 292
+ [Csz Y E(z; - E(Zy)) ( > |a,-|> }

k=0 i=[se~2]—

o 00 co [te 21—k 2
<Ce*y > |a,-k|+[0822 > |a,-|] :

k=0i=—00 k=0i=[se—2]—k
Since

[te™

00 21—k 00
Yoo > lal= (e =[se7]) Y lail

k=0j=[se~2]—k i=—00

A

(e = (se72=1) Y lail <20 —9)e72 Y ail.

i=—00 i=—00

we conclude that the first term in the right hand side of (2.52) is bounded by C(¢ — s)>. In a
similar way one can show that the second term in the right hand side of (2.52) is also bounded
by C(r —5)%.

The same argument shows that

(2SS st )

i=0 k=0
[se*1lse %] 4
T T il - e@) |
i=0 k=0

<C(t—s5)*

so that
E[(WP (1) = WP (s) — EWP (1) — WP ()] < C(t — )2
In the same way we can check that
E[(WD 1) = WD (s) — EWD 1) — WD) ] <Cct—s5)? j=1.3,
so we conclude that
(2.53) E[(We(t) = We(s) — E(We(t) — We(s)))*] < C(t — 5)?
if £2 < (t — 5). By the Cauchy—Schwarz inequality, for any 0 < s <r <t we have
E[(We(t) = We(r) — E(We(r) — We(r)))”
X (We(r) — We(s) — E(We(r) — We(s)))*]
<C(—s)’
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if €2 < (t — 5). Appealing to Theorem 13.5 of Billingsley (1999) we conclude that for any
fixed T, the family

{(We(t) — E(We(1)):0<t<T):e >0}
is tight in D[0, T'] endowed with the Skorohod J; topology. Therefore, as ¢ — 0,

(2.54) (We(t) — E(We(1)):0<1<T)=> ((Aoz)_lﬁB, :0<t<T),
in D[0, T']. Furthermore,
E(W:(1))
r(e) [te -1 [re=2][re~2] [1e—2
A[Z Zalk2+zzalkz+z Z ai—xZy,
i=0 k=—o0 i=0 k=0 i=0 k=[te—2]+1

[te™2] —1 [t 2] [te™2] [te™2
Y Yzt - X Laaz-x Y auzt|

i=0 k=—o0 i=0 k=0 i=0 k=[te—2]+1

Clearly, |E Zkil = O(7(¢)) uniformly in ¢ and k € Z. Therefore,

[te™2] —1 te™® oo
>N GkEZ [ <0(x(®) Y. Y lal=o(t(e)e?)
i=0 k=—o00 i=0 k=i+1

uniformly in ¢ in a compact set. Similarly,

[ts

Z > aaz

i=0 k=[re—2]+1

= o(t(e)e?),

and by the same argument,

_2 —1
Z Z ai_kEZ; = o(t(e)e ),
i=0 k=—00

[ts

Z Z ai_kZ,j =0(‘L’(8)8_2),
i=0 k=[re—2]+1

all uniformly in ¢ in a compact set.
Finally, EZ, ~ r(e)a% (AT + A )/A as ¢ — 0 uniformly in k > 0, so

[te=2][te™2]
Z ai—kEZ; ~ At(s)a%ts_z.
i=0 k=0

Similarly, EZZr ~ ‘17(8)0% (A” —A;)/A as ¢ — O uniformly in k > 0, so

[te=2][te™2]

Z Z ai_kEZ,jzo(f(s)s_z),

i=0 k=0

all uniformly in ¢ in a compact set. We conclude by (2.50) that for all £ > 0 small enough,

t>1

t
(2.55) E(We(0) 2 5505
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and

t
E(Wg([))%Az—OV%, 8—)0,

uniformly in ¢ in a compact set. Since the addition in D[0, T'] is continuous at continuous
functions, this along with (2.54) shows that

(2.56) (Wr@):0<1<T)= ((Aoz)"'W2B;" + (Aoz)2t:0<1<T),

in D[0, T] as ¢ — 0. Notice that we have brought back the superscript in W, omitted since
(2.48), and we have also added a superscript to the standard Brownian motion B™.
Clearly we can also define

—1
(2.57) WS_(t):% Y (UFr-up), t=0,
i=—[te2]

and use the same argument (or, even simpler, just appeal to time inversion) to show that for
any T > 0,

(2.58) (W (1):0<1<T)= ((Aoz)"'W2B, + (Aoz)2t:0<1<T),

in D[0.T] as € — 0, where B~ is a standard Brownian motion.
We claim that, in fact, we have joint convergence

(WH@),:0<t<T), (W, (t),:0<t<T))
(2.59) = (((Aoz)"'V2B' 4+ (Aoz)21:0<1 < T),
((Aoz)'W2B + (Aoz)2t:0<t <T)),

in D[0.T] x D[0.T] as ¢ — 0, where the standard Brownian motions in the right hand side are
independent. To see this, recall that the only term in (2.48) that contributes to the randomness

in the weak limit of (W+(t) 0<t <T)is the term (W, 2)(t) :0<t<T), which is a
function of (Zi) with k£ > 0. An identical argument shows that the only term in the same
expans10n of (W, (t),:0 <t < T) that contributes to the randomness in the limit is a function
of (Z ) with & < 0. Since the random variables (Z ) are independent, we obtain the claimed
joint weak convergence in (2.59), with 1ndependent components in the limit.

For any real A the function ¢ : D[0, T] — R defined by

T
mﬂ=A1QzﬂmW

is continuous at any continuous f that takes value A only on a set of measure 0. Therefore,
for any such A, by the continuous mapping theorem,

T T
/ 1(x > WE())dr :>f 1(A > (Aoz)"'W2BE + (Aoz) %) dr
0 0
T
d —
4 /O 1002 V2BE, o+ (Aog) 1) di

- (Aoz)’T N
=A% f 1(x > V2BE +1)dt.
0

Noticing that we can write

VJ-+(8)=1<TO Z —U+> j=1
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where Ty is a standard exponential random variable independent of the collection (Z? 1 j €
Z,u =+ or —), we conclude that for any 7" > 0,

(Te?] T
£ Z%) VHe) = /O 1(To = W) di — Vit (T — 2[Te7%))
j:

(Aoz)?T
= A%%/O 1(To > V2B;" +1)dt.

It is clear that the latter integral converges a.s., as T — 00, to the integral prescribed in the
theorem. Therefore, we can appeal to Theorem 3.2 in Billingsley (1999), which requires us
to show that for any § > 0,

o0
(2.60) Tli_)moo lizn_f(l)lp P(e2 | Z Vj‘(e) > 8) =0.
j=[Te2]+1
However, by Markov’s inequality
o0 o0
P(82 Y Ve 3) <er Y P(To= Wi ((j - De?))
j=[Te 2]+1 j=[Te 2]+1
[e’e} . 2
_ . (j —De
<e5 Y] P(WJ((J —De?) < W)
j=ITe=21+1 9z
oo : 2
_ (j —De
+828 1 Z exp{—m}
J=ITe=2141 9z
By (2.55) and (2.53) we have for some positive constant C,
. (j —De 4, 2
P(WI((j —1)e? <7)<Ce —1
( (= De) < a7 )= G-=D

for all j > [Te~2],T > 1and & > 0 small enough. This estimate suffices to establish (2.60).
Note that this argument also shows that that for small ¢ > 0, ED; < 00, so D} < co a.s.

Since a similar argument can be applied to &2 25150*2] v, (¢), the proof is complete. [l

3. Discussion. As is usually the case with large deviations, the limiting distributions ob-
tained in (2.16) and (2.17) of Theorem 1 depend on the underlying model through the distri-
bution of the noise variables Fz and the coefficients (a;). This dependence largely disappears
in Theorem 2 where the limiting distribution depends only on the noise variance a% and the
sum of the coefficients A. This can be understood by viewing the case of a small overshoot &
as approaching the regime of moderate deviations. Indeed, in the case of moderate deviations
one expects that the central limit behaviour becomes visible and leads to a collapse of the
model ingredients necessary to describe the limit to a bare minimum consisting of second
order information.

This naturally leads to the question of a difference of how large deviations cluster between
the short memory moving average processes and long memory moving average processes. It
is common to say that the coefficients of the moving average process (1.1) with long mem-
ory are square summable but not absolutely summable. Assuming certain regularity of the
coefficients (a;) (e.g., their regular variation), one can show that for any fixed j > 1 and
e >0,

lim P(E;(n,&)|Eo(n,¢)) =1,
n—oo
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so one expects infinitely many events (E;(n, €)) to happen once Ey(n, ¢) does. This neces-
sitates different limiting procedures when studying large deviations clustering of such long
memory processes. It is important to note that for these long memory moving average pro-
cesses, in the notation of (2.22), n = o(Var(S,)), so one can view the events (E;(n, €)) as
moderate deviation events and not large deviation events. Indeed, it turns out that a natural
limiting procedure leads to a collapse in the amount of information about the model needed
to describe the limit, which is similar to the situation with Theorem 2 in the present, short
memory case. This is described in details in Chakrabarty and Samorodnitsky (2023).

APPENDIX: SOME USEFUL FACTS

The following nonlogarithmic version of a large deviation statement and a related estimate
are from Chaganty and Sethuraman (1993).

THEOREM 3. Let {T,} be a sequence of random variables with

E(e“T") <00 foranyzeR,n> 1.
For a sequence {ay,} of positive numbers with
(A.1) nll)ngo a, = 00
we denote
Un(2) =a, 'log E(e*Tr), zeR,n>1.

Let {my,} be a bounded sequence of real numbers. Assume that there exists a bounded
positive sequence {t,} satisfying

(A.2) Y (tn) =mu, n>1,
(A.3) a ?=0(t)), n— oo,
and such that for all fixed §, A > 0,
1 .
(A4) sup E(e™ i) = o(a1/?), n— oo,

S<|t|<AT, E(eT"T")

(with the supremum of the empty set defined as zero). Furthermore, assume that

(A.5) sup ¥ (2)| <oo foranya >0
n>1,ze[~a,a]
and that
(A.6) inf ¥ (z,) > 0.
n>1

(a) Under the above assumption,
1

oy Ol anmats = ()}
bn = t”\/m’

and let T," be a random variable with the law

(A7) P(a; ' T, = m,)~

n — oQ.

(b) Let

P(T; €du) = "™ P(T, € du).

E(ewTn)
Then

sup b, P(y<t,T)<y+1)<oo.
n>1,yeR
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PROOF. The first part of the theorem is Theorem 3.3 in Chaganty and Sethuraman
(1993). Furthermore, Lemmas 3.1 and 3.2 ibid. show that the hypotheses (2.7) and (2.8)
of Theorem 2.3 therein hold, and the second part of Theorem 3 follows from (2.9) of that
paper. [
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