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Abstract

We investigate how large deviations events cluster in the framework of an infinite moving average
process with light-tailed noise and long memory. The long memory makes clusters larger, and the
asymptotic behaviour of the size of the cluster turns out to be described by the first hitting time of
a randomly shifted fractional Brownian motion with drift.
© 2023 Elsevier B.V. All rights reserved.
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1. Introduction

We consider an infinite moving average process of the form
oo
Xn=2a,-Zn_,-, n>0, (1.1)
i=0
where the noise variables (Z, : n € Z) are assumed to be i.i.d. non-degenerate random
variables. The noise distribution F7 is assumed have finite exponential moments:

/ e'* Fz(dz) < oo forall t e R. (1.2)
R
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Furthermore, assuming that the noise is centred:

/ ZFz(dz) =0, (1.3)
R

the series defining the process in (1.1) converges if and only if the coefficients ag, a;, az . ..
satisfy

oo
Zaf < 00. (1.4)
Jj=0

In this case (X,,) is a zero mean stationary ergodic process. For ¢ > 0 we consider the sequence
of large deviation events

n+j—1

1
Ej(ne)={— Y Xizeg, j=0. (1.5)
i=j

By stationarity, for a fixed n, each event E(n, €) is equally rare, and we are interested in the
cluster of these events that occur given that the event Ey(n, €) occurs.

In [3] the short memory case was considered. In this context, “short memory” corresponds
to the case

o0 o0
> la,| <ooand ) a, #0. (1.6)
n=0

n=0

In this short memory case the conditional on Ey(n, €) law of the sequence (I(E j(n, s)), j=
1,2,...) converges weakly, as n — o0, to the law of a sequence with a.s. finitely many non-
zero entries. the total number D, of the non-zero entries turns out to scale as 2, and 2D,
has an interesting weak limit as ¢ — 0. We refer the reader to [3] for details, and a minor
technical condition required for the above statements.

In the present paper we are interested in the long memory case. For the moving average
processes (1.1) “long memory” refers to the case when the coefficients (a;) satisfy the square
summability assumption (1.4) but not the absolute summability assumption in (1.6). A typical
assumption in this is

(ay) is regularly varying with exponent —«, 1/2 <o < 1; 1.7

see [5]. It turns out that, in this case (under certain technical assumptions, an example of
which is below), the conditional on Eq(n, ¢) law of the sequence (1(E;(n,¢), j = 1,2,...)
converges weakly, as n — 00, to the degenerate probability measure & 1, .. That is, once the
event Eg(n, €) occurs, the events (E;(n, €)) become very likely. In order to understand their
structure we concentrate on the random variables

I(e) =inf{j > 1: E;(n, &) does not occur}, n > 1 (1.8)

and establish a weak limit theorem for this sequence under a proper scaling. Interestingly, the
limit turns out to be the law of the first hitting time of a randomly shifted fractional Brownian
motion with drift.

The main result containing the above limit theorem and the technical assumptions it requires
are in Section 2. A sketch of the proof of the main result in four steps is given in that
section as well. Sections 3 and 4 contain Steps 1 and 2, respectively, mentioned in the sketch.
Steps 3 and 4, which complete the proof of the main result, are in Section 5. Finally, some
useful facts needed for the proofs are collected in the Appendix.
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2. The assumptions, the main result and a sketch of the proof

Our result on clustering of large deviation events in the long memory case will require a
number of assumptions that we state next. First of all, we will replace the assumption of regular
variation (1.7) by the asymptotic power function assumption

a, ~n~% 1/2 <a < 1, and is eventually monotone. 2.1

There is no doubt that the results of the paper hold under the more general regular variation
assumption as well. The extra generality will, however, require making an already highly
technical argument even more so. The potentially resulting lack of clarity makes the added
generality less valuable. The same is true about the eventual monotonicity assumption.

We will need additional assumptions on the distribution of the noise variables. We will
assume that for some 6y > 0,

o0 o0 X
sup / 2 / T (dz)|dt < 0o 2.2)
10]1<6y J —c0 —00
Next, let
o = / 22 F7(d2) (2.3)
R
be the variance of the noise. Denote
—1
« = the smallest integer > ¢ . 2.4)
2 —2u

In other words, k = [(1 +2a)/(2 — Za)], where [x] is the largest integer less than or equal to
x. We assume that a generic noise variable Z satisfies

EZ' = EG for1 <i <«, 2.5)
where G ~ N(0, 02).
Remark 2.1. It is standard to verify that (2.2) implies that the noise distribution has a twice

continuously differentiable density fz. On the other hand, a sufficient condition for (2.2) is
that the noise distribution has a four times continuously differentiable density f satisfying

o0
/ olx!
—0oQ

besides (1.2). Indeed, under this assumption, one can use integration by parts to see that for
any 6 with |0] <6y, t #0and 0 < T < o0,

di
S f2(0)|dx < oo fori=1,2,3,4, (2.6)

T
/ V0¥ Fo(dx) (2.7)
-T

1 . . r
= e(lt+9)TfZ(T) _ e*(ltJrH)TfZ(_T) _ / e("+9)xfé(x)dx ,
it+6 -7

f, being the derivative of f7. Clearly (1.2) and (2.6) imply

® | d
N

oo

dx < o0.
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Hence the limit of e%* fz(x) as x — oo exists, which is zero because the function is
integrable. Thus letting 7 — oo in (2.7) shows

/ e(il+9)x Fz(dx) — —(lt + Q)_] / e(it+0)x]¢‘é(x)dx‘

o] o0

The right hand side can be integrated by parts thrice more with the aid of (2.6) in the same
way to obtain

2| [T eso) r? < o 4
t O Fo(dx)| = —— VY —_ £ (x)dx
[m z(dx) TR /700 dx4fZ( )
1 oo 0 d4
[x]
Sﬁ[meo dx4fz(x) dx,

which integrable on {|¢| > 1}. The uniform boundedness of the integral in (2.2) on [—1, 1] is
clear.

The moment equality assumption (2.5) restricts how far the noise distribution can be from
a normal distribution. Note that in the range 1/2 < o < 5/8 we have x = 2, in which case the
assumption is vacuous. Since ¥ > 2 for all & € (1/2, 1), (1.3) is implied by (2.5).

2.1. The main result

To state our main result, we need to introduce several key quantities. Let

4 -4 0.1 2.8

=75y €O @.8)
and

H=3/2—ae(1/2,1). 2.9)

We denote by (By(t) : t = 0) the standard fractional Brownian motion with Hurst index H,
i.e. a zero mean Gaussian process with continuous paths and covariance function

E (By(s)By(1)) = % (s + 2 —|s — 1), 5,1 > 0. (2.10)

If Ty is a standard exponential random variable independent of the fractional Brownian
motion, then

t.=inf{t > 0: Bu(t) < (2C,) er* — (Co/2) 067 ' Ty}, € > 0, (2.11)
is an a.s. finite and strictly positive random variable. Here o2 is the variance of the noise in
(2.3) and
B(1 —a,20 —1)
(1-a)3-2a)’

with B(-, -) the standard Beta function.
We are now in a position to state the main result of this paper.

Cy = (2.12)

Theorem 2.1. Assume the finite exponential moment condition (1.2), the power-type condi-
tion (2.1) on the coefficients, the regularity condition (2.2) and the moment equality condi-
tion (2.5). Then for every € > 0 the first non-occurrence times (1.8) satisfy

P (n PL,(e) € -|Eg(n,e)) = P (. €-), n > 0. (2.13)
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Remark 2.2. It is worthwhile to observe that the limit law obtained in Theorem 2.1 depends
on the noise distribution only through its variance o2. This can be understood by noticing
that in the long memory case considered in this paper we have Var(X; + --- + X,,) > n; see
Lemma 3.1. Therefore, the events E;(n, ¢) should be viewed as moderate deviation events, not
large deviation events. It has been observed in many situations that moderate deviation events
are influenced by the Gaussian weak limit of the quantities of interest. At the intuitive level,
this explains why it is the variance of the process that appears in the limit.

For comparison, in the short memory case (1.6), we have Var(X; +-- -+ X,) ~ cn for some
¢ > 0, the events E;(n, &) should be viewed as large deviation events, and their behaviour
depends on much more than just the variance of the noise. See [3] for details.

2.2. A sketch of the proof

We start on the road to proving Theorem 2.1 by giving a sketch of the proof. Since the
proof consists of multiple intermediate steps, such a sketch might help the reader to follow the
flow of the argument. The following are the main steps in the proof. As this is only a sketch,
the statements are imprecise, though the quantities are defined precisely and will be referred
to later. Denote

J
A=Y a, jel, (2.14)
i=0

with the convention that a sum (or an integral) is zero if the lower limit exceeds the upper limit
(so that A; =0 for j < —1, for example). Let

n—1
SH=ZX,~,n21, (2.15)
i=0
and observe

o0
Si= (Aj—Aj)Zuy_j.n>1. (2.16)
=0

Step 1. We allow the partial sum, given in the form (2.16), to be “corrupted”. For n > 1
and ¢ > 0 we define

(nf1]

EO) =Y (Ai = Aiy) Zyio1 (2.17)
T

= Y (Ai—A)Zuia, (2.18)
i=n—[nfr]
n+[nﬁt]

=Y (Ai—Ain)Zn i (2.19)
i=n+1

The first step is to show joint convergence of the above, along with the overshoot defined by

Iy=S,—ne,n>1, (2.20)
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after appropriate centring and scaling, in the sense of finite-dimensional distributions, con-
ditionally on Ey(n,¢). Lemma 3.4 precisely achieves this and its proof is contained in
Section 3.

Step 2. The second step is to upper bound the “conditional variance” of Z,_;_; and the
“conditional covariance” of Z,_;_ and Z,,_;_; given Ey(n, €). This upper bound is used later to
bound the conditional variances of the random variables defined in (2.17)—(2.19), for example.
The said upper bounds are obtained in Lemma 4.4. This step is fairly independent of Step 1
except that a few elementary estimates are used for both. Section 4 is dedicated to this step.

Step 3. Set
Jj+n—1
Su()=Y, Xi, j=0,n>1. 2.21)
i=j

In the third important step, the asymptotic conditional law of the stochastic process (S, ([n#t]) :
t > 0), in the sense of finite dimensional distributions, centred by ne and appropriately scaled,
is obtained. This step uses Step 1 in that S,([nft]) is expressed as a stochastic integral with
respect to the processes defined in (2.17)—(2.19). The estimates obtained in Step 2 are also
used. Lemma 5.3 completes this step.

Step 4. The final step is to show that the conditional weak convergence of Step 3. holds in an
appropriate topology. This again uses Step 2. Subsequently, the continuous mapping theorem
is applied to complete the proof of Theorem 2.1. Steps 3 and 4 are carried out in Section 5.

3. A conditional weak convergence

The content of this section is Step 1 mentioned in Section 2.2. As said therein, this is done
in Lemma 3.4, which is at the end of this section. The proof of this lemma is dependent on
a few preliminary lemmas. In the first lemma we establish certain basic estimates that will be
used throughout the paper. Recall (2.14) and (2.15) and denote

o2 = Var(S,), n > 1. 3.1
In the sequel we use the following notation. We will denote by

z(t) = log (L e Fz(dz)> ,telR 3.2)
the log-Laplace transform of a noise variable. We will frequently use the obvious facts

@ is convex and @z(x) ~ x20§/2, x — 0, (3.3)
and

¢!, is continuous, nondecreasing and ¢, (x) = xo2 + O(x?), x — 0. (3.4)

We will write Gy for the probability measure obtained by exponentially tilting the law F; by
6 € R. That is,

Go(dz) = (Ee*?) ™' e" Fy(d2). (3.5)
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It is clear that, as 6 — O,

/zGe(dz)N%é, '/zG@(dz)—eo§
R R

/|Z|kG9(dZ)—>/IZIkF(dz),kzl,Z,....
R R

Lemma 3.1. Asymptotically we have
Aj~(1—a) '™ j— o0
and
2 3-2

(T’\'C(T , N — 00.

Furthermore, for any t > 0, as n — 00,

(nPr]
Z(Al _ Ai—n)2 ~ K1t372an474a ,
i=0
and
n n-‘r[n/SZ]
D A=A~ D (A=A ~ (L—a) T
i=n—[nPr]+1 i=n+1
with

Ki=(0—-a)23B-=2a)"".

Finally, for any t > 0, as n — oo,

0 —2a 3—2«
= Z(A Aimn) (A = Aigp—n) = 1 = n' 72407241+ o(1)).

”lO

= 0% and = 0(|0)®) if k > 3,

(3.6)

3.7

(3.8)

(3.9)

(3.10)

@3.11)

(3.12)

Proof. The claim (3.7) is, of course, an immediate consequence of the assumption (2.1). For

(3.8), first note that
o0
Ry = Cov(Xo. X,) ~ 07 > j“(j+nm)™
j=1
~n'" 2“05/ x (1 +x)"%dx
0
= Cuoz(l —a)(3 —2a)n'™

as n — 00. Therefore,

n—1

Y (= iDRy ~2Cao5(1 — )3 —20) Y (n — i)i' ™

i=—(n—1) i=0

1
~2C,03(1 —a)(3—2a)n3_2°‘/ (1 —x)x' ™ dx = Cooin®™,
0
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which is (3.8). Next, for a fixed ¢+ > 0 and large n, by (3.7) and the fact that 8 < 1,
(nf1] (nf1] (nP1]

Z(Ai —Ai) = Z A2~ (1 —a)? Z i K (nﬁt)3—2a ’
i=0 o P

proving (3.9). Similarly,

n n

Y AL~ Y A~ (e b

i=n—[nPr]+1 i=n—[nPr]+1

showing the first equivalence in (3.10) and the second equivalence can be shown in the same
way.
For (3.12), we start by recalling (2.16), a consequence of which is

o0
02 =o02 Z(Aj — A n=>1. (3.13)
Therefore, for large n,

2 o0

Gn

i E (Ai = Aimn)(Aijnb) — Aignbei—n)
z

i=0
1 [nPr1—1 00 .
= 5 Z (A’ B Ai_”)z + Z (AiJr[nﬁt] - Ai+[nﬁt]7n - Ai + Ai—n)
i=0 i=
1 n—1 X
=3 [ 2 (A= Ayen) (3.14)
- 2
+ Z (Ai-‘r[nﬂl] - Ai+[nﬁf]—n - Ai + Aifn) i| .
i=n—[nP1]
By (3.7),
n—1
> (A= A sg)’ ~ 1 — ) Z — (i — "))
i=0

o0 2
n474ott3720l(1 _ a)—Z/ [ylfol _ (y _ 1)l+711] dy
0
as n — 0o. By (A.l) with H =3/2 — «,

/0 ' = - D ay (3.15)

| sin(ra)

=[B=2a)(1 —a)]' —=T'Qa — DI'2 — «)?

l -« 2
= 3—2aB(2a L1—a)=>0—a)C,,
SO
n—1
> (A = Aipusn)’ ~ Cat® 20— o0, (3.16)
i=0
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Since

Z (Al _ Ajf[nﬁ[] =0 < 28 ZZZQ) — 2ﬂ+1720{) — 0(,/[4740{)’

we conclude also that

[e.¢]

Z (Ai - Ai—[ru‘ft])2 ~ Cot? ", 0 > oc0.
i=0
It follows from (3.17) and (3.18) that
S 2
Z (Ai‘H"'gt] - Ai+[nﬁt]—n - Ai + Ai—n)
i=n—[nft]
3 2
= [_A] + Ajf[nﬂ;] + (Aj_»'_n — Aj+n7[nﬁt])] ~ Cat3*2an474a )
j=0

In combination with (3.14) and (3.16) we obtain
o, - 3-2a 4—4
=5 = D (A = A (A At -n) ~ Cat 27
Z .

Dividing both sides by o, 20,% and appealing to (3.8), (3.12) follows. 0

(3.17)

(3.18)

We now consider certain large deviations of the partial sum S, under a change of measure.
Recall the “corrupted” partial sums &', &> and &} defined in (2.17), (2.18) and (2.19),

respectively.

Lemma 3.2. Fix t{, t, 13 > 0 and denote

3
Si=Si—) &) n=1.

i=1

Let (y,), (6,) and (n,) be real sequences satisfying
Ya =0 (n3/27a) 6, =0 (nf(lfzx))’ 1 <, < n'?
If S‘n is a random variable with the law
P (S',, € dx) = (E(e‘g"s"))_1 e p (S‘n € dx) ,n>1,

then for all x € R and h > 0,

P (nnan_l (S’n — E(Sn) + y,,) elx,x+ h]) ~ nn_l(27r)_l/2h, n — oo.

Furthermore,

sup n, P (77,,6,,"5’,, €lx,x + l]) < 00

n>1,xeR
395
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Proof. Let (Z,,i, n > 1, i > 0) be a collection of independent random variables such that the
law of Z,; is G(a,—4,_,), in the notation of (3.5). Then for large n,

n—[nPr]—1 o0
505 AZuo+ (An = ADZun + > AiZu+ Y. (A= AiZy.  (323)
i=[nPr]+1 i=n+[nPr3]+1

The proof applies to (3.23) the bound (A.2) in the appendix, with n = co. For any z e R

P (sn - E(Sn) =< Z\/@) — &(2)

Lo\-32 X - . 3
= G (Var3n) Y 1A = A alPE (120 — EZul’)  n = 1.
i=0
It is immediate from (2.1) that
sup [A; — Aj| = O(n'™), (3.25)
i=0
so that
lim 6, sup|A; — A;_,| =0.

n—o00 i>0

(3.24)

It follows from (3.6) that
[e.¢]
EZy =0, Va(Zy) > o (12~ E2u1") > [ 121 Faan (3.26)
—00
uniformly in i as n — 00. Since it is an elementary conclusion from Lemma 3.1 that for any
k> 1/a,

oo
D 1A= Ayl = O (), (3.27)
i=0

it follows that
sup

P (s —E@S,) < z%) - 2(@2)
zeR
=0 <n4_3a (Var(gn)> 3/2) .

Using (3.26) again we see that

3
Var(S,) ~ o7 — Y Var (&1(t;)) ~ Caoyn® >, (3.28)
i=I

with the second equivalence following from various claims in Lemma 3.1. Thus,

P <§n - E(Sn) =< Zm) — &(2)

Therefore, for x e R and & > 0, as n — 00,

P (moy ' (Si = EG)+ ) € lxx + h)

sup =0 " =0(n"). (3.29)

zeR

=o(n,") +/ 1[Var(S,)™"(eny, 0w — ya) <z
R

< Var(8,)™"2((x + by, 0w — va)]9(2) dz,
396
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where ¢ is the standard normal density. The assumptions on y, and 7, along with (3.28)
imply that the integration interval shrinks towards the origin. Thus, the integral above is
asymptotically equivalent to 7, '¢(0)h, and (3.21) follows. Boundedness of ¢ in the above
integral establishes (3.22). [

We now look more closely at the processes defined in (2.17), (2.18) and (2.19). The next
lemma describes the limiting distribution of their increments under the same change of measure
as in the previous lemma.

Lemma 3.3. Suppose that 6, € R satisfies 6, = o (n’(l"")). Fix 0 < s < t and consider
random variables with the laws

P(Uy; € dx) = cpie™ P (Ei(t) —EL(s) edx),i=1,2,3,n > 1,
with appropriate c,;. Then, as n — 0o,

n~*2 (U, — E(Un)) = N(0, Kjoj (872 — s772)), (3.30)
where K is given in (3.11), and fori = 2,3,

n~ U= (U, — E(U,)) = N(0,(1 —a) 205t —5)). (3.31)

Proof. For large n,

(nP1]
d ~
Unl = Z Ai Zni
i=[nPs]+1

with (Zm) as in the previous lemma. That is, U,; — E(U,) is the sum of independent zero
mean random variables. By (3.9) and (3.26),

(1)
Var(Un) ~ 07 Y A} ~ Kjogn*™ (8572 — 5772
i=[nPs]+1
and a similar calculation using the third moment bound in (3.26) verifies the Lindeberg
conditions of the central limit theorem. Hence (3.30) follows, and the calculations for (3.31)
are similar. [

Recall the overshoot 7, defined in (2.20). Conditionally on the event Ey = Eo(n, ¢) in
(1.5) this overshoot is nonnegative. The next lemma, which completes Step 1., is a joint weak
limit theorem for the joint law of the overshoot and the processes defined in (2.17), (2.18) and
(2.19). The joint law is computed conditionally on Ej.

Lemma 3.4. Let

ty=nejoy, n>1, (3.32)
Conditionally on Eg, as n — 0o,
1] 00
(ch:, e = ) A / 2Gyad2) | 1=0],
i=1 -
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n—1 00
(na—ﬂ/Z—l gnz(t) — Z A; / Z anAi d) ), t> 0),
i=n—[nPr1] -

n+nfi]

(na—ﬁ/z—' ORI PN AH)/ 2Gg-an(d2) | 1 2 0))

i=n+1
= (T(), (K11/20'231(l‘372a), t > 0),
(1= )0z Bato), 12 0), (1 = @) oz Bs(1), 1 2 0)).

in finite dimensional distributions, where Ty is a standard exponential random variable
independent of independent standard Brownian motions By, B,, and Bz, K is the constant
in (3.11) and Gy is the exponentially tilted law in (3.5).

Proof. Denote

2 2 ®
s)= 2 log E 25 )| = 223 0y (0,204 — Aj)s) (3.33)
Yn(s = og E | exp sUn2 =2 40¢Z o, n(A; j-n)S) .
j:
where the second equality follows from (2.16). By (3.3), (3.8) and (3.25) we see that
lim ¥, (s) = s2/2 (3.34)
n—o00

uniformly for s in a compact set. Furthermore, the sum in (3.33) can be differentiated term by
term, and it follows by (3.4), (3.8) and (3.25) that

lim ¥/ (s) = s, (3.35)

also uniformly on compact sets. Since v, is increasing and continuous, for large n there exists
a unique 7, > 0 such that

Yo(t) =¢. (3.36)
It is immediate that 7, — & as n — o0o. Denote

6, =0, ’nt,, n>1. (3.37)
Since

/ E [S,, exp (s?S>]
Y,(s) = — ,
nE [exp (s[%sn)]

we substitute s = 1, to obtain

(E (")) ™" E (Sye") = ne. (3.38)

Fix k > 1 and for each i = 1, 2, 3 fix points 0 = t;0 < t;; < - -+ < t;. Denote

3
Sp=S8—Y &), n> 1.

i=1
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Let Uyj,n > 1,i =1,2,3, j =1,...,k, S‘,,, n > 1 be independent random variables,

with

P (Um-j € a’x)

_ (E (een(éri(fij)*éf;(tij—l))))_l P (E ) — (1 1) € d)
and

P (S’,, € dx) = (E (eeni,,)>_l e"* p (S,, € dx)
forn>1,i=1,2,3and j =1,...,k. Let

tnij = E (Unij) s 1n = E(Sp).
It follows from (3.38) that

3 k
Mil+ZZ/’Lnij =ne, n>1.

i=1 j=1
Let # > 0 and (o;;) C R. We have
k
p({T; > 1o/} 0 ({2 (6 1)) = E101 1) = pany) > ;)
j=1

N ( ﬂ (PR (E ) — E1t 1) — i) > “ij}>>

2<i<3,1<j=<k

3

= 1 x > ne +to%/ne —
Jow 2= me i =32

i=1 j=I1

22«
X1(51j>l’l 051j+,unlj,1

x 1 (S,'j > I’ll_oH—ﬁ/zOl,'j =+ Hnij » | =

x P(S, € dx) ]_[]_[ (Elt) — €Lt 1) € dsij)

3

k

= 1 t 2 — ii
/]R%H (x>n8+ o, /ne ZZSJ
=

i=1 j=I

22«
x 1(s1; >n"" oy + a1, 1

l—a+B/2 .
Xl(S,'j>I’l o ﬂ/a,»j—i-u,,ij,l:

(3.39)

(3.40)
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k
= Cn/ l(mln(u,] — Olij) > O l_[ P 20¢ 2 nl] H«nlj) [S dulj)
R3k i, i1

X ﬁ ﬁ P (n* PPN (Unij — pnij) € duyj)
i=2 j=1
X /Re_zl(z > t@nanz/ne)P(Gn(S’,, — pn + Vulury, ..., Lt3k)) € dz) ,
with
¢y =e " E (ee"s”) (3.41)
and

k

3k
Valttny, ..o uze) = n>~ Z 1_“+’S/ZZZL¢,~,~.

j=1 i=2 j=1

Let 6, be as above and 7, = 0,6,. For n > 1, we introduce the notation

fo(ui, ..o usp)
o0 ~
=77n/ e*ZI(Z > tOnUnz/ns)P(Gn(S,, -t + Vulurg, ..., M3k)) € dz) .
0
Fix (u;;) and let u( n u;j as n — oo for all i, j. Let us denote y, = y,(u ﬁ), .. ué’?)
With 6, and 7, already defined, we use Lemma 3.2 with this y,. It is elementary to check that

the hypothesis of the lemma are satisfied. Since t0no,,2 /ne — t, it follows from (3.21) that for
all fixed T > ¢,

/ e “1(t0,0, /ne < z < T)P(Gn(S’n — Wn+Va) € dz)
R

T
~ten [ etaz,

t

and if follows from (3.22) that

Tlim lim sup 17,,/ e_zl(z > T)P(@,,(S’n — My + J/n) € dz) =0,
R

—X p—>oo

showing that
Tim o (s ) = @y,
Another application of (3.22) implies that

sup  fu(uin, ..., us) < oo.
{uij}CR

It follows immediately from Lemma 3.3 and bounded convergence theorem that
o s AT T R n“*ﬂ”*‘w,ﬁk ~ a3t) (3.42)
x 1 (”20[72((]:11; — 1)) > a1jy B PPN U — i) > i, i = 2,3,

j:l,...,k,)]

—Qn) P (Ty > t, G > ayj for all i, j)
400



A. Chakrabarty and G. Samorodnitsky Stochastic Processes and their Applications 163 (2023) 387423

with Tj standard exponential and (G;; : i = 1,2,3, j = 1,...,k) independent zero mean
Gaussian random variables, independent of Ty, with

Var(Gyj) = K103 (17 = 7%) . 1= j =k,

and for i = 2, 3,
Var(G;j) = (1 —a) 2o5(t; —t; j—1), 1 < j <k.

A simple way to verify the convergence above is to appeal to the Skorohod representation and
replace the weak convergence in Lemma 3.3 by the a.s. convergence.
Notice that using (3.42) with ¢+ = 0 and «;; = —oo for all i, j tells us that

P(Eg) ~ Q2m)~ ey /ny = @r) ™1 2e™E (£71) [(0u60). (3.43)
Dividing (3.42) by (3.43) gives us the statement of the lemma apart from a possibly different
centring. In order to complete the proof, it suffices to show that as n — oo, for j =1,...,k,

P 00
Mn1j = Z A; / 2Gya,(d2) + o0 (n*7) | (3.44)
i=[nPrj_11+1 -
n—nPtyj_1] 00
Mn2j = Z A; 2Gea,(d2) + o (n'tP1279) | (3.45)
i=n—[nPiy;] -
n+nf1y)] .
Mn3j = Z (A; — Aifn)/ 2 G- p(dz) + o (n'HP27) (3.46)
i=”+[nﬁtnjfl] e
For simplicity of notation we prove these statements for j = 1. For 6, as in (3.37), let

(Zm-, n > 1,i > 0) be a collection of independent random variables such that the law of
Z,i 18 G(a;-4;_,)6,- Since both 6, A; and £, A; converge to zero uniformly in i < nPty, we can
use (3.6) to write

(P P 00

pon = Y AE(Zi)= Y. A,-f 2 Gg,a,(dz2)
i=1 i=1 -
(P11 P

oo
=> Ai/ 2Gond)+o D A
i=l - i=1

It follows from (3.8) and (3.9) that

Pl

& Z Aiz _ 0(’1272(1) ’
i=1

and we obtain (3.44) (for j = 1).
For (3.45) with j = 1 we notice that by (3.4),

E(Zu) = 0(As = Ai0)o + 0 (62(A — A7) . (3.47)
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uniformly in i > 0, as n — oo. Thus,
n—1 n—1
2 -2 2 2 3
M2l = 070, Iy Z A7+ 0|0, Z Aj
i=n—[nPry] i=n—[nPty]

It follows from Lemma 3.1 that
n—1
02 Y A= 0 () = o (n ).
i=n—[nfry]
Therefore,
n—1
K2t = 0,0, °nT, Z A7 + o (n' 0 F2) (3.48)
i=n—[nPy]

and, similarly,

n—1 n—1
Z A; N 2Gya(d2) = 03¢, Z A2 4o (nl—a+ﬂ/2) .
i=n—[nPty] - i=n—nBryy]
Another appeal to Lemma 3.1 shows that for (3.45) we only need to argue that
Tn =8+0(n17°‘7ﬂ/2) ,n— 0. (3.49)
However, by (3.6),

Yn()=s+0 |no* > (Aj— A |,
j=0

uniformly for s in compact sets. Using this and (3.27), we obtain

&= Wy/z(tn)

o0
=7,4+0 |no* Z(Aj — A}
j=0

=1, +0n* Y =1,+0(n'"*F?).
This establishes (3.49) and, hence, (3.45) with j = 1. The proof of (3.46) is similar. [

4. Estimating the conditional covariance

In this section, Step 2 mentioned in Section 2.2 is executed. The upper bounds mentioned
therein are obtained in Lemma 4.4 at the end of this section. Lemmas 4.1-4.3 are preparations
for the same.

None of the statements proved so far required the additional assumptions stated at the
beginning of Section 2. These assumptions start to play a role now.

The next several lemmas require additional notation designed to focus on the contribution
of individual noise variables on S,. Forn > 1 and i, j > 0, i # j, we set

S (i) =8, —(Ai — Ai_)Zy—i—1,

Sy, j) =8y —(Ai = Aim)Zn—ici —(Aj — Aj_) Zu—j1,
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and, with ¢, given by (3.32), we let 3‘,,, Sni, S’n(i, J) be random variables with distributions
P(S, € ds) o & P(S, € ds),

P(S,(i) € ds) o € P(S.(i) € ds),

P(8,(i, j) € ds) o e° P(S.(i, j) € ds).

Denote the characteristic functions of o, (8, —ne), 0,7 (8,(i)—ne) and 6,7 (8, (i, j)—ne) by
®n, ni and ¢y, respectively. For u € R and o > 0 we denote by ¢g(i; o?%; +) the characteristic
function of N(u, o?).

Lemma 4.1. Let k be given by (2.4) and assume that (2.5) holds. Then the following statements
hold uniformly in t € R:

(1) — 6 (0; 1; 1) = O (n'/><0=(1 4 [y H) 4.1)
Sup | @i (1) — ¢ (0, 'neCuni — 13 Ais 1) = O (n"/>*0=0(1 + [e]yH) | 4.2)
i>0
sup |90 (1) = 6 (0, ' neChnij = 1 Jiyi 1)] 4.3)
by

-0 (nl/Q—K(l—a)(l + |t|)K+]) ,

where forn > 1 and i, j > 0, i # j, we set
o; 2 oy 2 2
Ani =1 — ;(Ai —Aimn)", Anij=1- ) [(Ai —Aim)’ + (A — A7)

n

Proof. It is an elementary conclusion from (2.5) that, for each 1 <i <k,

-1
<f e’ Fz(dz)> f Z'¢" F.(dz) = 0L E [(G + 802)' ] + O (18]**) (4.4)
R R

as § — 0: where G is a standard Gaussian random variable.
A Let (Z,; : n > 1,i > 0) be a family of independent random variables with each
Zpi ~ Ga;—a; > SO that for n > 1 and 7, j > 0, i # j we have

o0
A~ d A
$0 =) (Ax = Akea) Zu,
k=0

A~ . d A
S Y (A= Acn) Zuk
ke{0,1,2,.. )\ {i}
) A
SG.0= Y (A= Acn) Zuk.
kef{0,1,2,...

}

Let now (G,; : n > 1,i > 0) be a collection of independent random variables, also
independent of (2m~ :n > 1,i > 0), where G,; follows normal distribution with mean
(A; — Ai_n)g‘,,aé and variance a%, forall n > 1,71 > 0. It follows from Lemma 3.1 and
(3.25) that (4.4) can be reformulated as

E (Zj> — E(Gi)) = O (1A) — Aj_, [+ p20-emiehy (4.5)
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uniformly in j > 0 and 1 <i < k. For a fixed t € R we use telescoping to write

oo
Eexp i [ 10,3 (A5 = 4Gy | § = Eexpli (10,75,)} (4.6)
j=0
o) j—1
<> |Eexp{ifro, [ DA — A ,1)Z,U+Z(A —A; )G,
i— k=0 k=j

J 0
—Eexpli|to," [ Y (4, —Ai)Zy+ D (Aj = Aj_)Gy;
k=0 k=j+1

Fix j > 0 and denote
Jj—1 00
Z(AJ - Aj—n)an + Z (A/ - Aj—n)an 5
k=0

k=j+1
-1
V=t (A; — A;_)G,j,

so that by expanding in the Taylor series around U,

o
Eexp{i|to, | D (Aj—Aj)Zuj+ Y (Aj = Aj )Gy

— Eei(U+V) — Z l_m'E (Vm) EeiU + R1 ,
m:
m=0

with |R;| < E(V[*tY)/(k + 1)!. Similarly,

J 00
Eexpi|to]! Z(A,-—AJ»,,Z)Z,,,»Jr > (Aj— Aj_n)Gj

k=j+1
= Z—E (W")Ee'Y + R,
m=0
with |Ry| < E(IW[*1)/(k + 1)!, where
=(A;—Aj_) ;.
We conclude that
j—1
[Eexpli[to," [ Y A — 4,202, + Z(A —A; )G,

k=0 k=j

J oo
—Eexpiilto, [ D (A;—Aji)Zu+ D (Aj = Aj_)Gyj

k=0 k=j+1
<Z |<A Aj-n)o "E( -G, )|
|t|K+1 K+l (D K1 K+l
A= A E(1GuI " +12,17) @.7)
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Note that by (3.27) and Lemma 3.1,

oo
j=0
= 0 (ni(Kil)/z) =0 (nl/z*K(lia)) :

For 1 <i <« we use, in addition. (4.5) to write
o0
o Y ‘(Aj — A E(Zh - G;,j)‘
j=0
) (nfl((lfvt)Jrthi(Olfl/z)) =0 (nl/ka(lfa)) .
Putting these bounds into (4.7) we obtain

E (e”"’:lg") = ¢ (0, 'ne; 15 1) + O (n'27*0=0 (1 4 ¢ [<H))

uniformly for + € R, which is equivalent to (4.1). The argument for (4.2) and (4.3) is the
same. [l

By the assumption (2.2), for large n, the random variables o, '(S, — ne), 6,7 (8,(i) — ne)
and an’l(S,,(i, J) — ne) have densities which we denote by f,, f,; and f,;;, correspondingly.

Lemma 4.2. Suppose that (2.2) and (2.5) hold. Then for large n, the densities f,; and f;j
are twice differentiable. Furthermore, as n — 00,

f2i(0) = @m) >+ 0 ('), (4.8)

f1:(0) = o (n'/*7) 4.9)
uniformly in i, and for some ny € N,

sup {| f/1(x)| :n = no, i 20, x e R} < 0. (4.10)
All three statements also hold if f,; is replaced by f,;;, i < j. Finally, as n — oo,

sup | () - Q)P =0 (n' ) . @.11)

xe

Proof. We start with the proof of (4.11) which would follow from the inversion formula for
densities once it is shown that

/ pa(t) — G (0; 1; D) dt =0 (n' 7).

By Lemma 4.1 and (2.4),

logn
/ " 00(0) — 6(0; 15 )l di = O (n'?7(1=logn)*?) = o (n'~>) .

—logn

Furthermore,

/ ¢c(0; 1;)dt = O (ef(log")z/z) =o(n'"),
[—logn,logn]¢

Thus, (4.11) will follow once we show that

/ lpa(®) dt =0 (n' ) . (4.12)
[—logn,logn]¢
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With (2,,,~ :n>1,i > 0) as above, we set
—1 5 5 .
Uni =0, ' (As = Ai-) [ Zai = EZ) | = 1,0 2 0,

so that

() = [ ]| E (e"“)

i=0

,n>1,teR. (4.13)

Set

) -1 roo
H(x,o:( / e”fz(z)dz> / NS 2 dz, (v, 1) € B,

[o¢] o0
which is a characteristic function for any fixed x. A consequence of that is d|H(x, t)|/0t],—9 <
0 for any x € R. Furthermore,

92 ,
SIHO. t)|‘t=0 — 062<0

and by continuity of the second partial derivative we conclude that there is §o > 0 such that

2

ar?
That means we also have

|H(x,t)| <0 whenever 0 < [t], |x] < dp.

0
E|H(x, t)| < 0 whenever 0 < |¢], |x| < &. 4.14)

We may and will choose §y € (0, 6y], with 6y as in (2.2). By (2.2) we can appeal to (A.3) to
conclude that

lim sup |H(x,t)| =0.

1790 x| <8
Thus, there is M > 0 large enough so that
sup |H(x,1)| < 1.

1>M,]x|<8o
Since by continuity of H and compactness we have

sup |H(x,t)] <1,
So<t<M,|x|<8p

it follows that

n= sup |H(x,t)| <I.

1>80,|x|<dp

The continuity argument also shows that there is §; € (0, 8p] such that

min |H(x, 8;) = 7.
NEN

Therefore, for |x| < §p and 0 <t < §;, (4.14) implies that
|H(x,t)| = |H(x,81)| = n = sup |H(x, s)|.
SZSO
Since by (4.14) we also have
|H(x,1)] = sup |H(x,s)l,
selt,80]
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we conclude that

|H(x, )] =sup|H(x,s)|, [x]| <8, 0 <1 =6. (4.15)
s>t
By (4.13)
n—1
pn()] < |EU)| T |E¥)
i=[n/2)
n—1
= [EE"")| ] |H (caAi 0, Ait)] . (4.16)
i=[n/2]

It follows from Lemma 3.1 that there exists sop > O such that for n large enough,
sooun”? < A; <805, [n/21 <i<n—1.

Put x = ¢,A; and t = son~"/?logn in (4.15) and use the above upper bound on A; to get for
n large

|H (g, A, son™ ' logn)| = |H(G,Ai,5)| , [n/2] <i <n—1,s > son”"*logn.

For ¢ > logn where n is large enough to satisfy the above, use the lower bound on A; in the
display preceding the above to put s = o, ' A;¢ and obtain

n—l n—1
l_[ |H (¢,Ai, 0, Ait)| < 1_[ |H (¢4 Ai, son™"* logn)] .
i=[n/2] i=[n/2]

Since any partial derivative of H is bounded on a compact set, we can use the bound (A.4) to
conclude that there exists s; > 0 such that

sup [H(x, )| < (1 —s1tH)"2, 0<t < 1.
|x|<8¢

Thus, there is s, > 0 such that for all large n and all + > logn we have

n—1

l_[ |H (;,,Ai, on_lAit)| < (1 - sgsln_l(logn)z)"/4 =0 (e‘sZ(lOg”)z).
i=[n/2]

Using this bound in (4.16), and appealing to (2.2) we obtain

[, joonai =0 (=) [ e e
1 1

ogn ogn

2
-0 (n1/2efsz(logn) ) _ O(nkza) .

Since we can switch from ¢ to —t, (4.12) follows, which establishes (4.11).
A similar calculation with the aid of (4.2) shows that

Fai(0) = Q@ hn) ™ exp (=0, 2n%e” i — 1) /20n) + 0 (n' %),

dt

uniformly in i > 0. Since X,; — 1 = O(1/n) uniformly in i > 0, it follows that
hot " exp (=0, %2 G = 172/ 20) = 1+ 0 (07! +0,7%)
=1+4o0(n'"),
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uniformly for i > 0, which proves (4.8). For (4.10) we write

o0

fh(x) = —Q2m)~/? / e g (t) dt

—0o0
and repeat the arguments used above in the proof of (4.11), applying (4.2) and the full force
of the assumption (2.2).
Finally, for (4.9) we use the identity

£1,(0) = —i@r)~ 2 f (o) dr.

—0Q

Since

n

Vm {66 (076G — 1 dnii 1) dt| = 0 (07) = 0 (127),

o0

uniformly in k£ > 0, (4.9) follows.
The arguments with f;;; replacing f,; are similar. This completes the proof. [J

The next lemma tackles certain expectations conditionally on Ej; its statement should be
compared to (3.43).

Lemma 4.3. Suppose that (2.2) and (2.5) hold. Then

[e.¢]

E (Z,—i-11(Ep) = K, [ / 2Gryaj—a; pd2) +0 (8 0, A — Ai_n|)} (4.17)

—00

and

E(Zy—i-1Zy—j—11(Ey)) (4.13)
- o0 o0
=K, (/ 21 G;H(Ai—Ai_,,)(dZI)/ 22 Gopa;-4,_)(d22)
—0 -0
+0(0, (A — Aimn)(A; — Aj0))) ) n— oo,

uniformly for i, j > 0 with i # j, where

Ry = Qn) ¢ o e M E (65 n > 1. (4.19)

Proof. We only prove (4.18); the proof of (4.17) is similar and easier. Write
E(Zn—i-1Zn—j—11(Ep))

:f 21 Fz(dzl)/ 22 Fz(dz5)

o0

x P (S, j) = ne —(A; — Aisp)zi — (Aj — Aj_p)22)
=o,'E (ef'ls"l“'-”) / 21 Fz(dzy) / 22 F7(dz))
—00

—00

X /OO fuij ((s — ne)/cr,,)e_g”s ds.

e—(Ai—Aj_p)z1—(Aj—Aj_p)2
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. b __ a
We adopt the convention fa = — fb , and denote

;o
Cnij = ;—n*lo-n*le*"SCnE (efnsn(h,])) — é-*lanfle*m?{nE (eé'nsn)

n

00 00 -1
x </ efn(Ai*Aifn)zFZ(dZ)/ ein(AjAjn)ZFZ(dZ)> .
— —00

oo

In the notation of (4.19) this simply means that

) %) -1
cnij = K(2m)'? (/ eg”(A"_A"—")ZFz(dZ)/ eg"(Af_A-"‘")ze(dZ)> .
- —00

(o]

Changing the variable and using the fact that £Z = 0, we obtain
E(Zy—i—1Zn—j—11(Ey))

oo oo
= Cn,-j/ 21 FZ(dZ1)/ 720 Fz(dz7)
—00 —00
/Crl(Ai_Ai—n)zl""fn(Aj_Aj—n)zZ

X e’ fnij (—X/(Unfn)) dx
[eS) 0 00
= Cpij / 21 Fz(dZ1)/ 22 Fz(dz2) (4.20)
—00 —00
fn(Ai_Aifn)Zl+{n(Aj_Aj7n)Z2
X |: / exfnij(_x/(ané—n)) dx
0

tn(Aj—Aj_p)zg
- /(; exfnij(_x/(angn)) dx

;n(A_j_Aj—n)ZZ
_/ exﬁlij(_x/(angil)) dx ] .
0
For fixed z;, zo € R, the expression inside the square brackets can be rewritten as

tn(Aj—Aj_pn)z2
(efthi—Ain _ 1) / o
0

X fnij (—(.X + é‘n(Ai - Ai—n)zl)/(allgn)) dx
{n(Aj_Aj—n)ZZ
+ / e’
0

X |: Jii (—(x + 8a(Ai — AiZn)21)/(0nln)) — fuij (—x/(0ntn)) :| dx.

By Taylor’s theorem,

+ &, (A — A, + (A — Ay ’
fm‘j(—x E(Ug )Zl>=fm'j(0)—x é'(a{ )Zlfnij
(x + {n(Ai - Aifn)zl)2 1
+0 ( - ||fm»,-||oo> .

Using this and (3.25), straightforward algebra gives us

{n(Aj*Aj—n)ZZ
/0 e fij (—(x + &a(Ai — AiZn)21)/(0uln)) dx

= fi;(0) (e{n(Aj*Aj—n)ZZ _ 1)
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+0 (efﬂ'A-f—Af—"'zz(|f,;,-,-<0>|a,:‘cnn‘—“|A,- = Ajallzal(l21] + 22)

—_ _ 2
+ ”fr::'j”ooan 2§n”2 2a|Aj - Aj_n||22|(|21| + |Zz|) ) ) :

The obvious inequality |e¥ — 1| < |x|e"! for x € R along with Lemma 4.2 now show that

n(Aj=Aj_n)za
(ein(Ai—Ai—n)zl — 1)/ er
0

X faij (= 4 Ea(Ai — Ai—n)z1)/(0nln)) dx
= fi;(0) (eCn(Ai*Aifn)Zl _ 1) (efn(Aj*Aj—n)Z2 _ 1)

+0(0,2 (A = Aim)(A; = Aj-aiz] (2] + 122D

A=A _,llz11+IA; —A i, ||z
s enAi=Aiyllz11+1A;=Aj ]l 2\))’

uniformly for i, j > 0 with i # j and z;, 2, € R.
Treating in a similar manner the second term, we conclude that the expression inside the
square brackets on the right hand side of (4.20) equals

fnii(o) (efn(Ai_Ai—n)Zl _ 1) (eCn(Aj—Aj—n)zz _ 1)
+ 00,2 [(As = A4 = A A+ 2P + 122

% e;n|(Af—A,~_n>z1|+cn|<A_,—A,-_,1>zz\) ,
uniformly for i, j > 0 with i # j and z;, 2, € R, and substitution into (4.20) gives us
E(Zy—i-1Zn—j—11(Ey))

oo e}
= Cuij [fm-,(O) f 21" A Fy (dzy) / 2ae™ AR Fy (dzy)
—0 —0o0
+ 0<U{2 ’(Ai —Ai_)A; — Aj—n)D ]

oo oo
= Kn(ZN)]/zfnij(O)/ 21 Gg“,,(A,-—A,-,n)(dZI)/ 22 Gyyaj-a;,)(dz2) 4.21)
—00 —00
+ Cm'j0<0n_2 ’(Ai —Ai_)(Aj — Aj—n)‘) ,
as n — oo, uniformly for i, j > 0 with i # j. Recalling that EZ = 0, we see that

o0
/ 21 Geuai—a,_ndz1) = O (5(Ai — Aisy))
—00

and likewise for the second integral in (4.22). Since K, = O(cpij), the claim (4.18) follows
from Lemma 4.2. [

The next lemma completes Step 2 in the proof of the main result; the previous Lemmas 4.1—
4.3 are needed for this lemma. We denote

oo
Yo = Zu i — (14¢720,7) f 2Geyai—n;)(d2), i € Z,n > 1. (4.22)

—00
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Lemma 4.4. Suppose that (2.2) and (2.5) hold. Then

sup E (Y;:|Eo) < o0, (4.23)
n>1,i>0
and
E (YiY,j|Eo) = —0, %05 (Ai — Ai—y) (Aj — Aj=y) (14 o(1)) (4.24)

as n — oo, uniformly in i, j > 0 with i # j.

Proof. We prove (4.24); the Eroof of (4.23) is similar (and much easier). Expressing the law
of S, in terms of the law of (S, — ne)/o,, which has the density f,, we can write

P(Ey) = P(S, —ne > 0) = ¢, o, e E (e557) /000 e fu(x/(¢u0,)) dx.
Recalling the definition of I%n in (4.19), this is the same as

P(Eo) = K,(2n)'? /0 " e (6 /o) dx.
By (4.11),

_ 1—2a * . 1 2
P(Eo) = K, [o(n )+ fo exp( f = g ) dx].

Since

1 1 x*
exp | — 2)=1- x>+ 0 ,
20767 20247 ot

uniformly in x, and n'=2* = O(0,72¢,7?), simple integration shows

P(Ep) = K, [1 = ¢, %0, 2 (1 +0(1)], n — 0. (4.25)

n

In combination with (4.18) this means that

E (Zy—i—1Zn—j—11(Ey)) P(E)
- o0 o0
=K ( (1 —é“n_z%_z)/ 2 Gcn<A,-—A,-_n>(dZI)/ 22 Gya;-4;_(d22)
—00 —0Q

+0(0, 2 1(Ai — Aima)(Aj — Aj_p)) ) n— oo,
uniformly in #, j > 0 with i # j. Since by (4.17),
E (Zy—i-1\1(E)) E (Zy—j—11(Ep))
- o0 o0
= Kf/ 4 Gcn(Ai—Ai_n>(d21)f 22 Ggyaj-a;,)(dz2)
+o(Rio21Ai = AicallAj = Ajal) |
we conclude that

E (Zy—i—1Zn—j—11(Eq)) P(Eq) — E (Zy—i11(E)) E (Z,—j—11(Eo))

o0 o0
o2 —2 =2
= —K,t, 0, f ZIGMA[—A;_n)(dZI)f 22 Ggyaj—-a;,)(dz2)
—00 —00
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+ 0 (R20,21A; = AiallA; = A1)
= —K20, 205(Ai — Ais)(A; — Ajy) (1 +0(1))

as n — oo, uniformly in i, j > 0 with i # j. Dividing both sides by P(E)?> and using (4.25),
we obtain

E[(Zuio1 = EZui 1 |E0) (Za-j1 = EZ 1| E0) | Eo] (4.26)
= —0, 07(Ai = Ai)(A; — Aj) (L+o(D)
as n — 00, again uniformly for i, j > 0 with i # j. Since by (4.25) with (4.17)

o0
E(Zy—i—1|Ep) = (1 + 5;20;2) / 2Gyya-;_(d2)
o0

+o (5 0, %A = Aisal)
with a similar statement for Z,_;_;, (4.26) implies (4.24). [

5. The proof of the main result

In this section, the proof of Theorem 2.1 is completed by carrying out Steps 3 and 4. The
first goal is to prove Lemma 5.3 which essentially completes Step 3. Proceeding towards that,
we start with establishing conditional distributional limits of certain truncated sums.

Lemma 5.1. Suppose that (2.2) and (2.5) hold. For 0 < § < L denote

mPL1-1 n—1

$i( 8. L) = (Aipj = AdYui + D (Airj = Aigjn — ADYu (5.1
i=[nfs) i=n—j
n+[nﬁL]

+ ) (A=A — Al ALY, n= 1, j = 0.

With the overshoot T, as in (2.20), we have, conditionally on Ey,
(6T}, (0 72Su((nf11,8, L), t > 0))

L
= (TO, ((1 —a) oz (/ [(s + )% —s'"“]dBi(s) (5.2)
8

t L
+ /(z —s)l—“de(s)Jr/ [s'~ —(s+t)1‘°‘]dB3(s)>, t> o))
0 0

in the sense of convergence of finite dimensional distributions as n — 0o, where Ty is
a standard exponential random variable independent of Bi, By, By which are independent
standard Brownian motions.

Proof. For n > 1 and r > 0 we write

[nP1] n—1
E°(1) =Y AiYy, E°()= Y AYu,
i=1 i=n—[nPr]

n+[nﬂt]
EL) =Y (Aj—Aiy) Y.
i=n+1
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It follows from Lemma 3.4 that, conditionally on Ej,

( GT), (n2El (1) 1t > 0), (n* PPl 1t > 0), (5.3)

(na_ﬂ/2—l$30(t) > O) )

= (To, (K262 B1(72) 11> 0), (1 — ) oz Ba(t) : 1 > 0),

(1 =) lozBy(t) i 1 > 0))

because the difference between the processes in (5.3) and those in Lemma 3.4 vanishes in the
limit. For example,

(P 0

n* %0, Y A / 2Gyua,(d2) = 0 (n'72) = o(D),
i=l

—00
and similarly with the other two components. Furthermore, for large n,

S,([n?1], 8, L)

mPL1-1 n—1

= Z (Ai+[n5t] — ADYi + Z (Ai+[nﬁt] - Ai+[nﬂt]7n — ADYi
i=[nPs) i=n—[nPt]

n+nPL]

+ Z (Ai+[n/31] - Ai+[nﬁt]—n - Ai + Ai*")Yni = an(t) + Vnz(t) + V,?(l).
i=n
Starting with V3, we write

[P L]

Vi) =n" 000N f (nPit) (Angi — A) Yo (5.4)
i=1
where for 0 < s < L,

Fu(s, 1) = n1=01=P) Antinbsirinfn) ~ Awbsivinn) — Antinfs) + Aiwbs)
AnJr[nﬁs] - A[nﬁs]

It is elementary that for fixed s, ¢, as n — oo,

An+[nﬂs]+[n5t] - An+[nﬂs] < A[nﬂx]vL[nﬂt] - A[nﬂs]
~ (1 _ a)flnﬂ(lfol) [(S + t)lfut _ slfa] ,

while A, 65 — Apss ~ (1 —a)~'n'~®. Therefore,
lim fy(s, ) = s — (s + )% = f(s, 1), (5.5)
n—o00

and the limit is easily seen to be uniform in 0 < s < L and ¢ in a compact interval. We will
show that, conditionally on Ey,

(n** 2V (1), t 2 0) (5.6)

L
= (az(l —a)”! / [s'""* = (s +0'"“]dBs(s). t = 0)
0
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in the sense of convergence of finite-dimensional distributions, as n — oo. To this end, set

nj k’ 1= inf n\, t ) k 2 17 1 S j S k5
D= i TS J
and

enitk, 1) = fu(n™Pi 1) — ¢, pmt-prink, 1) > 0, k > 1,1 <i < [nfL].
By (5.5) and monotonicity,

nli)rgocnj(k, 1) = f((j — l)k_lL,t), 1<j<k. 5.7
A standard continuity argument shows that

lim limsupsup max ek, 1) =0
k—00

(5.8)
n—oo teA 1<i<[nPL]
for any compact set A. We have
P L)

Z Co - 1n—Prin (ks D(Anyi — Ai) Yo i
i=1

v
=D k) >
j=1

(An+i - Ai)Yn,nJri
ie(k-1Lnf -1k~ Lnf ]z

j=1

k/
= Y el 067 (' Lj) = &7 (K'LG = D)) = Warl0),

where k&' = [L~'n=Pk[nPL]]. This, together with (5.3) and (5.7), implies that for fixed k, as
n — oo,

(n* PP W), t = 0)
k

= ( A=) oz Y f(G = Dk'Lt) (Bst™'jL) — Bs(k™'(j — DL)).,

j=1
tzo)

in the sense of convergence of finite-dimensional distributions. We have
(L]

(5.9)

Z fn (n_ﬁis t) (An-H - Ai) Yn,n+i - Wnk(t)
i=1

mPL
=Y enilk, 1) (Ansi — A) Yo nsi

i=1

It follows from (4.24) that, for large n,
sup (A; — Ai—n) (Aj — Aj_) E (Yui Yyl Eg) < 0.
i,j>0:i#j
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This, along with (4.23) and the non-negativity of each e,;, implies that for large n,

mPL) :

E Z eni(k, 1) (Apti — Ap) Yo ‘Eo
i=1
(nPL]
< Y lenitk, 1) (Anys — AP E(Y,,; | Eo)
i=1
PL]
= 0| max ek, 1) Y (A — A’

1<j<mPL) P
=0 (nz_z"‘*ﬁ max e, (k, t)z) .
1<j<[nPL]

Invoking (5.8) we conclude that for any compact set A,

lim lim sup n2—p=2 sup E |:< Wi (1) (5.10)

k=00 ps00 teA

mPL
= Y F(n7Pi 1) (Angi — AD) Yoo ) 2‘E0 }= 0.
i=1

As k — oo, the process on the right hand side of (5.9) converges in finite-dimensional
distributions to the process on the right-hand side of (5.6). Since 2o —2) — (1 —a)(1 — ) =
o — B/2 — 1, the claim (5.6) follows from (5.4) and (5.10) by the “convergence together”
argument; see Theorem 3.2 in [2].

A nearly identical argument shows that, conditionally on Ey,

(n*72Vx0), t = 0) = <—Uz(1 - a)’lf (t — )7 dBy(s), t > 0) (5.11)
0

4 (02(1 —a)”! / (t —s)' ™dBy(s), t > o)
0

in the sense of convergence of finite-dimensional distributions.
The situation with the term an is, once again, similar, with a small twist. Since

- -
lim Apbsiainpn) = Absy _ (s+0D) 7" =57
n— 00 A[nﬂs] gl-a

uniformly for § < s < L and ¢, our argument now shows that, conditionally on Ey,

L t l—a _ -«
(vl >0) = (UzK]l/2 / lesM(ds), > 0) (5.12)
s s

in the sense of convergence of finite-dimensional distributions, where K is as in (3.11) and M
is a centred Gaussian random measure whose variance measure has the density (3 — 20r)s22,
s > 0.

That is,

Var ( / ~ h(s)M(ds)) =3 - 2a) / ” h(s)*s> 2 ds,
0 0

415



A. Chakrabarty and G. Samorodnitsky Stochastic Processes and their Applications 163 (2023) 387423

for a measurable & : (0,00) — R for which, the right hand side is finite. Taking h(s) =
s~ (s < 1), it thus follows that

</‘WUwun,tzO)éQHS—ZaY”Bwﬁ,tEOX
0

In other words, s*~!M(ds) can be replaced by (3 — 2a)'2d B, (s). Therefore,

L l-a _ Jl-«
</ %M(ds), t > 0)
)

L
4 ((3 - 2a)1/2[ (s + '™ —5""*)dBy(s), t > 0) .
s
Combine this with (5.12) and recall (3.11) to get that conditionally on Ej,
(n** 2V} (1), t = 0) (5.13)

L
= <az(1 —a)”! / (s+0)'" —s""%)dB(s), t = o)
§

in the sense of convergence of finite-dimensional distributions.
Since (5.6), (5.11) and (5.13) are all consequences of (5.3), the convergence statements they
contain hold jointly, and jointly with £,7, = Ty. The claim (5.2) follows. [J

The next lemma treats the sequence of shifts appearing due to conditioning on Ej.

Lemma 5.2. Define

(1)
o0 o0
= I’lzcl_2 Z (AiJr[,,ﬁ;] - A[Jr[nﬁt]fn - Ai + Ai—n) / Z G;n(Ai—Ai,,,)(dZ),
i=0 —o0
fort >0and n > 1. Then u, — oo as n — 00, in D([0, 00)) equipped with the Skorohod
Ji topology, where oo(t) = —et372%, t > 0.

Proof. Writing

[ee]

Ma(?) :n2a—2€n Z (Ai+[n/3t] - Ai+[n/3tjfn —Ai+ Ai*n) (Al - Ai*n)
i=0

0?2 Z (Ai+[nﬁz] — Ay — Ai + A,-,n)
i=0

X |:/°° 2 Goyai—nn(dz) — L (A; — Ai—n)i|
=u¢%niu90xrza
the claim of the lemma will follow once we prove that
ul) = o in D([0, 00)) (5.14)
and

;Lf)(t) — 0 uniformly on compact intervals. (5.15)
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We start by proving (5.15). Fix L > 0 so that 0 < ¢ < L. Suppose first that 1/2 < o < 5/6.
By (3.6)

|20

00
=0 (’120‘_2;}12 Z |Ai+[n5t] - AH—[nﬂt]—n - Ai + Ai*H| (Al - Aii’l)z)

i=0

oo
=0 <n2a—2§’12nﬂzl~—a(Ai _ Ain)2> — 0( 20— 24.2 ﬁ 3— 301) =0
i=1

uniformly in 0 <t < L, showing (5.15). On the other hand, if « > 5/6, then ¥ > 3 in (2.5),
so by (3.6)

20|

00
=0 <n2a2§n3 Z |Ai+[nﬁt] = Aitnb—n — Ai Ai*n| (Ai - Ai")S)
i=0

o.¢]
-0 <n2a2§3nﬂ Zifa(Ai _ Ai—n)3> _ 0( 20— 2;3 /3 4— 40t) -0
i=1
uniformly in 0 < ¢ < L, again showing (5.15).

We now prove (5.14). The pointwise convergence is clear: for fixed ¢,

1 2 20—1 200—1
e )(t) = UZU e Z i+[nPr) — t+[n5t]—n) (Ai = Ai) —n™"e

— —g?

as n — 0o, where we have used (3.12). Next, as in (3.14) we can write for ¢t > 0,

202 n—l
ng
(1) =

- [ > (A= Apurn)”

i=0

o0
+ Z (Aitpb = Aspprr—n — Ai + Ai—n)2 }

i=n—[nPt]
= V(@) + P @).

The claim (5.14) will follow once we show that both p{!" and p!? converge in D([0, 00))
to continuous limits (both constant factors of (). The fact that u(“) converges pointwise to
a constant factor of the pointwise limit of (! is an intermediate step in the proof of (3.12).
Since u{!" is a monotone function, its convergence in D([0, 00)) follows.
We already know that p(!? converges pointwise to a continuous limit. Let iy be such that
a; is monotone for i > iy. Write for r > 0
202 e
M’(112)(t) :nT;” |: Z (Ai+[n/9t] - Ai+[nl31]—n —Ai+ Aifn)2
i=n+ig
n+ig—1
2
- Z (Ai+[nﬁz] - Ai+[nﬂt]—n - Ai) i|
i=n—[nfr
w200 = 220,
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so it is enough to show that both (12

Splitting further, we write for ¢ > 0,

and p{1?? converge in D([0, 00)) to continuous limits.

nza_zg n+i0—l
122) 74\ n 2
My, () = — ) Z Ai+[nﬁt]7n
i=n—[nfr]
n+ip—1
+ Z (Ai - Ai+[nﬂt1)(Ai - AiJr[nﬁt] - 2Ai+[nﬂt]7n) ]
i=n—[nfr]

— M;IZZI)(t)_'_MI(IlZZZ)(I).

Clearly,

Bil4in—
2a—2 [nPt]+ig—1
1221 n g
M(n )(t) —

= XA

converges pointwise to a constant factor of pe. Since p{!??) is monotone, we conclude that
,uﬁllzm) converges in D([0, 0o0)) to a continuous limit. In order to prove that so does ,uﬁllzz),
we will show that x{!*?2(t) — 0 uniformly on compact intervals. Considering once again
0 <t < L, we have

}M;1222)(t)|
nzaizé'n n+ip—1
= T Z (Ai+[11ﬂt] - Ai)[(Ai+[nﬂI] - Al) + 2Ai+[nﬁt]7n]
i=n—[nP1]
n+ig—1
=0 | n* %, Z nﬂnfa(nﬁnfa +n5(17"‘))

i=n—[nfr]
=0 (n“_zg',,n3ﬁ_ﬂ“) -0

uniformly over 0 <t < L, as required.
Finally, we already know that 11{!?!) converges pointwise to a continuous limit. Furthermore,
by the choice of iy, ,uﬁlm) is a monotone function. Therefore, it converges in D([0, c0)), and

the proof is complete. [

The following lemma, which is the final one before we prove Theorem 2.1, completes
Step 3.

Lemma 5.3. Suppose that (2.2) and (2.5) hold. Let S,(j) be as in (2.21). As n — oo,
conditionally on Ey,

(n= @72 (S,([n1]) — ne) , t = 0)

= (2C)'"*By(t) + £7'Coo5Ty — e’ 2%, t > 0)
in the sense of convergence of finite-dimensional distributions, where (Bg(t) : t > 0) is the
standard fractional Brownian motion (2.10) with the Hurst exponent H given in (2.9), Cy is

the constant defined in (2.12), and Ty is a standard exponential random variable independent
of the fractional Brownian motion.
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Proof. It follows from (4.24) and the eventual monotonicity of the sequence (A,) that there
is ip > 0 such that for all large n,

sup E (YuiYjlEg) <0. (5.16)

io=i<j

For fixed L, t > O this and (4.23) imply that

n—[nfr1-1 2
E Z (Aippn — Ai) Yai ‘Eo
i=[nPL)
o0
=0 Z (Ai+[nﬁt] - Ai)z
i=[nPL]
°° 2
o ((j +nfr) - jl"")
j=[nPL]

=0 (n4_4"‘ /‘00 [(x +0)'— xl_“]2 dx) .
L

Therefore, for fixed ¢,

nf[nﬁt]fl 2
lim 1i E 2a=2 A, —A) Y| |Ey| =0. 17
e | (7 3 (a4 ) [ =0 o
l=\n

Since the sequence (a,) is eventually monotone, we can increase, if necessary, ip to guarantee
that Aj 4y — A; < Ajyx — A; forall ig <i < j and k > 0. By (5.16), for fixed L, t > 0, large
nandi, j>n+[nfL],

(Ai+[nf’t] — A b —Ai + Ai—n)
X (Aj+[nﬁz] —Ajiubrin — Aj T+ Aj—n) E (YniYnj|E0) <0,

and the same argument as above implies that

lin;olimsupE |:(n2"‘2 (5.18)
g n—o00
[o¢]

Z (Ai+[n/3t] - Ai+[n/31] —n A + Al n) ni ) Z‘EO i|= 0.
i=n+[nPL]+1

Similarly, for a fixed ¢ > 0,

[nPs1-1
hrnhmsupE n*=2 Z Apypup — Ai) Yoi |2

=0 p—o0

Ey| =0, (5.19)
i=ig
and it is elementary that for a fixed ¢t > 0,
2

ig—1
lim E (2“ 22 i+ — i)Yn,-) ‘EQ =0. (5.20)

n—00
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It follows from (5.17), (5.18), (5.19), (5.20) and Lemma 5.1 that, conditionally on Ej,

o0
[QT;’ (n(zza) Z (Ajspnbey = Aiepbirn — Ai + Aiy) Vi, t > 0)] (5.21)
i=0
o0
= [To, ((1 —a) oy (/ [(s + )" —s'""“]dBi(s)
0

+ f (l —s)lfa de(S)+ /Oo [(S +t)17a _Slia] dB3(S)> , 1> 0>:| s
0 0

in the sense of convergence of finite-dimensional distributions, as n — oo. Furthermore, one
can easily check the Lindeberg conditions of the central limit theorem to see that

-1
n=C20 N A Zno1-in £ =0 (5.22)
i=—[nP1]

= ((1 —a)_lUZ/ (t — )" dBy(s), r > 0)
0

in the sense of convergence of finite-dimensional distributions, as n — oo, where By is a
standard Brownian motion. Note that the random variables on the left hand side of (5.22)
are independent of the random variables on the left hand side of (5.21) and, in particular,
independent of Ej.

Using (2.16) we conclude by (5.21) and (5.22) that, in the notation of Lemma 5.2,
conditionally on Ej,

(6T, (n= %72 (Su([nPe]) = S) — (1 + ¢, %0, ) ua(0), £ > 0)]

= [TO, ((1 —a) oy (/ (t — $)' "% dBy(s)
0

+/ [(s + )" —s'""“]dBi(s)

0

+ f(r—s)““de(sH/w [(s+t)1“—s‘“]dB3(s)>, t 20>]
0 0

< [To, (21/2(1 —a) oy /oo [t — 9L — (=) “]dW(s), t = o)}

in finite-dimensional distributions as n — oo, where at the intermediate step the four standard
Brownian motions, By, Bj, B, and Bj are independent (and independent of 7j), and in the
final expression (W(s), s € R) is a two-sided standard Brownian motion, independent of 7.
By (3.15), this can be restated as saying that, conditionally on Ej,

[Ty (n @72 (Su([nP1]) = Su) — pa(0), £ > 0)]
= [0, (2C)'*Bu(0), t > 0)],
and by Lemma 5.2 also

(6,77, (n=C72 (Su([nP1]) = Su) £ = 0)]
= [To. (2C)"/*By(t) — e’ 1 = 0)]



A. Chakrabarty and G. Samorodnitsky Stochastic Processes and their Applications 163 (2023) 387423

in finite-dimensional distributions, as n — o0. Since
n~720(8,([nP1]) — ne) = n=2(S,(Inf1]) — S,) + (n™*2¢, )G T,
the claim of the lemma follows from the definition (3.32) of ¢, and (3.9). O

Now we are in a position to execute Step 4, that is, prove Theorem 2.1.

Proof of Theorem 2.1. We will prove that
{P [(C72 (S,(nfr1) ), 0 = 1 < 00) € | By, n = 1} (5.23)

is a tight family of probability measures on D([0, c0)) equipped with the Skorohod J; topology.
Assuming for a moment that this is true, it would follow from Lemma 5.3 that, conditionally
on Ey,

(n= @72 (S,([nt]) — ne) : t > 0)
= (2C)'"*By(t) + & 'Coo3Ty — et : 1 > 0)

weakly in D([0, 00)), as n — o0. Since the functional x — inf{r > 0 : x(¢) < 0} on D([0, c0))
is, clearly, a.s. continuous with respect to the law induced on that space by the limiting process,
the continuous mapping theorem would imply that, conditionally on Ey,

nPL(e) =inf{t = 0: n= 2 (S,([n"1]) — ne) < 0}
= inf{r > 0: (2C,)"*Bu(t) + £ 'Coo 3Ty — e’ <0} =1,

as n — oo. Therefore, establishing tightness of the family (5.23) suffices to complete the proof
of Theorem 2.1, and by Lemma 5.2 it is enough to prove that the family

{P [(n_Q_ZD‘) (Su([nP1]) = ne) — wa(t), 0 <t < 00) € ‘EO] n> 1} (5.24)

is a tight family of probability measures on D([0, 00)).
We have to prove tightness of the restriction of the family (5.24) to the interval [0, L] for
any L > 0, so fix L. We start by showing that

y [(Sn (10 1) = 022, (0) = S, (Ins1]) + 12 (s))” ‘EO]

=0 (([nﬁt] - [nﬂs])3’2“) , (5.25)
uniformly for 0 < s <t < L. We write

S ([n71]) = 02, (1) = S, ((nPs1) + 02 (s)
-1

= Z (Ai+[nf’r] - Ai+[nﬁs]) Zp—i-1
i=—[nf1]

%)
+ Z (AiJr[nﬁt] - Ai+[nﬂt]7n - Ai+[nﬁs] + Ai+[nﬁs]7n) Yni'
i=0
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Since Z,, Z,+1, - .. are independent of E(, by Lemma 4.4,

E [(sn (I#11) = 020, (1) = S, (In51) + 12 (5))° ’Eo}

(nPr—1
2
=0 [ Y (A=A g wen)
j=0
[
2

+ Z (AiJr[nﬁt] - Ai+[nﬂt]7n - AiJr[nﬁs] + AiJr[nﬁs]*") :|

i=0

=0 (([;ﬁt] — [nfs1)"™)

uniformly for 0 < s <t < L by (4.4) with x = 2, and (5.25) follows.
Letnow O <r <s<t<L.Ift —r <n#, then

E [ |Su([nPsT) — wa(s) — Su([nPr]) + pa(r)]

X [$u(1n 1) = 10(6) = S,(0 1) + aa(s)] | Eo }

vanishes. On the other hand, if # —r > n=#, then by (5.25) and the Cauchy—Schwarz inequality,
the conditional expectation can be bounded by

0 (([nﬂt] . [n/gr])3—201> -0 (n4—4oz(t _ r)3—2a)

uniformly for 0 <r <s <t < L. Since 3 — 2o > 1, the required tightness of the family in
(5.24) follows, which completes the proof of Theorem 2.1. [
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Appendix. Some useful facts

We collect in this section for easy reference a number of known or easily derivable results.
The first one is an integral evaluation which follows from (2), (6) and (51) in [4].

Fact 1. If H € (0, 1), H # 1/2, then
T ouop . H-12]> , _ cos(mH)I'(2 —2H) )
/0 [x - D ] dx = = T 1 (A1)

Next, we will need the following version of the Berry—Essen theorem valid for independent
not necessarily identically distributed summands; see [1].

422



A. Chakrabarty and G. Samorodnitsky Stochastic Processes and their Applications 163 (2023) 387423

Fact 2. Let Xy, ..., X, be independent zero mean random variables with finite third moments.
Denote

Xn: E(X?).

i=1

n
A=Y E|X]|. B=

i=1

Assuming B > 0 we have

n
P> Xi <Bz| - ®@)| < C,AB, z€R, (A2)
i=1
with C, a universal constant, and @ the standard normal CDF. The fact that the constant is
universal means that (A.2) remains valid for n = oo as long the series on the left hand side
converges and A, B are finite.

The following generalization of the Riemann—Lebesgue lemma can be proven in the same
way as the original statement.

Fact 3. If f : R — R is a measurable function such that for some § > 0,

f | f(xX)dx < oo forall 6 € [—8, 8],

o]

then

lim sup

/ b T f(x)dx| =0. (A.3)

We will need the following simple bound on the characteristic function of a random variable
with a finite third moment. The proof is given for the sake of completeness.

Fact 4. If ¢ is the characteristic function of X whose third moment is finite, then

lp()] < (1 — £2Var(X) + 4P E|XPP/3)?, t e R. (A.4)

Proof. Let X’ be an independent copy of X and ¥ = X — X’. Using the bound cost <
1 —12/2 + |t|*/6 for t € R, we have

EeY <1 —*E(Y?)/2+ tPE|Y)}/6
<1 —1*Var(X)+ 4|tPE|X /3.
This completes the proof. [
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