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In this study, a deep learning-based computational design framework is presented to optimize
structures with non-periodic random inclusions and dual-phase materials. The dual-phase
material is defined as a carbon fiber-reinforced polymer (CFRP) considering the low-weight
requirements in aerospace applications. Additive manufacturing techniques allow the design
flexibility for these materials to generate complicated topologies with enhanced mechanical
performance. In the dual-phase composite, the optimal fiber locations are determined by
minimizing the high stress/strain concentrations under complex loading involving tension and
shear. On the other hand, the porous structure, which only includes the matrix polymer (i.e.,
without fibers), is studied to find the optimal locations of circular voids by minimizing the
high stress/strain concentrations over the design domain. The locations of fibers and voids are
randomly sampled to generate 450 geometries for each case, and the finite element method
(FEM) is applied to these samples to create training and test data for a deep learning model.
The main objective of the optimization is defined as the minimization of the energy fraction
(𝐸 𝑓 ), which is selected as a metric of high stress/strain concentrations as it refers to the ratio of
the strain energy density (𝑊𝑒) of finite elements to the total strain energy density (𝑊𝑡𝑜𝑡𝑎𝑙). The
strain energy density function is formulated considering both tensile and shear force effects.
The designs providing the minimum value of the maximum and average energy fractions are
identified by integrating the optimization into the deep learning model.

Nomenclature

𝐸 = modulus of elasticity
𝐸 𝑓 = energy fraction
𝑊𝑒 = strain energy density function
𝑊𝑡𝑜𝑡𝑎𝑙 = total strain energy density function
𝑑𝑟𝑒𝑙 = relative density
𝑡 = layer thickness
𝑢𝑖𝑖 = normal displacement
𝑢𝑖 𝑗 = shear displacement
𝑥 = x-coordinate
𝑦 = y-coordinate
𝜎𝑖 𝑗 = stress
𝜀𝑖 𝑗 = strain
𝜈𝑖 𝑗 = Poisson’s ratio

I. Introduction
Carbon fiber-reinforced polymers (CFRP) are widely used for aircraft structures such as fuselage, wings, tails, and

the structure of unmanned aerial vehicles (UAVs) owing to their high strength-to-weight ratio. On the other hand,
porous structures are commonly used in aerospace components due to their lightweight and outstanding mechanical
behavior. These structures have become attractive with the enhancement of the 3D-printing techniques enabling the
manufacturing of complex topologies [1]. Fused Filament Fabrication (FFF) is one affordable and common rapid
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prototyping method that uses the matrix and fiber material filaments to deposit molten material layer-by-layer on the
build plate [2]. 3D-printing can easily handle non-homogeneous distributions of the inclusions either as dual-material
or porous [3]. It might be challenging to model and optimize the non-periodic distributions, which require evaluation
through efficient computational techniques to prevent possible mechanical failures in aerospace components [4–6]. The
proper mathematical model development is required to predict non-homogeneous inclusion distributions to improve
mechanical performance [7].

In an early study, Orozco and Pindera [8] proposed an efficient analysis called ‘Generalized Method of Cells’ to
extract plastic properties of the composite material, where the unidirectional fibers were distributed randomly. Davis et
al. [9] derived a mathematical model to determine elastic strain energy between any two adjacent rigid fibers in the 2D
design domain neglecting their location under hydrostatic deformation. In addition to the elastic response predictions,
the plastic deformation of composites having random inclusions is critical for the materials under extreme mechanical
loading. In this regard, Ostoja-Starzewsk et al. [10] developed a numerical approach to simulate crack propagation
along with local stress and strain distributions in a dual-phase material having randomly distributed inclusions. Al-Ostaz
et al. [11] presented a correlation between random dispersion of the circular-shaped fibers and local stress fields for
the microstructure of inclusion–matrix composites. They used Voronoi cell and Delaunay triangulation methods to
quantify microstructures. The effective properties of materials having random entities can be extracted by modeling
them as representative volume elements (RVEs). The elastic properties of a random non-homogeneous material were
extracted by Ye and Yu [12]. They characterized the random distribution through a probability density function (PDF)
and conducted the Maximum Entropy Method (MEM) to determine possible distributions of entities. Schneider et al.
[13] carried out an efficient mesh generation approach to simulate 3D microstructures of randomized matrix-inclusion
RVEs, preventing overlap. Acar et al. [14] optimized the fiber paths to minimize stress concentrations for a four-layer
symmetric laminate and selected energy fraction as an objective function. Islam et al. [15] proposed a computational
framework for the dual-phase material with random cylindrical fibers. Their method combined the Random Sequential
Adsorption (RSA) and Finite Element (FE) methods.

Recently, data-driven methods such as machine and deep learning approaches have been proposed for efficient
modeling and optimization of random distributions of the inclusions for enhanced mechanical performance. For this
purpose, Ye et al. [16] created data sets from the microstructure images and finite element analysis (FEA), and trained
them using a convolutional neural network (CNN) to determine the effective elastic properties such as modulus of
elasticity and Poisson’s ratio of homogenized composites with random shapes. Later on, Yang et al. [17] applied an
image-based data-driven method called conditional generative adversarial neural network (CGAN) to predict the stress-
strain behavior of the dual-phase microstructure. Recently, Rezasefat and Hogan [18] have conducted multi-decoder
CNN (MUDE-CNN) and MUDE-CNN with transfer learning (MTED-TL) to efficiently predict time-dependent stress
distributions along a 3D single circular pore located at the center of a cubic RVE. Sepasdar et al. [19] developed an
image-based deep learning method (i.e., CNN) to predict non-linear stress distribution and deformation patterns. They
generated 4500 data samples through FEA to train a neural network model, which achieved 90% accuracy [19]. Bhadury
et al. [20] developed a statistical prediction method through CNN to determine local von Mises stress distributions
on fiber-reinforced composites under uniaxial tension while considering that the structure involved a large number of
random fibers. However, a systematic and efficient optimization for these structures under complex loading is still an
open research topic in the literature. For instance, Saha et al. [21] predicted stress and strain maps for a composite
material having circular random fibers under shear and tension using the U-Net method. However, a generalized design
strategy that can be integrated to optimize the topology of both porous and composite materials is required.

CFRPs are typically composed of carbon fibers and a polymer matrix. The mechanical response of these materials
is influenced by various design parameters including fiber shape, relative density, matrix shape, and fiber dispersion.
The design variables can similarly be defined for the porous structures. In this study, a comprehensive and efficient
computational and data-driven method is presented to determine the optimal locations of inclusions and voids under the
complex loading assumption for the first time in the literature. A dual-phase material having uni-directional fibers, and
a porous material having uni-directional pores in two dimensions are studied to determine optimum fiber and porosity
locations using a deep-learning-based surrogate model. Porous and CFRP materials are simulated under shear and
tension through FEA. The location dispersions of circular fibers and pores, defined as the inputs of the deep learning
model, are generated through uniform random distributions. Next, FEA simulations are performed for these geometries
to produce the outputs of the deep learning model, involving feed-forward neural network (FNN). A design optimization
framework is presented to determine optimal geometries leading to minimum energy fractions for non-periodic porous
and dual-phase composite materials. The presented model is cost-effective over existing approaches with the integration
of deep learning. The expected mechanical performance improvement for the low-weight composites and porous
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structures in this study is anticipated to increase their use in aerospace industry applications.
The outline of the study is as follows. In Section 2, the computational modeling of porous and composite structures

and the FEA setup are explained. In the following sections, the deep-learning model and the optimization strategy are
presented.

II. Methodology

A. Computational modeling of design domain
In this study, an iterative computational design model is developed to generate porous and dual-phase materials

with randomly distributed void and inclusion distributions, respectively. For this purpose, the computational domain is
generated with 5000×5000 pixels, which provides a high-quality representation of circular shapes. Next, 4 circles having
random 𝑥 and 𝑦 center coordinates are deleted from the domain to create the secondary phase, where the coordinates are
located using a random uniform distribution. The non-periodic inclusion phases for porous and composite materials are
demonstrated in Fig. 1.

Fig. 1 Computational design of non-periodic (a) porous and (b) composite material.

In the design framework, a large number of synthetic samples are generated. There are 4 circles (𝑛 = 4) designed
iteratively having randomized locations starting with (𝑘 = 0) (see Fig. 2). In the design algorithm, center locations are
limited by the domain boundary, and the distance between the center locations of circles is selected as 1.2 times the
diameter value to prevent overlap between circles and a possible mesh generation problem between inclusions.

Fig. 2 Random fiber locations.

As seen from Fig. 2, circles are generated iteratively, and design constraints are checked in each iteration. Each
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design has some constant features such as side lengths (𝛿𝑥 and 𝛿𝑦), circle diameter (𝑑), the minimum distance between
circles (𝑑𝑚𝑖𝑛), and the number of circles (𝑁), etc. These constant features are demonstrated in Fig. 3.

Fig. 3 Geometric features defined in the algorithm.

In addition, 𝑥𝑚𝑖𝑛 and 𝑦𝑚𝑖𝑛 are the minimum distances between circle center locations and domain boundaries in 𝑥

and 𝑦 directions, respectively, 𝑑𝑟𝑒𝑙 stands for relative density, which is the ratio of the matrix material area to the overall
domain area. The fixed geometric parameters of the materials are listed in Table 1.

Table 1 Geometric parameters.

Parameter Value
𝛿𝑥 (in mm) 5
𝛿𝑦 (in mm) 5
𝑑 (in mm) 1

𝑑𝑚𝑖𝑛 (in mm) 1.2
𝑥𝑚𝑖𝑛 (in mm) 1
𝑦𝑚𝑖𝑛 (in mm) 1
𝑑𝑟𝑒𝑙 (%) 87

𝑁 4

450 design samples are generated for both composite and porous materials to meet the data requirement of the
deep-learning model. Some example designs are demonstrated in Fig. 4.
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Fig. 4 Example input geometries created for (a) composite and (b) porous materials.

B. Finite element analysis for mechanical performance
In this section, the average directional stress and deformation values are extracted from FEM calculations including

all stress and strain component values. The domain involves a 2D homogeneous solid under the plane stress assumption.
The elemental (𝑊𝑒) and total (𝑊𝑡𝑜𝑡𝑎𝑙) strain energy density functions are calculated using Eqs. (1) and (2), respectively
where M represents the total number of mesh elements.

𝑊𝑒 =
1
2

𝑁=2∑︁
𝑖=1

𝑁=2∑︁
𝑗=1

𝜎𝑖 𝑗 · 𝜀𝑖 𝑗 (1)

𝑊𝑡𝑜𝑡𝑎𝑙 =

𝑀∑︁
𝑒=1

𝑊𝑒 (2)

The energy fraction (𝐸 𝑓 ), which is used in the objective function of the optimization problem, is determined by the
ratio of strain energy density to the total strain energy density as shown in Eq. (3)

𝐸 𝑓 = 𝑊𝑒/𝑊𝑡𝑜𝑡𝑎𝑙 (3)

The definition of the elastic material model in numerical simulation is acquired from the literature. The elastic
properties of the FFF printed CFRP material are provided in Table 2 using the data from Ref. [3].
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Table 2 Elastic properties of an additively manufactured CFRP [3].

Property Carbon Fiber Nylon Matrix
Modulus of elasticity, 𝐸 (in MPa) 85,000 380

Poisson’s ratio, 𝜈12 0.3 0.35

The geometries are created as gray-scale binary images, and imported as inputs to the MATLAB. Next, the im2mesh
function [22], which refines the elements at the locations of high curvatures, is utilized to generate triangular finite
element meshes. A static structural FEA is carried out using ABAQUS/Standard software. In FEA, around 170,000
grids for dual-phase geometries, and 140,000 elements for porous materials are used with the three-node plane stress
element (CPS3), which provides convergent static structural simulations. The detailed representation of the meshed
domains is illustrated in Fig. 5.

Fig. 5 Mesh generation for a (a) gray-scale image of (b) porous and (c) composite materials [22].

The designs are simulated under uni-axial tension and shear, where the geometry is considered as fixed at the bottom
along 𝑥 and 𝑦 directions. The displacements (𝑢𝑖𝑖 and 𝑢𝑖 𝑗 ) are applied as tension and shear with the values of 20% of the
size of the domain. The boundary condition defined for the computational domain is depicted in Fig. 6. The linear
elastic material model is used in the structural analysis.
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Fig. 6 Boundary and complex displacement conditions.

III. Deep Learning-based Surrogate Model for FEA

𝑦1:𝑁

Initial
Values

𝑥1:𝑁

𝐸 𝑓𝑚𝑎𝑥

𝐸 𝑓𝑎𝑣𝑔

Σ |𝜎

Σ |𝜎

Σ |𝜎

Σ |𝜎

Σ |𝜎

Σ |𝜎

Σ |𝜎

Σ |𝜎

Σ |𝜎

Σ |𝜎 Σ |𝜎 Σ |𝜎

NN-Based
Surrogate Model

Output

.

.

.

.

.

.

.

.

.

Optimization
Algorithm

𝐸 𝑓𝑎𝑣𝑔 + 𝜆𝐸 𝑓𝑚𝑎𝑥
< 𝜖

End
Yes

No

Fig. 7 Schematic of the surrogate model framework. The network will be trained with the variables in the
design space to predict the 𝐸 𝑓𝑎𝑣𝑔 and 𝐸 𝑓𝑚𝑎𝑥

parameters and then used to minimize the objective function.

7

D
ow

nl
oa

de
d 

by
 V

irg
in

ia
 T

ec
h 

U
ni

ve
rs

ity
 L

ib
ra

rie
s S

er
ia

ls
 o

n 
A

ug
us

t 2
4,

 2
02

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

6.
20

25
-0

82
3 



To replace time-consuming simulations, a framework for a neural network-based surrogate model is developed, as
illustrated in Fig. 7. This model is specifically designed to support optimization processes, which require many iterations
and would be impractically slow if run with the full simulation model at each step. The surrogate model development
begins with storing simulation inputs and outputs, representing the coordinates of circle centers and the maximum and
average values of 𝐸 𝑓 , respectively. To compute the average value of 𝐸 𝑓 , only values exceeding a threshold based on the
baseline design are included. Energy fraction values are calculated for 450 different configurations of dual-phase and
porous materials using the FEA outputs. Some elemental 𝐸 𝑓 results are given in Fig. 8. A threshold value for energy
fractions is determined, and the energy fractions that exceed the threshold for corresponding elements are counted to
determine design configurations with more susceptibility to structural damage. From the 450 generated data points,
a 350-50-50 split is applied for training, validation, and testing. Data generation takes an average of 1.1449e+05
and 1.6949e+05 seconds on a cluster with an AMD EPYC 7702 CPU clocked at 3.35 GHz for porous and composite
materials, respectively.

The neural network architecture is optimized to balance performance and efficiency, ultimately settling on a simple
feed-forward network with three layers of 128 neurons, using ReLU activations and 10 % dropout. Larger architectures
are found to provide no additional accuracy, while smaller ones result in longer training times. Due to the compact
learning space with 8 input parameters and 2 outputs, training is completed in only a few seconds. The model achieves
similar mean absolute error (MAE) values for both validation and test sets, with MAE values of 7.91 % for the porous
model and 8.31 % for the composite model. As a result, the average fit is found to be better than the maximum fit, likely
due to mesh-based limitations, which can introduce unexpected jumps in maximum value calculations [23].

Despite these achievements, the scarcity of data prevents further reduction in the MAE. Nevertheless, this surrogate
model offers a fast, practical, and sufficiently accurate alternative to iterative optimization, as shown by the comparison
of actual and predicted values on test data for both maximum and average 𝐸 𝑓 values in Fig. 9.

Fig. 8 Sample geometry and energy fraction data generated for the porous material.
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Fig. 9 Performance of the surrogate model on the test data for maximum 𝐸 𝑓𝑚𝑎𝑥
predictions of (a) porous (b)

composite materials, and for average 𝐸 𝑓𝑎𝑣𝑔 predictions of (c) porous (d) composite materials.

IV. Optimization of Porous and Composite Material Design
An optimization framework is developed to determine the optimum values of the center coordinates (i.e., 𝑥 and

𝑦 values) for the inclusions and voids of the composite and porous materials, respectively, to minimize a composite
objective function of 𝐸 𝑓 𝑚𝑎𝑥 and 𝐸 𝑓 𝑎𝑣𝑔 values under 3 design constraints ensuring that the fibers or voids are within
the domain boundary without any geometric overlap. The optimization formulation is given in Eq. 4. The number of
circles is represented by 𝑁 and 𝜆 is the coefficient to adjust the weight in the objective function. The distance between
the circles is denoted as 𝑑 and 𝑑𝑚𝑖𝑛 is the minimum value of that distance can be assigned to. 𝛿 shows the length of the
design domain in both directions.

find 𝑥𝑘 , 𝑦𝑘

𝑤ℎ𝑒𝑟𝑒 𝑘 = 1, 2, ..., 𝑁 = 4
minimize 𝐸 𝑓𝑎𝑣𝑔 + 𝜆 × 𝐸 𝑓𝑚𝑎𝑥

subject to 𝑑 ≤ 𝑥 ≤ 𝛿𝑥 − 𝑑,

𝑑 ≤ 𝑦 ≤ 𝛿𝑦 − 𝑑,

𝑑min = 𝑑 × 1.2

(4)

The pattern search algorithm, which is a derivative-free optimization method, is chosen due to its ability to work
without gradient computations [24]. This is a critical feature given that the FE model’s output space is highly irregular
for certain design points, with numerous peaks and non-smooth regions. In this algorithm, optimization begins with an
initial guess and a step size, exploring a pattern of points around the current solution by incrementally adjusting each
variable. If a better solution is found, the algorithm may increase the step size to explore further in that direction; if
not, it reduces the step size, refining the search in smaller steps. This pattern of exploration and step-size adjustment
continues until a convergence criterion is met, typically when the step size is minimal or improvements stop. To ensure
a fair comparison of the optimization results, the pattern search algorithm is applied to both FE and surrogate models. It
must be pointed out that even though the pattern search algorithm is less likely to converge a local solution, compared
to gradient-based optimization, the selection of the initial points is still important for accuracy and computing time
efficiency. The optimization is completed in the scale of only a few seconds when using the surrogate model where it
takes about 7.4331e+05 seconds when using the FE model on average, showing the immense computational expense.
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V. Results & Discussions
The maximum and average energy fractions of the porous and composite materials are minimized by finding the

optimal center locations of circular-shaped fibers and void phases by integrating optimization into FE (physics-based)
and FNN (deep-learning) models. The 𝜆 parameter in Eq. 4 is set to 0.66 in order to negate the scale difference between
expected output values. The results for both models for the porous material are presented in Fig. 10. The outputs are
very similar, and the error is calculated using the Euclidean distances between the points, where the maximum distance
is taken as the distance from corner to corner inside the bounds. The errors are found to be 5.61%, 5.18 %, 0.12 %, and
1.64 % for each of those four points. This, along with the visual similarity of outputs, suggests that the surrogate model
effectively captures the behavior of the porous materials. When the optimum design found with the surrogate model is
used to calculate the 𝐸 𝑓𝑎𝑣𝑔 , the error is found to be 14.7 %. Furthermore, the fact that the deep-learning output can be
used as the initial point for optimization with the physics-based model is highly promising, as it will greatly reduce
computational times.

The same procedure is repeated for the composite material, and the errors are found to be 21.39 %, 7.73 %, 2.41%,
and 7.49 % for each point. For the 𝐸 𝑓𝑎𝑣𝑔 , the error is found to be 6.1 %.

Fig. 10 Optimization results obtained using (a) FNN (deep-learning) (b) FE (physics-based) models for the
porous material. In a similar fashion, the results for the composite material are shown for (c) FNN (deep-learning)
(d) FE (physics-based) models.

Figure 11 shows an exemplary contour plot of the stress (𝜎22) and strain (𝜀22) distributions over the computational
domain of the porous structure for the baseline configuration, where the pores are distributed regularly, and the optimum
design obtained by the FNN-based approach.
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Fig. 11 FEA simulation results for baseline and optimum porous materials: (a) 𝜎22 and (b) 𝜀22 distributions.
H.S. and L.S. stand for high-stress/strain and low-stress/strain regions, respectively.

As clearly seen from Fig. 11, optimum geometry reveals more dominant low-stress/strain regions in contrast with the
baseline configuration. For the composite material, the differences in objective functions of the baseline, FNN-based,
and FE-based optimum designs are shown in Fig. 12.

Fig. 12 Objective function comparison of baseline and optimized geometries for the two-phase composite
material.

According to the objective function comparison, the optimization using the physics-based FE model identifies the
best design, which has 23.2% mechanical performance improvement over the baseline configuration. On the other hand,
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the FNN-based optimum result demonstrates 18.5% performance improvement, which is in good agreement with the
FE-based result, while also improving computational time efficiency significantly.

VI. Conclusion
In this study, porous and CFRP materials under complex loading conditions including shear and tension loads are

designed by optimizing the fiber and void phase distributions. First, a large number of data samples, involving material
geometries and corresponding energy fraction values obtained from FEA, is created to train a neural network model.
Later, a design optimization framework is developed to find optimal coordinates of the fibers and void phases in the
design domain. The main purpose of the design optimization framework is to minimize the energy fraction, which is a
selected metric of the high stress/strain concentrations. The optimization problem is solved with the pattern-search
algorithm using both the FE and FNN models. According to the optimization results, the surrogate model achieves
substantial mechanical performance improvements for lightweight composites and porous materials that can be used as
aerospace structures while reducing computation times. The specific outputs of this computational work can be drawn
as:
- The high stress/strain regions of linear elastic material are drastically reduced. The energy fraction criteria are
utilized in both FNN-based and FE-based optimization as an objective function to carry out a quantitative evaluation of
stress/strain distributions.
- A low-cost FNN-based prediction model is developed for two types of aerospace materials, which are porous and
two-phase composite materials. This model is used for design optimization, where the optimum coordinates of pores
and fibers are determined to improve mechanical performance.
- The FNN-based optimum designs for both materials are in good agreement with the optimum results of the FE-based
solution. Therefore, the surrogate model based optimization can replace the time-consuming optimization solution via
the FE-based approach.
- This deep-learning model can be generalized for different design cases of multi-phase materials involving different
sizes of phases, domains, and geometry with higher numbers of pores/fibers. In addition, the model output can be used
as an initial condition for the FE-based optimization to reduce excessive computational times.

Acknowledgments
The authors acknowledge the financial support from the National Science Foundation CAREER Award CMMI-

2236947 and the Future Additive Interdisciplinary Manufacturing (FAIM) project supported under the National Defense
Education Program of the Office of Naval Research (ONR).

References
[1] Sanei, S. H. R., and Popescu, D., “3D-printed carbon fiber reinforced polymer composites: a systematic review,” Journal of

Composites Science, Vol. 4, No. 3, 2020, p. 98.

[2] Górski, F., Wichniarek, R., Kuczko, W., and Andrzejewski, J., “Experimental determination of critical orientation of ABS
parts manufactured using fused deposition modelling technology,” Journal of Machine Engineering, Vol. 15, No. 4, 2015, pp.
121–132.

[3] Al Abadi, H., Thai, H.-T., Paton-Cole, V., and Patel, V., “Elastic properties of 3D printed fibre-reinforced structures,” Composite
Structures, Vol. 193, 2018, pp. 8–18.

[4] Zhu, D., and Wu, P., “Asymptotically analytical solution of elastic stress for convex polygonal holes in an infinite plane under
various loading conditions,” Acta Mechanica, Vol. 232, 2021, pp. 3957–3975.

[5] Rezasefat, M., Giglio, M., and Manes, A., “Numerical investigation of the effect of open holes on the impact response of CFRP
laminates,” Applied Composite Materials, Vol. 29, No. 4, 2022, pp. 1555–1578.

[6] Schmit, L. A., and Mehrinfar, M., “Multilevel optimum design of structures with fiber-composite stiffened-panel components,”
AIAA journal, Vol. 20, No. 1, 1982, pp. 138–147.

[7] Zhang, L., Chen, Z., Mao, J., Wang, S., and Zheng, Y., “Quantitative evaluation of inclusion homogeneity in composites and
the applications,” Journal of Materials Research and Technology, Vol. 9, No. 3, 2020, pp. 6790–6807.

12

D
ow

nl
oa

de
d 

by
 V

irg
in

ia
 T

ec
h 

U
ni

ve
rs

ity
 L

ib
ra

rie
s S

er
ia

ls
 o

n 
A

ug
us

t 2
4,

 2
02

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

6.
20

25
-0

82
3 



[8] Orozco, C. E., and Pindera, M.-J., “Plastic analysis of complex microstructure composites using the generalized method of
cells,” AIAA journal, Vol. 37, No. 4, 1999, pp. 482–488.

[9] Davis, L., Hass, K., Chen, J., and Thorpe, M., “Elastic moduli of composites with random, rigid inclusions,” 1994.

[10] Ostoja-Starzewski, M., Sheng, P., and Jasiuk, I., “Damage patterns and constitutive response of random matrix-inclusion
composites,” Engineering Fracture Mechanics, Vol. 58, No. 5-6, 1997, pp. 581–606.

[11] Al-Ostaz, A., Diwakar, A., and Alzebdeh, K. I., “Statistical model for characterizing random microstructure of inclusion–matrix
composites,” Journal of materials science, Vol. 42, 2007, pp. 7016–7030.

[12] Ye, Z., and Yu, W., “On homogenization of random heterogeneous materials,” 51st AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference 18th AIAA/ASME/AHS Adaptive Structures Conference 12th, 2010, p. 2978.

[13] Schneider, K., Klusemann, B., and Bargmann, S., “Automatic three-dimensional geometry and mesh generation of periodic
representative volume elements for matrix-inclusion composites,” Advances in Engineering Software, Vol. 99, 2016, pp.
177–188.

[14] Acar, P., Vĳayachandran, A. A., Sundararaghavan, V., Waas, A., and Rassaian, M., “Optimization of spatially varying fiber
paths for a symmetric laminate with a circular cutout under remote uniaxial tension,” SAE International Journal of Materials
and Manufacturing, Vol. 9, No. 1, 2016, pp. 75–80.

[15] Islam, M., Tudryn, G. J., and Picu, C. R., “Microstructure modeling of random composites with cylindrical inclusions having
high volume fraction and broad aspect ratio distribution,” Computational Materials Science, Vol. 125, 2016, pp. 309–318.

[16] Ye, S., Li, B., Li, Q., Zhao, H.-P., and Feng, X.-Q., “Deep neural network method for predicting the mechanical properties of
composites,” Applied Physics Letters, Vol. 115, No. 16, 2019.

[17] Yang, Z., Yu, C.-H., and Buehler, M. J., “Deep learning model to predict complex stress and strain fields in hierarchical
composites,” Science Advances, Vol. 7, No. 15, 2021, p. eabd7416.

[18] Rezasefat, M., and Hogan, J. D., “Prediction of 4D stress field evolution around additive manufacturing-induced porosity
through progressive deep-learning frameworks,” Machine Learning: Science and Technology, Vol. 5, No. 1, 2024, p. 015038.

[19] Sepasdar, R., Karpatne, A., and Shakiba, M., “A data-driven approach to full-field nonlinear stress distribution and failure
pattern prediction in composites using deep learning,” Computer Methods in Applied Mechanics and Engineering, Vol. 397,
2022, p. 115126.

[20] Bhaduri, A., Gupta, A., and Graham-Brady, L., “Stress field prediction in fiber-reinforced composite materials using a deep
learning approach,” Composites Part B: Engineering, Vol. 238, 2022, p. 109879.

[21] Saha, I., Gupta, A., and Graham-Brady, L., “Prediction of local elasto-plastic stress and strain fields in a two-phase composite
microstructure using a deep convolutional neural network,” Computer Methods in Applied Mechanics and Engineering, Vol.
421, 2024, p. 116816.

[22] Jiexian, M., “Im2mesh (2D image to triangular meshes)(https://www. mathworks. com/matlabcentral/fileexchange/71772-
im2mesh-2d-image-to-triangular-meshes),” MATLAB Central File Exchange, 2021.

[23] Zienkiewicz, O. C., and Taylor, R. L., The finite element method set, Elsevier, 2005.

[24] Audet, C., and Dennis Jr, J. E., “Analysis of generalized pattern searches,” SIAM Journal on optimization, Vol. 13, No. 3, 2002,
pp. 889–903.

13

D
ow

nl
oa

de
d 

by
 V

irg
in

ia
 T

ec
h 

U
ni

ve
rs

ity
 L

ib
ra

rie
s S

er
ia

ls
 o

n 
A

ug
us

t 2
4,

 2
02

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

6.
20

25
-0

82
3 


	Introduction
	Methodology
	Computational modeling of design domain
	Finite element analysis for mechanical performance

	Deep Learning-based Surrogate Model for FEA
	Optimization of Porous and Composite Material Design
	Results & Discussions
	Conclusion

