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Abstract

We investigate how large deviations events cluster in the framework of an infinite moving average
rocess with light-tailed noise and long memory. The long memory makes clusters larger, and the
symptotic behaviour of the size of the cluster turns out to be described by the first hitting time of
randomly shifted fractional Brownian motion with drift.
2023 Elsevier B.V. All rights reserved.
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1. Introduction

We consider an infinite moving average process of the form

Xn =

∞∑
i=0

ai Zn−i , n ≥ 0 , (1.1)

where the noise variables (Zn : n ∈ Z) are assumed to be i.i.d. non-degenerate random
variables. The noise distribution FZ is assumed have finite exponential moments:∫

R
et z FZ (dz) <∞ for all t ∈ R . (1.2)
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Furthermore, assuming that the noise is centred:∫
R

z FZ (dz) = 0 , (1.3)

he series defining the process in (1.1) converges if and only if the coefficients a0, a1, a2 . . .

satisfy
∞∑
j=0

a2
j <∞ . (1.4)

In this case (Xn) is a zero mean stationary ergodic process. For ε > 0 we consider the sequence
of large deviation events

E j (n, ε) =

⎧⎨⎩1
n

n+ j−1∑
i= j

X i ≥ ε

⎫⎬⎭ , j ≥ 0. (1.5)

By stationarity, for a fixed n, each event E j (n, ε) is equally rare, and we are interested in the
luster of these events that occur given that the event E0(n, ε) occurs.

In [3] the short memory case was considered. In this context, “short memory” corresponds
o the case

∞∑
n=0

|an| <∞ and
∞∑

n=0

an ̸= 0. (1.6)

n this short memory case the conditional on E0(n, ε) law of the sequence
(
1(E j (n, ε)

)
, j =

1, 2, . . .) converges weakly, as n → ∞, to the law of a sequence with a.s. finitely many non-
zero entries. the total number Dε of the non-zero entries turns out to scale as ε−2, and ε2 Dε

has an interesting weak limit as ε → 0. We refer the reader to [3] for details, and a minor
technical condition required for the above statements.

In the present paper we are interested in the long memory case. For the moving average
processes (1.1) “long memory” refers to the case when the coefficients (a j ) satisfy the square
summability assumption (1.4) but not the absolute summability assumption in (1.6). A typical
ssumption in this is

(an) is regularly varying with exponent − α, 1/2 < α < 1; (1.7)

ee [5]. It turns out that, in this case (under certain technical assumptions, an example of
hich is below), the conditional on E0(n, ε) law of the sequence (1(E j (n, ε), j = 1, 2, . . .)

onverges weakly, as n → ∞, to the degenerate probability measure δ(1,1,...). That is, once the
vent E0(n, ε) occurs, the events (E j (n, ε)) become very likely. In order to understand their
tructure we concentrate on the random variables

In(ε) = inf
{

j ≥ 1 : E j (n, ε) does not occur
}
, n ≥ 1 (1.8)

nd establish a weak limit theorem for this sequence under a proper scaling. Interestingly, the
imit turns out to be the law of the first hitting time of a randomly shifted fractional Brownian
otion with drift.
The main result containing the above limit theorem and the technical assumptions it requires

re in Section 2. A sketch of the proof of the main result in four steps is given in that
ection as well. Sections 3 and 4 contain Steps 1 and 2, respectively, mentioned in the sketch.
teps 3 and 4, which complete the proof of the main result, are in Section 5. Finally, some
seful facts needed for the proofs are collected in the Appendix.
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2. The assumptions, the main result and a sketch of the proof

Our result on clustering of large deviation events in the long memory case will require a
umber of assumptions that we state next. First of all, we will replace the assumption of regular
ariation (1.7) by the asymptotic power function assumption

an ∼ n−α, 1/2 < α < 1, and is eventually monotone. (2.1)

There is no doubt that the results of the paper hold under the more general regular variation
assumption as well. The extra generality will, however, require making an already highly
technical argument even more so. The potentially resulting lack of clarity makes the added
generality less valuable. The same is true about the eventual monotonicity assumption.

We will need additional assumptions on the distribution of the noise variables. We will
assume that for some θ0 > 0,

sup
|θ |≤θ0

∫
∞

−∞

t2
⏐⏐⏐⏐∫ ∞

−∞

e(i t+θ )z FZ (dz)
⏐⏐⏐⏐ dt <∞ . (2.2)

Next, let

σ 2
Z =

∫
R

z2 FZ (dz) (2.3)

be the variance of the noise. Denote

κ = the smallest integer >
4α − 1
2 − 2α

. (2.4)

n other words, κ =
[
(1 + 2α)/(2 − 2α)

]
, where [x] is the largest integer less than or equal to

x . We assume that a generic noise variable Z satisfies

E Z i
= EG i for 1 ≤ i ≤ κ, (2.5)

here G ∼ N (0, σ 2
Z ).

emark 2.1. It is standard to verify that (2.2) implies that the noise distribution has a twice
continuously differentiable density fZ . On the other hand, a sufficient condition for (2.2) is
that the noise distribution has a four times continuously differentiable density fZ satisfying∫

∞

−∞

eθ0|x |
⏐⏐⏐⏐ d i

dx i
fZ (x)

⏐⏐⏐⏐ dx <∞ for i = 1, 2, 3, 4 , (2.6)

esides (1.2). Indeed, under this assumption, one can use integration by parts to see that for
ny θ with |θ | ≤ θ0, t ̸= 0 and 0 < T <∞,∫ T

−T
e(i t+θ )x FZ (dx) (2.7)

=
1

i t + θ

(
e(i t+θ )T fZ (T ) − e−(i t+θ )T fZ (−T ) −

∫ T

−T
e(i t+θ )x f ′Z (x) dx

)
,

f ′Z being the derivative of fZ . Clearly (1.2) and (2.6) imply∫
∞
⏐⏐⏐⏐ d (

eθx fZ (x)
)⏐⏐⏐⏐ dx <∞.
−∞ dx
389
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Hence the limit of eθx fZ (x) as x → ±∞ exists, which is zero because the function is
ntegrable. Thus letting T → ∞ in (2.7) shows∫

∞

−∞

e(i t+θ )x FZ (dx) = −(i t + θ )−1
∫

∞

−∞

e(i t+θ )x f ′Z (x) dx .

The right hand side can be integrated by parts thrice more with the aid of (2.6) in the same
ay to obtain

t2
⏐⏐⏐⏐∫ ∞

−∞

e(i t+θ )x FZ (dx)
⏐⏐⏐⏐ = t2

|i t + θ |4

⏐⏐⏐⏐∫ ∞

−∞

e(i t+θ)x d4

dx4 fZ (x)dx
⏐⏐⏐⏐

≤
1
t2

∫
∞

−∞

eθ0|x |
⏐⏐⏐⏐ d4

dx4 fZ (x)
⏐⏐⏐⏐ dx,

hich integrable on {|t | > 1}. The uniform boundedness of the integral in (2.2) on [−1, 1] is
clear.

The moment equality assumption (2.5) restricts how far the noise distribution can be from
a normal distribution. Note that in the range 1/2 < α < 5/8 we have κ = 2, in which case the
assumption is vacuous. Since κ ≥ 2 for all α ∈ (1/2, 1), (1.3) is implied by (2.5).

2.1. The main result

To state our main result, we need to introduce several key quantities. Let

β =
4 − 4α
3 − 2α

∈ (0, 1) (2.8)

nd

H = 3/2 − α ∈ (1/2, 1). (2.9)

e denote by (BH (t) : t ≥ 0) the standard fractional Brownian motion with Hurst index H ,
.e. a zero mean Gaussian process with continuous paths and covariance function

E (BH (s)BH (t)) =
1
2

(
s2H

+ t2H
− |s − t |2H ) , s, t ≥ 0 . (2.10)

If T0 is a standard exponential random variable independent of the fractional Brownian
motion, then

τε = inf
{
t ≥ 0 : BH (t) ≤ (2Cα)−1/2εt2H

− (Cα/2)1/2σ 2
Zε

−1T0
}
, ε > 0, (2.11)

is an a.s. finite and strictly positive random variable. Here σ 2
Z is the variance of the noise in

(2.3) and

Cα =
B(1 − α, 2α − 1)
(1 − α)(3 − 2α)

, (2.12)

ith B(·, ·) the standard Beta function.
We are now in a position to state the main result of this paper.

heorem 2.1. Assume the finite exponential moment condition (1.2), the power-type condi-
ion (2.1) on the coefficients, the regularity condition (2.2) and the moment equality condi-

tion (2.5). Then for every ε > 0 the first non-occurrence times (1.8) satisfy

P
(
n−β I (ε) ∈ ·

⏐⏐E (n, ε)
)
⇒ P τ ∈ · , n → ∞ . (2.13)
n 0 ( ε )
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Remark 2.2. It is worthwhile to observe that the limit law obtained in Theorem 2.1 depends
on the noise distribution only through its variance σ 2

Z . This can be understood by noticing
that in the long memory case considered in this paper we have Var(X1 + · · · + Xn) ≫ n; see
Lemma 3.1. Therefore, the events E j (n, ε) should be viewed as moderate deviation events, not
large deviation events. It has been observed in many situations that moderate deviation events
are influenced by the Gaussian weak limit of the quantities of interest. At the intuitive level,
this explains why it is the variance of the process that appears in the limit.

For comparison, in the short memory case (1.6), we have Var(X1+· · ·+ Xn) ∼ cn for some
c > 0, the events E j (n, ε) should be viewed as large deviation events, and their behaviour
depends on much more than just the variance of the noise. See [3] for details.

2.2. A sketch of the proof

We start on the road to proving Theorem 2.1 by giving a sketch of the proof. Since the
proof consists of multiple intermediate steps, such a sketch might help the reader to follow the
flow of the argument. The following are the main steps in the proof. As this is only a sketch,
the statements are imprecise, though the quantities are defined precisely and will be referred
to later. Denote

A j =

j∑
i=0

ai , j ∈ Z , (2.14)

with the convention that a sum (or an integral) is zero if the lower limit exceeds the upper limit
(so that A j = 0 for j ≤ −1, for example). Let

Sn =

n−1∑
i=0

X i , n ≥ 1 , (2.15)

and observe

Sn =

∞∑
j=0

(A j − A j−n)Zn−1− j , n ≥ 1 . (2.16)

Step 1. We allow the partial sum, given in the form (2.16), to be “corrupted”. For n ≥ 1
and t ≥ 0 we define

ξ 1
n (t) =

[nβ t]∑
i=1

(Ai − Ai−n) Zn−i−1 , (2.17)

ξ 2
n (t) =

n−1∑
i=n−[nβ t]

(Ai − Ai−n) Zn−i−1 , (2.18)

ξ 3
n (t) =

n+[nβ t]∑
i=n+1

(Ai − Ai−n) Zn−i−1 . (2.19)

The first step is to show joint convergence of the above, along with the overshoot defined by

T ∗
= S − nε, n ≥ 1 , (2.20)
n n
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after appropriate centring and scaling, in the sense of finite-dimensional distributions, con-
ditionally on E0(n, ε). Lemma 3.4 precisely achieves this and its proof is contained in

ection 3.

tep 2. The second step is to upper bound the “conditional variance” of Zn−i−1 and the
conditional covariance” of Zn−i−1 and Zn− j−1 given E0(n, ε). This upper bound is used later to
ound the conditional variances of the random variables defined in (2.17)–(2.19), for example.
he said upper bounds are obtained in Lemma 4.4. This step is fairly independent of Step 1
xcept that a few elementary estimates are used for both. Section 4 is dedicated to this step.

tep 3. Set

Sn( j) =
j+n−1∑

i= j

X i , j ≥ 0, n ≥ 1. (2.21)

n the third important step, the asymptotic conditional law of the stochastic process (Sn([nβ t]) :
≥ 0), in the sense of finite dimensional distributions, centred by nε and appropriately scaled,

s obtained. This step uses Step 1 in that Sn([nβ t]) is expressed as a stochastic integral with
espect to the processes defined in (2.17)–(2.19). The estimates obtained in Step 2 are also
sed. Lemma 5.3 completes this step.

tep 4. The final step is to show that the conditional weak convergence of Step 3. holds in an
ppropriate topology. This again uses Step 2. Subsequently, the continuous mapping theorem
s applied to complete the proof of Theorem 2.1. Steps 3 and 4 are carried out in Section 5.

3. A conditional weak convergence

The content of this section is Step 1 mentioned in Section 2.2. As said therein, this is done
in Lemma 3.4, which is at the end of this section. The proof of this lemma is dependent on
a few preliminary lemmas. In the first lemma we establish certain basic estimates that will be
used throughout the paper. Recall (2.14) and (2.15) and denote

σ 2
n = Var(Sn), n ≥ 1 . (3.1)

In the sequel we use the following notation. We will denote by

ϕZ (t) = log
(∫

R
et z FZ (dz)

)
, t ∈ R (3.2)

the log-Laplace transform of a noise variable. We will frequently use the obvious facts

ϕ is convex and ϕZ (x) ∼ x2σ 2
Z/2, x → 0, (3.3)

and

ϕ′Z is continuous, nondecreasing and ϕ′Z (x) = xσ 2
Z + O(x2), x → 0. (3.4)

We will write Gθ for the probability measure obtained by exponentially tilting the law FZ by
θ ∈ R. That is,

Gθ (dz) =
(
Eeθ Z )−1eθ z FZ (dz). (3.5)
392
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It is clear that, as θ → 0,∫
R

z Gθ (dz) ∼ θσ 2
Z ,

⏐⏐⏐⏐∫
R

z Gθ (dz) − θσ 2
Z

⏐⏐⏐⏐ = O(θ2) and = O(|θ |3) if κ ≥ 3, (3.6)∫
R
|z|k Gθ (dz) →

∫
R
|z|k F(dz), k = 1, 2, . . . .

emma 3.1. Asymptotically we have

A j ∼ (1 − α)−1 j1−α, j → ∞ (3.7)

nd

σ 2
n ∼ Cασ

2
Z n3−2α, n → ∞ . (3.8)

urthermore, for any t > 0, as n → ∞,

[nβ t]∑
i=0

(Ai − Ai−n)2
∼ K1t3−2αn4−4α , (3.9)

nd

n∑
i=n−[nβ t]+1

(Ai − Ai−n)2
∼

n+[nβ t]∑
i=n+1

(Ai − Ai−n)2
∼ (1 − α)−2n2−2α+β t , (3.10)

ith

K1 = (1 − α)−2(3 − 2α)−1 . (3.11)

Finally, for any t > 0, as n → ∞,

σ 2
Z

σ 2
n

∞∑
i=0

(Ai − Ai−n)
(

Ai+[nβ t] − Ai+[nβ t]−n
)
= 1 − n1−2αt3−2α(1 + o(1)) . (3.12)

roof. The claim (3.7) is, of course, an immediate consequence of the assumption (2.1). For
3.8), first note that

Rn = Cov(X0, Xn) ∼ σ 2
Z

∞∑
j=1

j−α( j + n)−α

∼ n1−2ασ 2
Z

∫
∞

0
x−α(1 + x)−α dx

= Cασ
2
Z (1 − α)(3 − 2α)n1−2α

s n → ∞. Therefore,

σ 2
n =

n−1∑
i=−(n−1)

(n − |i |)R|i | ∼ 2Cασ
2
Z (1 − α)(3 − 2α)

n−1∑
i=0

(n − i)i1−2α

∼ 2Cασ
2
Z (1 − α)(3 − 2α)n3−2α

∫ 1

0
(1 − x)x1−2α dx = Cασ

2
Z n3−2α ,
393
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which is (3.8). Next, for a fixed t > 0 and large n, by (3.7) and the fact that β < 1,

[nβ t]∑
i=0

(Ai − Ai−n)2
=

[nβ t]∑
i=0

A2
i ∼ (1 − α)−2

[nβ t]∑
i=1

i2−2α
∼ K1

(
nβ t

)3−2α
,

proving (3.9). Similarly,
n∑

i=n−[nβ t]+1

(Ai − Ai−n)
2
∼

n∑
i=n−[nβ t]+1

A2
n ∼ (1 − α)−2nβ+2−2αt ,

showing the first equivalence in (3.10) and the second equivalence can be shown in the same
way.

For (3.12), we start by recalling (2.16), a consequence of which is

σ 2
n = σ 2

Z

∞∑
j=0

(A j − A j−n)2 , n ≥ 1 . (3.13)

herefore, for large n,

σ 2
n

σ 2
Z
−

∞∑
i=0

(Ai − Ai−n)(Ai+[nβ t] − Ai+[nβ t]−n)

=
1
2

⎡⎣[nβ t]−1∑
i=0

(Ai − Ai−n)2
+

∞∑
i=0

(
Ai+[nβ t] − Ai+[nβ t]−n − Ai + Ai−n

)2

⎤⎦
=

1
2

[ n−1∑
i=0

(
Ai − Ai−[nβ t]

)2 (3.14)

+

∞∑
i=n−[nβ t]

(
Ai+[nβ t] − Ai+[nβ t]−n − Ai + Ai−n

)2
]
.

y (3.7),
n−1∑
i=0

(
Ai − Ai−[nβ t]

)2
∼ (1 − α)−2

n−1∑
i=1

(
i1−α

− (i − [nβ t])1−α
+

)2

∼ n4−4αt3−2α(1 − α)−2
∫

∞

0

[
y1−α

− (y − 1)1−α
+

]2
dy

s n → ∞. By (A.1) with H = 3/2 − α,∫
∞

0

[
y1−α

− (y − 1)1−α
+

]2
dy (3.15)

= [(3 − 2α) (1 − α)]−1 sin(πα)
π

Γ (2α − 1)Γ (2 − α)2

=
1 − α

3 − 2α
B (2α − 1, 1 − α) = (1 − α)2Cα,

so
n−1∑(

Ai − Ai−[nβ t]
)2

∼ Cαt3−2αn4−4α, n → ∞ . (3.16)

i=0
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Since
∞∑

i=n

(
Ai − Ai−[nβ t]

)2
= O

(
n2β

∞∑
i=n

i−2α

)
= O

(
n2β+1−2α)

= o
(
n4−4α), (3.17)

e conclude also that
∞∑

i=0

(
Ai − Ai−[nβ t]

)2
∼ Cαt3−2αn4−4α, n → ∞ . (3.18)

t follows from (3.17) and (3.18) that
∞∑

i=n−[nβ t]

(
Ai+[nβ t] − Ai+[nβ t]−n − Ai + Ai−n

)2

=

∞∑
j=0

[
−A j + A j−[nβ t] +

(
A j+n − A j+n−[nβ t]

)]2
∼ Cαt3−2αn4−4α .

n combination with (3.14) and (3.16) we obtain

σ 2
n

σ 2
Z
−

∞∑
i=0

(Ai − Ai−n)(Ai+[nβ t] Ai+[nβ t]−n) ∼ Cαt3−2αn4−4α.

ividing both sides by σ−2
Z σ 2

n and appealing to (3.8), (3.12) follows. □

We now consider certain large deviations of the partial sum Sn under a change of measure.
Recall the “corrupted” partial sums ξ 1

n , ξ 2
n and ξ 3

n defined in (2.17), (2.18) and (2.19),
espectively.

emma 3.2. Fix t1, t2, t3 > 0 and denote

S̄n = Sn −

3∑
i=1

ξ i
n(ti ), n ≥ 1 . (3.19)

et (γn), (θn) and (ηn) be real sequences satisfying

γn = o
(
n3/2−α) , θn = o

(
n−(1−α)) , 1 ≪ ηn ≪ n1/2.

f S̃n is a random variable with the law

P
(

S̃n ∈ dx
)
=

(
E(eθn S̄n )

)−1
eθn x P

(
S̄n ∈ dx

)
, n ≥ 1 , (3.20)

hen for all x ∈ R and h > 0,

P
(
ηnσ

−1
n

(
S̃n − E(S̃n) + γn

)
∈ [x, x + h]

)
∼ η−1

n (2π )−1/2h, n → ∞. (3.21)

urthermore,

sup ηn P
(
ηnσ

−1
n S̃n ∈ [x, x + 1]

)
<∞ . (3.22)
n≥1, x∈R
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Proof. Let (Z̃ni , n ≥ 1, i ≥ 0) be a collection of independent random variables such that the
law of Z̃ni is G(Ai−Ai−n )θn in the notation of (3.5). Then for large n,

S̃n
d
= A0 Z̃n0 + (An − A0)Z̃nn +

n−[nβ t2]−1∑
i=[nβ t1]+1

Ai Z̃ni +

∞∑
i=n+[nβ t3]+1

(Ai − Ai−n)Z̃ni . (3.23)

The proof applies to (3.23) the bound (A.2) in the appendix, with n = ∞. For any z ∈ R⏐⏐⏐⏐P (S̃n − E(S̃n) ≤ z
√

Var(S̃n)
)
− Φ(z)

⏐⏐⏐⏐ (3.24)

≤ Cu

(
Var(S̃n)

)−3/2 ∞∑
i=0

|Ai − Ai−n|
3 E
(
|Z̃ni − E Z̃ni |

3
)
, n ≥ 1 .

t is immediate from (2.1) that

sup
i≥0

|Ai − Ai−n| = O(n1−α) , (3.25)

o that

lim
n→∞

θn sup
i≥0

|Ai − Ai−n| = 0.

t follows from (3.6) that

E Z̃ni → 0, Var(Z̃ni ) → σ 2
Z , E

(
|Z̃ni − E Z̃ni |

3
)
→

∫
∞

−∞

|z3
| FZ (dz) (3.26)

niformly in i as n → ∞. Since it is an elementary conclusion from Lemma 3.1 that for any
κ > 1/α,

∞∑
i=0

|Ai − Ai−n|
κ
= O

(
nκ+1−κα), (3.27)

it follows that

sup
z∈R

⏐⏐⏐⏐P (S̃n − E(S̃n) ≤ z
√

Var(S̃n)
)
− Φ(z)

⏐⏐⏐⏐
= O

(
n4−3α

(
Var(S̃n)

)−3/2
)
.

sing (3.26) again we see that

Var(S̃n) ∼ σ 2
n −

3∑
i=1

Var
(
ξ i

n(ti )
)
∼ Cασ

2
Z n3−2α, (3.28)

ith the second equivalence following from various claims in Lemma 3.1. Thus,

sup
z∈R

⏐⏐⏐⏐P (S̃n − E(S̃n) ≤ z
√

Var(S̃n)
)
− Φ(z)

⏐⏐⏐⏐ = O(n−1/2) = o
(
η−1

n

)
. (3.29)

Therefore, for x ∈ R and h > 0, as n → ∞,

P
(
ηnσ

−1
n

(
S̃n − E(S̃n) + γn

)
∈ [x, x + h]

)
= o

(
η−1

n

)
+

∫
R

1
[
Var(S̃n)−1/2(xη−1

n σn − γn) ≤ z

˜ −1/2 −1 ]

≤ Var(Sn) ((x + h)ηn σn − γn) φ(z) dz,
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where φ is the standard normal density. The assumptions on γn and ηn along with (3.28)
imply that the integration interval shrinks towards the origin. Thus, the integral above is
asymptotically equivalent to η−1

n φ(0)h, and (3.21) follows. Boundedness of φ in the above
ntegral establishes (3.22). □

We now look more closely at the processes defined in (2.17), (2.18) and (2.19). The next
emma describes the limiting distribution of their increments under the same change of measure
s in the previous lemma.

emma 3.3. Suppose that θn ∈ R satisfies θn = o
(
n−(1−α)

)
. Fix 0 ≤ s < t and consider

random variables with the laws

P(Uni ∈ dx) = cni eθn x P
(
ξ i

n(t) − ξ i
n(s) ∈ dx

)
, i = 1, 2, 3, n ≥ 1,

ith appropriate cni . Then, as n → ∞,

n−(2−2α) (Un1 − E(Un1))⇒ N
(
0, K1σ

2
Z

(
t3−2α

− s3−2α)) , (3.30)

here K1 is given in (3.11), and for i = 2, 3,

n−(1−α+β/2) (Uni − E(Uni ))⇒ N
(
0, (1 − α)−2σ 2

Z (t − s)
)
. (3.31)

roof. For large n,

Un1
d
=

[nβ t]∑
i=[nβ s]+1

Ai Z̃ni

ith (Z̃ni ) as in the previous lemma. That is, Un1 − E(Un1) is the sum of independent zero
ean random variables. By (3.9) and (3.26),

Var(Un1) ∼ σ 2
Z

[nβ t]∑
i=[nβ s]+1

A2
i ∼ K1σ

2
Z n4−4α (t3−2α

− s3−2α) ,
and a similar calculation using the third moment bound in (3.26) verifies the Lindeberg
conditions of the central limit theorem. Hence (3.30) follows, and the calculations for (3.31)
are similar. □

Recall the overshoot T ∗
n defined in (2.20). Conditionally on the event E0 = E0(n, ε) in

(1.5) this overshoot is nonnegative. The next lemma, which completes Step 1., is a joint weak
limit theorem for the joint law of the overshoot and the processes defined in (2.17), (2.18) and
(2.19). The joint law is computed conditionally on E0.

Lemma 3.4. Let

ζn = nε/σ 2
n , n ≥ 1 , (3.32)

Conditionally on E0, as n → ∞,(
ζnT ∗

n ,

⎛⎝n2α−2

⎛⎝ξ 1
n (t) −

[nβ t]∑
Ai

∫
∞

−∞

z Gζn Ai (dz)

⎞⎠ , t ≥ 0

⎞⎠ ,

i=1
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w

(
nα−β/2−1

⎛⎝ξ 2
n (t) −

n−1∑
i=n−[nβ t]

Ai

∫
∞

−∞

z Gζn Ai (dz)

⎞⎠ , t ≥ 0
)
,

(
nα−β/2−1

⎛⎝ξ 3
n (t) −

n+[nβ t]∑
i=n+1

(Ai − Ai−n)
∫

∞

−∞

z Gζn (Ai−Ai−n )(dz)

⎞⎠ , t ≥ 0
) )

⇒

(
T0,

(
K 1/2

1 σZ B1(t3−2α), t ≥ 0
)
,(

(1 − α)−1σZ B2(t), t ≥ 0
)
,
(
(1 − α)−1σZ B3(t), t ≥ 0

))
,

n finite dimensional distributions, where T0 is a standard exponential random variable
ndependent of independent standard Brownian motions B1, B2, and B3, K1 is the constant
n (3.11) and Gθ is the exponentially tilted law in (3.5).

roof. Denote

ψn(s) =
σ 2

n

n2 log E
[

exp
(

s
n
σ 2

n
Sn

)]
=
σ 2

n

n2

∞∑
j=0

ϕZ
(
σ−2

n n(A j − A j−n)s
)
, (3.33)

here the second equality follows from (2.16). By (3.3), (3.8) and (3.25) we see that

lim
n→∞

ψn(s) = s2/2 (3.34)

uniformly for s in a compact set. Furthermore, the sum in (3.33) can be differentiated term by
term, and it follows by (3.4), (3.8) and (3.25) that

lim
n→∞

ψ ′

n(s) = s, (3.35)

also uniformly on compact sets. Since ψ ′
n is increasing and continuous, for large n there exists

a unique τn > 0 such that

ψ ′

n(τn) = ε . (3.36)

It is immediate that τn → ε as n → ∞. Denote

θn = σ−2
n nτn, n ≥ 1 . (3.37)

Since

ψ ′

n(s) =
1
n

E
[

Sn exp
(

s n
σ 2

n
Sn

)]
E
[
exp

(
s n
σ 2

n
Sn

)] ,

e substitute s = τn to obtain(
E
(
eθn Sn

))−1
E
(
Sneθn Sn

)
= nε. (3.38)

Fix k ≥ 1 and for each i = 1, 2, 3 fix points 0 = ti0 < ti1 < · · · < tik . Denote

S̄n = Sn −

3∑
i=1

ξ i
n(tik), n ≥ 1.
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Let Uni j , n ≥ 1, i = 1, 2, 3, j = 1, . . . , k, S̃n, n ≥ 1 be independent random variables,
ith

P
(
Uni j ∈ dx

)
=

(
E
(

eθn (ξ i
n (ti j )−ξ i

n (ti j−1))
))−1

eθn x P
(
ξ i

n(ti j ) − ξ i
n(ti j−1) ∈ dx

)
,

nd

P
(

S̃n ∈ dx
)
=

(
E
(

eθn S̄n
))−1

eθn x P
(
S̄n ∈ dx

)
or n ≥ 1, i = 1, 2, 3 and j = 1, . . . , k. Let

µni j = E
(
Uni j

)
, µn = E(S̃n). (3.39)

t follows from (3.38) that

µn +

3∑
i=1

k∑
j=1

µni j = nε, n ≥ 1 . (3.40)

Let t > 0 and (αi j ) ⊂ R. We have

P
({

T ∗

n > tσ 2
n /nε

}
∩

( k⋂
j=1

{
n2α−2 (ξ 1

n (t1 j ) − ξ 1
n (t1 j−1) − µn1 j

)
> α1 j

})
∩

( ⋂
2≤i≤3, 1≤ j≤k

{
nα−β/2−1 (ξ i

n(ti j ) − ξ i
n(ti j−1) − µni j

)
> αi j

}))

=

∫
R3k+1

1
(

x > nε + tσ 2
n /nε −

3∑
i=1

k∑
j=1

si j

)
× 1

(
s1 j > n2−2αα1 j + µn1 j , 1 ≤ j ≤ k

)
× 1

(
si j > n1−α+β/2αi j + µni j , i = 2, 3 , j = 1, . . . , k

)
× P(S̄n ∈ dx)

3∏
i=1

k∏
j=1

P
(
ξ i

n(ti j ) − ξ i
n(ti j−1) ∈ dsi j

)

=

∫
R3k+1

1
(

x > nε + tσ 2
n /nε −

3∑
i=1

k∑
j=1

si j

)
× 1

(
s1 j > n2−2αα1 j + µn1 j , 1 ≤ j ≤ k

)
× 1

(
si j > n1−α+β/2αi j + µni j , i = 2, 3 , 1 ≤ j ≤ k

)
× exp

(
−θn x − θn

3∑
i=1

k∑
j=1

si j

)
P
(

S̃n ∈ dx
)

× E
(
eθn Sn

) 3∏
i=1

k∏
j=1

P(Uni j ∈ dsi j )
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∫
R3k

1
(
min

i, j
(ui j − αi j ) > 0

) k∏
j=1

P
(
n2α−2(Un1 j − µn1 j

)
∈ du1 j

)
×

3∏
i=2

k∏
j=1

P
(
nα−β/2−1(Uni j − µni j

)
∈ dui j

)
×

∫
R

e−z1
(
z > tθnσ

2
n /nε

)
P
(
θn
(
S̃n − µn + γn(u11, . . . , u3k)

)
∈ dz

)
,

with

cn = e−θnnεE
(
eθn Sn

)
(3.41)

and

γn(u11, . . . , u3k) = n2−2α
k∑

j=1

u1 j + n1−α+β/2
3∑

i=2

k∑
j=1

ui j .

Let θn be as above and ηn = σnθn . For n ≥ 1, we introduce the notation

fn(u11, . . . , u3k)

=ηn

∫
∞

0
e−z1

(
z > tθnσ

2
n /nε

)
P
(
θn
(
S̃n − µn + γn(u11, . . . , u3k)

)
∈ dz

)
.

Fix (ui j ) and let u(n)
i j → ui j as n → ∞ for all i, j . Let us denote γn = γn

(
u(n)

11 , . . . , u(n)
3k

)
.

With θn and ηn already defined, we use Lemma 3.2 with this γn . It is elementary to check that
the hypothesis of the lemma are satisfied. Since tθnσ

2
n /nε → t , it follows from (3.21) that for

all fixed T > t ,∫
R

e−z1
(
tθnσ

2
n /nε < z ≤ T

)
P
(
θn
(
S̃n − µn + γn

)
∈ dz

)
∼ η−1

n (2π )−1/2
∫ T

t
e−z dz,

and if follows from (3.22) that

lim
T→∞

lim sup
n→∞

ηn

∫
R

e−z1
(
z > T

)
P
(
θn
(
S̃n − µn + γn

)
∈ dz

)
= 0,

showing that

lim
n→∞

fn

(
u(n)

11 , . . . , u(n)
3k

)
= (2π )−1/2e−t .

Another application of (3.22) implies that

sup
{ui j }⊂R

fn(u11, . . . , u3k) <∞.

It follows immediately from Lemma 3.3 and bounded convergence theorem that

E
[

f
(
n2α−2(Un11 − µn11), . . . , nα−β/2−1(Un3k − µn3k)

)
(3.42)

× 1
(

n2α−2(Un1 j − µn1 j ) > α1 j , nα−β/2−1(Uni j − µni j ) > αi j , i = 2, 3,

j = 1, . . . , k,
)]

−1/2 ( )

→(2π) P T0 > t ,G i j > αi j for all i, j ,
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with T0 standard exponential and (G i j : i = 1, 2, 3, j = 1, . . . , k) independent zero mean
aussian random variables, independent of T0, with

Var(G1 j ) = K1σ
2
Z

(
t3−2α
1 j − t3−2α

1 j−1

)
, 1 ≤ j ≤ k,

nd for i = 2, 3,

Var(G i j ) = (1 − α)−2σ 2
Z (ti j − ti , j−1), 1 ≤ j ≤ k.

simple way to verify the convergence above is to appeal to the Skorohod representation and
eplace the weak convergence in Lemma 3.3 by the a.s. convergence.

Notice that using (3.42) with t = 0 and αi j = −∞ for all i, j tells us that

P(E0) ∼ (2π)−1/2cn/ηn = (2π )−1/2e−θnnεE
(
eθn Sn

)
/(σnθn). (3.43)

ividing (3.42) by (3.43) gives us the statement of the lemma apart from a possibly different
entring. In order to complete the proof, it suffices to show that as n → ∞, for j = 1, . . . , k,

µn1 j =

[nβ t1 j ]∑
i=[nβ t1 j−1]+1

Ai

∫
∞

−∞

z Gζn Ai (dz) + o
(
n2−2α) , (3.44)

µn2 j =

n−[nβ tnj−1]∑
i=n−[nβ tnj ]

Ai

∫
∞

−∞

z Gζn Ai (dz) + o
(
n1+β/2−α) , (3.45)

µn3 j =

n+[nβ tnj ]∑
i=n+[nβ tnj−1]

(Ai − Ai−n)
∫

∞

−∞

z Gζn (Ai−Ai−n )(dz) + o
(
n1+β/2−α) . (3.46)

or simplicity of notation we prove these statements for j = 1. For θn as in (3.37), let
Z̃ni , n ≥ 1, i ≥ 0) be a collection of independent random variables such that the law of

Z̃ni is G(Ai−Ai−n )θn . Since both θn Ai and ζn Ai converge to zero uniformly in i ≤ nβ t11, we can
se (3.6) to write

µn11 =

[nβ t11]∑
i=1

Ai E
(

Z̃ni

)
=

[nβ t11]∑
i=1

Ai

∫
∞

−∞

z Gθn Ai (dz)

=

[nβ t11]∑
i=1

Ai

∫
∞

−∞

z Gζn Ai (dz) + o

⎛⎝ζn

[nβ t11]∑
i=1

A2
i

⎞⎠ .

t follows from (3.8) and (3.9) that

ζn

[nβ t11]∑
i=1

A2
i = o

(
n2−2α) ,

and we obtain (3.44) (for j = 1).
For (3.45) with j = 1 we notice that by (3.4),

E
(

Z̃
)
= θ (A − A )σ 2

+ O
(
θ2(Ai − Ai−n)2) , (3.47)
ni n i i−n Z n
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uniformly in i ≥ 0, as n → ∞. Thus,

µn21 = σ 2
Zσ

−2
n nτn

n−1∑
i=n−[nβ t21]

A2
i + O

⎛⎝θ2
n

n−1∑
i=n−[nβ t21]

A3
i

⎞⎠ .
t follows from Lemma 3.1 that

θ2
n

n−1∑
i=n−[nβ t21]

A3
i = O

(
nα+β−1)

= o
(
n1−α+β/2) .

herefore,

µn21 = σ 2
Zσ

−2
n nτn

n−1∑
i=n−[nβ t21]

A2
i + o

(
n1−α+β/2) (3.48)

nd, similarly,
n−1∑

i=n−[nβ t21]

Ai

∫
∞

−∞

z Gζn Ai (dz) = σ 2
Zζn

n−1∑
i=n−[nβ t21]

A2
i + o

(
n1−α+β/2) .

nother appeal to Lemma 3.1 shows that for (3.45) we only need to argue that

τn = ε + o
(
n1−α−β/2) , n → ∞ . (3.49)

owever, by (3.6),

ψ ′

n(s) = s + O

⎛⎝nσ−4
n

∞∑
j=0

(A j − A j−n)3

⎞⎠ ,
niformly for s in compact sets. Using this and (3.27), we obtain

ε = ψ ′

n(τn)

= τn + O

⎛⎝nσ−4
n

∞∑
j=0

(A j − A j−n)3

⎞⎠
= τn + O(nα−1) = τn + o

(
n1−α−β/2) .

his establishes (3.49) and, hence, (3.45) with j = 1. The proof of (3.46) is similar. □

. Estimating the conditional covariance

In this section, Step 2 mentioned in Section 2.2 is executed. The upper bounds mentioned
herein are obtained in Lemma 4.4 at the end of this section. Lemmas 4.1–4.3 are preparations
or the same.

None of the statements proved so far required the additional assumptions stated at the
eginning of Section 2. These assumptions start to play a role now.

The next several lemmas require additional notation designed to focus on the contribution
f individual noise variables on Sn . For n ≥ 1 and i, j ≥ 0, i ̸= j , we set

S′

n(i) = Sn − (Ai − Ai−n)Zn−i−1,

S′ (i, j) = S − (A − A )Z − (A − A )Z ,
n n i i−n n−i−1 j j−n n− j−1
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and, with ζn given by (3.32), we let Ŝn , Ŝni , Ŝn(i, j) be random variables with distributions

P(Ŝn ∈ ds) ∝ eζns P(Sn ∈ ds),

P(Ŝn(i) ∈ ds) ∝ eζns P(S′

n(i) ∈ ds),

P(Ŝn(i, j) ∈ ds) ∝ eζns P(S′

n(i, j) ∈ ds).

Denote the characteristic functions of σ−1
n (Ŝn−nε), σ−1

n (Ŝn(i)−nε) and σ−1
n (Ŝn(i, j)−nε) by

φn , φni and φni j , respectively. For µ ∈ R and σ ≥ 0 we denote by φG(µ; σ 2
; ·) the characteristic

unction of N (µ, σ 2).

emma 4.1. Let κ be given by (2.4) and assume that (2.5) holds. Then the following statements
old uniformly in t ∈ R:

|φn(t) − φG(0; 1; t)| = O
(
n1/2−κ(1−α)(1 + |t |)κ+1) , (4.1)

sup
i≥0

⏐⏐φni (t) − φG
(
σ−1

n nε(λni − 1); λni ; t
)⏐⏐ = O

(
n1/2−κ(1−α)(1 + |t |)κ+1) , (4.2)

sup
i, j≥0
i ̸= j

⏐⏐φni j (t) − φG
(
σ−1

n nε(λni j − 1); λni j ; t
)⏐⏐ (4.3)

= O
(
n1/2−κ(1−α)(1 + |t |)κ+1) ,

where for n ≥ 1 and i, j ≥ 0, i ̸= j , we set

λni = 1 −
σ 2

Z

σ 2
n

(Ai − Ai−n)2, λni j = 1 −
σ 2

Z

σ 2
n

[
(Ai − Ai−n)2

+ (A j − A j−n)2] .
roof. It is an elementary conclusion from (2.5) that, for each 1 ≤ i ≤ κ ,(∫

R
eδz Fz(dz)

)−1 ∫
R

zi eδz Fz(dz) = σ i
Z E

[
(G + δσZ )i]

+ O
(
|δ|κ−i+1) (4.4)

as δ → 0, where G is a standard Gaussian random variable.
Let (Ẑni : n ≥ 1, i ≥ 0) be a family of independent random variables with each

Ẑni ∼ G(Ai−Ai−n )ζn , so that for n ≥ 1 and i, j ≥ 0, i ̸= j we have

Ŝn
d
=

∞∑
k=0

(Ak − Ak−n) Ẑnk,

Ŝn(i) d
=

∑
k∈{0,1,2,...}\{i}

(Ak − Ak−n) Ẑnk ,

Ŝn(i, j) d
=

∑
k∈{0,1,2,...}\{i, j}

(Ak − Ak−n) Ẑnk .

Let now (Gni : n ≥ 1, i ≥ 0) be a collection of independent random variables, also
independent of (Ẑni : n ≥ 1, i ≥ 0), where Gni follows normal distribution with mean
(Ai − Ai−n)ζnσ

2
Z and variance σ 2

Z , for all n ≥ 1, i ≥ 0. It follows from Lemma 3.1 and
(3.25) that (4.4) can be reformulated as

E
(

Ẑ i
)
− E

(
G i )

= O
(
|A − A |

κ−i+1n−2(1−α)(κ−i+1)) (4.5)
nj n j j j−n
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s

uniformly in j ≥ 0 and 1 ≤ i ≤ κ . For a fixed t ∈ R we use telescoping to write⏐⏐⏐⏐⏐⏐E exp

⎧⎨⎩i

⎛⎝tσ−1
n

∞∑
j=0

(A j − A j−n)Gnj

⎞⎠⎫⎬⎭− E exp
{

i
(

tσ−1
n Ŝn

)}⏐⏐⏐⏐⏐⏐ (4.6)

≤

∞∑
j=0

⏐⏐E exp

⎧⎨⎩i

⎛⎝tσ−1
n

⎛⎝ j−1∑
k=0

(A j − A j−n)Ẑnj +

∞∑
k= j

(A j − A j−n)Gnj

⎞⎠⎞⎠⎫⎬⎭
− E exp

⎧⎨⎩i

⎛⎝tσ−1
n

⎛⎝ j∑
k=0

(A j − A j−n)Ẑnj +

∞∑
k= j+1

(A j − A j−n)Gnj

⎞⎠⎞⎠⎫⎬⎭⏐⏐ .
Fix j ≥ 0 and denote

U = tσ−1
n

⎛⎝ j−1∑
k=0

(A j − A j−n)Ẑnj +

∞∑
k= j+1

(A j − A j−n)Gnj

⎞⎠ ,
V = tσ−1

n (A j − A j−n)Gnj ,

o that by expanding in the Taylor series around U ,

E exp

⎧⎨⎩i

⎛⎝tσ−1
n

⎛⎝ j−1∑
k=0

(A j − A j−n)Ẑnj +

∞∑
k= j

(A j − A j−n)Gnj

⎞⎠⎞⎠⎫⎬⎭
= Eei(U+V )

=

κ∑
m=0

im

m!
E
(
V m) EeiU

+ R1 ,

with |R1| ≤ E(|V |
κ+1)/(κ + 1)!. Similarly,

E exp

⎧⎨⎩i

⎛⎝tσ−1
n

⎛⎝ j∑
k=0

(A j − A j−n)Ẑnj +

∞∑
k= j+1

(A j − A j−n)Gnj

⎞⎠⎞⎠⎫⎬⎭
=

κ∑
m=0

im

m!
E
(
W m) EeiU

+ R2 ,

with |R2| ≤ E(|W |
κ+1)/(κ + 1)!, where

W = (A j − A j−n)Ẑnj .

We conclude that⏐⏐E exp

⎧⎨⎩i

⎛⎝tσ−1
n

⎛⎝ j−1∑
k=0

(A j − A j−n)Ẑnj +

∞∑
k= j

(A j − A j−n)Gnj

⎞⎠⎞⎠⎫⎬⎭
− E exp

⎧⎨⎩i

⎛⎝tσ−1
n

⎛⎝ j∑
k=0

(A j − A j−n)Ẑnj +

∞∑
k= j+1

(A j − A j−n)Gnj

⎞⎠⎞⎠⎫⎬⎭⏐⏐
≤

κ∑
i=1

|t |i

i !

⏐⏐(A j − A j−n)iσ−i
n E

(
Ẑ i

n j − G i
n j

) ⏐⏐
+

|t |κ+1 ⏐⏐A j − A j−n
⏐⏐κ+1σ−(κ+1)

n E
(
|Gnj |

κ+1
+ |Ẑnj |

κ+1)
. (4.7)
(κ + 1)!
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Note that by (3.27) and Lemma 3.1,

σ−(κ+1)
n

∞∑
j=0

⏐⏐A j − A j−n
⏐⏐κ+1 E

(
|Gnj |

κ+1
+ |Z̃nj |

κ+1
)

= O
(
n−(κ−1)/2)

= o
(
n1/2−κ(1−α)) .

For 1 ≤ i ≤ κ we use, in addition. (4.5) to write

σ−i
n

∞∑
j=0

⏐⏐⏐(A j − A j−n)i E
(

Z̃ i
n j − G i

n j

)⏐⏐⏐
= O

(
n−κ(1−α)+α−i(α−1/2))

= O
(
n1/2−κ(1−α)) .

Putting these bounds into (4.7) we obtain

E
(

eιtσ
−1
n S̃n

)
= φG

(
σ−1

n nε; 1; t
)
+ O

(
n1/2−κ(1−α) (1 + |t |κ+1))

uniformly for t ∈ R, which is equivalent to (4.1). The argument for (4.2) and (4.3) is the
same. □

By the assumption (2.2), for large n, the random variables σ−1
n (Ŝn − nε), σ−1

n (Ŝn(i) − nε)
and σ−1

n (Ŝn(i, j) − nε) have densities which we denote by fn , fni and fni j , correspondingly.

Lemma 4.2. Suppose that (2.2) and (2.5) hold. Then for large n, the densities fni and fni j
are twice differentiable. Furthermore, as n → ∞,

fni (0) = (2π )−1/2
+ o

(
n1−2α) , (4.8)

f ′ni (0) = o
(
n1/2−α) (4.9)

uniformly in i , and for some n0 ∈ N,

sup
{⏐⏐ f ′′ni (x)

⏐⏐ : n ≥ n0, i ≥ 0, x ∈ R
}
<∞ . (4.10)

ll three statements also hold if fni is replaced by fni j , i < j . Finally, as n → ∞,

sup
x∈R

⏐⏐⏐ fn(x) − (2π)−1/2e−x2/2
⏐⏐⏐ = o

(
n1−2α) . (4.11)

roof. We start with the proof of (4.11) which would follow from the inversion formula for
ensities once it is shown that∫

∞

−∞

|φn(t) − φG(0; 1; t)| dt = o
(
n1−2α) .

y Lemma 4.1 and (2.4),∫ log n

− log n
|φn(t) − φG(0; 1; t)| dt = O

(
n1/2−κ(1−α)(log n)κ+2)

= o
(
n1−2α) .

urthermore,∫
[− log n,log n]c

φG(0; 1; t) dt = O
(

e−(log n)2/2
)
= o

(
n1−2α) ,

hus, (4.11) will follow once we show that∫
|φn(t)| dt = o

(
n1−2α) . (4.12)
[− log n,log n]c
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With (Ẑni : n ≥ 1, i ≥ 0) as above, we set

Uni = σ−1
n (Ai − Ai−n)

[
Ẑni − E(Ẑni )

]
, n ≥ 1, i ≥ 0 ,

so that

|φn(t)| =
∞∏

i=0

⏐⏐E (eιtUni
)⏐⏐ , n ≥ 1, t ∈ R . (4.13)

et

H (x, t) =
(∫

∞

−∞

exz fZ (z) dz
)−1 ∫ ∞

−∞

e(x+ιt)z fZ (z) dz, (x, t) ∈ R2,

hich is a characteristic function for any fixed x . A consequence of that is ∂|H (x, t)|/∂t |t=0 ≤

for any x ∈ R. Furthermore,

∂2

∂t2 |H (0, t)|
⏐⏐⏐
t=0

= −σ 2
Z < 0

nd by continuity of the second partial derivative we conclude that there is δ0 > 0 such that

∂2

∂t2 |H (x, t)| < 0 whenever 0 ≤ |t |, |x | ≤ δ0.

hat means we also have
∂

∂t
|H (x, t)| ≤ 0 whenever 0 ≤ |t |, |x | ≤ δ0. (4.14)

e may and will choose δ0 ∈ (0, θ0], with θ0 as in (2.2). By (2.2) we can appeal to (A.3) to
onclude that

lim
t→∞

sup
|x |≤δ0

|H (x, t)| = 0.

hus, there is M > 0 large enough so that

sup
t>M,|x |≤δ0

|H (x, t)| < 1.

ince by continuity of H and compactness we have

sup
δ0≤t≤M,|x |≤δ0

|H (x, t)| < 1,

it follows that

η = sup
t≥δ0,|x |≤δ0

|H (x, t)| < 1.

The continuity argument also shows that there is δ1 ∈ (0, δ0] such that

min
|x |≤δ0

|H (x, δ1)| ≥ η.

Therefore, for |x | ≤ δ0 and 0 ≤ t ≤ δ1, (4.14) implies that

|H (x, t)| ≥ |H (x, δ1)| ≥ η ≥ sup
s≥δ0

|H (x, s)|.

Since by (4.14) we also have

|H (x, t)| = sup |H (x, s)|,

s∈[t,δ0]
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we conclude that

|H (x, t)| = sup
s≥t

|H (x, s)|, |x | ≤ δ0, 0 ≤ t ≤ δ1 . (4.15)

By (4.13)

|φn(t)| ≤
⏐⏐E(eιtUnn )

⏐⏐ n−1∏
i=[n/2]

⏐⏐E(eιtUni )
⏐⏐

=
⏐⏐E(eιtUnn )

⏐⏐ n−1∏
i=[n/2]

⏐⏐H (
ζn Ai , σ

−1
n Ai t

)⏐⏐ . (4.16)

It follows from Lemma 3.1 that there exists s0 > 0 such that for n large enough,

s0σnn−1/2
≤ Ai ≤ δ0ζ

−1
n , [n/2] ≤ i ≤ n − 1.

Put x = ζn Ai and t = s0n−1/2 log n in (4.15) and use the above upper bound on Ai to get for
n large⏐⏐H (ζn Ai , s0n−1/2 log n)

⏐⏐ ≥ |H (ζn Ai , s)| , [n/2] ≤ i ≤ n − 1 , s ≥ s0n−1/2 log n.

For t ≥ log n where n is large enough to satisfy the above, use the lower bound on Ai in the
display preceding the above to put s = σ−1

n Ai t and obtain

n−1∏
i=[n/2]

⏐⏐H (
ζn Ai , σ

−1
n Ai t

)⏐⏐ ≤ n−1∏
i=[n/2]

⏐⏐H (
ζn Ai , s0n−1/2 log n

)⏐⏐ .
Since any partial derivative of H is bounded on a compact set, we can use the bound (A.4) to
conclude that there exists s1 > 0 such that

sup
|x |≤δ0

|H (x, t)| ≤ (1 − s1t2)1/2, 0 ≤ t ≤ 1.

Thus, there is s2 > 0 such that for all large n and all t ≥ log n we have
n−1∏

i=[n/2]

⏐⏐H (
ζn Ai , σ

−1
n Ai t

)⏐⏐ ≤ (
1 − s2

0 s1n−1(log n)2)n/4
= O

(
e−s2(log n)2

)
.

sing this bound in (4.16), and appealing to (2.2) we obtain∫
∞

log n
|φn(t)| dt = O

(
e−s2(log n)2

) ∫ ∞

log n

⏐⏐E (ei tUnn
)⏐⏐ dt

= O
(

n1/2e−s2(log n)2
)
= o

(
n1−2α) .

ince we can switch from t to −t , (4.12) follows, which establishes (4.11).
A similar calculation with the aid of (4.2) shows that

fni (0) = (2πλni )
−1/2 exp

(
−σ−2

n n2ε2(λni − 1)2/2λni
)
+ o

(
n1−2α) ,

niformly in i ≥ 0. Since λni − 1 = O(1/n) uniformly in i ≥ 0, it follows that

λ
−1/2
ni exp

(
−σ−2

n n2ε2(λni − 1)2/2λni
)
= 1 + O

(
n−1

+ σ−2
n

)
= 1 + o

(
n1−2α) ,
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uniformly for i ≥ 0, which proves (4.8). For (4.10) we write

f ′′nk(x) = −(2π)−1/2
∫

∞

−∞

e−i t x t2φnk(t) dt

and repeat the arguments used above in the proof of (4.11), applying (4.2) and the full force
of the assumption (2.2).

Finally, for (4.9) we use the identity

f ′nk(0) = −i(2π)−1/2
∫

∞

−∞

tφnk(t) dt.

Since ⏐⏐⏐⏐∫ ∞

−∞

t φG
(
σ−1

n nε(λnk − 1); λnk; t
)

dt
⏐⏐⏐⏐ = O

(
σ−1

n

)
= o

(
n1/2−α) ,

uniformly in k ≥ 0, (4.9) follows.
The arguments with fni j replacing fni are similar. This completes the proof. □

The next lemma tackles certain expectations conditionally on E0; its statement should be
compared to (3.43).

Lemma 4.3. Suppose that (2.2) and (2.5) hold. Then

E (Zn−i−11(E0)) = K̃n

[∫
∞

−∞

z Gζn (Ai−Ai−n )(dz) + o
(
ζ−1

n σ−2
n |Ai − Ai−n|

)]
(4.17)

and

E
(
Zn−i−1 Zn− j−11(E0)

)
(4.18)

= K̃n

( ∫
∞

−∞

z1 Gζn (Ai−Ai−n )(dz1)
∫

∞

−∞

z2 Gζn (Ai−Ai−n )(dz2)

+ o
(
σ−2

n |(Ai − Ai−n)(A j − A j−n)|
) )
, n → ∞,

uniformly for i, j ≥ 0 with i ̸= j , where

K̃n = (2π )−1/2ζ−1
n σ−1

n e−nεζn E
(
eζn Sn

)
, n ≥ 1 . (4.19)

Proof. We only prove (4.18); the proof of (4.17) is similar and easier. Write

E
(
Zn−i−1 Zn− j−11(E0)

)
=

∫
∞

−∞

z1 FZ (dz1)
∫

∞

−∞

z2 FZ (dz2)

× P
(
S′

n(i, j) ≥ nε − (Ai − Ai−n)z1 − (A j − A j−n)z2
)

= σ−1
n E

(
eζn S′n (i, j)

) ∫ ∞

−∞

z1 FZ (dz1)
∫

∞

−∞

z2 FZ (dz2)

×

∫
∞

nε−(Ai−Ai−n )z1−(A j−A j−n )z2

fni j
(
(s − nε)/σn

)
e−ζns ds.
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We adopt the convention
∫ b

a ≡ −
∫ a

b , and denote

cni j = ζ−1
n σ−1

n e−nεζn E
(

eζn S′n (i, j)
)
= ζ−1

n σ−1
n e−nεζn E

(
eζn Sn

)
×

(∫
∞

−∞

eζn (Ai−Ai−n )z FZ (dz)
∫

∞

−∞

eζn (A j−A j−n )z FZ (dz)
)−1

.

n the notation of (4.19) this simply means that

cni j = K̃n(2π )1/2
(∫

∞

−∞

eζn (Ai−Ai−n )z FZ (dz)
∫

∞

−∞

eζn (A j−A j−n )z FZ (dz)
)−1

.

hanging the variable and using the fact that E Z = 0, we obtain

E
(
Zn−i−1 Zn− j−11(E0)

)
= cni j

∫
∞

−∞

z1 FZ (dz1)
∫

∞

−∞

z2 FZ (dz2)

×

∫ ζn (Ai−Ai−n )z1+ζn (A j−A j−n )z2

0
ex fni j

(
−x/(σnζn)

)
dx

= cni j

∫
∞

−∞

z1 FZ (dz1)
∫

∞

−∞

z2 FZ (dz2) (4.20)

×

[ ∫ ζn (Ai−Ai−n )z1+ζn (A j−A j−n )z2

0
ex fni j

(
−x/(σnζn)

)
dx

−

∫ ζn (Ai−Ai−n )z1

0
ex fni j

(
−x/(σnζn)

)
dx

−

∫ ζn (A j−A j−n )z2

0
ex fni j

(
−x/(σnζn)

)
dx

]
.

For fixed z1, z2 ∈ R, the expression inside the square brackets can be rewritten as(
eζn (Ai−Ai−n )z1 − 1

) ∫ ζn (A j−A j−n )z2

0
ex

× fni j
(
−(x + ζn(Ai − Ai−n)z1)/(σnζn)

)
dx

+

∫ ζn (A j−A j−n )z2

0
ex

×

[
fni j
(
−(x + ζn(Ai − Ai−n)z1)/(σnζn)

)
− fni j

(
−x/(σnζn)

) ]
dx .

y Taylor’s theorem,

fni j

(
−

x + ζn(Ai − Ai−n)z1

σnζn

)
= fni j (0) −

x + ζn(Ai − Ai−n)z1

σnζn
f ′ni j

+ O
(

(x + ζn(Ai − Ai−n)z1)2

σ 2
n ζ

2
n

∥ f ′′ni j∥∞

)
.

Using this and (3.25), straightforward algebra gives us∫ ζn (A j−A j−n )z2

0
ex fni j

(
−(x + ζn(Ai − Ai−n)z1)/(σnζn)

)
dx(

ζn (A j−A j−n )z2
)

= fni j (0) e − 1
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+ O
(

eζn |A j−A j−n ||z2|
(
| f ′ni j (0)|σ−1

n ζnn1−α
|A j − A j−n||z2|

(
|z1| + |z2|

)
+ ∥ f ′′ni j∥∞σ

−2
n ζnn2−2α

|A j − A j−n||z2|
(
|z1| + |z2|

)2
) )

.

he obvious inequality |ex
− 1| ≤ |x |e|x | for x ∈ R along with Lemma 4.2 now show that(

eζn (Ai−Ai−n )z1 − 1
) ∫ ζn (A j−A j−n )z2

0
ex

× fni j
(
−(x + ζn(Ai − Ai−n)z1)/(σnζn)

)
dx

= fni j (0)
(
eζn (Ai−Ai−n )z1 − 1

) (
eζn (A j−A j−n )z2 − 1

)
+ o

(
σ−2

n

⏐⏐(Ai − Ai−n)(A j − A j−n)z1z2
⏐⏐ (|z1| + |z2|)

2

× eζn (|Ai−Ai−n ||z1|+|A j−A j−n ||z2|)
)
,

niformly for i, j ≥ 0 with i ̸= j and z1, z2 ∈ R.
Treating in a similar manner the second term, we conclude that the expression inside the

quare brackets on the right hand side of (4.20) equals

fni j (0)
(
eζn (Ai−Ai−n )z1 − 1

) (
eζn (A j−A j−n)z2 − 1

)
+ o

(
σ−2

n

⏐⏐(Ai − Ai−n)(A j − A j−n)
⏐⏐ (1 + |z1|

3)(1 + |z2|
3)

× eζn |(Ai−Ai−n )z1|+ζn |(A j−A j−n )z2|
)
,

niformly for i, j ≥ 0 with i ̸= j and z1, z2 ∈ R, and substitution into (4.20) gives us

E
(
Zn−i−1 Zn− j−11(E0)

)
= cni j

[
fni j (0)

∫
∞

−∞

z1eζn (Ai−Ai−n )z1 FZ (dz1)
∫

∞

−∞

z2eζn (A j−A j−n )z2 FZ (dz2)

+ o
(
σ−2

n

⏐⏐(Ai − Ai−n)(A j − A j−n)
⏐⏐) ]

= K̃n(2π )1/2 fni j (0)
∫

∞

−∞

z1 Gζn (Ai−Ai−n )(dz1)
∫

∞

−∞

z2 Gζn (A j−A j−n )(dz2) (4.21)

+ cni j o
(
σ−2

n

⏐⏐(Ai − Ai−n)(A j − A j−n)
⏐⏐) ,

s n → ∞, uniformly for i, j ≥ 0 with i ̸= j . Recalling that E Z = 0, we see that∫
∞

−∞

z1 Gζn (Ai−Ai−n )(dz1) = O (ζn(Ai − Ai−n)) ,

nd likewise for the second integral in (4.22). Since K̃n = O(cni j ), the claim (4.18) follows
rom Lemma 4.2. □

The next lemma completes Step 2 in the proof of the main result; the previous Lemmas 4.1–
.3 are needed for this lemma. We denote

Yni = Zn−i−1 −
(
1 + ζ−2

n σ−2
n

) ∫ ∞

z Gζn (Ai−Ai−n )(dz), i ∈ Z, n ≥ 1 . (4.22)

−∞
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Lemma 4.4. Suppose that (2.2) and (2.5) hold. Then

sup
n≥1,i≥0

E
(
Y 2

ni

⏐⏐E0
)
<∞ , (4.23)

and

E
(
Yni Ynj

⏐⏐E0
)
= −σ−2

n σ 4
Z (Ai − Ai−n)

(
A j − A j−n

)
(1 + o(1)) (4.24)

as n → ∞, uniformly in i, j ≥ 0 with i ̸= j .

Proof. We prove (4.24); the proof of (4.23) is similar (and much easier). Expressing the law
of Sn in terms of the law of (Ŝn − nε)/σn , which has the density fn , we can write

P(E0) = P(Sn − nε > 0) = ζ−1
n σ−1

n e−nεζn E
(
eζn Sn

) ∫ ∞

0
e−x fn

(
x/(ζnσn)

)
dx .

Recalling the definition of K̃n in (4.19), this is the same as

P(E0) = K̃n(2π )1/2
∫

∞

0
e−x fn

(
x/(ζnσn)

)
dx .

By (4.11),

P(E0) = K̃n

[
o(n1−2α) +

∫
∞

0
exp

(
−x −

1
2σ 2

n ζ
2
n

x2
)

dx
]
.

ince

exp
(
−

1
2σ 2

n ζ
2
n

x2
)
= 1 −

1
2σ 2

n ζ
2
n

x2
+ O

(
x4

σ 4
n ζ

4
n

)
,

niformly in x , and n1−2α
= O(σ−2

n ζ−2
n ), simple integration shows

P(E0) = K̃n
[
1 − ζ−2

n σ−2
n (1 + o(1))

]
, n → ∞ . (4.25)

n combination with (4.18) this means that

E
(
Zn−i−1 Zn− j−11(E0)

)
P(E0)

= K̃ 2
n

( (
1 − ζ−2

n σ−2
n

) ∫ ∞

−∞

z1 Gζn (Ai−Ai−n )(dz1)
∫

∞

−∞

z2 Gζn (A j−A j−n )(dz2)

+ o
(
σ−2

n |(Ai − Ai−n)(A j − A j−n)|
) )
, n → ∞,

niformly in i, j ≥ 0 with i ̸= j . Since by (4.17),

E (Zn−i−11(E0)) E
(
Zn− j−11(E0)

)
= K̃ 2

n

∫
∞

−∞

z1 Gζn (Ai−Ai−n )(dz1)
∫

∞

−∞

z2 Gζn (A j−A j−n )(dz2)

+ o
(

K̃ 2
nσ

−2
n |Ai − Ai−n||A j − A j−n|

)
,

e conclude that

E
(
Zn−i−1 Zn− j−11(E0)

)
P(E0) − E (Zn−i−11(E0)) E

(
Zn− j−11(E0)

)
= −K̃ 2

n ζ
−2
n σ−2

n

∫
∞

z1 Gζn (Ai−Ai−n )(dz1)
∫

∞

z2 Gζn (A j−A j−n )(dz2)

−∞ −∞
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P

+ o
(

K̃ 2
nσ

−2
n |Ai − Ai−n||A j − A j−n|

)
= −K̃ 2

nσ
−2
n σ 4

Z (Ai − Ai−n)(A j − A j−n) (1 + o(1))

s n → ∞, uniformly in i, j ≥ 0 with i ̸= j . Dividing both sides by P(E0)2 and using (4.25),
e obtain

E
[(

Zn−i−1 − E(Zn−i−1|E0)
)(

Zn− j−1 − E(Zn− j−1|E0)
)⏐⏐⏐E0

]
(4.26)

= −σ−2
n σ 4

Z (Ai − Ai−n)(A j − A j−n) (1 + o(1)) ,

s n → ∞, again uniformly for i, j ≥ 0 with i ̸= j . Since by (4.25) with (4.17)

E (Zn−i−1|E0) =
(
1 + ζ−2

n σ−2
n

) ∫ ∞

−∞

z Gζn (Ai−Ai−n )(dz)

+ o
(
ζ−1

n σ−2
n |Ai − Ai−n|

)
,

ith a similar statement for Zn− j−1, (4.26) implies (4.24). □

. The proof of the main result

In this section, the proof of Theorem 2.1 is completed by carrying out Steps 3 and 4. The
rst goal is to prove Lemma 5.3 which essentially completes Step 3. Proceeding towards that,
e start with establishing conditional distributional limits of certain truncated sums.

emma 5.1. Suppose that (2.2) and (2.5) hold. For 0 < δ < L denote

Sn( j, δ, L) =
[nβ L]−1∑
i=[nβ δ]

(Ai+ j − Ai )Yni +

n−1∑
i=n− j

(Ai+ j − Ai+ j−n − Ai )Yni (5.1)

+

n+[nβ L]∑
i=n

(Ai+ j − Ai+ j−n − Ai + Ai−n)Yni , n ≥ 1, j ≥ 0.

ith the overshoot T ∗
n as in (2.20), we have, conditionally on E0,(

ζnT ∗

n ,
(
n2α−2Sn([nβ t], δ, L), t ≥ 0

))
⇒

(
T0,

(
(1 − α)−1σZ

(∫ L

δ

[
(s + t)1−α

− s1−α] d B1(s) (5.2)

+

∫ t

0
(t − s)1−αd B2(s) +

∫ L

0

[
s1−α

− (s + t)1−α] d B3(s)
)
, t ≥ 0

))
n the sense of convergence of finite dimensional distributions as n → ∞, where T0 is

standard exponential random variable independent of B1, B2, B3 which are independent
tandard Brownian motions.

roof. For n ≥ 1 and t ≥ 0 we write

ξ 1◦
n (t) =

[nβ t]∑
i=1

Ai Yni , ξ 2◦
n (t) =

n−1∑
i=n−[nβ t]

Ai Yni ,

ξ 3◦
n (t) =

n+[nβ t]∑
(Ai − Ai−n) Yni .
i=n+1
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It follows from Lemma 3.4 that, conditionally on E0,(
ζnT ∗

n ,
(
n2α−2ξ 1◦

n (t) : t ≥ 0
)
,
(
nα−β/2−1ξ 2◦

n (t) : t ≥ 0
)
, (5.3)

(
nα−β/2−1ξ 3◦

n (t) : t ≥ 0
) )

⇒

(
T0,

(
K 1/2

1 σZ B1(t3−2α) : t ≥ 0
)
,
(
(1 − α)−1σZ B2(t) : t ≥ 0

)
,(

(1 − α)−1σZ B3(t) : t ≥ 0
))

ecause the difference between the processes in (5.3) and those in Lemma 3.4 vanishes in the
imit. For example,

n2α−2ζ−2
n σ−2

n

[nβ t]∑
i=1

Ai

∫
∞

−∞

z Gζn Ai (dz) = O
(
n1−2α)

= o(1),

nd similarly with the other two components. Furthermore, for large n,

Sn([nβ t], δ, L)

=

[nβ L]−1∑
i=[nβ δ]

(Ai+[nβ t] − Ai )Yni +

n−1∑
i=n−[nβ t]

(Ai+[nβ t] − Ai+[nβ t]−n − Ai )Yni

+

n+[nβ L]∑
i=n

(Ai+[nβ t] − Ai+[nβ t]−n − Ai + Ai−n)Yni =: V 1
n (t) + V 2

n (t) + V 3
n (t).

Starting with V 3
n , we write

V 3
n (t) = n−(1−α)(1−β)

[nβ L]∑
i=1

fn
(
n−β i, t

)
(An+i − Ai ) Yn,n+i , (5.4)

here for 0 ≤ s ≤ L ,

fn(s, t) = n(1−α)(1−β) An+[nβ s]+[nβ t] − A[nβ s]+[nβ t] − An+[nβ s] + A[nβ s]

An+[nβ s] − A[nβ s]
.

t is elementary that for fixed s, t , as n → ∞,

An+[nβ s]+[nβ t] − An+[nβ s] ≪ A[nβ s]+[nβ t] − A[nβ s]

∼ (1 − α)−1nβ(1−α) [(s + t)1−α
− s1−α] ,

hile An+[nβ s] − A[nβ s] ∼ (1 − α)−1n1−α . Therefore,

lim
n→∞

fn(s, t) = s1−α
− (s + t)1−α

=: f (s, t), (5.5)

nd the limit is easily seen to be uniform in 0 ≤ s ≤ L and t in a compact interval. We will
how that, conditionally on E0,(

n2α−2V 3
n (t), t ≥ 0

)
(5.6)

⇒

(
σZ (1 − α)−1

∫ L [
s1−α

− (s + t)1−α] d B3(s), t ≥ 0
)

0
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in the sense of convergence of finite-dimensional distributions, as n → ∞. To this end, set

cnj (k, t) = inf
( j−1)L/k≤s≤ j L/k

fn(s, t), k ≥ 1, 1 ≤ j ≤ k,

nd

eni (k, t) = fn
(
n−β i, t

)
− cn,⌈L−1n−βki⌉(k, t) ≥ 0, k ≥ 1, 1 ≤ i ≤ [nβL].

y (5.5) and monotonicity,

lim
n→∞

cnj (k, t) = f
(
( j − 1)k−1L , t

)
, 1 ≤ j ≤ k . (5.7)

standard continuity argument shows that

lim
k→∞

lim sup
n→∞

sup
t∈A

max
1≤i≤[nβ L]

eni (k, t) = 0 (5.8)

for any compact set A. We have

[nβ L]∑
i=1

cn,⌈L−1n−βki⌉(k, t)(An+i − Ai )Yn,n+i

=

k′∑
j=1

cnj (k, t)
∑

i∈
(

k−1 Lnβ ( j−1),k−1 Lnβ j
]
∩Z

(An+i − Ai )Yn,n+i

=

k′∑
j=1

cnj (k, t)
(
ξ 3◦

n

(
k−1L j

)
− ξ 3◦

n

(
k−1L( j − 1)

))
=: Wnk(t) ,

here k ′
= ⌈L−1n−βk[nβL]⌉. This, together with (5.3) and (5.7), implies that for fixed k, as

n → ∞,(
nα−β/2−1Wnk(t), t ≥ 0

)
(5.9)

⇒

(
(1 − α)−1σZ

k∑
j=1

f
(
( j − 1)k−1L , t

) (
B3(k−1 j L) − B3(k−1( j − 1)L)

)
,

t ≥ 0
)

in the sense of convergence of finite-dimensional distributions. We have

[nβ L]∑
i=1

fn
(
n−β i, t

)
(An+i − Ai ) Yn,n+i − Wnk(t)

=

[nβ L]∑
i=1

eni (k, t) (An+i − Ai ) Yn,n+i .

It follows from (4.24) that, for large n,

sup (Ai − Ai−n)
(

A j − A j−n
)

E
(
Yni Ynj |E0

)
≤ 0.
i, j≥0:i ̸= j
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This, along with (4.23) and the non-negativity of each eni , implies that for large n,

E

⎛⎜⎝
⎡⎣[nβ L]∑

i=1

eni (k, t) (An+i − Ai ) Yn,n+i

⎤⎦2 ⏐⏐⏐⏐E0

⎞⎟⎠
≤

[nβ L]∑
i=1

[eni (k, t) (An+i − Ai )]2 E(Y 2
n,n+i |E0)

= O

⎛⎝ max
1≤ j≤[nβ L]

enj (k, t)2
[nβ L]∑
i=1

(An+i − Ai )
2

⎞⎠
= O

(
n2−2α+β max

1≤ j≤[nβ L]
enj (k, t)2

)
.

nvoking (5.8) we conclude that for any compact set A,

lim
k→∞

lim sup
n→∞

n2α−β−2 sup
t∈A

E
[(

Wnk(t) (5.10)

−

[nβ L]∑
i=1

fn
(
n−β i, t

)
(An+i − Ai ) Yn,n+i

)
2
⏐⏐⏐⏐E0

]
= 0 .

s k → ∞, the process on the right hand side of (5.9) converges in finite-dimensional
distributions to the process on the right-hand side of (5.6). Since (2α − 2) − (1 − α)(1 − β) =
α − β/2 − 1, the claim (5.6) follows from (5.4) and (5.10) by the “convergence together”
argument; see Theorem 3.2 in [2].

A nearly identical argument shows that, conditionally on E0,(
n2α−2V 2

n (t), t ≥ 0
)
⇒

(
−σZ (1 − α)−1

∫ t

0
(t − s)1−αd B2(s), t ≥ 0

)
(5.11)

d
=

(
σZ (1 − α)−1

∫ t

0
(t − s)1−αd B2(s), t ≥ 0

)
in the sense of convergence of finite-dimensional distributions.

The situation with the term V 1
n is, once again, similar, with a small twist. Since

lim
n→∞

A[nβ s]+[nβ t] − A[nβ s]

A[nβ s]
=

(s + t)1−α
− s1−α

s1−α

niformly for δ ≤ s ≤ L and t , our argument now shows that, conditionally on E0,(
n−(2−2α)V 1

n , t ≥ 0
)

⇒

(
σZ K 1/2

1

∫ L

δ

(s + t)1−α
− s1−α

s1−α M(ds), t ≥ 0
)

(5.12)

n the sense of convergence of finite-dimensional distributions, where K1 is as in (3.11) and M
s a centred Gaussian random measure whose variance measure has the density (3− 2α)s2−2α ,
> 0.
That is,

Var
(∫

∞

h(s)M(ds)
)
= (3 − 2α)

∫
∞

h(s)2s2−2α ds,

0 0
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for a measurable h : (0,∞) → R for which, the right hand side is finite. Taking h(s) =
α−11(s ≤ t), it thus follows that(∫ t

0
sα−1 M(ds), t ≥ 0

)
d
=
(
(3 − 2α)1/2 B1(t), t ≥ 0

)
.

n other words, sα−1 M(ds) can be replaced by (3 − 2α)1/2d B1(s). Therefore,(∫ L

δ

(s + t)1−α
− s1−α

s1−α M(ds), t ≥ 0
)

d
=

(
(3 − 2α)1/2

∫ L

δ

(
(s + t)1−α

− s1−α)d B1(s), t ≥ 0
)
.

ombine this with (5.12) and recall (3.11) to get that conditionally on E0,(
n2α−2V 1

n (t), t ≥ 0
)

(5.13)

⇒

(
σZ (1 − α)−1

∫ L

δ

(
(s + t)1−α

− s1−α)d B1(s), t ≥ 0
)

n the sense of convergence of finite-dimensional distributions.
Since (5.6), (5.11) and (5.13) are all consequences of (5.3), the convergence statements they

ontain hold jointly, and jointly with ζnT ∗
n ⇒ T0. The claim (5.2) follows. □

The next lemma treats the sequence of shifts appearing due to conditioning on E0.

emma 5.2. Define

µn(t)

= n2α−2
∞∑

i=0

(
Ai+[nβ t] − Ai+[nβ t]−n − Ai + Ai−n

) ∫ ∞

−∞

z Gζn (Ai−Ai−n )(dz),

or t ≥ 0 and n ≥ 1. Then µn → µ∞ as n → ∞, in D([0,∞)) equipped with the Skorohod
J1 topology, where µ∞(t) = −εt3−2α, t ≥ 0.

roof. Writing

µn(t) =n2α−2ζn

∞∑
i=0

(
Ai+[nβ t] − Ai+[nβ t]−n − Ai + Ai−n

) (
Ai − Ai−n

)
+n2α−2

∞∑
i=0

(
Ai+[nβ t] − Ai+[nβ t]−n − Ai + Ai−n

)
×

[∫
∞

−∞

z Gζn (Ai−Ai−n )(dz) − ζn
(

Ai − Ai−n
)]

=: µ(1)
n (t) + µ(2)

n (t), t ≥ 0,

he claim of the lemma will follow once we prove that

µ(1)
n → µ∞ in D([0,∞)) (5.14)

nd
(2)
µn (t) → 0 uniformly on compact intervals. (5.15)

416



A. Chakrabarty and G. Samorodnitsky Stochastic Processes and their Applications 163 (2023) 387–423

B

u
s

u

a

a

We start by proving (5.15). Fix L > 0 so that 0 ≤ t ≤ L . Suppose first that 1/2 < α < 5/6.
y (3.6)⏐⏐µ(2)

n (t)
⏐⏐

=O

(
n2α−2ζ 2

n

∞∑
i=0

⏐⏐Ai+[nβ t] − Ai+[nβ t]−n − Ai + Ai−n
⏐⏐ (Ai − Ai−n

)2

)

=O

(
n2α−2ζ 2

n nβ
∞∑

i=1

i−α
(

Ai − Ai−n
)2

)
= O

(
n2α−2ζ 2

n nβn3−3α)
→ 0

niformly in 0 ≤ t ≤ L , showing (5.15). On the other hand, if α ≥ 5/6, then κ ≥ 3 in (2.5),
o by (3.6)⏐⏐µ(2)

n (t)
⏐⏐

=O

(
n2α−2ζ 3

n

∞∑
i=0

⏐⏐Ai+[nβ t] − Ai+[nβ t]−n − Ai + Ai−n
⏐⏐ (Ai − Ai−n

)3

)

=O

(
n2α−2ζ 3

n nβ
∞∑

i=1

i−α
(

Ai − Ai−n
)3

)
= O

(
n2α−2ζ 3

n nβn4−4α)
→ 0

niformly in 0 ≤ t ≤ L , again showing (5.15).
We now prove (5.14). The pointwise convergence is clear: for fixed t ,

µ(1)
n (t) = σ 2

Zσ
−2
n n2α−1ε

∞∑
i=0

(
Ai+[nβ t] − Ai+[nβ t]−n

)
(Ai − Ai−n) − n2α−1ε

→ −εt3−2α

s n → ∞, where we have used (3.12). Next, as in (3.14) we can write for t ≥ 0,

µ(1)
n (t) =

n2α−2ζn

2

[ n−1∑
i=0

(
Ai − Ai−[nβ t]

)2

+

∞∑
i=n−[nβ t]

(
Ai+[nβ t] − Ai+[nβ t]−n − Ai + Ai−n

)2
]

=: µ(11)
n (t) + µ(12)

n (t).

The claim (5.14) will follow once we show that both µ(11)
n and µ(12)

n converge in D([0,∞))
to continuous limits (both constant factors of µ∞). The fact that µ(11)

n converges pointwise to
a constant factor of the pointwise limit of µ(1)

n is an intermediate step in the proof of (3.12).
Since µ(11)

n is a monotone function, its convergence in D([0,∞)) follows.
We already know that µ(12)

n converges pointwise to a continuous limit. Let i0 be such that
i is monotone for i ≥ i0. Write for t ≥ 0

µ(12)
n (t) =

n2α−2ζn

2

[ ∞∑
i=n+i0

(
Ai+[nβ t] − Ai+[nβ t]−n − Ai + Ai−n

)2

−

n+i0−1∑
i=n−[nβ t]

(
Ai+[nβ t] − Ai+[nβ t]−n − Ai

)2
]

(121) (122)

=: µn (t) − µn (t),
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so it is enough to show that both µ(121)
n and µ(122)

n converge in D([0,∞)) to continuous limits.
plitting further, we write for t ≥ 0,

µ(122)
n (t) =

n2α−2ζn

2

[ n+i0−1∑
i=n−[nβ t]

A2
i+[nβ t]−n

+

n+i0−1∑
i=n−[nβ t]

(
Ai − Ai+[nβ t]

)(
Ai − Ai+[nβ t] − 2Ai+[nβ t]−n

) ]
=: µ(1221)

n (t) + µ(1222)
n (t).

Clearly,

µ(1221)
n (t) =

n2α−2ζn

2

[nβ t]+i0−1∑
i=0

A2
i

onverges pointwise to a constant factor of µ∞. Since µ(1221)
n is monotone, we conclude that

(1221)
n converges in D([0,∞)) to a continuous limit. In order to prove that so does µ(122)

n ,
e will show that µ(1222)

n (t) → 0 uniformly on compact intervals. Considering once again
0 ≤ t ≤ L , we have⏐⏐µ(1222)

n (t)
⏐⏐

≤
n2α−2ζn

2

n+i0−1∑
i=n−[nβ t]

(
Ai+[nβ t] − Ai

)[(
Ai+[nβ t] − Ai

)
+ 2Ai+[nβ t]−n

]

= O

⎛⎝n2α−2ζn

n+i0−1∑
i=n−[nβ t]

nβn−α
(
nβn−α

+ nβ(1−α))⎞⎠
= O

(
nα−2ζnn3β−βα)

→ 0

uniformly over 0 ≤ t ≤ L , as required.
Finally, we already know that µ(121)

n converges pointwise to a continuous limit. Furthermore,
by the choice of i0, µ(121)

n is a monotone function. Therefore, it converges in D([0,∞)), and
the proof is complete. □

The following lemma, which is the final one before we prove Theorem 2.1, completes
Step 3.

Lemma 5.3. Suppose that (2.2) and (2.5) hold. Let Sn( j) be as in (2.21). As n → ∞,
onditionally on E0,(

n−(2−2α) (Sn([nβ t]) − nε
)
, t ≥ 0

)
⇒
(
(2Cα)1/2 BH (t) + ε−1Cασ

2
Z T0 − εt3−2α, t ≥ 0

)
n the sense of convergence of finite-dimensional distributions, where (BH (t) : t ≥ 0) is the
tandard fractional Brownian motion (2.10) with the Hurst exponent H given in (2.9), Cα is
he constant defined in (2.12), and T0 is a standard exponential random variable independent

f the fractional Brownian motion.
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Proof. It follows from (4.24) and the eventual monotonicity of the sequence (An) that there
is i0 ≥ 0 such that for all large n,

sup
i0≤i< j

E
(
Yni Ynj |E0

)
≤ 0 . (5.16)

For fixed L , t > 0 this and (4.23) imply that

E

⎡⎢⎣
⎛⎝n−[nβ t]−1∑

i=[nβ L]

(
Ai+[nβ t] − Ai

)
Yni

⎞⎠2 ⏐⏐⏐⏐E0

⎤⎥⎦
=O

⎛⎝ ∞∑
i=[nβ L]

(
Ai+[nβ t] − Ai

)2

⎞⎠
=O

⎛⎝ ∞∑
j=[nβ L]

((
j + [nβ t]

)1−α
− j1−α

)2

⎞⎠
=O

(
n4−4α

∫
∞

L

[
(x + t)1−α

− x1−α]2
dx
)
.

Therefore, for fixed t ,

lim
L→∞

lim sup
n→∞

E

⎡⎢⎣
⎛⎝n2α−2

n−[nβ t]−1∑
i=[nβ L]

(
Ai+[nβ t] − Ai

)
Yni

⎞⎠2 ⏐⏐⏐⏐E0

⎤⎥⎦ = 0 . (5.17)

Since the sequence (an) is eventually monotone, we can increase, if necessary, i0 to guarantee
that A j+k − A j ≤ Ai+k − Ai for all i0 ≤ i ≤ j and k ≥ 0. By (5.16), for fixed L , t > 0, large
n and i, j ≥ n + [nβL],(

Ai+[nβ t] − Ai+[nβ t]−n − Ai + Ai−n
)

×
(

A j+[nβ t] − A j+[nβ t]−n − A j + A j−n
)

E
(
Yni Ynj

⏐⏐E0
)
≤ 0 ,

nd the same argument as above implies that

lim
L→∞

lim sup
n→∞

E
[(

n2α−2 (5.18)

∞∑
i=n+[nβ L]+1

(
Ai+[nβ t] − Ai+[nβ t]−n − Ai + Ai−n

)
Yni

)
2
⏐⏐⏐⏐E0

]
= 0 .

imilarly, for a fixed t > 0,

lim
δ→0

lim sup
n→∞

E

⎡⎣⎛⎝n2α−2
[nβ δ]−1∑

i=i0

(
Ai+[nβ t] − Ai

)
Yni

⎞⎠ 2
⏐⏐⏐⏐E0

⎤⎦ = 0 , (5.19)

nd it is elementary that for a fixed t > 0,

lim
n→∞

E

⎡⎣(n2α−2
i0−1∑(

Ai+[nβ t] − Ai
)

Yni

)2 ⏐⏐⏐⏐E0

⎤⎦ = 0 . (5.20)

i=0
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It follows from (5.17), (5.18), (5.19), (5.20) and Lemma 5.1 that, conditionally on E0,[
ζnT ∗

n ,

(
n−(2−2α)

∞∑
i=0

(
Ai+[nβ t] − Ai+[nβ t]−n − Ai + Ai−n

)
Yni , t ≥ 0

)]
(5.21)

⇒

[
T0,

(
(1 − α)−1σZ

(∫
∞

0

[
(s + t)1−α

− s1−α] d B1(s)

+

∫ t

0
(t − s)1−α d B2(s) +

∫
∞

0

[
(s + t)1−α

− s1−α] d B3(s)
)
, t ≥ 0

)]
,

n the sense of convergence of finite-dimensional distributions, as n → ∞. Furthermore, one
an easily check the Lindeberg conditions of the central limit theorem to see that⎛⎝n−(2−2α)

−1∑
i=−[nβ t]

Ai+[nβ t] Zn−1−i , t ≥ 0

⎞⎠ (5.22)

⇒

(
(1 − α)−1σZ

∫ t

0
(t − s)1−α d B0(s), t ≥ 0

)
n the sense of convergence of finite-dimensional distributions, as n → ∞, where B0 is a
tandard Brownian motion. Note that the random variables on the left hand side of (5.22)
re independent of the random variables on the left hand side of (5.21) and, in particular,
ndependent of E0.

Using (2.16) we conclude by (5.21) and (5.22) that, in the notation of Lemma 5.2,
conditionally on E0,[

ζnT ∗

n ,
(
n−(2−2α) (Sn([nβ t]) − Sn

)
−
(
1 + ζ−2

n σ−2
n

)
µn(t), t ≥ 0

)]
⇒

[
T0,

(
(1 − α)−1σZ

(∫ t

0
(t − s)1−α d B0(s)

+

∫
∞

0

[
(s + t)1−α

− s1−α] d B1(s)

+

∫ t

0
(t − s)1−α d B2(s) +

∫
∞

0

[
(s + t)1−α

− s1−α] d B3(s)
)
, t ≥ 0

)]
d
=

[
T0,

(
21/2(1 − α)−1σZ

∫
∞

−∞

[
(t − s)1−α

+
− (−s)1−α

+

]
dW (s), t ≥ 0

)]
in finite-dimensional distributions as n → ∞, where at the intermediate step the four standard
Brownian motions, B0, B1, B2 and B3 are independent (and independent of T0), and in the
final expression (W (s), s ∈ R) is a two-sided standard Brownian motion, independent of T0.
By (3.15), this can be restated as saying that, conditionally on E0,[

ζnT ∗

n ,
(
n−(2−2α) (Sn([nβ t]) − Sn

)
− µn(t), t ≥ 0

)]
⇒
[
T0,

(
(2Cα)1/2 BH (t), t ≥ 0

)]
,

and by Lemma 5.2 also[
ζnT ∗

n ,
(
n−(2−2α) (Sn([nβ t]) − Sn

)
, t ≥ 0

)]
⇒
[
T0,

(
(2Cα)1/2 BH (t) − εt3−2α, t ≥ 0

)]
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in finite-dimensional distributions, as n → ∞. Since

n−(2−2α)(Sn([nβ t]) − nε
)
= n−(2−2α)(Sn([nβ t]) − Sn

)
+
(
n2α−2ζ−1

n

)
ζnT ∗

n ,

he claim of the lemma follows from the definition (3.32) of ζn and (3.9). □

Now we are in a position to execute Step 4, that is, prove Theorem 2.1.

roof of Theorem 2.1. We will prove that{
P
[(

n−(2−2α) (Sn([nβ t]) − nε
)
, 0 ≤ t <∞

)
∈ ·

⏐⏐⏐E0

]
, n ≥ 1

}
(5.23)

s a tight family of probability measures on D([0,∞)) equipped with the Skorohod J1 topology.
ssuming for a moment that this is true, it would follow from Lemma 5.3 that, conditionally

on E0,(
n−(2−2α) (Sn([nβ t]) − nε

)
: t ≥ 0

)
⇒
(
(2Cα)1/2 BH (t) + ε−1Cασ

2
Z T0 − εt3−2α

: t ≥ 0
)

weakly in D([0,∞)), as n → ∞. Since the functional x ↦→ inf{t ≥ 0 : x(t) ≤ 0} on D([0,∞))
is, clearly, a.s. continuous with respect to the law induced on that space by the limiting process,
the continuous mapping theorem would imply that, conditionally on E0,

n−β In(ε) = inf
{
t ≥ 0 : n−(2−2α) (Sn([nβ t]) − nε

)
≤ 0

}
⇒ inf

{
t ≥ 0 : (2Cα)1/2 BH (t) + ε−1Cασ

2
Z T0 − εt3−2α

≤ 0
}
= τε

as n → ∞. Therefore, establishing tightness of the family (5.23) suffices to complete the proof
f Theorem 2.1, and by Lemma 5.2 it is enough to prove that the family{

P
[(

n−(2−2α) (Sn([nβ t]) − nε
)
− µn(t), 0 ≤ t <∞

)
∈ ·

⏐⏐⏐E0

]
, n ≥ 1

}
(5.24)

s a tight family of probability measures on D([0,∞)).
We have to prove tightness of the restriction of the family (5.24) to the interval [0, L] for

ny L > 0, so fix L . We start by showing that

E
[(

Sn
(
[nβ t]

)
− n2α−2µn(t) − Sn

(
[nβs]

)
+ n2α−2µn(s)

)2
⏐⏐⏐⏐E0

]
= O

((
[nβ t] − [nβs]

)3−2α
)
, (5.25)

niformly for 0 ≤ s ≤ t ≤ L . We write

Sn
(
[nβ t]

)
− n2α−2µn(t) − Sn

(
[nβs]

)
+ n2α−2µn(s)

=

−1∑
i=−[nβ t]

(
Ai+[nβ t] − Ai+[nβ s]

)
Zn−i−1

+

∞∑
i=0

(
Ai+[nβ t] − Ai+[nβ t]−n − Ai+[nβ s] + Ai+[nβ s]−n

)
Yni .
421



A. Chakrabarty and G. Samorodnitsky Stochastic Processes and their Applications 163 (2023) 387–423

u

v

Since Zn, Zn+1, . . . are independent of E0, by Lemma 4.4,

E
[(

Sn
(
[nβ t]

)
− n2α−2µn(t) − Sn

(
[nβs]

)
+ n2α−2µn(s)

)2
⏐⏐⏐⏐E0

]

=O
[ [nβ t]−1∑

j=0

(
A j − A j+[nβ s]−[nβ t]

)2

+

∞∑
i=0

(
Ai+[nβ t] − Ai+[nβ t]−n − Ai+[nβ s] + Ai+[nβ s]−n

)2
]

=O
((

[nβ t] − [nβs]
)3−2α

)
niformly for 0 ≤ s ≤ t ≤ L by (4.4) with κ = 2, and (5.25) follows.

Let now 0 ≤ r ≤ s ≤ t ≤ L . If t − r ≤ n−β , then

E
[ ⏐⏐Sn([nβs]) − µn(s) − Sn([nβr ]) + µn(r )

⏐⏐
×
⏐⏐Sn([nβ t]) − µn(t) − Sn([nβs]) + µn(s)

⏐⏐ ⏐⏐⏐E0

]
anishes. On the other hand, if t−r > n−β , then by (5.25) and the Cauchy–Schwarz inequality,

the conditional expectation can be bounded by

O
((

[nβ t] − [nβr ]
)3−2α

)
= O

(
n4−4α(t − r )3−2α)

uniformly for 0 ≤ r ≤ s ≤ t ≤ L . Since 3 − 2α > 1, the required tightness of the family in
(5.24) follows, which completes the proof of Theorem 2.1. □
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Appendix. Some useful facts

We collect in this section for easy reference a number of known or easily derivable results.
The first one is an integral evaluation which follows from (2), (6) and (51) in [4].

Fact 1. If H ∈ (0, 1), H ̸= 1/2, then∫
∞

0

[
x H−1/2

− (x − 1)H−1/2
+

]2
dx =

cos(πH )Γ (2 − 2H )
πH (1 − 2H )

Γ (H + 1/2)2 . (A.1)

Next, we will need the following version of the Berry–Essen theorem valid for independent
not necessarily identically distributed summands; see [1].
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Fact 2. Let X1, . . . , Xn be independent zero mean random variables with finite third moments.

enote

A =

n∑
i=1

E |X3
i |, B =

√ n∑
i=1

E(X2
i ).

Assuming B > 0 we have⏐⏐⏐⏐⏐P
(

n∑
i=1

X i ≤ Bz

)
− Φ(z)

⏐⏐⏐⏐⏐ ≤ Cu AB−3, z ∈ R , (A.2)

with Cu a universal constant, and Φ the standard normal CDF. The fact that the constant is
universal means that (A.2) remains valid for n = ∞ as long the series on the left hand side
converges and A, B are finite.

The following generalization of the Riemann–Lebesgue lemma can be proven in the same
way as the original statement.

Fact 3. If f : R → R is a measurable function such that for some δ > 0,∫
∞

−∞

eθx
| f (x)|dx <∞ for all θ ∈ [−δ, δ],

then

lim
t→∞

sup
|θ |≤δ

⏐⏐⏐⏐∫ ∞

−∞

e(θ+i t)x f (x) dx
⏐⏐⏐⏐ = 0 . (A.3)

We will need the following simple bound on the characteristic function of a random variable
with a finite third moment. The proof is given for the sake of completeness.

Fact 4. If φ is the characteristic function of X whose third moment is finite, then

|φ(t)| ≤
(
1 − t2Var(X ) + 4|t |3 E |X |

3/3
)1/2

, t ∈ R . (A.4)

Proof. Let X ′ be an independent copy of X and Y = X − X ′. Using the bound cos t ≤

1 − t2/2 + |t |3/6 for t ∈ R, we have

Eei tY
≤ 1 − t2 E(Y 2)/2 + |t |3 E |Y |

3/6

≤ 1 − t2Var(X ) + 4|t |3 E |X |
3/3 .

This completes the proof. □
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