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Abstract Ocean acidification is a symptom of
marine climate change resulting from the uptake of
anthropogenic carbon dioxide (CO,) into the world’s
ocean, thereby potentially affecting survival, growth,
and numerous other traits in fish early life stages.
But some fish species are clearly more CO,-resilient
than others, perhaps because they reside in more
CO,-variable, inshore habitats as opposed to more
CO,-stable offshore waters. Here we studied the early
life CO, sensitivity of an ecologically and economi-
cally important fish species (Black Sea Bass, Centro-
pristis striata) that seasonally migrates between off-
shore overwintering and inshore feeding and nursery
grounds. We produced embryos from wild spawners
and reared them until 10 days post-hatch (dph) at
three contrasting pCO, levels (~400, ~2200, ~3000
patm), finding no statistical effects of pCO, on hatch-
ing success (~28%) or survival to 10 dph (~23%). At
the extreme pCO, level, surviving larvae were 1.2X
larger and grew 55% faster compared to control pCO,
conditions. These results extend pioneering work by
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Meseck et al. (2022; https://doi.org/10.1002/mcf2.
10200) to confirm a surprising CO, tolerance of C.
striata early life stages. This suggests existing adap-
tation to high CO, conditions either because of sea-
sonal exposures at productive inshore environments
or at offshore depths during overwintering.
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Introduction

Anthropogenic carbon dioxide (CO,) levels con-
tinue to increase in the atmosphere and thus in the
surface ocean, where CO, dissociation produces
H* ions to reduce both pH and total alkalinity — a
symptom of marine climate change called ocean
acidification (Jansen et al. 2002; Caldeira and Wick-
ett 2005; Doney et al. 2008). Presently, the average
partial pressure of CO, (pCQO,) in the average surface
ocean is ~400 patm, which under business-as-usual
scenarios could increase to 1200 patm or even 2200
uatm by the years 2100 and 2300, respectively (Cal-
deira and Wickett 2005). This rapid global change
has motivated an entire field of experimental research
dedicated to the question of how marine organisms
will respond to it (Lotterhos et al. 2021). For marine
fishes, experimental work has shown that future pCO,
conditions can reduce survival in some but not most
species, with lethal effects almost always constrained
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to the earliest life stages (Baumann et al. 2012; Mur-
ray et al. 2019; Dahlke et al. 2020). More commonly,
high CO, levels are observed to induce non-lethal
changes to a wide suite of traits, including growth
(Murray and Baumann 2020), behavior (Ashur et al.
2017), reproduction (Concannon et al. 2021), metab-
olism (Schwemmer et al. 2020; Siegfried and Johnson
2023a), and genetic variation (e.g., Tasoff and John-
son 2019). In future oceans, CO,-resilient species
may thus gradually gain fitness advantages over less
CO,-resilient species that could translate into diverg-
ing population dynamics.

Similar to what has already been demonstrated for
invertebrates (Kelly et al. 2013; Vargas et al. 2017),
fish early life CO, sensitivities, too, likely depend on
the level of short-term CO, variability that species
already experience in their environment (Baumann
2019). This may explain why nearshore, coastal fishes
tend to be less CO,-sensitive than species from more
CO,-stable offshore environments (Baumann et al.
2022). Fast development rates, as typically found in
tropical to subtropical fishes, may also be conducive
to CO, tolerance, if such species acquire acid—base
competency too fast for detectable adverse survival
effects to accrue (Baumann 2019). However, these
hypotheses still need further empirical support,
particularly from candidate species inhabiting off-
shore habitats or which seasonally alternate between
inshore and offshore environments.

One such candidate species is black sea bass
(Centropristis striata), a subtropical to temperate
grouper (Serranidae) of commercial importance in
the Northwest Atlantic (Moser and Shepherd 2009;
Watanabe et al. 2021). In recent decades, the northern
stock component of C. striata has rapidly increased
in abundance within Southern New England (Bell
et al. 2015; Zavell et al. 2023) and the Gulf of Maine
(McBride et al. 2018; McMahon et al. 2020; Bandara
et al. 2023), thus motivating new ecological research.
Unlike other fishes that could be characterized as
primarily inshore (e.g., sticklebacks, Gasterosteus
aculeatus and sheepshead minnows, Cyprinodon
variegatus) or offshore residents (e.g., northern sand-
lance, Ammodytes dubius), northern stock C. striata
overwinter offshore but migrate to coastal regions to
spawn and feed (Moser and Shephard 2009; Miller
et al. 2016). Hence, unlike other previously tested
species, C. striata inhabit CO,-stable offshore envi-
ronments while maturing, which might confer high
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early-life CO, sensitivity. On the other hand, C. stri-
ata eggs are released into highly CO,-variable coastal
waters during late spring and early summer, and they
develop relatively fast (hatching occurs 32-74 h post-
fertilization; Berlinsky et al. 2004), which should
confer CO, tolerance. The latter was suggested by
the only previous study to date (Meseck et al. 2022),
which, however, was restricted to 48-h-old embryos
produced from laboratory-kept adults. Fish brood
stocks generally experience artificial food, tempera-
ture, and light conditions in addition to pCO, lev-
els that far exceed future ICPP projections and are
less variable than in the wild — all of which may
alter offspring sensitivities to high pCO, via epige-
netic effects or maternal provision (Ellis et al. 2016;
Kwan et al. 2021). To avoid potential laboratory arti-
facts, CO, sensitivity experiments therefore ideally
begin with offspring produced from wild-captured
spawners.

The goal of our study was thus to obtain independ-
ent empirical evidence on the CO, sensitivity of C.
striata in early life stages. We caught wild, spawn-
ing ripe adults in spring 2022 in Long Island Sound
and then reared their embryos at three contrasting
pCO, conditions until 10 days post-hatch (dph), while
measuring early life survival, growth, and morpho-
logical traits. We generally expected to find small to
neutral CO, effects on these traits but hypothesized
that the wild-derived offspring would be less resilient
to extreme pCO, conditions compared to the brood
stock-derived offspring used in Meseck et al. (2022).

Materials and methods
Spawning and fertilization

Spawning ripe C. striata were collected on May 20th,
2022, off Stonington Borough in Eastern Long Island
Sound (LIS; 41.3359°N, 71.9059°W) via hook and
line angling. Adults were transported in 150-1 coolers
to the Rankin Seawater Laboratory at the University
of Connecticut, Avery Point Campus. Upon arrival,
adults were distributed into two 600-1 flow-through
tanks supplied with seawater from Eastern LIS
(15-16 °C, 8.15 pH, 30 psu) and held there for three
days before strip-spawning. On May 23rd, spawners
were separated by sex and individually anesthetized
with clove oil (50 mg I71). Eggs and milt (N, = 4;
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N, = 3) were pooled across two 2 1 spawning trays
containing 1 I of filtered (1 pm) and UV-sterilized
seawater and mixed until eggs had water hardened
(i.e., hardening of the chorion). A 5 ml sample of
eggs was randomly allocated to each replicate within
90 min of fertilization. Nine additional 5 ml samples
were randomly collected, fixed immediately in 5%
buffered formalin and then used to quantify the total
number of embryos per 5 ml replicate.

Experimental design

We used three pCO, treatments (Table 1) referred to
hereafter as control (400 patm, ~8.15 pH), elevated
(2200 patm, ~7.45 pH), and extreme (3000 patm,
~7.20 pH). The elevated treatment corresponded to
the maximum open-ocean pCO, prediction by 2300
(Caldeira and Wickett 2003; Salisbury and Jonsson
2018) that is a common benchmark in OA studies
(Baumann et al. 2022). The extreme pCO, level is
currently reached only rarely in productive, nearshore
environments during summer (Baumann et al. 2015),
but such extremes may become more common under
future climate and eutrophication scenarios (Wallace
et al. 2014). For this initial study, we chose a sin-
gle, static rearing temperature of 22 °C for all pCO,
treatments, because northern stock C. striata initiate
spawning when bottom temperatures reach~15 °C
continuing throughout the summer (Mercer 1978,
1989; Slesinger et al. 2021) and because aquaculture
studies report optimal development between 19 and
22 °C (Watanabe et al. 2021).

Experiments were conducted in the Automated
Larval Fish Rearing System (ALFiRiS), which con-
sists of nine recirculating units that can each hold
eight 19 1 rearing containers (Murray and Baumann
2015, 2018; Baumann et al. 2022). ALFiRiS sequen-
tially pumps water from each unit once per hour
across a central pH electrode (Hach pHD digital
electrode calibrated weekly using NIST 2-point pH
references), and a custom-designed LabView routine
compares read pH with set points, adjusting treatment
level accordingly by bubbling 100% bone dry CO, or
CO,-stripped air into each units sump tank. LabView
also measures temperature via thermistors and then
controls submersible heaters (Finnex Deluxe Tita-
nium, 800 W) or in-line chillers (DeltaStar 1/3 horse-
power). For this experiment, three ALFiRiS units
were assigned to each pCO, treatment, with each unit
receiving eight individual replicates. Replicate con-
tainers consisted of 750 ml plastic cups with 100 pm
mesh bottoms, which were floated in larger 19 1 con-
tainers (fitted with 150 pm mesh screens to allow for
water transfer), and each 750 ml rearing container
received a gravity-fed flow (4 1 h™!) of treatment
water. We measured total alkalinity via endpoint titra-
tion from filtered water samples (300 ml) taken every
9 days from each tank (Murray and Baumann 2018).
Tank temperature, pH, and total alkalinity values
were then used to calculate actual pCO, levels using
CO2SYS (V2.3, Lewis and Wallace 1998; available at
https://www.ncei.noaa.gov/access/ocean-carbon-acidi
fication-data-system/oceans/CO2SYS/co2rprt.html).
Ammonia (ppm) was measured once a week while

Table 1 Mean (+ SD) seawater chemistry parameters over the course of the experiment

Tank Target Actual pCO,(uatm) pH Temperature (°C) Salinity (psu) Ammo-
pCO,(natm) nia
(ppm)
1 400 375+28.18 8.11+0.01 21.84+0.2 31+0 0
2 3000 3731+453.03 7.14+0.14 21.92+0.14 30.5+0.58 0
3 2200 2256.1+214.1 7.49+0.06 21.83+0.21 30.5+0.58 0
4 2200 2260.2+191.0 7.49+0.03 21.75+0.23 31+0 0
5 3000 3030.1+31.2 7.16+0.11 21.85+0.2 30.5+0.58 0
6 2200 1956.2+223.4 7.44+0.07 21.86+0.15 31+0 0
7 3000 3562.8 +207.7 7.22+0.04 21.67+0.32 30.5+0.58 0
8 400 398.8+34.7 8.09+0.01 21.75+0.22 30.5+0.58 0
9 400 389.4+34.3 8.09+0.01 21.51+£0.35 30.5+0.58 0
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salinity was measured every nine days (psu). All
water quality values can be found in Table 1.

At hatch, half of the replicates were euthanized
with an overdose of MS-222 and immediately pre-
served in cold (2—4 °C) paraformaldehyde (PFA) in
phosphate-buffered saline (PBS). The remaining rep-
licates were reared until 10 dph and then preserved
identically. For the first two dph, larvae were fed
greenwater (RGComplete, Reed Mariculture, Camp-
bell CA, USA) ad libitum 3X a day. Starting on 1 dph,
larvae were fed live L-type rotifers (Reed Maricul-
ture, Campbell CA, USA) ad libitum 3x a day.

Response traits

On the day of hatch (~48 h post-fertilization), we
counted all hatched larvae, unhatched embryos, and
non-fertilized eggs in the four replicates sacrificed per
ALFiRiS unit in order to calculate percent fertiliza-
tion and percent hatch. To determine percent survival
at 10 dph (in the remaining 4 replicates per unit), we
first calculated the number of embryos by multiplying
the average number of eggs per 5 ml replicate by the
average replicate fertilization success (%) within each
unit. Second, we estimated the number of hatched lar-
vae per replicate by multiplying the estimated embryo
count per replicate with the average replicate hatching
success. Third, the number of larvae surviving to 10
dph was divided by the estimated number of hatched
larvae (0 dph) to calculate survival (%) to 10 dph for
each replicate.

Both 0-dph and 10-dph larvae were individu-
ally photographed using calibrated images (Nikon
SMZ1000, Image-Pro Premier V.9.3.3, Media Cyber-
netics, Rockville MD). The 0-dph individuals were
measured for total length (TL; mm) and body depth
(BD; mm). The 10-dph individuals were measured
for TL, standard length (SL; mm), BD, eye diam-
eter (ED), and mandible length (ML; mm). Two
data points were removed as outliers: a BD at O dph
(BD>1.15 mm) and an ED at 10 dph (ED>1.11
mm). In a small number of larvae, some morphologi-
cal traits were not measurable due to fixation dam-
age. Length growth rates (GR, mm day~!) were cal-
culated by dividing the difference between replicate
TL means at 0 and 10 dph by 10. We also derived
theoretical, treatment-specific GR distributions by
constructing a matrix of all 0 dph x 10 dph TL to
then calculate every possible GR of 10 dph survivors
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(values of GR <0 were excluded). As a proxy for lar-
val condition, we calculated the BD to TL ratio as
described by Ferron and Legget (1994).

Statistical analysis

All data were inspected for normality (Shapiro-Wilks
test; P <0.05) and homogeneity of variance (Levene’s
test; P<0.05) with residual plots from each model
inspected visually. Proportional data were arcsine
transformed prior to analysis (Sokal and Rohlf 1995;
Zar 1998; Gotelli and Ellison 2012). Univariate gen-
eral linear models (GLM) were used to examine the
effects of pCO, on hatching success, TL (0 and 10
dph), BD (0 and 10 dph), and GR. All GLMs were
type III to account for the unbalanced design. Sig-
nificant differences among pCO, treatments were
then examined using Tukey’s posthoc test (a¢=0.05;
SPSS). DPH was included in the GLM testing for
pCO, and DPH effects on the BD to TL ratio. Across
all pCO, treatments, 10-dph survival was highly vari-
able between replicates; therefore, replicates were
first scored as either a “100% mortality” (0) or “sur-
vival” (1), which was then compared using a Pear-
son’s chi-squared test. In addition, a GLM was used
to test for the effect of pCO, on survival when repli-
cates with 100% mortality were excluded.

In addition, linear regressions were used to quan-
tify relationships between TL and each morphologi-
cal parameter (SL, BD, ML, ED). The residuals of
these relationships were then examined using univari-
ate GLMs to test for potential pCO, effects. Statistical
analyses and calculations were conducted in SPSS (v
28.0.11(15); linear regressions between TL and each
morphological parameter and their respective GLMs,
BD to TL GLM) or in R (v4.02, R Core Team; all
remaining analyses).

Results

Fertilization success ranged from 6 to 39% with an
average of 17% (SD, 8.2%) across all pCO, treat-
ments. Experimental pCO, treatment had no effect on
hatching success (GLM, P=0.414, Fig. 1A; Table 2).
Hatching occurred in every replicate container, and
the mean (SD) hatching success at control, elevated,
and extreme pCO, conditions was 23.5% (14.5%),
31.6% (20.0%), and 29.3% (12.9%), respectively. In
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Fig. 1 Jittered violin plots depicting (A) percent hatch at 48
hpf and (B) estimated percent survival from 0 to 10 dph for C.
striata reared under three pCO, treatments: control, 400 patm
(gray); elevated, 2200 patm (blue); and extreme, 3000 patm

each pCO, treatment, some replicates exhibited 100%
mortality by 10 dph (i.e., control 8 of 12; elevated
7 of 12; extreme 7 of 16) and survival was not sta-
tistically different (X?=18.86, df=39, P=0.997,
Fig. 1B). Excluding these 100% mortality replicates,
mean (SD) survival to 10 dph at control, elevated, and
extreme pCO, conditions was 22.6% (19.6%), 33.6%
(24.4%), and 16.9% (14.3%) with an overall mean
of 23% + 19% (GLM, P=0.363, Table 2). At O dph,
mean TL was similar across pCO, treatments (1.8
mm; GLM, P=0.1, Fig. 2A; Table 2), however, body
depth at 0 dph increased with pCO, (GLM, P <0.001,
Fig. 2C; Table 2), as larvae reared at control pCO,
conditions had a mean BD of 0.55 mm (SD, 0.10),
while larvae reared at elevated and extreme pCO,
conditions had a mean BD of 0.59 mm (SD, 0.10).
The BD to TL ratio at O dph did not vary between
pCO, treatments (SD, 0.09; GLM, P=0.94,Fig. 2E;
Table 2).

At 10 dph, C. striata larvae reared at the extreme
pCO, treatment measured 3.51 +0.55 mm, which was
1.2x larger than those reared at control conditions
(2.84 +£0.39 mm; GLM, P=0.001, Fig. 2B; Table 2).
BD was statistically unaffected by pCO, treatments
(0.67+£0.16 mm; GLM, P=0.239, Fig. 2D; Table 2).

(red). White circles represent means for each replicate, while
the black circle and error bars represent the treatment mean
(+SD). Note that percent survival means (+SD) in (B) exclude
zero survival replicates

The mean GR increased (GLM, P=0.0001, Fig. 3;
Table 2) from 0.11 mm day~' (SD, 0.05) to 0.15 mm
day~! (SD, 0.06) to 0.17 mm day~! (SD, 0.06) at con-
trol, elevated, and extreme pCO, conditions, respec-
tively. At 10 dph, all morphological traits were posi-
tively correlated with TL (SL: R?=0.82, P<0.001;
BD: R°=0.51, P<0.001; ML: R*=0.25, P<0.001;
ED: R>=0.51, P<0.001; Fig. 4). The residuals of
these relationships showed no differences between
pCO, treatments for all four traits (Table 3). At 10
dph, the BD to TL ratio did not differ across pCO,
treatments at 10 dph (0.19+0.03; GLM, P=0.94,
Fig. 2F; Table 2). However, the BD to TL ratio
decreased by 42% from O to 10 dph (GLM, P <0.001,
Fig. 6E, F; Table 2) but there was no interaction of
pCO, and dph (GLM, P=0.65, Fig. 2E, F; Table 2).

Discussion

We reared C. striata offspring from fertilization to
10 dph across a large range of pCO, conditions,
finding either neutral or positive CO, effects with
regard to hatching success, larval survival, and
growth. This apparent CO, tolerance is consistent
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Fig. 2 Jittered violin and 5IA
boxplots depicting total
length at A 0 dph and B 10
dph, Body depth at C 0 dph
and D 10 dph, and body
depth: total length ratio
(BD), a proxy for larval
condition, at E O dph and

F 10 dph for C. striata
reared under three pCO, 1
treatments: control, 400
patm (gray); elevated, 2200
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tile, respectively. While the
upper and bottom edges of
the boxplot represent the
75th and 25th percentile,
respectively, and the bold
center line represents the
median. White circles
represent means for each
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larvae. Different numbers
of asterisks indicate sig-
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with Meseck et al. (2022), the only previous study
on C. striata early life CO, sensitivity (Meseck
et al. 2022), but our findings now extend it to
>3000 patm pCO, and to feeding larvae at 10 dph.
Meseck et al. (2022) produced offspring from adults
that had been held in captivity for 265 to 630 days,
which might have influenced offspring CO, toler-
ance via transgenerational plasticity (e.g., shell-
fish: Parker et al. 2011; copepods: Thor and Dupont
2015; fish: Miller et al. 2012; Murray et al. 2014;
Donelson et al. 2018). Because our study used wild
caught spawners and found similar results, it further
strengthened the conclusion that C. striata early life
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stages are highly CO, resilient, regardless of prior
parental exposure.

The high CO, tolerance of C. striata early life
stages may be partially related to their rapid devel-
opment, which is characteristic of serranids (Kendall
Jr 1983). This is because direct, lethal CO, effects in
fish early life stages occur mostly due to acidosis, i.e.,
organ failures due to underdeveloped acid-base com-
petency and homeostatic regulation (Heuer and Gro-
sell 2014; Dahlke et al. 2020), which is a cumulative
process and therefore likely requires time (Baumann
2019). Other examples of fish species with fast devel-
opment and also high early life CO, tolerance include
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Table 2 General linear model (type III) results for the effects
of pCO, on percent hatch (arcsine transformed), percent sur-
vival (excluding replicates with 100% mortality; arcsine trans-
formed), total length (TL; O and 10 dph), body depth (BD; O
and 10 dph), and growth rate in length between 0 and 10 dph
(GR). In addition, GLM (type III) results for the effects of
pCO,, dph, and their interaction on body depth: total length
ratio (BD to TL), a proxy for larval condition. Significant
effects are in bold

mahi-mahi (Coryphaena hippurus, Bignami et al.
2014) and yellowtail kingfish (Seriola lalandi, Mun-
day et al. 2016), while species with longer embryonic
periods appear more sensitive (e.g., Atlantic cod,
Gadus morhua, Frommel et al. 2012; Stiasny et al.
2016; northern sandlance, Ammodytes dubius, Mur-
ray et al. 2019; Baumann et al. 2022). In C. striata,
hatching occurred at 48 h post-fertilization regardless

Trait Fixed effect DF SS  Fvalue P of CO, level, which is consistent with aquaculture
Percent hatch  pCO, 0.059 0.903 0414 rearing studies at similar temperatures (Perry et al.
Percent sur-  pCO, 0.114 1086 0363 2007; Watanabe et al. 2021).
vival The observed early life stage high resiliency to
TL (0 dph) 2 0.640 2.304  0.1000 elevated CO, may also arise from adult pre-adapta-
TL (10dph)  pCO, 2 4183 7.400 0.001 tion to a high CO, environment. Northern stock C.
BD (0dph)  pCO, 20258 12949 <0.001 striata currently overwinter on the mid-Atlantic bight
BD (10 dph)  pCO, 2 0.071 1461 0.239 shelf break off New Jersey (Miller et al. 2016) where
GR pCO, 2 9.037 11141 <0.00001 winter temperatures remain>10 °C, and ambient
BD to TL pCO, 2 0.001 0.067 0.935 pCO, levels are believed to be only slightly increased
dph 1 0890 100.63 <0.001 (~400-600 patm; Wright-Fairbanks et al. 2020; Lima
pCO, xdph 2  0.008 0432 0.649 et al. 2023), although bottom water pCO, data are
notoriously limited. Storm-induced downwelling
(Guzik et al. 2022) could potentially bring CO,
0.44 ekt
*%
*
0.3
b
=
S
202
@©
o
=
3
e
]
0.11
O
0.0
400 2200 3000
pCO:2 (patm)

Fig. 3 lJittered violin and boxplots depicting theoretical
growth rate distributions in length between 0 and 10 dph for C.
striata reared under three pCO, treatments: Control, 400 patm
(gray); elevated, 2200 patm (blue), and extreme, 3000 patm
(red). Upper and lower whiskers represent the 90th and 10th
percentile, respectively. Upper and bottom edges of each box-

plot represent the 75th and 25th percentile, respectively, and
the bold center line represents the median. White circles rep-
resent means for each replicate that had surviving larvae at 10
dph. Different numbers of asterisks indicate significant differ-
ences between treatments (Tukey HSD post-hoc test, a=0.05)
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Fig. 4 Relationship between total length (TL) and A standard
length, B body depth, C mandible length, and D eye diame-
ter for 10 dph C. striata larvae reared under three contrasting
pCO, treatments: control, 400 patm (gray circles); elevated,

Table 3 General linear model (type III) results for the effects
of pCO, on 10 dph standard length (SL), body depth (BD), eye
diameter (ED), and mandible length (ML) residuals. Residuals
were extracted from linear regressions of TL vs. each morpho-
logical trait

Trait DF SS F value P

SL 2 0.990 0.495 0.611
BD 2 1.968 0.999 0.374
ML 2 1.625 0.820 0.445
ED 2 0.681 0.339 0.713

rich water to the bottom and thus pre-expose adults
to more elevated CO,-levels, but this has yet to be
explicitly demonstrated. Alternatively, pre-adaptation
could also occur to equip BSB offspring for the high
and variable CO, conditions which they encounter
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2200 patm (blue triangles), and extreme, 3000 patm (red
squares). The dashed lines represent the 95% C.I. for each rela-
tionship

during summer in their nearshore settlement habitats
(~330 to ~4000 patm within single tidal cycles; Bau-
mann et al. 2015). Such mitigating effect of parental
conditioning due to seasonal pCO, fluctuations has
previously been proposed for Atlantic silversides
(Menidia menidia, Murray et al. 2014).

Hatching success was surprisingly variable
between replicates (but independent of CO, treat-
ment) ranging from ~6 to 67%. Similar variabil-
ity across treatments was observed by Meseck et al.
(2022) with the percentage of hatched larvae ranging
from 6 to 63% in their 2013 experiment to 16-70%
and 36-95% in their 2014 and 2015 experiments,
respectively. This variability may be inherent to serial
spawners, including C. striata, and other marine spe-
cies (e.g., Chrysophrys auratus, Sabetian et al. 2020;
Clupea harengus, Lambert and Ware 1984; Engraulis
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ringens, Castro et al. 2010; Sciaenops ocellatus, Fui-
man et al. 2005) in which maternal investment varies
both within and among spawns, producing a “batch
effect,” i.e., a “bet-hedging strategy” (Sabetian et al.
2020), thereby generating large variability in hatch-
ing success. This potential batch effect in C. stri-
ata may be caused by changes in the investment of
triglycerides (Sabetin et al. 2020) and/or by changes
in diet fatty acid composition over the spawning
season which is known to affect embryo and lar-
val performance (Hou and Fuiman 2021; Hou et al.
2022). C. striata are mixed breeders that incorpo-
rate both somatic energy and energy from their diet
while spawning (Slesinger et al. 2022). Laboratory
strip-spawning may further contribute to inconsistent
hatch rates in broadcast spawning fish (e.g. Lutjanus
campechanus, Bardon-Albaret and Sailant 2017).
However, given that Meseck et al. (2022) did not
strip-spawn fish but collected embryos spawned in
tanks and still observed similar levels of variability in
hatching success, differences in maternal investment
appear the more likely explanation. While bet-hedg-
ing has not been described for C. striata, individuals
might use a diversified bet-hedging strategy where
phenotypic variance in, e.g., egg quality or offspring
size is increased (Marshall et al. 2008; Crean and
Marshall 2009; Olofsson et al. 2009). The resultant
variations in hatching success could be advantageous
for recruitment success under fluctuating environ-
mental conditions (Hocevar et al. 2021), especially
under increasing climate variability (Shama 2015).
Rearing C. striata larvae to 10 dph showed no sta-
tistical pCO, effects on mean survival rates (range O
to 69%), which therefore adds another empirical data
point to suggest that direct, lethal effects of elevated
CO, conditions are the exception (Chambers et al.
2014; Bromhead et al. 2015; Pimentel et al. 2016), not
the rule among fish species (Pope et al. 2014; Sswat
et al. 2018; McMahon et al. 2020). We also found that
fish reared under extreme CO, conditions were longer
in length, which has been observed in other CO, stud-
ies on larval fishes (e.g., Atlantic cod, Frommel et al.
2012; summer flounder, Chambers et al. 2014). Still,
multiple studies have observed that larger larvae can
be in poorer energetic condition, regardless of condi-
tion being measured morphometrically or via RNA
to DNA ratios (Franke and Clemmesen 2011; From-
mel et al. 2012; Chambers et al. 2014). Here, we
examined another condition proxy, the body depth to

total length ratio, but found no treatment differences
in C. striata, only an ontogenetic decrease from 0 to
10 dph. Whether alternative, potentially more sensi-
tive condition proxies (e.g. RNA: DNA; Clemmesen
1994) might have revealed negative pCO, effects in
larval C. striata remains speculative (Buckley et al.
1999; Raedemaecker et al. 2012). Future studies need
to rear larval C. striata throughout the remainder of
the larval stage in order to identify potential tradeoffs
in energetic condition across the larval phase to bet-
ter identify larger fitness implications. For example,
Chambers et al. (2014) reared larval summer floun-
der under differing pCO, treatments, finding altered
ontogenetic trajectories under elevated pCO, that
could impact survival and recruitment.

While TL to BD ratios could be useful proxies for
larval condition when similar life stages are compared
(e.g., Koenker et al. 2018), comparisons across early
life stages need to be interpreted with caution. For
C. striata, the pronounced change in the TL to BD
ratio from O to 10 dph clearly reflected an ontogenetic
shift from the more compact form of an underdevel-
oped hatchling to the more elongated shape of an
actively feeding larva. This also coincided with a diet
shift from small zooplankton (e.g. rotifers) to larger
prey items (e.g. Artemia), which occurs between 10
and 21 dph depending on culture conditions (Watan-
abe et al. 2021; Zavell and Baumann, pers obs.). Pre-
vious research on larval Clupea harengus found that
condition indices decreased at a critical size, which
corresponded to a diet shift from an omnivorous to
carnivorous diet, which constituted a critical step
in larval survival (Denis et al. 2017). Future studies
should rear C. striata larvae under contrasting envi-
ronmental conditions through settlement to the juve-
nile stage and employ a suite of different proxies to
infer changes in larval condition (Peck et al. 2015).

We found no statistical differences in morpho-
logical traits (BD, ML, ED) at 10 dph across all CO,
treatments. This was also observed in spiny damself-
ish reared at 450 to 850 patm pCO, (Munday et al.
2011), whereas Chambers et al. (2014) observed CO,
effects on numerous morphological traits up to 4714
uatm. In our case, the absence of CO, effects appears
to support the high resiliency of larval C. striata.
Whether larger sample sizes and a larger breadth
of morphological trait measurements might have
revealed any CO, effects remains speculative. Nev-
ertheless, the development of larval morphological
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traits is strongly linked to length (Peck et al. 2012),
and this was true for C. striata larvae as well, regard-
less of CO, treatment. This scaling plays an important
role in ontogeny and ontogenetic diet shifts, espe-
cially mouth and body size that impact larval feeding
success (Pepin 2023). We did not observe any signs
of skeletal anomalies in BSB larvae, as reported by
Meseck et al. (2022) but which might have been an
artifact of fixation. Fixation is known to cause speci-
men shrinkage and morphological changes (Hay
1982; Sotola et al. 2019), particularly in species like
C. striata that hatch as underdeveloped larvae with-
out cartilage/bone tissues and an undefined notochord
(Zavell and Baumann, pers obs.).

High CO, levels appeared to positively affect
growth, which in the wild would confer reduced
mortality risk (Anderson 1988; Houde 1997), as fish
reared under extreme CO, grew at a rate 55% faster
than those in control conditions. Faster larval growth
at higher CO, conditions is a common finding in fish
early life CO, sensitivity experiments (Hurst et al.
2012, 2013; Bignami et al. 2014; Schade et al. 2014;
McMahon et al. 2020; Siegfried and Johnson 2023b).
It may in part result from increased feeding, which is
difficult to quantify in very early fish larvae. In the
present study, we used an ad libitum feeding regime
of L-type rotifers; hence, fish at high CO, treatments
could have compensated or overcompensated for
increased energy demands by simply eating more,
which is consistent with other studies that showed
food availability to ameliorate CO, effects on fish
early life survival, growth, and physiology (Stiasny
et al. 2018).

The observed faster growth and larger individu-
als at elevated pCO, conditions could be due to
faster metabolic rates and subsequently higher
feeding rates and/or that larger individuals have a
larger physiological capacity allowing them to cope
with higher pCO, (Ishimatsu et al. 2008; Melzner
et al. 2009; Pan et al. 2014). In turn, this could be
favorable given that larval size correlates positively
with predator avoidance and prey capture abilities
(Miller et al. 1988; Takasuka et al. 2004; Robert
et al. 2023). Overall, early life stages of C. striata
may therefore be resilient to ocean acidification, as
now indicated by two independent studies with dif-
ferent tested pCO, levels, parental provenance, and
methodology. In this study, the generally low num-
ber of larvae surviving to 10 dph indicates potential

@ Springer

for improved rearing that may still corroborate
or falsify these conclusions. Overall, the north-
west Atlantic shelf is rapidly warming (Kavanaugh
et al. 2017) in addition to changes in Gulf Stream
dynamics (Gangopadhyay et al. 2019), which are
altering primary productivity, species composi-
tions, and zooplankton prey items (Kleisner et al.
2017; Record et al. 2018; Suca et al. 2021; Bened-
etti et al. 2021; Balch et al. 2022). This could result
in adverse effects for C. striata — independent of
ocean acidification — perhaps via match/mismatch
of larvae and their prey (Laurel et al. 2021) and/or
a decrease in zooplankton nutritional quality (Ros-
soll et al. 2012). Thus, we emphasize that while C.
striata larvae may appear resilient to ocean acidi-
fication, multi-stressor studies are required to more
comprehensively understand the species’ vulnera-
bility to marine climate change and to better inform
future management decisions.
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