Distributed Augmentation, Hypersweeps, and Branch Decomposition

of Contour Trees for Scientific Exploration

Mingzhe Li, Hamish Carr, Oliver Riibel, Bei Wang, Gunther H. Weber

Fig. 1: Our method applied to a 3D WarpX laser-driven, plasma-based particle accelerator simulation dataset with a resolution of
6791 x 371 x 371. We use the x-component of the electric field. Left: three 2D slices of the volume along different axes. Middle: 2D
slices with the extracted contours on the slice. Right: Using parallel topological data analysis to extract and visualize 3D isosurfaces
corresponding to the top-11 branches of the contour tree.

Abstract— Contour trees describe the topology of level sets in scalar fields and are widely used in topological data analysis and
visualization. A main challenge of utilizing contour trees for large-scale scientific data is their computation at scale using high-
performance computing. To address this challenge, recent work has introduced distributed hierarchical contour trees for distributed
computation and storage of contour trees. However, effective use of these distributed structures in analysis and visualization requires
subsequent computation of geometric properties and branch decomposition to support contour extraction and exploration. In this work,
we introduce distributed algorithms for augmentation, hypersweeps, and branch decomposition that enable parallel computation of
geometric properties, and support the use of distributed contour trees as query structures for scientific exploration. We evaluate the

parallel performance of these algorithms and apply them to identify and extract important contours for scientific visualization.

Index Terms—Contour trees, branch decomposition, parallel algorithms, computational topology, topological data analysis

+

1 INTRODUCTION

Topological data analysis abstracts features in scientific data mathemat-
ically with descriptors such as contour trees [9], merge trees, Morse
and Morse—Smale complexes [21]. Although increasingly sophisticated
tools have been developed to exploit these features, these tools often
process topological descriptors using linear induction, giving rise to
their serial computation (e.g., [13,20,21]).

Exascale computation requires scalable parallel analysis and visual-
ization since it uses hybrid clusters with many machines, each with hun-
dreds to thousands of cores, often on GPUs. Since serial algorithms for
topological descriptors are difficult to restate for this parallel computing
environment, the advantages of topological data analysis have been
hindered by the ability to compute the data structures and properties of
topological descriptors at scale. To this end, there have been recent ad-
vances in the parallel and distributed computation of contour trees [34],
merge trees [33], and Morse—Smale complexes [16,28,39,40].

* Mingzhe Li is with the University of Utah. E-mail: mingzhe.li@utah.edu

e Hamish Carr is with the University of Leeds. E-mail: h.carr@leeds.ac.uk.

* Oliver Riibel is with the Lawrence Berkeley National Laboratory. E-mail:
oruebel@Ibl.gov.

* Bei Wang is with the University of Utah. E-mail: beiwang @sci.utah.edu.

o Gunther H. Weber is with the Lawrence Berkeley National Laboratory.
E-mail: ghweber@Ibl.gov.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

In previous work, Carr et al. developed contour tree algorithms
from serial [15] to shared-memory parallelism (SMP) [16], and then
added secondary computations such as acceleration structures [11],
followed by geometric measures, branch decomposition, simplification
and single-contour extraction [30], all of which are available through
the open-source VTK-m [31] multicore toolkit. For hybrid distributed-
SMP, Carr et al. [10] reported a hybrid algorithm and data structure
called the distributed hierarchical contour tree (DHCT), implemented
using VTK-m and the DIY toolkit [36]. However, effective use of these
distributed structures in analysis and visualization requires substantial
effort, in terms of geometric properties and branch decomposition; this
is the focus of the current paper.

We now report substantial extensions to the DHCT [10], in which we
demonstrate how to augment a hierarchical contour tree with sufficient
information to compute its branch decomposition and geometric prop-
erties over an entire cluster, and then demonstrate its use for analysis
and visualization. Our contributions are as follows:

* We introduce a distributed algorithm for augmenting a hierarchi-
cal contour trees. That is, we insert (regular) attachment points
into the tree structure for later computations.

* We develop a distributed hypersweep algorithm for computing
geometric properties of the contour trees.

* We describe a distributed algorithm for branch decomposition.

¢ We perform distributed extraction of individual contours from the
branch decomposition for scientific visualization.

* We include a systematic evaluation of the algorithm performance.

Qutline. Since much of this work depends on the prior state-of-the-art
for contour trees and their computation in serial and parallel, we re-
view the technical background in Sec. 2, in particular the distributed

hierarchical contour tree [10]. We introduce hybrid algorithms for aug-
mentation, geometric measures, and branch decomposition in Sec. 3
through Sec. 5, followed by distributed contour extraction in Sec. 6. We
validate the correctness of the distributed contour tree computation in
Sec. 7 and discuss algorithm complexity in Sec. 8. Finally, we demon-
strate the full visualization pipeline in Sec. 9 and report performance
results in Sec. 9.2, before stating conclusions and thoughts on future
work in Sec. 10.

2 BACKGROUND

We first present contour trees mathematically (Sec. 2.1), and then in-
troduce serial algorithms for their construction, simplification, and
visualization (Sec. 2.2). We then review the principal parallel algo-
rithms (Sec. 2.3), and finally (Sec. 2.4) the distributed hierarchical
contour tree (DHCT).

2.1 Contour Trees

Given a scalar field f : Ml — R from a manifold M to R, we define the
level set of an isovalue h € Rtobe f~'(h) = {x € M| f(z) = h}.
We call connected components of a level set contours [14].

Define an equivalence relation between x,y € M, z ~ y iff they
belong to the same contour of f. The quotient space of M under this
relation, M/~, is the Reeb graph [37] of the function. Informally, a
Reeb graph is generated by contour contraction via the equivalence
relation. If it is acyclic (i.e., it has no cycles), e.g., when the domain M
is simply connected, it is called a contour tree [9], denoted as T’y (M).

Contour tree vertices are called supernodes, and are a subset of the
critical points of f. The edges of a contour tree are superarcs, which
may be broken into arcs by regular points called regular nodes. A
contour tree with added regular nodes and arcs is called augmented.

We use the mapping C' : Ml — T¢(M) from points in M to the
corresponding points in the contour tree and topological zones for
the inverse images under this mapping of superarcs, supernodes, or
arbitrary subgraphs. Fig. 2 shows a small example of a contour tree on
a simplicial mesh, with colors indicating topological zones. Where two
supernodes have the same isovalue, letters are used to indicate the sort
order induced by the simulation of simplicity [23].

2.2 Serial Contour Tree Computations

The contour tree can be computed in serial by processing mesh vertices
in a sorted order, tracking changes in contour connectivity [42]. A
more efficient approach [13] (for all dimensions) sorts and sweeps
through the mesh in each direction to compute merge trees, capturing
connectivity of super- and sub-level sets of the form {z : f(z) >
h} and {z : f(z) < h}. The merge phase of the algorithm then
transfers leaf edges from the merge trees until the entire contour tree
has been found. For non-simplicial meshes, the same algorithm requires
a topology graph that captures the essential topology of the mesh [12].

Geometric properties, such as contour length, enclosed area or
volume in 2D, enclosed volume or hypervolume in 3D, as well as mean,
standard deviation, and root mean square (RMS), are functions of the
isovalue [5], and can be computed by sweeping contours through the
contour tree [14] with three operations: update at a regular vertex,
inversion as the sweep direction reverses, and combination to reconcile
functions for multiple contours at saddle points.

For regular grids, area (in 2D) or volume (in 3D) can be approxi-
mated by counting the vertices of the mesh in each zone [14], which is
cheaper to compute than the exact value. Similarly, volume (in 2D) or
hypervolume (in 3D) can be approximated by summing the data values.

In addition, the height of a superarc or monotone path in the contour
tree is the difference in isovalues between the endpoints of the superarc
or path. For merge trees, this height is the same as persistence [22], but
for contour trees, this is not guaranteed [29].

The contour tree can be simplified by choosing a property as a mea-
sure of importance and removing the least important leaf iteratively until
the tree is collapsed or it satisfies a desired condition such as size. As
leaves are removed (or pruned), critical points become regular, allowing
superarcs to be coalesced into monotone paths called branches. Ulti-
mately, when the entire tree has been pruned, a hierarchy of branches

called a branch decomposition is constructed [35]. Fig. 2 shows the
contour tree for a sample mesh, with the branch decomposition marked
by varying the thickness of superarcs.

2.3 Parallel Contour Tree Computation

For parallel and distributed computation, we use the term block as the
unit to split the data, and the term rank as the unit for the computa-
tional memory. In our experimental design, we always assign one data
block to a rank as a convention to utilize the computational resources.
These two terms are sometimes used interchangeably when there is no
confusion from the context. We note that fan-out refers to spreading a
task to multiple destinations in parallel, and fan-in does the opposite by
sending multiple tasks to the same destination.

Pascucci and Cole-McLaughlin [35] introduced a distributed com-
putation of the contour tree by computing separate trees for individual
blocks of a dataset. Gluing the trees from adjacent blocks together
constructs a topology graph for the combined block, and the contour
tree of the entire mesh can be computed with a recursive fan-in on a
cluster [35]. However, the computation stores the contour tree on the
principal node, which is problematic for noisy data, where the contour
trees can be linear in the input size. Moreover, this approach exploits
only message-passing parallelism, rather than the shared-memory ap-
proaches typical of GPUs and individual nodes of a cluster.

Increasing core counts drives the adoption of shared-memory par-
allelism (SMP). Acharya and Natarajan introduced an approach that
parallelizes the construction of topology graphs [1] but uses serial com-
putation of the merge and contour trees thereafter. The contour forest
introduced by Gueunet et al. [26] breaks the mesh into segments by
isovalue, computes separate contour trees, and glues them together
at the boundaries. A subsequent approach [27] computes subtrees in-
dependently, using task-based parallelism to construct the tree a few
edges at a time. Smirnov and Morozov [41] introduced a representation
of merge trees called the triplet merge tree that tracks the nesting of
branches by propagating changes locally until the entire tree is com-
puted, supporting easy-to-parallelize algorithms in shared memory.

Recently, Carr et al. [16] introduced the parallel peak pruning
(PPP) based on array-parallel operations. PPP extends the approach
by Acharya and Natarajan [1] by constructing monotone paths from
all vertices to extrema, and performing parallel pruning of all upper
(or lower) leaves to construct a merge tree efficiently, and batching the
final merge phase by alternating upper and lower leaf transfers.

Subsequent work on PPP [11] described a data structure related to
parallel rake-and-contract [25] tree acceleration called the hyperstruc-
ture for efficient parallel operations on the entire contour tree. In this
work, monotone chains of superarcs called hyperarcs are constructed
pointing inwards a root node, sorting supernodes along each hyperarc
to allow binary rather than linear search for locations in the tree. For
any geometric property whose update rule can be converted to a prefix-
sum operation along a hyperarc, this approach then enables parallel
computation of geometric properties with hypersweeps [30].

Hristov et al. [30] observed that SMP simplification or branch de-
composition depends on the supernodes identifying which branch they
belong to. In parallel, each supernode selects its best ascending and
descending superarc locally. For height-based branch decomposition,
parallel persistence is difficult to compute, and the min-max range
in the subtree is therefore substituted. For region size (area/volume),
however, the number of regular nodes in the subtree is easy to compute
in parallel as an approximation of area (2D) / volume (3D). A modified
pointer-doubling operation is then used to collect sets of superarcs into
branches, using the maximal vertex in the branch as an identifier [30].

To extract single contours for visualization, we note that all mono-
tone paths (in a simplex) map to the corresponding monotone path
between the minimum and maximum of the simplex in the contour
tree [43]. All simplices are tested in parallel to see whether their path
in the tree passes through the point in the tree representing a desired
contour. The corresponding cells’s contour is then extracted if needed,
using the hyperstructure for acceleration [30]. Last, but not least, these
operations allow users to select the k most interesting contours in the
dataset, extract and render them in situ [30], and store them using the

Main Branch Supernode
mmm Secondary Branch @ Regular Node
—— Minor Branch

Fig. 2: A contour tree (right) and global topological zones (left) for Vancouver. Data values on the underlying 2D simplicial mesh are shown, with
supernodes shown as hollow circles, and topological zones as colored bands matching the superarcs in the contour tree. Letters indicate sort order
due to the simulation of simplicity. The branch decomposition by approximated areas is shown on the right by line thickness, with 91 — Oa as the
main branch, 4d — 1d as the secondary branch, and all other superarcs forming individual branches (i.e, minor branches).

CinemaDB system [3] to enable limited post hoc interaction.

2.4 Distributed Hierarchical Contour Trees

With efficient SMP algorithms in hand, we turn to the problem of
hybrid distributed computation. While a distributed algorithm was pro-
posed [35], it stored the entire contour tree on a single rank (i.e., block).
For noisy data, this approach not only drove up the communication
cost, but also had a large memory footprint on that rank. Carr et al. [11]
therefore proposed a method for distributed contour tree computation
that reduces distributed memory footprint and communication cost, as
well as exploiting local SMP parallelism using the PPP algorithm.

The approach by Carr et al. [11] is based on the observation that
some topological zones are in the interior of a single block, such as
the light yellow zone that maps to the superarc 91 — 63 in Block 3 of
Fig. 3. This zone (and superarc) is only stored on the rank where the
block is held. These zones and superarcs are removed from the tree,
and the existing distributed algorithm [35] applies recursively: at each
stage of the fan-in, the blocks for two or more children are combined,
the shared contour tree is computed, and zones interior to the combined
block are suppressed.

At the end of the fan-in, this method has computed the shared contour
tree for all blocks: for convenience, we compute the contour tree on all
ranks rather than have a separate fan-out stage to communicate it. This
tree, however, does not hold the superarcs that are suppressed during
the fan-in, so each rank now re-inserts them one level at a time in a
layered version of the hyperstructure called a hierarchical contour tree.

At the end, all superarcs are correct in at least one block, and the
union of all hierarchical contour trees is the correct distributed hi-
erarchical contour tree (DHCT), shown in Fig. 3 for a four-block
subdivision of a dataset.

Both the DHCT and the hyperstructure are built iteratively, with
early iterations building the center of the tree and being treated as more
senior than later iterations.

The aim is to minimize the communication cost and memory foot-
print. Since the removal of a superarc such as 91 — 63 in Fig. 2 leaves
supernode 63 structurally redundant, we suppress not only superarc
91 — 63 but also supernode 63. This approach is more efficient, but it
comes at a cost for the secondary computations, where the hypersweep

computation [30] depends on the correct order of supernodes along
each superarc. As an example, if we look at Fig. 3, we see that 1a, 0d
are represented only in the tree for Block 2 and 1b in the tree for Block
3, but any computation that depends on knowing the correct order of
la, 0d, and 1b will fail unless all ranks are aware of these supernodes.

Since the branch decomposition in particular depends on the correct
ordering of superarcs along a hyperarc, we must augment the DHCT
with these additional nodes before proceeding. This leads to our first
contribution, detailed in Sec. 3.

3 HIERARCHICAL AUGMENTATION

A DHCT keeps features locally to minimize communication, recording
the saddle or attachment point at which each local branch attaches to
a superarc stored at a higher level of the hierarchy. Since the zone is
internal to the block, other blocks do not need the attachment point
even if it is on the boundary between blocks. The DHCT therefore
adopts a lazy insertion policy by storing the attachment points locally
and inserting them only when needed for local computations.

Hypersweeps, however, rely on prefix operations for efficient parallel
computation and need the exact order and values of all supernodes on
a hyperarc to propagate subtree computations correctly. Worse, when
computing a branch decomposition, each rank needs to identify the best
upwards and downwards branches for each supernode, and the best
upwards or downwards branch may be located on another rank.

In order to perform distributed hypersweeps and branch decomposi-
tion, we need to insert attachment points from the hierarchical contour
trees so that all ranks share the information necessary. We note that this
process involves augmenting the contour tree with a set of points, and
that the same process can be used for any arbitrary set of insertions.

Attachment points are always existing vertices in the topology graph
and supernodes in the block’s hierarchical contour tree, but may not be
supernodes in another block’s tree. Thus, in order to perform hyper-
sweeps, we must collect the set of points to be inserted on each shared
hyperarc, and then construct the sequence of supernodes and superarcs
in the hyperstructure following the process described in [11].

Since the DHCT uses a specific fan-in sequence of block combina-
tion, augmentation follows the same sequence. For each level of the
hierarchy, each rank exchanges with its partner all attachment points

Block 0 @) Block 0
Hierarchical @& Augmented

Block 1 D Block 1
Hierarchical @ Augmented

Block 2 D Block 2
Hierarchical @& Augmented

@ @ Block 3 @ @ Block 3
® Hierarchical ® Augmented

LEGEND: 60 Regular Vertex Shared Supernode
o0 Ghost Regular Vertex Attachment Point Stored Locally
“0) Ghost Supernode . Internal Supernode Stored Locally

Fig. 3: Distributed hierarchical contour trees for Fig. 2. Each block (rank) stores the subset of the global contour tree for all contours that pass
through the block: the global contour tree is therefore the union of the individual trees. Prior to augmentation, subtrees restricted to a child block are
not represented on other blocks. In the augmented version, attachment points for child subtrees are explicitly represented on all blocks sharing the
superarc. The augmentation allows correct prefix scans but increases communication cost and memory footprints. Note that superarcs are assumed
to be oriented towards the root 1d, and are labelled by their source supernode.

Attachment Points with Insertion Superarcs

After Level 1 Swap (Sorted by Insertion Superarc)

After Level 2 Swap (Sorted by Insertion Superarc)

Block 0 55 Block 0 B5 Block 0 63 0d la 1b 55 4a 3 1f
60b 60b 71 Ob Ob Ob 60b 60b 60b 1g
Block 1 55 Block 1 55 Block 1 63 0d la 1b 55 4a 3 1If
60b 60b 71 Ob Ob Ob 60b 60b 60b 1g
Block 2 0d la 4a 3 Block 2 63 0d la 1b 4a 3 1f Block 2 63 0d la 1b 55 4a 3 1f
Ob 0Ob 60b 60b 71 Ob Ob O0b 60b 60b 1g 71 0Ob Ob Ob 60b 60b 60b 1g
Block 3 63 1f 1b Block 3 63 0d la 1b 4a 3 1f Block 3 63 0d la 1b 55 4a 3 1If
71 1g Ob 71 Ob Ob Ob 60b 60b 1g 71 Ob Ob Ob 60b 60b 60b 1g

Fig. 4: Swap sequence for augmentation. Ranks swap their list of attachments with their partners until all ranks have the full list of attachment points

to insert along each shared superarc on the rank.

along every superarc at that level or higher. As we fan in, these ex-
change sets grow until each node has the full set of attachment points
for a given superarc at the fan-in level to which the superarc belongs.

After the fan-in is complete, a fan-out starts, breaking old superarcs
into sequences of new superarcs at each level. This approach preserves
the properties of the hyperstructure that superarcs (along a given hyper-
arc) are stored (in sequence) in the arrays, and that superarcs shared
between blocks always share ID numbers. We end up with a new
valid DHCT that explicitly represents all attachment points rather than
storing them locally for lazy insertion.

We note that, except for a change in vertex numbering, the hyper-
structure is unaffected by the augmentation, except that the attachment
points no longer have hyperarcs representing their connection to their
parent superarc. As a result, the first stage of the augmentation is to
copy the hyperstructure, leaving the vertex renumbering until the end.

The above algorithm can be expressed as follows:

¢ For each rank
1. Initialize working arrays for swaps

(a) Compress the list of supernodes to attachment points only
(b) Copy supernodes into a swap array segmented by level

2. For each round of fan-in

(a) Swap the array prefix with the partner for shared superarcs
(b) Update the local list of attachment points per superarc

3. Suppress duplicate attachment points
4. For each round of fan-out

(a) Copy supernodes from DHCT to the end of new DHCT
(b) Add attachment points to the end of new DHCT

(c) Sort supernodes along hyperarcs for the round

(d) Set superarc targets for the round

5. Update the hyperstructure with new supernode IDs
6. Copy all remaining regular nodes to the new DHCT

Fig. 3 shows the result of this computation for the dataset from Fig. 2.
The first column shows the data blocks for reference, and the second
shows the DHCT before augmentation, with attachment points in grey,
and the third shows the DHCT after augmentation, with all attachment
points now explicit in white, as they have been shared with all other
blocks storing the parent superarcs.

Fig. 4 shows the swap sequence of attachment points (gray) and their
insertion superarcs (white). We do not require any level 0 swaps, as
insertions happen only at higher levels. The level 1 swap exchanges
between Blocks 0 & 1 and between Blocks 2 & 3, building up lists of
attachment points to be inserted for shared superarcs 71 — 60b, 0b —
1d,60b — 1d, and 1g — 1d; note that we have sorted them for clarity,
but the code defers the sort until the full set is assembled. At level 2,
Blocks 0 & 2 swap, as do Blocks 1 & 3, until all ranks have the full set
of attachment points to be inserted along the top-level superarcs.

During the fan-out, we reconstruct the DHCT to produce the new
versions shown in Fig. 3. We can see that nodes 0d, 1a, and 1b will all
be inserted along 0b — 1d to produce new superarcs.

4 DISTRIBUTED HYPERSWEEPS

As described in Sec. 3, we augment the DHCT to ensure that all supern-
odes necessary for prefix operations are correctly represented on all
relevant ranks. We can now describe how to distribute the hypersweep
computation, using volume (subtree size) as the running example.

Hypersweeps work for any associative property [30], and we add
a distributed stage. For the hypersweep, we compute the property
separately for each block, and then use a fan-in computation to combine
them. Fig. 5 illustrates this approach for the example shown in Fig. 3,
using the regular node count as an approximation of area.

We compute the number of regular nodes in each zone for each
block, noting that boundary nodes are represented on multiple blocks.
We adopt a simple rule: each such node belongs to the block with the
higher ID, so each node is counted only once. In Fig. 3, boundary
nodes (in the domain) are shown as ghost nodes (faded) in all blocks
except the one to which they belong.

Counting is then performed locally as before [30], and is shown
in the first four rows of Fig. 5. We separate the zones by level of the
hierarchical contour tree, so that all shared zones are listed first.

Once we have computed the local zone size for each block, we
perform a local hypersweep [30] to get the local subtree size for each
block, shown in the next four rows.

This approach can therefore be summarized as:

1. Assign each vertex to belong to one rank only

2. Compute superarc measures locally

3. Use the local hypersweep to compute the subtree measure
4. For each round of fan-in

(a) Swap this round’s measure with the partner
(b) Combine the partner’s measure with its own measure

We note that this exchange involves the same amount of data as
the initial construction of the DHCT in the first place: we will see in
Sec. 9.2 that the practical cost of data exchange is dominated by the
cost of computing the augmented tree.

5 DISTRIBUTED BRANCH DECOMPOSITION

Once the desired geometric measure has been computed, the next step
is to compute a distributed branch decomposition. We recall from
previous work [30] that each supernode chooses the best ascending and
descending branch locally. Once the best up/down branch is known, a
modified pointer-doubling stage collects all branches in parallel, using
the highest vertex on the branch as the representative of the set.

Again, the distributed version needs some modification, as it is
possible for the best ascending branch to belong to another block. We
resolve this by having an initial pass in which all blocks separately
compute the best ascending branch and exchange with their partners
in the hierarchy, updating the best branch after each swap until the top
of the hierarchy is reached. At this point, all blocks agree on which
branch is preferred, and can perform the pointer-doubling to determine
the set of supernodes known to that block that belong to the branch.

However, in doing so, we observe that if the highest vertex on the
branch is not shared, we will not agree on the correct representative
for the branch. We therefore choose the most senior supernode on the
branch (i.e., the one closest to the root of the hyperstructure), which
is guaranteed to be shared between all blocks that include the branch
even partially, always using the global vertex ID as an identifier rather
than a local supernode or regular node ID. We note that this sense of
seniority is specific to the hyperstructure and DHCT, and is not the
same as whether a branch is main or secondary.

We also observe that since the branch decomposition does not nec-
essarily follow the hyperstructure, a branch may not have all of its
superarcs oriented in the same direction. We resolve this by orienting

@
&

~
=

)
>

o
@

o
3
=3

-
pa

od

55

-~
&

=

-
o
o
S
S

w
-
w
b
-
=
=3
&

Oe

Zone Size - Block 0
Zone Size - Block 1
Zone Size - Block 2
Zone Size - Block 3

Subtree Size

Subtree Size -
- Block 2

Subtree Size

Subtree Size -

Subtree Size

Subtree Size -

Subtree Size -

- Block 0

Block 1

Block 3

- Block 01

Block 23

Global

s o wo

mowo

3
4

7

—ocoo

—ooo

0
1

1

okoo okmRoO

=3

4

4

35

® o oo

coo

)
S

0
20

20

18

71

No N

Qo

~

38

Mo oo

cwo

)
G

3
25

28

18
72
13

58
72
45

130
50

180

15
11
17
31

19
17
17
62

36
79

115

woro

owo

)
-]

4
29

33

138

201

oNo =

20
17
26
62

37
88

125

o woofw

20
17
34
62

37
96

133

womo

79
54
15

139
69

208

—ocoo
—-

100 1
88 5 7 1 1
110

180 3
198 0

378

Fig. 5: Distributed hypersweep for subtree node count. Each block uses prefix sums to count regular nodes in each zone, omitting nodes shared with
blocks with higher block ID (white lettering in Fig. 3). Each block then performs a hypersweep to compute the contribution to the subtree size. Blocks

then sum region sizes in the same fan-in used for the trees.

all superarcs toward the seniormost end (i.e., the one closest to the root
of the hyperstructure). In other words, instead of the pointer-doubling
collapsing the branch toward the topmost supernode, it collapses the
branch toward the root. Once we realize this, however, we see that the
superarcs must be oriented toward the end closest to the root. This is
easy to test, and results in the pointer-doubling operating over a forest
of directed edges, where each component has a well-defined root.

Since we now know the branch of all superarcs in each block, we sort
all superarcs by their branch, their scalar value, and their global vertex
ID (for the simulation of simplicity) to get the local upper- and lower-
end supernodes of the branch. Following the sort, we need to exchange
the branch ends across blocks to agree on the global upper- and lower-
end supernodes of each branch. With the branch end information, we
can compute the volume of branches based on the subtree volume of
the superarc at the saddle end of the branch.

The steps are summarized as follows:

1. Choose the local best up/down for each supernode
2. For each round of fan-in

(a) Swap the best up/down and volumes with the partner
(b) Choose the best of own/partner’s up/down

3. Build branches in the local version of tree

4. Sort superarcs to get local branch end supernodes

5. Exchange branch end information to agree on the global up-
per/lower end of branches

6. Compute the branch volume using the ending superarc volume

6 DISTRIBUTED CONTOUR EXTRACTION

Now that we have the volume of some branches in each block, we

select the top k branches by volume for each block, excluding the main
hrannh Af whinh hath andc ara laaf nadac (whinh will ha inclindad at a

g
Fig. 6: An example for contour extraction. Critical points are labeled with
lower case letters, and contours with upper case letters.

Given a branch decomposition, we extract a representative set of
contours. Since 3D contours along the same branch normally occlude

each other, we choose local contours [14]: a set of k superarcs (or
branches) with one contour on each. Although any k branches may be
chosen, the normal choice is the k£ most important branches in the tree.

Once we have selected which branches to place contours on, we
must choose an isovalue. Placing a contour at the leaf end of the branch
is unlikely to be useful, as it will often be so small as to be invisible, so
the obvious choice is to take an isovalue at the saddle end of the branch,
where the feature has its largest extent. For example, in Fig. 6, we set
k = 4. Then, placing a contour at the leaf end of branch d — f is not a
good choice, so we place a contour at D, just above the saddle. On the
main branch, which has two leaf ends, we arbitrarily select one as the
"leaf" for this purpose, often the maximum.

If one of the branches chosen is the child of another, the parent’s
contour is likely to occlude the child’s, and we instead choose the value
just before the highest (or lowest) saddle at which any child joins the
branch. An example of the contour choice can be seen at C' in Fig. 6,
where the child d — f connecting to branch ¢ — h at f means that we
need to place the contour at C, just above f, rather than just above h.

To find the desired isovalues for each contour, we construct a branch
decomposition tree to capture the parent-child relationships, which are
represented only implicitly in the DHCT. For this step, we first identify
the £ most important branches, and then their parents. We then take
the branch saddle: the saddle end of a given branch, and retrieve the
corresponding branch ID to find the parent: a simple lookup. Once this
is done, local analysis identifies the isovalue chosen for each branch.

In distributed computation, the process is less easy. Each block
selects the £ most important branches that it stores and the importance
measures for them, and then swaps with a fan-in partner to get at most
2k branches. The block then reduces this to k again, and swaps with the
next partner, and so on, until all blocks determine which & branches are
most important, and the balance of the computation is then the same.

Finally, we extract the actual contours in each block, in a distributed
version of the method of Hristov et al [30]. For each tetrahedron (in 2D,
triangle) in the input mesh, we use Marching Cells as usual to extract a
local contour fragment [6,7], and then consult the hyperstructure to find
the superarc and branch to which the fragment belongs: if the branch
of the superarc is not as desired, the fragment is discarded.

Overall, the implementation of this phase is then:

1. Locally select branches to extract contours based on measures

2. Exchange the selected branches for the globally selected branches

3. Compute the relation between top-volume branches in local
blocks, including the main branch

. Merge the local branch relation for the global branch relation

. Determine the (branch, isovalue) pair for each contour

. For each branch and an isovalue

(o) I IE N

(a) Compute the active cells and their superarc
(b) Add the cell to the result if its superarc is on the branch

7 CORRECTNESS VALIDATION

For the DHCT, validation of correctness becomes increasingly difficult
in the development process. Throughout the development of PPP,
Carr et al. validated results against a modified version of the serial
contour tree algorithm [13], using text files to ensure that the same tree
was computed in parallel. As an additional check, the PPP code was

implemented outside VTK-m as well as inside, and the results were
compared against each other.

For a distributed contour tree, three versions were used: a monolithic
version in which the data for all ranks are stored in shared memory
simulating MPI-style communication, the second a full distributed MPI
implementation, and the third the VTK-m code, which was based on
the standalone MPI implementation instead of the full MPI version.

Our overall goal was to confirm that the distributed representation
produces the same result as the serial implementation, despite the full
contour tree being distributed across many compute nodes. Moreover,
where even the largest single compute node has insufficient memory
for the entire tree, it should still be possible to test whether runs on
different numbers of compute nodes at least achieve the same result.
Therefore, while we implemented the ability to combine the trees onto a
single compute node in VTK-m, we do not rely on this implementation
for validation. Instead, each rank saves its hierarchical contour tree to
local disk, representing each supernode as a tuple (top, bottom, value,
global) on each superarc to which it belongs, using global IDs for
all vertices. These files are concatenated and sorted externally, and
duplicates are suppressed to produce a canonical list of all supernodes
on each superarc for checking against either the serial code or runs with
different numbers of ranks.

While this approach was successful early on, later stages required
specialized external code that assembled the correct solution from the
partial files, in particular when validating the branch decomposition.
Eventually, we also implemented a routine in VTK-m for testing pur-
poses that assembles the entire tree on a single node, but observe that
for the biggest files, the external approach will still be needed.

8 COMPLEXITY

In this section, we discuss the asymptotic complexity before the run-
time performance in Sec. 9. Let N be the number of mesh (regular)
vertices and ¢ the size of the contour tree. Let B be the number of
branches in the branch decomposition, and k the number of branches
from which we extract contours. N denotes the number of blocks
in the computation, and r = 1g IV, denotes the number of rounds of
distributed communication. These parameters reflect the global sizes
for the full mesh, rather than per-block sizes. However, since the later
stages of the fan-in could potentially be global, the provable bounds are
based on the global sizes, and as a result, the bounds are fairly loose in
practice. To these bounds, we observe that k < B < .

Cost of augmentation. Since augmentation follows the same sequence
of swaps as the computation of the DHCT, we need 7 swaps to exchange
attachment points. Each swap has a total communication cost of O(t),
a time cost of O(lgt), and a total work cost of O(¢1gt) to combine
lists of supernodes, sort them, and reinsert them. However, the practical
bound on the number of supernodes exchanged is roughly linear in
the size of the boundary, as only attachment points on the boundary
were needed in the fan-in [10]. Barring W-structures [29], this practical
bound can be proven, and even in the presence of the W-structures, it is
tight in practice: for 3D data, the communication cost is thus bounded
by O(NQ/S) in each round. Since this cost is similar to that needed for
compute codes that exchange ghost zone information in each iteration,
we feel that further optimization is unnecessary.

Since we augment with non-boundary supernodes, this bound re-
laxes, and the worst-case scenario occurs when the contour tree consists
of a single major branch, with O(N) short side branches, evenly dis-
tributed between all ranks. For this, there is a trivial tight bound of
Q(rt) for augmentation, geometric measure computation, and branch
decomposition. However, this behavior is not typical, and we focus
instead on the empirical efficiency.

Cost of branch decomposition. The cost of branch decomposition
is similar to the augmentation, since further swaps are required of
data relating to the augmented shared structures in the DHCT. The
overall cost is of at most O(t1gtr) work, O(lgtr) time, and O(rt)
communication, but the empirical bound is much lower.

Cost of contour extraction. Choosing the k best branches among
B branches requires a sort by importance, taking O(B lg B) work in

O(lg B) time. Since each rank operates independently, the communica-
tion necessary to agree on the k most important edges requires O(rk)
communication. In practice, k is usually small (e.g., < 100) due to the
limitation of visual complexity and data memory.

Summary. Since the principal limitation in distributed computation is
communication cost, we expect that for the algorithms that depend on
augmenting the DHCT, the tree size ¢ will be between the O (N 2/ 3) pos-
sible for the DHCT computation and the O(N) worst-case augmented
DHCT. Thereafter, volume computation and branch decomposition will
scale with the augmented tree size, while contour extraction will scale
with the data size and the number & of contours to be extracted.

9 RESULTS

We apply our algorithms in practice for scientific visualization, in
particular, contour (isosurface) extraction (Sec. 9.1), and evaluate their
parallel performance (Sec. 9.2). We begin by providing an overview
of our experimental design, including the implementation, datasets,
compute resources, and parameter configurations.

Implementation. Our implementation is based on the
DHCT implementation in VTK-m [31]. We extended the
ContourTreeUniformDistributed filter to compute the aug-
mentation and compute the branch volumes with hypersweeps in
the DHCT. We also added DistributedBranchDecomposition
and SelectTopVolumeContours filters to compute the branch
decomposition and to select the top k contours by volume, respectively.

VTK-m performs on-node SMP parallel computation exploiting
OpenMP or CUDA or other mechanisms as appropriate, but does not
use distributed parallelism. We therefore added the DIY [32] block-
parallel library for distributed computation. Our implementation will
be made available in the VTK-m repository in the near future.
Datasets. We experiment on four large-scale datasets: GTOPO30,
WarpX, Nyx, and MICrONS.

GTOPO30 [19] is an open-source 2D global terrain dataset, with 30
arc-second grid spacing (c. 1km) and a resolution of 21601 x 43201.

WarpX [24] is the x-component of the electric field in a plasma
laser-driven acceleration simulation, with asymmetric resolution, and
an overall size 6791 x 371 x 371.

Nyx is a cosmological simulation of particle mass density [8], based
on LBNL compressible cosmological hydrodynamics simulation code
[4] that solves flow equations in an expanding universe. We use dark
matter density as the scalar field at a resolution of 1024 x 1024 x 1024.

MICrONS [17] is a subvolume of 1024% from Electron Mi-
croscopy (EM) image data of a P60 mouse cortex with a volume of
1.4mm x 0.87mm x 0.84mm from BossDB [44].

Both Nyx and MICrONS datasets have complex topology, whereas
the WarpX dataset has a relatively clean topology.

Hardware configurations. All experiments are performed on Perlmut-
ter, a Hewlett Packard Enterprise Cray EX supercomputer with 3,072
CPU-only and 1,792 GPU-accelerated nodes at the National Energy
Research Scientific Computing Center (NERSC). Each CPU-only node
has two 2.45 GHz (up to 3.5 GHz) AMD EPYC 7763 (Milan) CPUs
with 64 cores per CPU and 512 GB of DDR4 memory in total. Each
physical core is equipped with two hardware threads (logical CPUs).
Parameter configurations. We chose k£ = 10 when selecting the top
k branches by volume for contour extraction. That is, we visualize
contours from at most 11 branches, according to the contour extraction
strategy (Sec. 6). An extensive parameter sensitivity analysis for the
parameter k is provided in the supplement. We use OpenMP [18] for
thread parallelization.

Visualization generation. Visualizations are generated using ParaView
5.11.1 [2] with VTK [38], with contours colored by the branch they
belong to, and at most 11 contour colors. We note that a high-volume
branch may correspond to the background, with the isovalue choice
rule resulting in a contour that is not visible in the visualization. For
example, in the Nyx dataset, the background contains vertices at zero
density in the density field; in the GTOPO30 dataset, the background
contains vertices valued at —9999 that represent the ocean. These
background volumes are omitted in Sec. 9.1.

https://gitlab.kitware.com/vtk/vtk-m

—-10e+04

Fig. 7: GTOPO30 dataset. The contours shown enclose major regions
and Greenland, as well as large highlands such as in Brazil.

Fig. 8: Nyx dataset. The contours highlight the filaments in the Universe.

9.1 Contour Extraction

We apply our distributed algorithms to identify and visualize relevant
contours with large-scale volumes for the GTOPO30, WarpX, and
Nyx datasets.

Fig. 7 shows the elevation field of GTOPO30 highlighting the top-
ranked contours, which broadly depict the topologically prominent
regions that map to the continents and Greenland, except South Amer-
ica, where the Brazilian Highland appears as a separate contour. Since
GTOPO30 is a 2D projection of the globe, the areas are distorted, so
Antarctica is reported as the largest area (most important branch) in
orange, followed by Eurasia in red, and America in cyan.

Fig. 1 shows the top contours by volume for the WarpX dataset. The
2D slices on the left demonstrate the characteristics of the scalar field,
showing the positive and negative charge regions of the induced plasma
wave shifting along the center x-axis. The selected contours on the
middle and right show the smooth boundaries separating the positive
and negative volumes. Defining these volumes allows for subsequent
calculation of acceleration gradients (i.e., the sum of all values enclosed
by the contour) and provides insight into the overall structure of the
field. We can also observe important details from the contour: the high
density of the red contour indicates the increasing frequency of the
wave shift in the front of the acceleration direction.

In the visualization of Nyx (Fig. 8), we see contours on only two
branches due to the large background volumes (at zero density). The
extracted contours, however, highlight the high-density filamentary
structures in the Universe.

9.2 Runtime Performance and Strong Scaling

Our main evaluation is performance, focusing on strong scaling on
CPU-only nodes, by considering scalability at a fixed problem size
with different numbers of nodes for all four datasets. We also vary the
number of ranks per node to evaluate the best use of computational
resources. We use one MPI rank per data block and 128 threads per
compute node in all cases.

Runtime evaluation setup. The existing DHCT construction [11] has
three main phases: (1) local contour tree computation, (2) fan-in, and
(3) fan-out. For this paper, we added four new phases: (4) augmentation,
(5) hypersweep volume computation, (6) branch decomposition, and
(7) contour selection and contour extraction, and report runtime for
each phase, with any additional costs reported as Other.

We synchronize all ranks after each phase to facilitate interpreta-

tion of the runtime performance. Since these distinct phases depends
on completing previous phases, synchronizing all ranks after each
phase does not significantly affect performance. We then compute the
maximum runtime of each phase across all ranks, and note that data
exchange across ranks is needed for the fan-in phase (2) and all four
new phases (4-7) in our implementation.
Speed-ups. In Fig. 9 (e) we compare against the single-node PPP [16]
implementation of the contour tree and volumetric branch decompo-
sition [30] in VTK-m. We use OpenMP (128 threads) for single-rank
threading. The single-node implementation does not include contour
extraction. We, hence, consider for our distributed implementation the
total runtime of all phases before contour extraction to compute speed-
ups. We do not report speed-ups for the MICrONS dataset, because its
topology is too large for single-node computation.

Overall, our implementation has strong scalability with good speed-
ups. Compared to the single-node PPP algorithm with in-node hy-
persweep implementation, our implementation achieve a maximum
speed-up of &~ 17.24x for the GTOPO30 dataset, ~ 98.76x for the
WarpX dataset, and ~ 7.47 x for the Nyx dataset.

Best rank/node configurations. Based on physical node configura-
tions, 4 ranks per node is ideal to utilize the computational resources (1
rank per logical CPU). For datasets with complex topology (i.e., Nyx
and MICrONS), it is less useful to split data into more ranks due to
communication costs, making 2 ranks per node better. Overall, using 2
or 4 ranks per node strikes a balance between utilizing computational
resources and reducing communication costs.

Strong scaling performance. Fig. 9 (a)-(d) shows our performance
for all four datasets, where the stacked box plot shows the breakdown
of runtime by phase. Contour extraction (red) scales well with the
increasing number of nodes. This is because we only need to exchange
the information of the selected k branches restricted to O(rk).

While augmentation and hypersweep show improvement in run-
time with increasing numbers of nodes for the GTOPO30 and WarpX
datasets, for the more complex and noisy Nyx and MICrONS, the situa-
tion is different: augmentation, hypersweep, and branch decomposition
costs remain similar with increasing numbers of nodes. This result fol-
lows our analysis in Sec. 8, which shows communication cost staying
stable as we subdivide data into smaller blocks, becoming a bottleneck
for the scalability. Fig. 10 shows the size of exchanged data in multiple
phases for Nyx. The maximum workload for a node to exchange at-
tachment points and best down/up volume data here does not decrease
with increasing numbers of nodes.

In contrast, the runtime for the WarpX dataset demonstrates strong
scalability. This is probably because the topology for this dataset is
relatively clean, leading to a low data exchange workload.
Submodule analysis. We also analyze scaling behavior for augmen-
tation, hypersweep, and branch decomposition by checking the sub-
module runtime. Since we do not enforce synchronization after each
submodule, we cannot simply take the maximum runtime of submod-
ules across all ranks. Instead, we report the runtime from a single rank
with the longest runtime for all submodules in Fig. 11.

Among the first four submodules during augmentation, building
the augmented tree takes the longest time. Although this does not
involve data exchange, its performance is affected by the number of
supernodes in the local tree, which increases as more boundaries are
introduced by splitting blocks. From Fig. 11, we see its performance
benefits from increasing the number of nodes from 2 to 8, but reaching
its limit afterward. For the hypersweep phase, the communication cost
of merging the hypersweep results becomes the bottleneck.

In the branch decomposition phase, no submodule demonstrates
strong scalability. The local computation for the best up/down volume,
building branches, and local branch upper/lower ends are all bounded

% o % 6y %2 120 ¢ @ b w2 6; %
w0 d m.zm 1308 1008 235 : Bl 7o oo RS .00 5502 75 o
§58.23 20.31 13.32 9.93 7.23 6.08 b é 100 %
' i Zz, .m 7.20 461 330 2.88 Zs .mn.mm.u 56.06 19.03 47.38 47.70
230 13 20 24 7.88 555 336 241 174 80 2 4,-77113 58.28 56.48 53.19 53.75 50.36
. L g
H 28 . 19.72 12.87 8.10 6.04 571 6.09] £] g
H £ H 621 352 226 1.92 321 | 3 8-105.9977.10 66.09 62.74 61.69 64.33 66.62
B * m-.zo.u 12.94 9.08 7.99 7.92 8.85 %15 2 |
£20 K #Nodes = 60 #Nodes
g ° °
h 327. 21.79 15.42 13.87 12.72 14.26 15.76 E £
B =
#Nodes 10 40
10
5 20
0
#Nodes: 2 1 8 16 32 64 128
#Ranks: 8 16 32 64 128 256 512 °
#Blocks: 421 441 841 881 1681 16161 32161 0 =5 1 8 16 32 64 138 #Nodos: 2 " ry 16
. 8 16 32 64 128 256 " 16 32
Local Contour Tree BB Hypersweep #Ranks: 1 #Ranks:
. 1,81 1,161 1,32,1 1,322 2,322 2,642 2, 2 22,24 424 444 84,8
EE Fan In @ Filter (Other) #Blocks: #Blocks:
B Fan Out == Branch Decomposition (b) WarpX (C) Nyx (10243)
S0 Augment Hierarchical Tree BN Contour Extraction
Z
(a) GTOPO30 2 7 e W %R 6 % 2 72 e U 2 6 2
% 6
1- 117 1.60 2.58 4.85 7.70 430 849 14.89 24.86 34.68 3672 1- 115
140 71.17 46.65 32.46 27.24 26.79 e e
g 3 3
2 2- 178 291 4.96 7.67 Z2- 407 803 1466 2561 41.06 EEELY Z 2. 231
120 Z 2 TO¥Y 8523 52.44 34.81 27.58 25.79 24.59 s P
H g & &
241 At 50125 2855 z 9
, 100 5 a 75.67 45.05 34.21 30.25 28.53 29.01 s 4- 237 418 7.21 24 619 1ms 222 3720 g § B
2 & & &
g *s 55.44 53.92 40.63 35.75 33.91 36.69 37.34 4 *® *
§ 80 % 8 289 534 7.98 FF)
e #Nodes K] 8- 7.72 1581 76.99 | 82.98 [52.17 3.50
s *
£ 60 ! 16- 331 514 | 7.80 L)l m #Nodes
n - o a2 |ass Dol Rl R IR0 IRR2 WarpX Nyx (1024%)
1e10 45 dell)
25 va
// 20 /
20 /

0.0

#Nodes: 2 i [16 3 61 128 #Nodes: 2 a 8 16 32 61 128
boverl S R S A~ BT T v SR T S S S
Toat Attachment Ponis Totl Bt Up/Dowe Volume — Total Beanch UppeLower Ends
o2 17
50 IE— =
a9 ',,/
/’ 1
i
3 4 2
: / i
34.7 g
i /
wl / 22
/
a5 // 1
/ Rae ¥
wl / =
0
T N N S R
vl SR S R S v~ T T S B

~— Max Attachment Points ~— Max Best Up/Down Volume —— Max Branch Upper/Lower Ends

Fig. 10: The maximum size of per-node data exchange for Nyx as the
number of nodes increases with 4 ranks per node. Attachment points
are exchanged during augmentation; best up/down volumes and branch
upper/lower ends during branch decomposition.

#Nodes: 2) s 16
FRanks: B s 32 e
3 Initialize Hierarchical Tree
== Compute Attachment Point

128
512

o
#Nodes: 2 4 8 16
#Ranks: B 16 32 61

[Prepare for Branch Decomposition BB Build Branches

= Local Best Up/Down Volume == Local Branch Upper/Lower Ends

mm Exchange Best Up/Down Volume 8 Exchange Branch Upper/Lower Ends

61 128
256 512

32
128

32 61
128 256
== Propare for Hypersweep.

= Local Hypersweep

= Exchange Attachment Point £ Merge Hypersweep Results
= Build Augmented Tree == Filther (Other)

Fig. 11: The stacked runtime bar chart for augmentation and hypersweep
(left), and branch decomposition (right) using Nyx at 4 ranks per node.
For each node/rank configuration, the runtime is collected on the rank
taking the longest time for the respective phases.

by the size of known supernodes. Besides, the amount of best up/down
volume data to exchange (see Fig. 10) is also not optimized as we
increase the number of nodes.

Highlighted results. We summarize the performance results:
¢ Our implementation outperforms the state-of-the-art single-node

implementation by a large margin, up to ~ 98.76 x.
* The scalability of our implementation to extract contours is strong.

r Tree with Volumetric Branch Decomposition
versus Single node (128 threads)

breakdown by the process for runs with 4 ranks per node. The
. of the distributed contour tree and branch decomposition, as

Contour tree augmentation, hypersweep, and branch decomposition
also have strong scalability when the topology of the underlying data
is relatively clean.

* On the dataset with complex topology, the boundary information
becomes a barrier to further improving the performance of augmen-
tation, hypersweep, and branch decomposition.

10 CONCLUSION AND DIScussION

Our work extends the distributed hierarchical contour tree with augmen-
tation. That is, we insert (regular) attachment points into the contour
tree structure to allow geometric measure computation. We also de-
velop distributed algorithms to compute geometric measures, branch
decomposition, and contour extraction, enabling efficient scientific vi-
sualization of contours for large-scale datasets, as well as supporting
large-scale contour tree simplification. Our algorithm demonstrates
significant improvement in efficiency over the state-of-the-art. Aside
from the high efficiency, our algorithm also enables the distributed
storage and computation for large datasets that cannot be handled using
the memory of just a single compute node.

Limitations. Our work is not without limitations. The algorithmic per-
formance is significantly influenced by the complexity of the topology
of the data. When the topology is complex, the exchanged boundary
information increases drastically as the number of blocks increases,
limiting the scalability of the algorithm.

Future work. In the future, we intend to scale our implementation
further by pre-simplifying the contour tree to reduce the number of
attachment points needed in augmentation. We also intend to explore
other metrics besides volume to enhance the utility of the distributed
augmented contour tree. The appropriate choice of metrics will depend
on the scientific applications. Moving forward, we expect to apply
the distributed hierarchical contour tree and its branch decompositions
in topological data analysis and visualization at scale for symmetry
detection, feature tracking, and interactive exploration.

ACKNOWLEDGMENTS

This research is supported by the U.S. Department of Energy (DOE),
Office of Science, Advanced Scientific Computing Research (ASCR)
program and the Exascale Computing Project (17-SC-20-SC), a collab-
orative effort of the DOE Office of Science and the National Nuclear
Security Administration under Contract No. DE-AC02-05CH11231 to
the Lawrence Berkeley National Laboratory. Additionally, Mingzhe
Li and Bei Wang are partially supported by DOE DE-SC0021015, Na-
tional Science Foundation (NSF) 11S-2145499 and NSF 11S-1910733.
Hamish Carr is supported by University of Leeds.

REFERENCES

(1]

[2]

(3]

(4]

(5]

(6]

(71

(8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

A. Acharya and V. Natarajan. A parallel and memory efficient algorithm
for constructing the contour tree. In Proceedings of the 2015 IEEE Pacific
Visualization Symposium (PacificVis), pp. 271-278. IEEE, New York, 2015.
doi: 10.1109/PACIFICVIS.2015.7156387 2

J. Ahrens, B. Geveci, and C. Law. Paraview: An end-user tool for large-
data visualization. The Visualization Handbook, pp. 717-731, 2005. doi:
10.1016/B978-012387582-2/50038-1 7

J. Ahrens, S. Jourdain, P. O’Leary, J. Patchett, D. H. Rogers, and M. Pe-
tersen. An image-based approach to extreme scale in situ visualization
and analysis. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pp. 424-434.
IEEE, New York, 2014. doi: 10.1109/SC.2014.40 3

A. S. Almgren, J. B. Bell, M. J. Lijewski, Z. Luki¢, and E. Van Andel.
Nyx: A massively parallel AMR code for computational cosmology. The
Astrophysical Journal, 765(1):39, 2013. doi: 10.1088/0004-637X/765/1/
397

C. L. Bajaj, V. Pascucci, and D. R. Schikore. The contour spectrum. In
Proceedings of Visualization 1997, pp. 167-173. IEEE, New York, 1997.
doi: 10.1109/VISUAL.1997.663875 2

D. C. Banks and S. Linton. Counting cases in marching cubes: toward
a generic algorithm for producing substitopes. In Proceedings of IEEE
Visualization, pp. 51-58. IEEE, New York, 2003. doi: 10.1109/VISUAL.
2003.1250354 6

P. Bhaniramka, R. Wenger, and R. Crawfis. Isosurface construction in
any dimension using convex hulls. IEEE Transactions on Visualization
and Computer Graphics, 10(2):130-141, 2004. doi: 10.1109/TVCG.2004.
1260765 6

C. Biwer. Nyx cosmological simulation dataset, 2019. doi: 10.21227/
zh6w-kt72 7

R. L. Boyell and H. Ruston. Hybrid techniques for real-time radar sim-
ulation. In Proceedings of the 1963 Fall Joint Computer Conference, p.
445-458. ACM, New York, 1963. doi: 10.1145/1463822.1463869 1, 2
H. Carr, O. Riibel, and G. H. Weber. Distributed hierarchical contour trees.
In 2022 IEEE 12th Symposium on Large Data Analysis and Visualization
(LDAV), pp. 1-10. IEEE, New York, 2022. doi: 10.1109/LDAV57265.
2022.9966394 1, 2,7

H. Carr, O. Riibel, G. H. Weber, and J. Ahrens. Optimization and augmen-
tation for data parallel contour trees. IEEE Transactions on Visualization
and Computer Graphics, 28(10):3471-3485, 2022. doi: 10.1109/TVCG.
2021.3064385 1,2,3,8

H. Carr and J. Snoeyink. Representing interpolant topology for contour
tree computation. In H.-C. Hege, K. Polthier, and G. Scheuermann, eds.,
Topology-Based Methods in Visualization I1I, Mathematics and Visualiza-
tion, pp. 59-73. Springer, Berlin, Heidelberg, 2009. doi: 10.1007/978-3
-540-88606-8_5 2

H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimen-
sions. Computational Geometry Theory and Applications, 24(2):75-94,
2003. doi: 10.1016/S0925-7721(02)00093-7 1, 2, 6

H. Carr, J. Snoeyink, and M. van de Panne. Flexible isosurfaces: Simplify-
ing and displaying scalar topology using the contour tree. Computational
Geometry: Theory and Applications, 43(1):42-58, 2010. doi: 10.1016/j.
comgeo.2006.05.009 2, 6

H. Carr, G. H. Weber, C. Sewell, and J. Ahrens. Parallel peak pruning for
scalable SMP contour tree computation. In 2016 IEEE 6th Symposium
on Large Data Analysis and Visualization (LDAV), pp. 75-84. IEEE, New
York, 2016. doi: 10.1109/LDAV.2016.7874312 1

H. A. Carr, G. H. Weber, C. M. Sewell, O. Rubel, P. Fasel, and J. P. Ahrens.
Scalable contour tree computation by data parallel peak pruning. /IEEE
Transactions on Visualization and Computer Graphics, 27(4):2437-2454,
2021. doi: 10.1109/TVCG.2019.2948616 1,2, 8

[17]

(18]

[19]

[20]

[21]

(22]

[23]

[24]

(25]

[26]

(27]

(28]

[29]

[30]

[31

—

[32]

M. Consortium, J. A. Bae, M. Baptiste, A. L. Bodor, D. Brittain,
J. Buchanan, D. J. Bumbarger, M. A. Castro, B. Celii, E. Cobos, F. Coll-
man, N. M. da Costa, S. Dorkenwald, L. Elabbady, P. G. Fahey, T. Fliss,
E. Froudarakis, J. Gager, C. Gamlin, A. Halageri, J. Hebditch, Z. Jia,
C. Jordan, D. Kapner, N. Kemnitz, S. Kinn, S. Koolman, K. Kuehner,
K. Lee, K. Li, R. Lu, T. Macrina, G. Mahalingam, S. McReynolds, E. Mi-
randa, E. Mitchell, S. S. Mondal, M. Moore, S. Mu, T. Muhammad,
B. Nehoran, O. Ogedengbe, C. Papadopoulos, S. Papadopoulos, S. Pa-
tel, X. Pitkow, S. Popovych, A. Ramos, R. C. Reid, J. Reimer, C. M.
Schneider-Mizell, H. S. Seung, B. Silverman, W. Silversmith, A. Sterling,
F. H. Sinz, C. L. Smith, S. Suckow, M. Takeno, Z. H. Tan, A. S. Tolias,
R. Torres, N. L. Turner, E. Y. Walker, T. Wang, G. Williams, S. Williams,
K. Willie, R. Willie, W. Wong, J. Wu, C. Xu, R. Yang, D. Yatsenko, F. Ye,
W. Yin, and S.-c. Yu. Functional connectomics spanning multiple areas of
mouse visual cortex. bioRxiv, 2021. doi: 10.1101/2021.07.28.454025 7
L. Dagum and R. Menon. OpenMP: an industry standard API for shared-
memory programming. /[EEE Computational Science and Engineering,
5(1):46-55, 1998. doi: 10.1109/99.660313 7

Earth Resources Observation and Science Center, U.S. Geological Survey,
U.S. Department of the Interior. USGS 30 arc-second global elevation
data, GTOPO30, 1997. doi: 10.5065/A1Z4-EE71 7

H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Morse-Smale
complexes for piecewise linear 3-manifolds. In Proceedings of the 19th
Annual symposium on Computational Geometry, pp. 361-370. ACM, New
York, 2003. doi: 10.1145/777792.777846 1

H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse com-
plexes for piecewise linear 2-manifolds. In Proceedings of the 17th Annual
Symposium on Computational Geometry, pp. 70-79. ACM, New York,
2001. doi: 10.1145/378583.378626 1

H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence
and simplification. Discrete & Computational Geometry, 28, 2002. doi:
10.1007/s00454-002-2885-2 2

H. Edelsbrunner and E. P. Miicke. Simulation of simplicity: A technique
to cope with degenerate cases in geometric algorithms. ACM Transactions
on Graphics, 9:66-104, 1990. doi: 10.1145/77635.77639 2

L. Fedeli, A. Huebl, F. Boillod-Cerneux, T. Clark, K. Gott, C. Hillairet,
S. Jaure, A. Leblanc, R. Lehe, A. Myers, C. Piechurski, M. Sato, N. Zaim,
W. Zhang, J.-L. Vay, and H. Vincenti. Pushing the frontier in the design
of laser-based electron accelerators with groundbreaking mesh-refined
particle-in-cell simulations on exascale-class supercomputers. In Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 1-12. IEEE, New York, 2022. doi: 10.1109/SC41404.
2022.00008 7

J. Gibbons, W. Cai, and D. B. Skillicorn. Efficient parallel algorithms for
tree accumulations. Science of Computer Programming, 23(1):1-18, 1994.
doi: 10.1016/0167-6423(94)00013-1 2

C. Gueunet, P. Fortin, and J. Jomier. Contour forests: Fast multi-threaded
augmented contour trees. In 2016 IEEE 6th IEEE Symposium on Large
Data Analysis and Visualization (LDAV), pp. 85-92. IEEE, New York,
2016. doi: 10.1109/LDAV.2016.7874333 2

C. Gueunet, P. Fortin, J. Jomier, and J. Tierny. Task-based augmented
merge trees with Fibonacci heaps. In 2017 IEEE 7th Symposium on Large
Data Analysis and Visualization (LDAV). IEEE, New York, 2017. doi: 10.
1109/LDAV.2017.8231846 2

A. Gyulassy, P-T. Bremer, and V. Pascucci. Shared-memory parallel
computation of Morse-Smale complexes with improved accuracy. IEEE
Transactions on Visualization and Computer Graphics, 25(1):1183-1192,
2019. doi: 10.1109/TVCG.2018.2864848 1

P. Hristov and H. Carr. W-structures in contour trees. In I. Hotz, T. Bin Ma-
sood, F. Sadlo, and J. Tierny, eds., Topological Methods in Data Analysis
and Visualization VI, pp. 3—18. Springer, Cham, 2021. doi: 10.1007/978-3
-030-83500-2_1 2,7

P. Hristov, G. H. Weber, H. Carr, O. Riibel, and J. Ahrens. Data parallel
hypersweeps for in situ topological analysis. In 2020 IEEE 10th Sympo-
sium on Large Data Analysis and Visualization (LDAV), pp. 12-21. IEEE,
New York, 2020. doi: 10.1109/LDAV51489.2020.00008 1,2, 3, 5, 6, 8
K. Moreland, C. Sewell, W. Usher, L. ta Lo, J. Meredith, D. Pugmire,
J. Kress, H. Schroots, K.-L. Ma, H. Childs, M. Larsen, C.-M. Chen,
R. Maynard, and B. Geveci. VTK-m: Accelerating the visualization
toolkit for massively threaded architectures. IEEE Computer Graphics
and Applications, 36(3):48-58, 2016. doi: 10.1109/MCG.2016.48 1,7
D. Morozov and T. Peterka. Block-parallel data analysis with DIY2. In
2016 IEEE 6th Symposium on Large Data Analysis and Visualization

https://doi.org/10.1109/PACIFICVIS.2015.7156387
https://doi.org/10.1016/B978-012387582-2/50038-1
https://doi.org/10.1016/B978-012387582-2/50038-1
https://doi.org/10.1109/SC.2014.40
https://doi.org/10.1088/0004-637X/765/1/39
https://doi.org/10.1088/0004-637X/765/1/39
https://doi.org/10.1109/VISUAL.1997.663875
https://doi.org/10.1109/VISUAL.2003.1250354
https://doi.org/10.1109/VISUAL.2003.1250354
https://doi.org/10.1109/TVCG.2004.1260765
https://doi.org/10.1109/TVCG.2004.1260765
https://doi.org/10.21227/zh6w-kt72
https://doi.org/10.21227/zh6w-kt72
https://doi.org/10.1145/1463822.1463869
https://doi.org/10.1109/LDAV57265.2022.9966394
https://doi.org/10.1109/LDAV57265.2022.9966394
https://doi.org/10.1109/TVCG.2021.3064385
https://doi.org/10.1109/TVCG.2021.3064385
https://doi.org/10.1007/978-3-540-88606-8_5
https://doi.org/10.1007/978-3-540-88606-8_5
https://doi.org/10.1016/S0925-7721(02)00093-7
https://doi.org/10.1016/j.comgeo.2006.05.009
https://doi.org/10.1016/j.comgeo.2006.05.009
https://doi.org/10.1109/LDAV.2016.7874312
https://doi.org/10.1109/TVCG.2019.2948616
https://doi.org/10.1101/2021.07.28.454025
https://doi.org/10.1109/99.660313
https://doi.org/10.5065/A1Z4-EE71
https://doi.org/10.1145/777792.777846
https://doi.org/10.1145/378583.378626
https://doi.org/10.1007/s00454-002-2885-2
https://doi.org/10.1007/s00454-002-2885-2
https://doi.org/10.1145/77635.77639
https://doi.org/10.1109/SC41404.2022.00008
https://doi.org/10.1109/SC41404.2022.00008
https://doi.org/10.1016/0167-6423(94)00013-1
https://doi.org/10.1109/LDAV.2016.7874333
https://doi.org/10.1109/LDAV.2017.8231846
https://doi.org/10.1109/LDAV.2017.8231846
https://doi.org/10.1109/TVCG.2018.2864848
https://doi.org/10.1007/978-3-030-83500-2_1
https://doi.org/10.1007/978-3-030-83500-2_1
https://doi.org/10.1109/LDAV51489.2020.00008
https://doi.org/10.1109/MCG.2016.48

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

(LDAV), pp. 29-36. IEEE, New York, 2016. doi: 10.1109/LDAV.2016.
7874307 7

D. Morozov and G. Weber. Distributed merge trees. In Proceedings of the
18th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pp. 93-102. ACM, New York, 2013. doi: 10.1145/2442516
2442526 1

D. Morozov and G. Weber. Distributed contour trees. In Topological
Methods in Data Analysis and Visualization III, pp. 89—102. Springer,
Cham, 2014. doi: 10.1007/978-3-319-04099-8_6 1

V. Pascucci and K. Cole-McLaughlin. Parallel computation of the topology
of level sets. Algorithmica, 38(1):249-268, 2003. doi: 10.1007/s00453
-003-1052-3 2,3

T. Peterka, R. Ross, A. Gyulassy, V. Pascucci, W. Kendall, H.-W. Shen,
T.-Y. Lee, and A. Chaudhuri. Scalable parallel building blocks for custom
data analysis. In 2011 IEEE Symposium on Large Data Analysis and
Visualization. IEEE, New York, 2011. doi: 10.1109/LDAV.2011.6092324
1

G. Reeb. Sur les points singuliers d’une forme de Pfaff complétement
intégrable ou d’une fonction numérique. Comptes Rendus de I’Academie
des Sciences de Paris, 222:847-849, 1946. 2

W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit: An
Object-Oriented Approach to 3D Graphics. Kitware, Inc., fourth ed., 2006.
7

N. Shivashankar, S. M, and V. Natarajan. Parallel computation of 2D
Morse-Smale complexes. IEEE Transactions on Visualization and Com-
puter Graphics, 18(10):1757-1770, 2012. doi: 10.1109/TVCG.2011.284
1

N. Shivashankar and V. Natarajan. Parallel computation of 3D Morse-
Smale complexes. Computer Graphics Forum, 31(3pt1):965-974, 2012.
doi: 10.1111/j.1467-8659.2012.03089.x 1

D. Smirnov and D. Morozov. Triplet merge trees. In Topological Methods
in Data Analysis and Visualization V. TopoInVis 2017., Mathematics and
Visualization. Springer, Cham, 2020. doi: 10.1007/978-3-030-43036-8_2
2

M. van Kreveld, R. van Oostrum, C. L. Bajaj, V. Pascucci, and D. R.
Schikore. Contour trees and small seed sets for isosurface traversal. In
Proceedings of the 13th ACM Symposium on Computational Geometry,
pp- 212-220. ACM, New York, 1997. doi: 10.1145/262839.269238 2

G. Weber, S. Dillard, H. Carr, V. Pascucci, and B. Hamann. Topology-
controlled volume rendering. [EEE Transactions on Visualization and
Computer Graphics, 13(2):330-341, 2007. doi: 10.1109/TVCG.2007.47
2

B. Wester, W. Gray-Roncal, S. Hider, T. Gion, J. Matelsky, J. Downs,
D. Xenes, T. Rose, K. Romero, L. Kitchell, D. Ramsden, M. Sanchez,
and D. Moore. The brain observatory storage service & database
(BossDB). Accessed March 30th, 2022, https://bossdb.org/
project/microns-minnie. 7

https://doi.org/10.1109/LDAV.2016.7874307
https://doi.org/10.1109/LDAV.2016.7874307
https://doi.org/10.1145/2442516.2442526
https://doi.org/10.1145/2442516.2442526
https://doi.org/10.1007/978-3-319-04099-8_6
https://doi.org/10.1007/s00453-003-1052-3
https://doi.org/10.1007/s00453-003-1052-3
https://doi.org/10.1109/LDAV.2011.6092324
https://doi.org/10.1109/TVCG.2011.284
https://doi.org/10.1111/j.1467-8659.2012.03089.x
https://doi.org/10.1007/978-3-030-43036-8_2
https://doi.org/10.1145/262839.269238
https://doi.org/10.1109/TVCG.2007.47
https://bossdb.org/project/microns-minnie
https://bossdb.org/project/microns-minnie

A PARAMETER SENSITIVITY ANALYSIS

We provide sensitivity analysis for the parameter k, the number of
branches to select by volume and to extract contours from. In particular,
we briefly reiterate the asymptotic complexity of the branch extraction
phase, followed by experiments on the WarpX and Nyx datasets with a
spectrum of values of k.

A.1 Algorithmic Complexity

We have discussed the complexity of algorithmic steps during the
contour extraction phase in Sec. 8, in which we use N as the number of
mesh (regular) vertices, ¢ the size of the contour tree, B the number of
branches in the branch decomposition, and r the number of rounds of
distributed communication. Among these steps, identifying the top &k
branches by volume takes O (k) work in O(1) time, and computing the
branch relations among them takes O(t1gt + klgt) work in O(Igt)
time. Since we assume that k < ¢, we expect that k£ will not affect this
stage significantly.

In order to extract a representative contour from each branch, we
need to iterate over O(k) isovalues (see Fig. 6) and compute their con-
tours. We start by looking up the superarc on each branch which the
contour maps to. This step costs O(k lgt) time in our serial implemen-
tation, which could be reduced to O(lg t) time with O(k1gt) work in
parallel.

Thereafter, the actual contour extraction relies on visiting every cell
in the mesh once for each desired contour, determining whether the
isosurface at that value passes through the cell and, if so, testing whether
it maps to the right contour. At present, this step costs O(N 1g t) work
and O(lgt) time in parallel, with the log factor deriving from the
search for the superarc. We therefore expect this step to be the principle
bottleneck as k increases.

The communication cost during contour extraction is O(rk), where
k < B. This cost is much less than the communication cost during
augmentation and is unlikely to be the performance bottleneck.

A.2 Experimental Configuration

We fix the experimental configuration to be 16 nodes with 4 ranks per
node for both WarpX and Nyx datasets. We collect the runtime and
workload using k& € {10*,10%,10%,10*}.

We collect the runtime of the following steps:

1. Locally selecting the top k branches by volume;
2. Exchanging the branches between blocks;

3. Computing the branch decomposition tree;

4. Extracting representative contours.

Among the above four steps, steps 2 and 3 include communication
across blocks, whereas steps 1 and 4 are local operations (within
blocks).

Since the contour extraction is expected to be the dominant cost, we
collect the number of cells extracted both before and after testing for
whether they map to the desired superarcs.

A.3 Performance Results

Runtime. As predicted in Appendix A.l, increasing the value of k
does not have a huge impact on the performance of computing the top
k branches by volume or the branch decomposition tree (steps 1 and 3).

As shown in Fig. 12, for the WarpX dataset, the runtime of steps 1
and 3 remain comparable as k varies from 10 to 10*. The runtime of
step 2 is within 0.4 second when k reaches 10*. On the other hand, the
runtime to extract representive contours for the top k branches (step 4)
grows linearly as k increases, and reaches 902 seconds when k = 10%.
Thus, step 4 becomes the dominant factor across all steps.

The runtime performance for the Nyx dataset (see Fig. 13) is similar:
as k increases above 10, step 4 becomes the dominant factor in perfor-
mance. What is slightly different is that the runtime of steps 1 and 3
for the Nyx dataset is higher than the WarpX dataset, due to its higher
topological complexity.

Workload. We diagnose the performance bottleneck of step 4 by
checking its workload. For both WarpX and Nyx datasets, the number
of active cells grows linearly in k; see Fig. 14 and Fig. 15. This is

Exchange selected branches

0.00590

e
w

0.00585

0.00580

Time in seconds
Time in seconds
e
9

e
=

0.00575
—— Locally select branches by volume

10! 102 103 104 10! 102 103 104
k k
103

0.07{ — Compute branch decomposition tree —— Compute Contours

-
)
N

4
°
-

Time in seconds
Time in seconds

-
<

0.03

10! 102 103 104 10! 102 103 104
k k

Fig. 12: Runtime of WarpX dataset for steps in the contour extraction
phase with k ranging from 10 to 10%.

—— Locally select branches by volume 0.30 Exchange selected branches

0.0400
0.0398
0.0396

0.0394

Time in seconds
Time in seconds

e
-
)

0.0392

4
°
G

0.0390
10! 102 103 10* 10! 102 103 104
k k
103

0.5751 — Compute branch decomposition tree —— Compute Contours

0.570

-
5
T

0.565

0.560

Time in seconds
Time in seconds

=
2

0.555

0.550

10! 102 103 10* 10! 102 103 104
k k

Fig. 13: Runtime of Nyx dataset for steps in the contour extraction phase
with & ranging from 10 to 10%.

because we need to compute the superarcs that the active cells map to
for each isovalue.

However, the growth of active cells mapping to the selected branches
is much slower. For example, for the WarpX dataset, there are 9.47 x
107 active cells mapping to the top 11 branches (k = 10, adding the
main branch). When k = 10%, there are 1.77 x 10% active cells mapping
to the 10001 branches; less than half of them map to the 9990 newly
added branches. This result implies inefficiency in the computation:
for small-volume branches, the surface to be extracted may have only
a few triangles, at which point it would be more efficient to use other
methods of contour extraction, an optimization that we have not yet
implemented.

1012] — # Active Cells # Active Cells Mapped to Branches

1011

ta Size

1010

D

109 101

Fig. 14: Workload of WarpX dataset for extracting contours. Left: the
number of active cells from the contours. Right: the number of active
cells mapped to the selected branches.

A.4 Discussion on Parameter Choices

Choosing the parameter. Our primary reason to select a small value
of k was to produce visualizations illustrating the algorithms. As Ap-

—— # Active Cells 1 # Active Cells Mapped to Branches

1012,

£1011

-

Data si;
Data Size

100]

10°} 1

Fig. 15: Workload of Nyx dataset for extracting contours. Left: the
number of active cells from the contours. Right: the number of active
cells mapped to the selected branches.

pendix A.3 suggests, contours mapping to small-volume branches are
usually small in sizes, making them hard to see. In addition, since we
use volume as the metric for branch decomposition, these contours
from small-volume branches may be of less interest. Moreover, when &
becomes too large, it may be challenging for users to identify contours
of interest in the visualization.

Potential optimization. One idea to optimize the performance of step
4 is to reduce the number of iterations by aggregating the isovalues and
removing duplicates to avoid repetitive computations of active cells
with the same isovalue, which we leave for future work.

	Introduction
	Background
	Contour Trees
	Serial Contour Tree Computations
	Parallel Contour Tree Computation
	Distributed Hierarchical Contour Trees

	Hierarchical Augmentation
	Distributed Hypersweeps
	Distributed Branch Decomposition
	Distributed Contour Extraction
	Correctness Validation
	Complexity
	Results
	Contour Extraction
	Runtime Performance and Strong Scaling

	Conclusion and Discussion
	Parameter Sensitivity Analysis
	Algorithmic Complexity
	Experimental Configuration
	Performance Results
	Discussion on Parameter Choices

