JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Flexible and Probabilistic Topology Tracking with
Partial Optimal Transport

Mingzhe Li, Xinyuan Yan, Lin Yan, Tom Needham, Bei Wang

Abstract—In this paper, we present a flexible and probabilistic framework for tracking topological features in time-varying scalar fields
using merge trees and partial optimal transport. Merge trees are topological descriptors that record the evolution of connected
components in the sublevel sets of scalar fields. We present a new technique for modeling and comparing merge trees using tools from
partial optimal transport. In particular, we model a merge tree as a measure network, that is, a network equipped with a probability
distribution, and define a notion of distance on the space of merge trees inspired by partial optimal transport. Such a distance offers a
new and flexible perspective for encoding intrinsic and extrinsic information in the comparative measures of merge trees. More
importantly, it gives rise to a partial matching between topological features in time-varying data, thus enabling flexible topology tracking for
scientific simulations. Furthermore, such partial matching may be interpreted as probabilistic coupling between features at adjacent time
steps, which gives rise to probabilistic tracking graphs. We derive a stability result for our distance and provide numerous experiments

indicating the efficacy of our framework in extracting meaningful feature tracks.

Index Terms—Merge trees, feature tracking, optimal transport, topological data analysis, topology in visualization

1 INTRODUCTION

EATURE extraction and tracking for time-varying data play
Fan important role in scientific visualization. Over the past
two decades, topology-based techniques have been successfully
applied to study the evolution of features of interest, which is at
the core of many scientific applications, including combustion [1],
climatology [2], and astronomy [3]. In particular, topology-based
techniques utilize topological descriptors such as persistence
diagrams and merge trees for feature extraction and tracking in
scalar field data; see [4], [5] for surveys.

In this paper, we present a novel and flexible framework
for tracking features (i.e., critical points) in time-varying scalar
fields by combining merge trees with partial optimal transport.
Merge trees are topological descriptors that record the evolution of
connected components in the sublevel sets of scalar fields.

The theory of optimal transport studies distances between
probability distributions. In its simplest form, it studies the
transportation problem of moving a pile of dirt (i.e., a probability
distribution) to a target pile (i.e., another probability distribution)
with minimum cost. The classic Wasserstein distance in optimal
transport is thus called the Earth mover’s distance. Whereas classic
optimal transport preserves the total amount of dirt (i.e., the total
mass) to be transported, partial optimal transport requires a fraction
of the total mass to be transported. The contributions of this paper
include:

o We present a new technique for modeling and comparing
merge trees using tools from partial optimal transport. In
particular, we model a merge tree as a measure network

e M. Li, X. Yan, and B. Wang are with the University of Utah, Salt Lake City,
UT, 84112.
E-mails: mingzhe.li@utah.edu, {xinyuan.yan, beiwang} @sci.utah.edu

e L. Yan is with the lowa State University, Ames, IA, 50011.
E-mail: linyan@iastate.edu

e T Needham is with the Florida State University, Tallahassee, FL, 32306.
E-mail: meedham @fsu.edu

Manuscript received April 19, 2005; revised August 26, 2015.

(that is, a network equipped with a probability distribution)
and define a partial fused Gromov-Wasserstein distance
between a pair of merge trees.

« We show that such a distance offers a new and flexible
way to encode intrinsic and extrinsic information in the
comparative measures of merge trees. We also derive a
stability result for our distance under a restrictive setting.

o Most importantly, we demonstrate via extensive experi-
ments that such a distance gives rise to a partial matching
between topological features in time-varying data, thus en-
abling flexible topology tracking for scientific simulations.

« Finally, the partial optimal transport provides a probabilistic
coupling between features at adjacent time steps, which
are then visualized by weighted tracks from probabilistic
tracking graphs.

Furthermore, our implementation is open source!, and comes with
a video that demonstrates the probabilistic tracking graph.
Overview. After reviewing related work on optimal transport
and topology-based feature tracking in Sec. 2, we review the
technical background of merge trees, measure networks, and
various distances used in (partial) optimal transport in Sec. 3.
We then describe our novel feature-tracking framework in Sec. 4.
In particular, we introduce a new distance—partial fused Gromov-
Wasserstein distance—in Sec. 4.1 and describe its theoretical
properties (Sec. 5). We demonstrate the utility of our framework
with extensive experiments and comparisons with the state-of-
the-art (Sec. 6). A direct consequence of our framework is that
it enables richer representations of tracking graphs, referred to
as probabilistic tracking graphs, for which we give a visual
demonstration in Sec. 7.

2 RELATED WORK

Optimal transport and Gromov-Wasserstein distance. This
paper builds upon the Gromov-Wasserstein (GW) distance, a tool

1. https://github.com/tdavislab/GWMT

https://github.com/tdavislab/GWMT

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

from optimal transport for deriving probabilistic correspondences
between nodes of different networks. Specifically, we use GW
distance to study merge trees, which are topological descriptors of
scalar fields; see Sec. 3 for formal definitions. The GW distance was
introduced by Mémoli [6], [7] as a way to compare metric measure
spaces (i.e., compact metric spaces endowed with probability
measures), with a view to shape analysis applications. More re-
cently, this framework was extended to allow comparisons between
networks endowed with kernel functions that are not necessarily
metrics [8], [9]. The GW distance has become an important tool
in machine learning applications, such as graph matching and
partitioning [10], [11], [12], natural language processing [13], and
alignment of multiomics data [14].

A number of recent works have focused specifically on appli-
cations of GW distance to merge trees. Combining a Riemannian
interpretation of GW distance developed in [15], [16] with matrix
sketching techniques, Li et al. [17] introduced a pipeline for finding
structural representatives among a set of merge trees. In [18], GW
techniques were combined with theory developed in [19] in order to
give an estimate of an interleaving distance on the space of merge
trees. Theoretical properties of a refined generalization of GW
distance between merge tree-like objects called ultra dissimilarity
spaces were studied in [20].

In this paper, we present a novel distance between merge trees,

called the partial fused Gromov-Wasserstein (pFGW) distance,
which is built upon variants of the GW pipeline, including the
Fused Gromov-Wasserstein distance [21] and partial optimal
transport [22].
Merge tree comparisons. A number of recent works have studied
the distances between merge trees or, more generally, Reeb graphs.
For instance, the functional distortion distance [23], the interleaving
distance [24], [25], the Gromov-Hausdorff distance [26], the Reeb
graph edit distance [27], [28], the merge tree matching distance [29],
and the distance based on branch decomposition [30] are equipped
with some desirable theoretical properties, including stability;
see [5], [31] for surveys. Our work provides a new stability result of
the GW distance between merge trees with theoretical justifications.
Topology-based feature tracking. Topological techniques have
been used for feature extraction and tracking in scalar fields [5]
and vector fields [32], [33].

Topology has been used to track features for time-varying
scalar fields by solving an explicit correspondence problem. A
number of topological descriptors have been used for feature
tracking, including persistence diagrams, merge trees, contour trees,
Reeb graphs, extremum graphs, and Morse complexes; see [5,
Sec. 7.1] for a survey. Recently, persistence diagrams and an
extension of the Wasserstein metric have been used to perform
topology tracking [34], [35]. A metric on the space of merge
trees was recently introduced [36] based on the L,-Wasserstein
distance between extremum persistence diagrams. Yan et al. [37]
performed geometry-aware comparisons of merge trees using
labeled interleaving distances. Their framework uses a labeling step
to find a correspondence between the critical points of two merge
trees, and integrates geometric information of the data domain in
the labeling process [37]. Instead, our distance computation utilizes
information from the data domain within the distances themselves.

Our pFGW distance applies to any task involving merge tree
comparisons; in this paper, we focus on feature tracking in time-
varying scalar fields using merge trees. A popular approach to
obtain the correspondence between features is to compute the
overlap between regions or volumes surrounding the features. For

2

instance, Lukasczyk et al. captured the evolution of superlevel
set components [38], [39] based on the overlaps between their
corresponding regions. Saikia et al. [40], [41] presented a strategy
for topological feature tracking with merge trees called Global
Feature Tracking (GFT). Their strategy determines the similarity
of subregions segmented by merge trees at adjacent time steps,
based on the overlap size between two regions, and the similarity
between histograms of scalar values within each region. In GFT,
the information of a critical point includes its subtree, whereas our
work considers the relation between every pair of critical points in
the merge tree. Furthermore, GFT uses the segmentation of scalar
fields to compare the overlapping subtree regions, which can be
memory-consuming.

Recent works [34], [35], [36] have utilized persistence dia-
grams for feature tracking. Alternatively, these approaches could
be considered as solving an assignment problem using branch
decompositions of merge trees. Such assignment problems are
closely related to (partial) optimal transport [42].

In particular, Soler et al. introduced the Lifted Wasserstein
Matcher (LWM) [34] framework, where features are tracked based
on the optimal matching between persistence diagrams under
the Wasserstein distance. The cost of matching a pair of points
in the persistence diagram is a weighted linear combination of:
(a) the geometric distances between the extrema involved in the
persistence pairs, and (b) the differences between the birth and
death coordinates of the points in the diagram. The cost of matching
a point to its diagonal projection (causing disappearances and
appearances of features) is a weighted linear combination of: (a)
the geometric distance between the critical points associated with
the point in the diagram, and (b) the birth and death coordinates of
the point. Both LWM and pFGW approaches make use of geometric
locations of critical points. LWM encodes topological information
via birth and death coordinates of the points in the persistence
diagram, whereas pFGW encodes topological constraints on the
matched critical points via their relations within merge trees.
Whereas LWM solves an assignment problem deterministically,
pFGW gives rise to probabilistic matching between features.
Another interesting feature of our approach is that we are able
to derive a stability result (Theorem 2), which has so far not
been established for some of the other methods (e.g., [36]) in the
literature.

Although this paper focuses on feature tracking in scalar fields,

we review feature tracking in vector fields briefly, which also aims
to associate features from one time step to the next, and to detect
topological events. Helman and Hesselink [43], [44] tracked critical
points in vector fields over time, and Wischgoll et al. [45] tracked
closed streamlines and detected bifurcations. Tricoche et al. [46],
[47] provided critical point tracking using spacetime grids. Theisel
and Seidel [48] introduced Feature Flow Fields (FFF), followed by
stable [49] and combinatorial [50] variants. See [33, Sec. 4.1] for a
survey.
Feature tracking graphs have been used to visualize the evolution
(i.e., births, deaths, merging and splitting) of topological features
over time (e.g., [51], [52]). A probabilistic tracking graph may
arise when the edges in the graph are equipped with weights
that correspond to the amount of spatial overlap between the
connected features. In our setting, we introduce a different notion
of a probabilistic feature tracking graph, which uses the coupling
probabilities between features across time steps. These probabilities
are derived based on the locations of critical points as well as their
structural relations captured by the merge trees.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

3 TECHNICAL BACKGROUND

We combine ingredients from diverse areas: topology in visual-
ization, optimal transport, and measure theory. We first review
the merge tree of a scalar field in topology-based visualization
(Sec. 3.1). We then introduce concepts from optimal transport and
measure theory, including measure networks (Sec. 3.2), Wasserstein
distance, Gromov-Wasserstein (GW) distance, and fused Gromov-
Wasserstein (FGW) distance (Sec. 3.3). We further discuss the
partial Wasserstein and partial GW distances within partial optimal
transport, which set up the foundation for our new partial FGW
distance (Sec. 4.1).

3.1 Merge Trees

Let f: M — R be a scalar field defined on the domain of interest M,
where M can be a manifold or a subset of R?. For our experiments,
M C R? or R3. Merge trees capture the connectivity among the
sublevel sets of f, i.e., M, = f~!(—co,a]. Formally, two points
x,y € M are considered to be equivalent, denoted by x ~ y, if f(x) =
f(y) = a, and x and y belong to the same connected component of
a sublevel set M. The merge tree, T (M, f) = M/~, is the quotient
space obtained by gluing together points in M that are equivalent
under the relation ~; see Fig. 1 for an example.

fv %\f
Fig. 1. An example of a merge tree from a height field f : M — R defined
on a 2D domain. From left to right: (a) 2D scalar field visualization with
local minima in blue, saddles in white, and local maxima in red; (b) a
merge tree embedded in the graph of the scalar field; and (c) an abstract

(straight-line) visualization of a merge tree as a rooted tree equipped with
the height function.

The construction of a merge tree for a given f: M — R is
described procedurally as follows: we sweep the function value
a from —oo to oo, and we create a new branch originating at a
leaf node for each local minimum of f. As a increases, such a
branch is extended as its corresponding component in M, grows
until it merges with another branch at a saddle point. Assuming
M is connected and f achieves a unique global maximum, then
all branches eventually merge into a single component, which
corresponds to the root of the tree. For a given merge tree, leaves,
internal nodes, and root node represent the minima, merging
saddles, and global maximum of f, respectively. Fig. 1 displays
a height function f: M C R> — R in (a), together with its
corresponding merge tree embedded in the graph of the scalar
field, i.e., {(x, f(x)) : x € M} in (b). Abstractly, a merge tree T is a
rooted tree equipped with f restricted to its node set, f:V — R,
as shown in (c).

3.2 Measure Networks

A finite graph G may be represented as a measure network [9]
using a triple (V, p,W): V is the set of n nodes in the graph, p is a
probability measure supported on the nodes of G, and W € RIVI*IV
is a matrix that encodes relational information between the nodes.
For example, W may be a weighted adjacency matrix [11], a graph
Laplacian [16], or a matrix of graph distances [53]. Without prior

3

knowledge about G, p is typically taken to be uniform; that is,
p(x) = 1/n, for each x € V. We represent p as a vector of size n,
p= %ln, where 1, = (1,1,.. ., l)T € R". In the following sections,
we slightly abuse the notation and identify a graph G with a
particular choice of measure network representation (V, p,W).

A measure network G = (V,p,W) may be equipped with
additional information on its nodes, namely, the node attributes.
That is, we associate each node x € V with an attribute a in some
attribute space—a metric space denoted as (A,dy4). Possible node
attributes include labels on the nodes or information derived from
the data domain from which G arises.

3.3 Wasserstein and Gromov-Wasserstein Distance

Let G| = (V1,p1,W1) and G, = (Va, p2,W2) be a pair of measure
networks with n; and n; nodes, respectively. Let [r] denote the set
{1,2,...,n} and suppose that Vi = {xi}ic[,,) and V2 = {y;} jejn,]-
A coupling between probability measures p; and p, is a joint
probability measure on V| x V, whose marginals agree with p; and
p2. That is, a coupling is represented as an n; X ny non-negative
matrix C such that C1,, = p| and CTln1 = p». The set of all such
couplings is denoted as C, that is,

C=C(p1,p2) = {CER"™|Cl,, = p1,C"1,, =p2}. (1)
Wasserstein distance. Classical optimal transport theory compares
probability measures in terms of the Wasserstein distance. Given a
pair of measure networks G| = (Vi, p1,W1) and G = (Va, p2, Wa),
where nodes x; € V| and y; € V; are equipped with attributes a; and
b; within the same attribute space, we define their g-th Wasserstein
distance based on distances between node attributes to be

1/q
w .
dy (G1,Gy) = min (;jdA(aiybj)in,j) : 2)

We refer to du(a;,b;) as the attribute distance between nodes
x; € Vi and y; € V>. The Wasserstein distance aims to minimize the
weighted sum of attribute distance between matched nodes. The
minimizers in Eq. (2) are referred to as optimal couplings.

GW distance was introduced by Mémoli as a way to compare
metric measure spaces [6], [7]. Chowdhury and Mémoli [9] showed
that a generalized GW distance is a metric on the space of measure
networks. The key idea behind the GW distance is to find a
probabilistic matching between a pair of measure networks by
searching the convex set of couplings of the probability measures
defined on the networks. Following [9], the g-th GW distance
between two measure networks is defined as

1/q
|Wl(iak)_W2(j:l)in,jCk,l> .

3)

1
GW b
4" (G1,Ga) = 2‘523(2

i,Jkl

The term |W;(i,k) — Wa(j,1)| is considered as the distortion of
matching pairs of nodes (x;,xx) in Gi with (y;,y;) in G,.

FGW distance. Vayer et al. introduced the fused Gromov-
Wasserstein (FGW) distance between attributed graphs and other
structured objects [54]. We describe their framework in the setting
of measure networks. The FGW distance is a trade-off between
the Wasserstein distance in Eq. (2) and the GW distance in Eq. (3).
For g € [1,0) and a trade-off parameter a € [0,1], the FGW

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

distance between attributed measure networks G| and G, is defined
(following [54]) as

df"(G1,G,) =
min Y (1= a)da(ai,b;)? + oW (i, k) = Wa(j, 1) 9] Ci, jCry-

ikl
4

Here, C is considered as a soft assignment matrix, and o gives a
trade-off between labels and structures. As shown in Sec. 4, Eq. (4)
plays an important role in encoding both intrinsic and extrinsic
information for merge tree comparisons.

The FGW distance enjoys a number of desirable properties
(see [54] and its supplementary material, as well as [21]). Specifi-
cally, it interpolates between the Wasserstein distance on the labels
and GW distances on the structures:

Theorem 1. [54, Theorem 3.1] As o« — 0, the FGW distance
recovers the Wasserstein distance,
lim df " = (a})4. 5
iy ™ = (@) ®
As a — 1, the FGW distance recovers the GW distance (ignoring
the constant factor in Eq. (3)),
lim ¢£6W = (4%W)2, (6)
a—1 14 q
Furthermore, d; GW defines a metric for g =1 and a semimetric
for ¢ > 2 (i.e., the triangular inequality is relaxed by a factor
29-1) [54, Theorem 3.2].
For the remainder of the paper, we work with d[f W for g = 2.
For easy reference, we have

4" (G1,G2) =
(1= &)da(ai,b;)* + Wi (i,k) = Wa(j,1))[*ICi jCis-

(7

The choice of ¢ =2 is justified for computational reasons: given
two measure networks with n; and n, nodes, respectively, we can
simplify the computation of the tensor product involved in the
evaluation of the GW loss from O(n3n3) to O(nin3 +n3n,) when
considering g = 2 [8].

min
CeCi ki

3.4 Partial Wasserstein and Partial GW Distances

Our final ingredient comes from partial optimal transport (see, e.g.,
[55]1, [56], [57]). We review the framework of Chapel et al. [22]
that studies partial Wasserstein and partial GW distances. Notations
are simplified in our setting of measure networks. Partial optimal
transport is appropriate in the setting of feature tracking, when
we need to account for mass changes due to the appearances and
disappearances of features.

Partial Wasserstein distance. Partial optimal transport focuses
on transporting a fraction 0 < m <1 of the mass as cheaply as
possible [22]. The set of admissible couplings is defined to be

Cm:Cm(p]7p2)
={CeRY"™|Cl,, < p;,C"1,, < p2, 1L C1,, = 8
{ e + | np = p17 n = p27 np np m}a ()

and the partial g-Wasserstein distance is defined as

1/q
(Z da(ai, b.i)in.,j> : ©)
i

d™" (Gy,G,) = mi
" (G1,G) [oin

n

4

A main difference between partial Wasserstein distance and
Wasserstein distance is that we replace the equalities in Eq. (1)
with inequalities in Eq. (8) to account for “partial mass transport”.
Partial GW distance. In a similar fashion, given the set of
admissible couplings C,,, the partial g-GW distance is defined
as

1/q
. . .
dgGW(Gl,Gz) = — min Z |W1(l,k) —Wz(j,l)|qC,<_,jCk,1 .
2¢eCn \; 5%

(10)

4 METHOD

We now describe our novel framework that performs feature
tracking with partial optimal transport. We first introduce a new,
partial Fused Gromov-Wasserstein (pFGW) distance between a pair
of measure networks (Sec. 4.1). We then model and compare merge
trees as measure networks (Sec. 4.2). The pFGW distance gives
rise to a partial matching between topological features (i.e., critical
points) in merge trees, thus enabling flexible topology tracking for
time-varying data (Sec. 4.3).

4.1

For topology-based feature tracking, oftentimes features (i.e.,
critical points) will appear and disappear in time-varying data.
Features that appear at time ¢ do not need to be matched with
features at time ¢ — 1; similarly, features that disappear at time ¢
do not need to be matched with features at time 7 + 1. Therefore,
we need to introduce a partial Fused Gromov-Wasserstein (pFGW)
distance for feature tracking to handle the appearances and
disappearances of multiple features across time.

The pFGW distance is defined based on the set of admissible
couplings C,, in Eq. (8) and the FGW distance in Eq. (4). Given a
pair of measure networks G| and G, formally, we have

"V (G1,Gy) =
Jnin Y [(1—a)da(ai,bj)? + Wi (i,k) — Wa(j,1))|*]Ci jCr-
oy
(1)

Notice that the newly defined pFGW distance is not too different
from the FGW distance, except that it is more flexible by allowing
a m fraction of the total mass to be transported. In practice, we set
¢ =2 and work with ¢2"".

We remark that a related distance was recently introduced
in [58] and applied to brain anatomy alignment. The difference
between the two distances is that [58] employs a different notion
of partial optimal transport (rather, unbalanced optimal transport),
where the coupling set is expanded to all joint probability measures
and disagreement of marginals is penalized by Kullback-Liebler
(KL) divergence. In [58], instead of choosing the amount of mass
to be preserved, one must tune the relative weight of the KL
regularization term.

Computing pFGW distance. Computing the pFGW distance
is a slight modification of the FGW computation in [21] with
ingredients of the Frank-Wolfe optimization algorithm [59] for
partial GW computation [22]. On a high-level, computing the
partial Wasserstein and the partial GW distances relies on
adding dummy nodes in the transportation plan and allowing
such dummy nodes to “absorb” a fraction of the mass dur-
ing transportation. With these dummy nodes added onto the
marginals, the Frank-Wolfe algorithm then solves an iterative

Partial Fused Gromov-Wasserstein Distance

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

first-order optimization for constrained convex optimization. Our
implementation is based on a minor modification of the code
for the FGW framework in [54] (https://github.com/tvayer/FGW)
with components from the partial optimal transport solvers, part
of the open-source Python library for optimal transport [60]
(https://pythonot.github.io/gen_modules/ot.partial.html).

4.2 Modeling Merge Trees as Measure Networks

Unless otherwise specified, we represent a merge tree 7 as an
attributed measure network (V, p, W) for the remainder of this paper,
where the attributes, weight matrix W, and probability measure p
are defined below.

Given a merge tree T = (V, p,W), information that is typically
topological and intrinsic to a merge tree, such as tree distances, may
be encoded via the weight matrix W and the probability measure
p (Sec. 4.2.1). Information that is extrinsic to a merge tree may
be encoded via the node labels (A,dy). Extrinsic information is
typically geometrical or statistical, and arises from the data domain,
such as the coordinates of the critical points of f: Ml — R (that
give rise to the merge tree), function values f restricted to the set
of nodes V, and prior knowledge (such as labels) associated with
nodes in a measure network.

We discuss various strategies that encode extrinsic and intrinsic
information for merge tree comparisons. The key takeaway is that
the pFGW distance we build upon provides a flexible framework
that encodes geometric and topological information for comparative
analysis of merge trees.

4.2.1 Encoding Intrinsic Information

A merge tree T is represented using a triple (V, p, W). Information
intrinsic to 7 may be encoded via p and W as we now describe.
Encoding edge information. Recall that a merge tree T is a tree
equipped with a function f:V — R defined on its nodes V. To
encode the information of f, we explore a shortest path strategy.
Recall that each node x in T is associated with a scalar value
f(x). For x,x' € V, we define W (x,x’) as follows: we associate the
weight W (x,x') = | f(x) — f(x’)| with each pair of adjacent nodes;
for nonadjacent nodes, W (x,x') is the sum of the edge weights
along the unique shortest path in T from x to x’. By construction,
the shortest path between two nodes goes through their lowest
common ancestor in 7. That is, an ancestor of a node x in T is
any node v such that there exists a path from x to v where f-values
are non-decreasing along the path. The lowest common ancestor
of two nodes x,x’, denoted Ica(x,x’), is the common ancestor of x
and x’ with the lowest f-value.

We explore an additional strategy by encoding the function
values of the lowest common ancestors among pairs of nodes,
referred to as the lowest common ancestor strategy. Using this
strategy, we define W (x,x’) = f(lca(x,x')) for x,x' € V. For a
given ordering of vertices, W is also known as the induced ultra
matrix of a merge tree [19].

Encoding node information. Without prior knowledge, we may
define p as a uniform measure, i.e., p = |71|1|v\~ This uniform
strategy means that all nodes in the merge trees are considered to
be equally important during merge tree comparison and matching.

On the other hand, p could be made more general by giving
higher weights to nodes deemed more important by an application.
For example, we may assign each node x € V an importance
value that is proportional to the functional difference to its parent
node, parent(x), which is the unique neighbor x’ of x in T with

5

F(X') > f(x). That is, we set p(x) o< (f(parent(x)) — f(x)). Such
assignment is referred to as the parent strategy.

4.2.2 Encoding Extrinsic Information

Extrinsic information that typically arises from the geometry of
the data domain may be encoded via the attribute space (A,dy)
and attribute distance d4 in Eq. (4). For a node in the merge
tree, the assigned attribute may be a high-dimensional vector or
a categorical label. Given a pair of merge trees 7y = (Vi, p1,W1)
and T, = (Va, p2,W»), nodes x; € V| and y j € V> are equipped with
attributes a; and b; from the same attribute space (A,dy).

These attributes may be coordinates associated with criti-
cal points in the data domain. Specifically, assume attribute

a; = ()c-1 x-2) €V is associated with a critical point of fj : M — R

17771

in the data domain M with coordinates (x},x?) (assuming
M C R?), whereas attribute b; = (y}-, yi) € V» corresponds to
a critical point of f, : M — R with coordinates (y}, y?) We
define dy to be the Euclidean distance between a; and bj,
da(ai,bj) = \/(x,l)2+ (x? —y?)z. This definition is referred
to as the coordinates strategy. This strategy is a natural choice
because a core method for critical point tracking is often based on
their Euclidean distance proximity.

Another useful node attribute is the type (category) of critical
points (e.g., local maximum, local minimum, and saddle). Assum-
ing attributes a; and b; capture the categories of critical points x;
from fi and y; from f, respectively, we may define the category
distance between a; and b; as

0 a;=bj;
dA(ahbj):{ | ai#b;.

That is, the distance between categories is 1 if the categories do
not match and O if they do. This is referred to as the category
strategy. In practice, we combine the above two distances to form
the attribute distance, referred to as the combined strategy.

(12)

4.2.3 Simple Examples

In Fig. 2, we show a simple example of using pFGW distance for
critical point matching between a pair of merge trees 77 and 75.
These merge trees arise from slightly different mixtures of Gaussian
functions f] and f> in 2D; see (a) and (c), respectively. As shown
in (a), T} and T; are structurally similar: 77 contains 10 critical
points, and 7> has 8 critical points with a pair of critical points
removed (see the region enclosed by the red box). Here, we apply
a uniform strategy to p. We set m = 0.8, because 2 of 10 nodes
in 71 no longer exist in 7. After computing the pFGW distance,
the 10 x 8 coupling matrix C is shown in (d) and visualized in (b).
An entry C(i, j) in the coupling matrix indicates the probability
of a node i € T7 being matched to node j € 7. In particular, rows
C(2,-) and C(3,-) (in a red box) are both zero, indicating that no
partners in 7, are matched with nodes 2 and 3 in 7. Furthermore,
nodes in 7, are colored by its most probable partner in 77, which
aligns well with our intuition that all nodes with the same property
should be matched to each other. In this example, each node in 7}
has a unique partner in 7>; however, in practice, a node may be
coupled with multiple nodes with nonzero probabilities, as shown
in the next example.

We provide another example in Fig. 3 to demonstrate prob-
abilistic matching with our framework. As shown in (c), f is a
mixture of four positive and one negative Gaussian functions. In
f», a positive Gaussian function on top is split into two Gaussian

https://github.com/tvayer/FGW
https://pythonot.github.io/gen_modules/ot.partial.html

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

"

® & 4 6 c H
7 3 2
e 4 2 5 3
@@ ©) H
9 T 7 Ts [|
(c) i e @
g 2.‘ 0 0010 0 0 0 0]
. 8) 0 0 0 0010 0 0
00 0 0 0 0 0 0
. 00 0 0 0 0 0 0
4 ‘1 5 00 0 0 0010 0
o Y o 00 0 0 0 0010
% 8 «0 £~} 0010 0 0 0 0 0
¢ “3 00 0010 0 0 0
7
010 0 0 0 0 0 0
000 0 0 0 0 0 01]

Fig. 2. Partial optimal matching using pFGW, m = 0.8. (a) Merge trees
that arise from mixtures of Gaussian functions in (c). The coupling matrix
(d) is visualized with a heat map in (b).

functions, resulting in two local maxima and one saddle point.

Merge trees 77 and 7> in (a) describe the topology of scalar fields
/1 and f>, respectively. Notice that the topological change in 7,

(enclosed by a red box) highlights the feature splitting event in f5.

Rather than enforcing a one-to-one correspondence between the
critical points, our pPFGW framework allows probabilistic matching
among them. As shown in (b) and (d), the coupling matrix C
contains multiple rows and columns with more than one nonzero
entry. For example, the row C(3,-) (red box) has two nonzero
entries, namely 0.025 at C(3,1) and 0.01 at C(3,4), see (d), which
indicates that node 3 in 7} can be matched to both node 1 and 4 in
T, with varying probabilities. Such a matching is probable due to
the feature splitting event. As node 4 in 7, is closer to node 3 in Tj
(than node 1 in T3), C(3,4) has a higher coupling probability than
C(3,1).

oo
» T ’ 7
@ "i h g f2 @

2 7. 0
@ 0 0 000010000
0 0 000001000
002 0 0 0 0 0 0010 0
[0 00250 0010 0 0 0 0]
0 0 000000010
0 0 010000000
(] v @ v 0 0 001000000
. . 0 0 00000 0 001

Fig. 3. Partial optimal matching using pFGW, m = 0.85. (a) Merge trees
that arise from mixtures of Gaussian functions in (c). The coupling matrix
(d) is visualized with a heat map in (b).

4.3 Flexible Topology Tracking

By modeling merge trees as measure networks (Sec. 4.2) and
introducing a new pFGW distance based on partial optimal

6

transport (Sec. 4.1), we are ready to describe our topology tracking
framework in Sec. 4.3.1 and discuss its flexibility in Sec. 4.3.2.

4.3.1

Our topology tracking framework consists of three steps.

1. Feature detection. First, we compute a merge tree for each
time step. We use the algorithm implemented in TTK [61], [62],
[63]. Each merge tree contains local minima, saddles, and a global
maximum (assuming there is a unique global maximum). When
the data is noisy, we apply persistent simplification [64] to remove
pairs of critical points with low persistence, in order to retain
significant features in the domain for tracking purposes.

2. Feature matching. Second, we utilize our pPFGW framework
for feature matching across adjacent time steps. Let 77 and 7; be
two merge trees computed at time steps ¢ and 7 + 1, respectively.
We then model them as measure networks Ty = (Vi, p1,W1),Tr =
(Va, p2, W) and apply the pFGW framework described in Sec. 4.1
to match critical points from 7; with 75.

We utilize a conservative bijective matching strategy. Based on

the optimal coupling C, a node x € V| may be coupled (matched)
with multiple nodes in V,. We will choose x' € V5, which has
the highest matching probability with x (referred to as the most
probable partner). Similarly, for X’ € V,, we will choose its most
probable partner x” € Vy. If x = x”, then x and X’ are matched to
form a trajectory.
3. Trajectory extraction. Trajectories are constructed by connect-
ing successively matched critical points. For any two adjacent time
steps ¢ and ¢ + 1, if a node x at time ¢ is matched with a node
x' at time 7+ 1, then a segment is constructed connecting x and
x' in the spacetime domain. If a node x at time ¢ is ignored (i.e.,
matched to the dummy node) during the partial optimal transport,
then the current trajectory terminates. If a node x’ at time # + 1 is
ignored during the partial optimal transport, it is considered as a
new feature, and a new trajectory begins.

Tracking Framework

4.3.2 A Discussion on Flexibility

Modeling a merge tree T as a measure network T = (V,p,W)
and its associated pFGW distance offers great flexibility in the
comparative analysis of merge trees. The flexibility is reflected via
a number of parameters.

First, parameters W and p allow various strategies for encoding
intrinsic and extrinsic information of a merge tree, including the
shortest path and lowest common ancestor strategies for encoding
edge information; uniform and parent strategies for encoding node
information; coordinates, category, and their combined strategy for
encoding geometric information from the data domain.

Second, parameter ¢ from Eq. (11) strikes a balance in
considering intrinsic information (via the GW distance) and
extrinsic information (via the Wasserstein distance) for merge
tree comparisons.

Third, parameter m from Eq. (11) allows partial mass transport
to accommodate the appearances and disappearances of features.

5 A NEw STABILITY RESULT

We now state a new theoretical stability result involving the GW
distance, which shows that a small change in the function data
produces a small change in merge tree representations, as measured
by the GW distance; see the supplementary material for a detailed
proof and some experimental validation of Theorem 2.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Let X be a finite, connected geometric simplicial complex with
vertex set V. Let f: X — R be a function obtained by starting with
a function f: V — R on the vertex set and extending linearly over
higher dimensional simplices. Let p be a probability distribution
over the vertex set V. We will assume that p is balanced, in the
sense that for any u,v,w € V, we have p(u) - p(v) < p(w); this
property holds for the uniform distribution, for example. We then
define the measure network representation of merge tree of f to
be Gy = (V,p,Wy), with Wy defined based on the least common
ancestor strategy. We also define a family of weighted norms on
the space of functions f: V — R by

1/q
£ llza(p) == (;If(V)IqP(V)> :

We can now state our theorem.

Theorem 2. Let f,g: X — R be functions defined as above and
let p be a balanced probability distribution. Then

1
47" (G, Ge) < SV f = gla(p)-

We also show in the supplementary material that the Lipschitz
constant %|V|2/ 9 is asymptotically tight for general probability
measures. When the measure is uniform, the constant can be
improved to %\V|l/ 9. Finally, we have the following corollary,
which treats the shortest path strategy for encoding a merge tree as
a measure network.

Corollary 1. Let f,g: X — R be functions defined as above and
let p be a balanced probability distribution. Let Gy (respectively,
Gy) denote the representation of the merge tree Ty (respectively,
T,) defined by the shortest path strategy. Then

a5 (G Ge) < (IVI7+2) 1 = glluacp).

We now briefly comment on the structure of this stability
result, and, in particular, on its dependency on |V|. There are
several metrics on the space of merge trees, or more generally,
Reeb graphs, which enjoy stability results of the same form, but
which are apparently stronger in that they do not depend on the
combinatorics of the domain (i.e., such that the Lipschitz constant is
absolute). This is the case, for example, for the functional distortion
distance [23], interleaving distance [24], [25], merge tree matching
distance [29], and the Reeb graph edit distance [27], [28]. However,
these metrics are all L”-type distances, and the most appropriate
comparison to our result would involve taking g — oo, in which
case the dependency on |V| vanishes. This behavior is comparable
to the recent p-Wasserstein stability result of [65] in the context of
LP-type distances between persistence diagrams [66], [67].

6 EXPERIMENTS

We demonstrate the utility of our framework with five 2D datasets
and two 3D datasets. For each dataset, we also compare against
two state-of-the-art approaches. In particular, we demonstrate the
strengths of our framework using two complex datasets—Cloud
and Viscous Fingering—in tracking a large number of features.

6.1

The Heated Cylinder dataset is a simulation of a 2D flow generated
by a heated cylinder using the Boussinesq approximation [68], [69].
The simulation was done with a Gerris flow solver. It shows a

Datasets Overview

7

time-varying turbulent plume containing numerous small vortices
that, in part, rotate around each other. We generate a set of merge
trees from the magnitude of the velocity fields based on 31 time
steps (600-630 from the original 2000 time steps). These time steps
describe the evolution of small vortices.

The Unsteady Cylinder Flow dataset is a 2D unsteady cylinder
flow. This synthetic vector field was created by Jung, Tel, and
Ziemniak [70] and serves as a basic model of a von-Karman vortex
street generation. We use the first 499 time steps in the dataset, and
use merge trees computed for the velocity magnitude field that pri-
marily capture the behavior of local maxima, saddles, and a global
minimum. Both Heated Cylinder and Unsteady Cylinder Flow
datasets are available via the Computer Graphics Laboratory [71].

The Vortex Street dataset is the classic 2D von Kdrman vortex
street dataset coming from the simulation of a viscous 2D flow
around a cylinder. It contains vortices moving with almost constant
speed to the right, except directly in the wake of the obstacle, where
they accelerate. We model vorticity magnitude as scalar fields, and
track the evolution of local maxima over time.

The lonizationFront dataset comes from the 2008 IEEE
Visualization Design Contest [72]. It simulates the propagation
of an ionization front instability. The simulation is done with
3D radiation hydrodynamical calculations of ionization front
instabilities in which multi-frequency radiative transfer is coupled
to the primordial chemistry of eight species [73]. We use the density
to generate merge trees from the 2D slices near the center of the
simulation volume for 123 time steps, which correspond to steps
11-133 from the original 200 time steps. These time steps show the
density over time as the instability progresses toward the right.

The Cloud dataset shows the cloud optical thickness retrieved
via the Daytime Cloud Optical and Microphysical Properties
Algorithm (DCOMP) by Walther and Heidinger [74], processed
by Chatterjee et al. [75]. This 2D dataset has been used previously
for cloud tracking [76]. We focus on the data sampled every 10
minutes from 10:50 to 16:50 on Feb 2, 2020 within the region of
10.82°N - 15.88°N, 49.19°W - 42.51°W. We use this dataset to
demonstrate the utility of our pFGW framework on tracking a large
number of features.

The Isabel dataset is a collection of 3D volumes simulating
the wind velocity magnitude of the Isabel hurricane. We use this
dataset to demonstrate the ability of our method to track features
in 3D scientific datasets. We use 12 time steps that depict the key
events of the hurricane (formation, drift, and landfall): time steps 2
to 5, 30 to 33, and 45 to 48. This 3D dataset is acquired from the
Climate Data Gateway at NCAR [77].

The ViscousFingering dataset comes from the 2016 IEEE
Scientific Visualization contest [78]. This ensemble dataset simu-
lates transient fluid flows coming from the mixing process of salts
solving into a cylinder of water. During this process, the structures
of increased salt concentration values are called the viscous fingers.
Previous works [38], [39] have used the superlevel set components
of the concentration field for tracking the viscous fingers. Here, we
use the local maxima of the concentration field to track the viscous
fingers. We select the data from the first run of the ensemble (with
a smoothing length of 0.44), which contains 120 time steps.

6.2 Heated Cylinder Dataset

We first use the Heated Cylinder dataset to demonstrate in detail
our parameter tuning process in Sec. 6.2.1. We then showcase the
tracking results based on partial optimal transport in Sec. 6.2.2.
Finally, we compare against previous approaches in Sec. 6.2.3.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

6.2.1 Parameter Tuning

Evaluation metrics. To evaluate the quality of the extracted
trajectories, we aim to reduce two types of artifacts during
parameter tuning: oversegmentations where a single trajectory
is unnecessarily segmented into subtrajectories; and mismatches
between critical points that appear as zigzag patterns connecting
(often faraway) critical points from adjacent time steps.

We introduce two metrics to evaluate these artifacts quantita-
tively: first, the number of trajectories, denoted as N; and second,
the maximum Euclidean distance between matched critical points
across time (referred to as the maximum matched distance for
simplicity), denoted as L.

There are two types of parameters in our framework: the

preprocessing parameter € that is used to de-noise the input data;
and the in-processing parameters W, p, «, and m for feature
tracking.
Preprocessing parameter tuning. Persistence simplification is
considered a preprocessing step for data de-noising. Let € € [0, 1]
denote the persistence simplification parameter. Let R denote the
range of a given scalar field. Using persistence simplification,
critical points with persistence less than € - R are removed from the
domain. € is typically chosen based on the shape of a persistence
graph, where a plateau in a persistence graph indicates a stable
range of scales to separate features from noise. Such a strategy
has been used previously in simplifying scientific data (e.g., [79],
[80]). For Heated Cylinder, we use € = 6%, which is slightly left
of the first observable plateau in the persistence graph, as we try to
maintain a slightly larger number of features; see Fig. 4.

60 -

Maxima Count

T T T T T T T T

T T
.00 .06.10 .20 30 40 .50 .60 .70 .80 .90

Fig. 4. Heated Cylinder: persistent simplification € = 6%; x-axis is €.

In-processing parameter tuning. During parameter tuning, a
guiding principle is to reduce oversegmentations and mismatches by
minimizing N and L. We introduce a parameter L* that represents
an upper bound on L. In this paper, we focus on tracking features
surrounding local maxima; therefore, we compute N and L only
for local maxima trajectories.

First, we consider parameter tuning for W and p. We inspect
the behavior of W (or p) while keeping other parameters fixed.
Through extensive experiments across all datasets in this paper,
we observe that the shortest path strategy for W generally behaves
equal to or better than the lowest common ancestor strategy in
minimizing N and L. We also observed that the uniform strategy
for p performs better than the parent strategy. Therefore, for the
rest of the paper, W uses the shortest path strategy and p uses the
uniform strategy.

Second, we study the parameter tuning of m for a fixed a. m
may be considered as an in-processing step for data de-noising, by
matching a certain number of features to the dummy nodes during
partial optimal transport. We use an example in Fig. 5 (left) to

8

demonstrate the process. For a fixed @ = 0.1, we perform a grid
search of m € [0.5,1.0] with an increment of 0.01. For instance,
at m = 0.90, we see a number of oversegmented trajectories in
the blue boxes; such oversegmentations decrease as m increases
from 0.90 to 0.94 (in the top row). On the other hand, obvious
mismatches appear in the red boxes for m > 0.96 (bottom left). As
m increases from 0.9 to 1.0, we observe a decrease in N and an
increase in L; this is additionally demonstrated in the plots of N
and L, see Fig. 5 (top right and bottom right). If our goal is to
choose an appropriate global value for m, then we are interested
in striking a balance between minimizing N and minimizing L;
therefore, we may choose m = 0.94 in this example. However, as
shown in Fig. 5, at m = 0.94, there are still oversegmentations
within the blue box, indicating that a locally adaptive value of m
might be more appropriate in practice.

Our final strategy aims to automatically adjust the value of
m between adjacent time steps to reduce N, without increasing L
drastically. Specifically, we perform a 2D grid search of o and
m: o € [0.0,1.0] with an increment of 0.1, and m € [0.5, 1.0] with
an increment of 0.01. For each fixed o, we apply the following
procedure. First, we plot the curve of L as we increase m. Second,
we apply the elbow method and pick the elbow of the L curve as an
upper bound on L, denoted as L*. Finally, for each pair of adjacent
steps ¢ and 7 + 1, we automatically choose the largest value of m
such that L does not exceed L*. In other words, m varies adaptively
across time steps, see Fig. 6 (top) with marked elbow points.

As o varies, we plot the number of trajectories N and the
maximum matched distance L (< L*) at each a, as shown in Fig. 6
(bottom). We look for a proper value of o to minimize both N and
L. However, N and L may not be minimized at the same «. In this
scenario, we look for an ¢ such that it minimizes N while keeping
L to be small enough to minimize the number of mismatches. Using
this strategy, we set o = 0.1, with a corresponding L* = 0.00997.

6.2.2 Tracking Result

Fig. 7 shows our final tracking result on the left with views
of scalar fields on the right that highlight the appearances and
disappearances of critical points. In Fig. 7 (left), the xy-plane
visualizes the scalar field at + = 0, and the z-axis shows the
trajectories for all the local maxima and the global minimum
as time increases. Most trajectories are shown to be straight
lines as only minor topological changes occur in this dataset.
Meanwhile, our framework successfully captures the appearances
and disappearances of critical points. As shown in Fig. 7 (right),
for time steps 2 — 3,10 — 11,16 — 17 and 19 — 20, critical
points disappear in the blue boxes, resulting in the termination of
trajectories; for time steps 9 — 10, a critical point appears in a red
box, resulting in the start of a new, green trajectory.

6.2.3 Comparison with Previous Approaches

We compare the tracking results for our pFGW framework with
two other state-of-the-art feature tracking approaches, referred to as
Global Feature Tracking (GFT) [40], [41] and Lifted Wasserstein
Matcher [34] (LWM); see the supplementary material for parameter
tuning of GFT and LWM, respectively.

Implementations. Our pFGW framework utilizes the libraries
implemented in TTK [61], [62], [63] for merge tree computation.
GFT is implemented in C++ and is available at [81]. It computes
the merge trees and region segmentations, and outputs the tracking
results between critical points at adjacent time steps. GFT allows
tracking between saddles and local extrema, whereas pFGW

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Fig. 5. Heated Cylinder. Left: for a fixed oo = 0.1, perform a grid search of m and observe the number of oversegmentations (in blue boxes) and
mismatches (in red boxes). Right: the trend among the number of trajectories (V) and the maximum matched distance (L) as m increases.

- a=0.0

0=0.1

025 |= a=02

a=0.3

—-- 0=04

— a=05
B s § s

—-- 0=0.7

a=0.8

-=- 0=09

o=1.0

- 0.15

05 06 07 08 0.9 10

I
i
\- ,’ 0125 I
0.100 |
Z 2 ——— | ',
\ ! 0.075 N
i | !
i 0.050

'\ 0.025

1 e i

0.000

00 01 02 03 04 05 06 07 08 09 10
a

00 01 02 03 04 05 06 07 08 09 L0
a

Fig. 6. Heated Cylinder. (a) L as we change the global m for each «;
elbows of curves are marked with dotted horizontal and vertical lines, (b)
N and L with respect to o (using adaptive m).

(in our experiments) only focuses on tracking between local
extrema. Therefore, we adjust the postprocessing of GFT to
remove trajectories involving saddles. LWM is implemented as
an embedded library in TTK. Results of all three methods are
visualized via ParaView [82] with VTK [83].

Since neither LWM nor GFT includes details on their parameter
tuning, we apply the same parameter tuning strategy as pFGW to
both LWM and GFT, that is, minimizing the number of trajectories
and the maximum matched distances; see the supplementary
material for details.

Furthermore, all three methods apply the same persistence-
based simplification during preprocessing. However, since GFT is
defined on a regular grid of squares, and pFGW and LWM use
identical simplicial meshes, we expect minor inconsistencies on
the simplified datasets between GFT and other two methods.
Tracking results comparison. All three tracking results are shown
in Fig. 8 (top). All three methods produce 24 trajectories, but

there are noticeable differences in GFT-produced trajectories
(comparing red and blue boxes, respectively). We evaluate these
results quantitatively based on observable oversegmentations and
mismatches. There are obvious oversegmentations from GFT
compared to the other two methods: a trajectory in the red box is
broken in GFT, but remains continuous in pFGW and LWM.

As for mismatches, GFT produces a different tracking result
from pFGW and LWM in the blue box, from time steps 24 — 27,
the corresponding scalar fields are shown in Fig. 8 (bottom). We
interpret the topological changes as follows: a critical point appears
from 24 — 25, another critical point appears from 25 — 26, and a
critical point disappears from 26 — 27. The trajectories in pFGW
and LWM correctly reflect these topological changes, whereas
those in GFT consider these changes to be the movements of
critical points. Therefore, pFGW and LWM perform similarly, but
GFT performs slightly worse for the Heated Cylinder dataset.

6.3 Unsteady Cylinder Flow

For the Unsteady Cylinder Flow dataset, we employ the same pa-
rameter tuning strategy detailed in Sec. 6.2.1. We use a persistence
simplification level at € = 1%. We set o« = 0.1 and L* = 0.03768,
see the supplementary material for details.

6.3.1 Tracking Results

Our tracking result using pFGW is highly periodic, where the
extracted trajectories exhibit repetitive patterns that include the
appearances, disappearances, and movements of local maxima over
time, see Fig. 9 (left). We show a few time steps at t = 53,178,303,
and 428 to highlight a periodicity of ~ 125. Furthermore, as shown
in Fig. 9 (right), six snapshots show the evolution of the scalar field
within a single period between r = 3 and t = 128, where the scalar
field at + = 128 is mostly identical to the one at r = 3.

6.3.2 Comparison with Previous Approaches

We compare our pFGW framework against the LWM and GFT
methods, which give rise to 44, 44, and 108 trajectories, respec-
tively, see Fig. 9.

When considering mismatches, the trajectories from all three
methods are visually similar, where there are no obvious mis-
matches for any of these methods. In particular, the (normalized)
maximum matched distances across the three methods are the same,
L =0.03768.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

10

Fig. 7. Heated Cylinder. Tracking result (left) with views of scalar fields (right) that capture topological changes in the time-varying scalar field at
selected time steps. The appearances and disappearances of critical points are highlighted in red and blue boxes, respectively.

f

Fig. 8. Heated Cylinder. Top: from left to right, pPFGW (ours), LWM, and GFT, respectively. Bottom: the appearances and disappearances of local

maxima in the blue boxes on top.

When considering oversegmentations, GFT produces 108 tra-
jectories, whereas pFGW and LWM each produces 44 trajectories.
Correspondingly, GFT shows many more broken trajectories
visually in comparison with pFGW and LWM.

6.4 2D von Karman Vortex Street Dataset

We then study the Vortex Street dataset. We set € = 1%, a = 0.1,
and L* = 0.02537; see the supplementary material for details.

6.4.1 Tracking Results

The tracking results for Vortex Street using pFGW, LWM, and
GFT are shown in Fig. 10 (left), in which there are 17, 17, and

27 trajectories, respectively. The results for pPFGW and LWM are
mostly identical, whereas the results from GFT show a number
of oversegmentations and missing trajectories at later time steps
(e.g., see the blue box). A few snapshots of the scalar field are
shown in Fig. 10 (right top), where local maxima are well
aligned horizontally and moving rightward at an almost constant
speed. This characteristic leads to a large number of straight-
line trajectories, as shown in Fig. 10 (left). Meanwhile, a critical
point remains stable in location to the left of the cylinder, whose
trajectory is shown as a single straight line on the leftmost part
of Fig. 10 for both pFGW and LWM.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

pFaW \
¢ T d

«

Fig. 9. Unsteady Cylinder Flow. Left: comparing tracking results for pFGW,
LWM, and GFT, respectively. Right: snapshots of scalar fields within a
single period between r =3 and r = 128.

Fig. 10. Vortex Street. Left: comparing tracking results for pFGW, LWM,
and GFT, respectively. Right top: snapshots of scalar fields at r = 0,28,
and 56. Right bottom: merge-tree-based segmentation of the scalar fields
at+ =44 and 45.

6.4.2 Comparison with Previous Approaches

Our pFGW method and the LWM method perform simi-
larly on VortexStreet in terms of reducing oversegmentations
and mismatches. Meanwhile, similar to Heated Cylinder and
Unsteady Cylinder Flow, GFT typically introduces more overseg-
mentations in comparison with pFGW and LWM; in addition,
certain trajectories may be missing due to insufficient feature
overlaps between adjacent time steps. In Fig. 10 (right bottom),
we show merge-tree-based segmentation of the scalar field at time
steps 44 and 45. Here, the corresponding features at t = 44 and
t =45 move rapidly to the right (see the purple and green boxes,
respectively). Although the features associated with these adjacent
time steps are visually similar, their overlap is quite small. Such
insufficient feature overlaps appear to impact the tracking results
significantly.

6.5

We study the lonization Front dataset by setting € = 10%, a = 0.4,
and L* = 0.02693. A few snapshots of the scalar field at time steps
0,30,60 and 90 are shown in Fig. 11, as the instability progresses
towards the right.

lonization Front Dataset

6.5.1 Tracking Results

We demonstrate our pFGW tracking results in Fig. 12 (left), where
trajectories are shown with the scalar field at + = 0. We then

11

Fig. 12. lonization Front. Left: pFGW trajectories are shown with the
scalar field at time step 0. Right: pFGW trajectories are visualized with
the landscape of the time-varying scalar field. Top: all trajectories; middle:
long-term trajectories; bottom: short-term trajectories.

visualize these trajectories with the landscape of the time-varying
scalar field in Fig. 12 (right), which is constructed by stacking
the original scalar field at time steps 0, 10, 20, ..., 100, and 110.
Such a landscape clearly shows the rightward propagation of the
ionization front. The results shown in Fig. 12 (top) thus contain a
number of trajectories that capture such a trend.

We further split these trajectories into two sets: trajectories that
last longer than 29 time steps (long-term trajectories) in Fig. 12
(middle), and those that last between 5 and 29 steps (short-term
trajectories) in Fig. 12 (bottom). We ignore trajectories shorter than
5 time steps as they do not capture the global trend of the data. A
number of the long-term trajectories appear to follow the direction
of the radiation waves, whereas some short-term trajectories capture
local interactions among them.

6.5.2 Comparison with Previous Approaches

In terms of oversegmentations, pFGW, LWM, and GFT give rise to
51, 52, and 92 trajectories, respectively. pPFGW produces slightly
fewer trajectories than LWM, whereas GFT oversegments and
produces the largest number of trajectories, see Fig. 13. In particular,
GFT produces noticeably broken long-term trajectories, implying
that it fails to track some major features consistently.

In terms of mismatches, trajectories from all three methods
interpret the evolution of features in a similar way. However, pPFGW
produces the smallest (normalized) maximum distance of 0.02693,
whereas LWM and GFT give rise to a (normalized) maximum
distance of 0.03840.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Fig. 13. lonization Front. Comparing tracking results for pFGW, LWM,
and GFT, respectively.

6.6 Cloud Dataset
6.6.1

For our cloud tracking task, Fig. 14 (left) illustrates the scalar field
of interest, namely, the cloud optical thickness (at the 1st time step),
where areas with high cloud optical thickness are shown in white,
orange and brown. We track the cloud by tracking the movement
of the local maxima of such a field.

Tracking Results

min s mmm max

Fig. 14. Cloud. Visualization of a cloud optical thickness field (left) along
with its local maxima in red (right).

As shown in Fig. 15 (right), local maxima (in red) are densely
distributed in areas with high cloud optical thickness. Such
characteristics present multiple challenges for feature tracking.
First, the regions that contain local maxima may be very small,
leading to insufficient feature overlaps between adjacent time
steps. Second, densely distributed features frequently appear and
disappear, making it challenging to track individual features.

We present the tracking results in Fig. 15, in which the majority
of the features move toward the left side of the (observable) domain.
For pFGW, we set € =50%, o« = 0.1 and L* = 0.0653.

6.6.2 Comparison with Previous Approaches

Overall, pFGW produces the largest number of trajectories and
the smallest number of isolated local maxima (i.e., trajectories
that last for a single time step), comparing with the other two
approaches. It produces 584 trajectories plus 274 isolated local
maxima. In contrast, GFT produces 476 trajectories plus 1390
isolated local maxima, whereas LWM produces 302 trajectories
plus 1236 isolated local maxima.

All three methods produce mismatches, as indicated by red
arrows in Fig. 15. However, pFGW produces long trajectories with
the fewest number of mismatches. In particular, pFGW has the
best maximum matched distance in comparison with LWM and

12

Fig. 15. Cloud. Tracking results for GFT, LWM, and pFGW, respectively.
Red arrows highlight some (not all) trajectories containing mismatches.

GFT, respectively. Statistically, the largest (normalized) maximum
matched distances in the results of pFGW, LWM, and GFT are
0.0653, 0.1828, and 0.2473, respectively. Fig. 16 displays the
distributions of maximum matched distances from trajectories
across three methods, where pFGW produces zero trajectories with
a maximum matched distance larger than 0.075. This shows that
pFGW is comparatively most resistant to mismatches.

) — pFGW
f — WM
— GFT

0.0 o
0.0 |-~ ~"0050 0075 0100 0.125 0.150 0175 0200 0.225 0.250

Fig. 16. Cloud. Left: distributions of maximum matched distances of
trajectories obtained with pFGW, LWM, and GFT, respectively; x-axis is
the maximum matched distance, y-axis is the percentage of the number
of trajectories. Right: a zoomed-in view of the tail of the distribution.

Upon further inspection, GFT suffers severely from overseg-
mentations, that is, it produces many short trajectories and isolated
local maxima. This is likely due to insufficient feature overlaps
between adjacent time steps. LWM also fails to find trajectories
for many local maxima, resulting in a large number of isolated
local maxima. Under the current configuration of LWM, the cost of
matching a local maximum to its diagonal projection (causing the
disappearance of a feature) is dominated by the distance between
the maximum and its pairing saddle. When a local maximum is
very close to its pairing saddle, LWM tends to match the local
maximum to its diagonal projection (rather than looking for its
corresponding local maximum in an adjacent time step), which
leads to an unpaired local maximum. On the other hand, in LWM,
as a large number of features appear and disappear, mismatches
between local maxima occur when the cost of matching a local
maximum to its diagonal projection (causing the disappearance of
a feature) outweighs the cost of matching the same local maximum
to a faraway local maximum (causing mismatches). Whereas
LWM relies on the locations of pairing saddles to determine
the appearances and disappearances of local maxima, our pPFGW

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

approach imposes more constraints on the relations among the
critical points using merge trees, thus producing the smallest
number of mismatches comparatively.

6.7 3D Isabel Dataset

pFGW LWM

Fig. 17. Isabel. Tracking results for pFGW (left) and LWM (right).

For the 3D Isabel dataset, we apply both pPFGW and LWM to
track the trajectory of the global maximum, which highlights the
movement of the main hurricane. This dataset contains a discrete
set of time steps with large gaps; thus, it is not suitable for feature
tracking based on region overlaps (such as GFT). For pFGW, we
use € = 10%, oo = 0.6, L* = 0.4010. As shown in Fig. 17, both
pFGW and LWM successfully track the movement of the hurricane.
These results highlight the robustness of topology-based feature
tracking in 3D.

6.8 3D Viscous Fingering Dataset
6.8.1

We focus on trajectories below the water surface for the
3D ViscousFingering dataset. The tracking results are shown
in Fig. 18 (top). For pFGW, we set € = 1%, a = 0.1, and
L* = 0.1369. Due to high feature density, we highlight long-term
trajectories (that last at least 20 time steps) in Fig. 18 (bottom).

Tracking Results

Fig. 18. Viscous Fingering. Top: tracking results for GFT, LWM, and pFGW,
respectively. Bottom: trajectories that last at least 20 time steps. Red
boxes contain a region of interest for analyzing mismatches.

6.8.2 Comparison with Previous Approaches

As shown in Fig. 18 (bottom), GFT does not produce as many
long-term trajectories as in the case of pPFGW and LWM. pFGW
produces the smallest number of isolated local maxima. In total,
pFGW gives 424 trajectories plus 158 isolated local maxima;

13

LWM produces 283 trajectories plus 619 isolated local maxima;
and GFT leads to 462 trajectories plus 378 isolated local maxima.
Even though LWM produces fewer trajectories than pFGW, these
trajectories contain more mismatches that incorrectly connect
faraway local maxima. Statistically, pFGW produces the best
maximum matched distance: the largest (normalized) maximum
distances for pFGW, LWM, and GFT are 0.1369, 0.3214, and
0.3499, respectively.

We give a case study where LWM produces mismatches that
incorrectly connect faraway local maxima in Fig. 19. Here, we
compare trajectories in a region of interest enclosed by red boxes
in Fig. 18. Across time steps 71 — 76, local maxima tracked by
the same trajectories are colored the same. In Fig. 19 (left), pPFGW
correctly identifies three trajectories (purple, yellow, and green),
including the long-term green trajectory. In Fig. 19 (right), LWM
incorrectly tracks these local maxima along the purple trajectory.

For example, in LWM, the purple trajectory between time steps
71 — 72 and 75 — 76 contain mismatches because the matched
local maxima belong to different superlevel set components with
minimum overlaps. In addition, LWM also terminates the green
trajectory too early because the white maximum at time step 75 and
the purple maximum at time step 76 belong to the same superlevel
set component. In comparison, pPFGW produces more reasonable
trajectories: local maxima of different superlevel set components
are not connected to the same trajectory; and the continuity of the
green trajectory is preserved.

pFGW

-
72 %\\/; - %/
"’ RM,\// . \ﬁ/ij

‘ (1
74 ‘G\\J;\// % 7\4,5:{ i’ w

LWM

\ .
s Nl g™
\ /"r ~~ N
R - p
\ ' . |
° ﬁqv‘./ ~ //(. \ \\ﬁ{,»:;\

—

Fig. 19. ViscousFingering. Comparing trajectories extracted by pFGW
and LWM in a region of interest enclosed by red boxes in Fig. 18.

In this case study for LWM, the distances between the
mismatched local maxima are quite small. Furthermore, these
critical points all have small persistence. Therefore, persistence
information and critical point locations are not sufficient for LWM
to avoid these mismatches, where as pFGW performs better by
imposing additional topological constraints on the critical points
via merge trees.

6.9 Runtime Analysis

We perform runtime analysis for all three approaches (GFT, LWM,
and pFGW) under the fine-tuned parameter configurations, as
shown Table 1. All results are obtained from a laptop with a

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

12th Gen Intel(R) Core(TM) i9-12900H 2.50 GHz CPU with
32 GB memory. Both GFT and LWM are implemented in
C++, whereas the pFGW is implemented in Python. For the
Unsteady Cylinder Flow, Vortex Street, lonization Front, Isabel,
and Viscous Fingering datasets, pPFGW achieves a similar runtime
with LWM. GFT is generally slower than the other two methods
except on the ViscousFingering dataset. pFGW is the slowest
among the three for the Heated Cylinder dataset. Overall, all three
methods take < 0.01 second to compute the feature matching
between a pair of adjacent time steps when the number of nodes is
below 100. We do not include the runtime for merge tree generation
as it is part of the data preprocessing. GFT spends more time on
merge tree generation than LWM and pFGW, since it requires extra
information on merge tree segmentation.

In terms of computational complexity, minimizing the pFGW
distance between merge trees requires O(n1n3 +n?ny) per iteration,
where n; and n, are the size of merge trees. In our experiments,
the pFGW distance converges within 20 iterations for all datasets.

Dataset # of nodes | Time steps | Method | Total time (sec) | Avg. time
GFT 0.120 0.0040
Heated Cylinder 40 31 LWM 0.045 0.0015
pFGW 0.146 0.0049
GFT 1.049 0.0021
Unsteady Cylinder Flow 16 499 LWM 0.325 0.0007
pFGW 0.414 0.0008
GFT 0.148 0.0026
VortexStreet 30 59 LWM 0.095 0.0016
pFGW 0.098 0.0017
GFT 0.577 0.0047
lonization Front 40 123 LWM 0.333 0.0027
pFGW 0.318 0.0026
GFT 4.180 0.1267
Cloud 769 34 LWM 1.464 0.0444
pFGW 4.043 0.1225
GFT 0.378 0.0344
Isabel 14 12 LWM 0.176 0.0160
pFGW 0.012 0.0011
GFT 0.879 0.0074
ViscousFingering 96 120 LWM 1.041 0.0087
pFGW 1.036 0.0087

TABLE 1

Runtime (in seconds) of feature tracking with GFT, LWM, and pFGW,
respectively. Average time is computed for a pair of adjacent time steps.

7 PROBABILISTIC TRACKING GRAPHS

A direct consequence of our pFGW method is that it enables richer
representations of tracking graphs, referred to as probabilistic track-
ing graphs. The partial optimal transport provides a probabilistic
coupling between features at adjacent time steps, which are then
visualized by weighted tracks of these tracking graphs.

We provide a visual demo for probabilistic feature tracking for
several 2D time-varying datasets. We illustrate its visual interface
using a synthetic dataset. As shown in Fig. 20, the synthetic dataset
is constructed as a mixture of nine Gaussian functions: one negative
Gaussian function stays fixed at the center, eight Gaussian functions
are positioned on a cycle, four of which remain stationary, whereas
the other four move clockwise around the center. We focus on
tracking the local maxima across time.

As shown in Fig. 20, the graph view (a) visualizes a tracking
graph whose feature tracks are equipped with probabilistic tracking
information. The track view (b) displays tracks across five consecu-
tive time steps in 3D spacetime centered around the selected time
step. The data view (c) presents the scalar fields at the same five
time steps. With multiple views, users can explore the probabilistic
feature tracking results from global and local perspectives.

The graph view (a) visualizes a tracking graph that captures the
evolution of features across all time steps. Vertical time bars are
positioned along the x-axis to represent time steps in increasing

14

order, whereas tracks associated with individual features are laid
out horizontally in a way that minimizes edge crossings. Nodes
at the intersection of time bars and tracks represent features that
appear, disappear, merge, or split. If feature i from time ¢ is coupled
with feature j from time ¢+ 1 with a nonzero measure in the
coupling matrix C, an edge is drawn between these two features in
the tracking graph, whose color and opacity encodes the value of
C(i, j) as indicated in the color bar. C(i, j) is a probability measure,
where higher value implies a higher probability of matching feature
i with feature j. Users could filter the tracks in the tracking graphs
by scrolling the color bar, in order to explore the tracking graphs
at different probability thresholds.

In the tracking graph shown in Fig. 20 (a), when the four
moving Gaussian functions coincide with the four stationary
ones, their corresponding features merge together at time step
8. Subsequently, these merged features split at time step 10. The
tracking graph depicts such events as probabilistic merges and splits.
From time steps 7 — 8, two features 0; and 0, merged into feature
o with the equal probability. Similarly, from time steps 10 — 11, a
single feature o’ (that corresponds to o) splits into two (03 and o04)
with equal probability. These merging and splitting events are also
encoded in the data view and the track view, see Fig. 20 (b) and
(c). In this case, o; at time step 7 corresponds to o4 at time step 11,
o at time step 8 corresponds to o’ at time step 10; however, o; at
time step 7 does not match to o3 at time step 11, since there are
ambiguities in matching due to symmetry.

We now visually demonstrate the probabilistic tracking graph
for the lonization Front dataset. In the example shown in Fig. 21,
we set the probability threshold at 0.023 (main view) and 0.032
(inserted view), respectively. To investigate the data of interest,
users could select a specific time step ¢ by clicking its corresponding
time bar, which updates views (a), (b), and (c). For the graph view
(a), the selected time bar is highlighted in red, with the previous
two (at r —2, t — 1) and subsequent two (at t + 1, # +2) time
bars colored in orange and blue, respectively. We smoothly adjust
intervals between time steps based on the fisheye technique using
animation, so that the focus area surrounding the selected time
bar is magnified and the area away from the focus is compressed.
For the track view (b), we render five scalar fields centered by the
selected time step and highlight the tracks among them in a 3D
spacetime, while supporting zooming and rotation. For the data
view (c), we visualize the five 2D scalar fields side by side, where
tracked features are highlighted in red.

Furthermore, our visual demo allows users to explore tracks
associated with specific features. As illustrated in Fig. 21, users
can select a feature of interest (denoted by o), which sits at
the intersection of four tracks /y,l,l3, and I4; all of which are
highlighted in red while maintaining their opacity. The track view
(b) then displays these four tracks, whereas the data view (c)
highlights the corresponding features (in magenta) along these
tracks. In particular, two features, 0; and o, at time step 69
are coupled with feature o at time step 70 with relatively high
probabilities. By increasing the tracking probability threshold,
shown in the box insert, feature o; will stop its track at time step
69, whereas features 0, and o remain matched with each other. Our
visual demo showcases such uncertainty in tracking.

The visual demo is implemented using JavaScript for the front-
end, where the tracking graphs are visualized with D3.js and the
scalar fields are visualized using WebGL. The computational back-
end is built with Python and Flask.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

15

Fig. 20. A visual demo of probabilistic feature tracking: the graph view (a), the track view (

Dataset: | lonizationFront v

b

), and the data view (c).

Probabilistic Tracking Graph

(/ il
L | L4 L4 | 4 —
» 01 -
O 0]
/ 2 W

Fig. 21. Selecting a particular feature o to highlight relevant tracks (in red) and features (in magenta). The visual demo showcases uncertainty in

tracking across different probability thresholds (see the box insert).

8 CONCLUSION

In this paper, we provide a flexible framework for tracking
topological features in time-varying scalar fields. Our framework
builds upon tools from topological data analysis (i.e., merge trees)
and partial optimal transport. In particular, we model a merge tree
as a measure network, and define a new partial fused Gromov-
Wasserstein distance between a pair of merge trees. Such a distance
gives rise to a partial matching between topological features in time-
varying data, thus enabling flexible topology tracking for scientific
simulations, as demonstrated by our extensive experiments.

On the other hand, our framework is not without limitations.
First, we focus on feature tracking using merge trees, that is,
we aim to preserve sublevel set relations between features (i.e.,
critical points) that are captured by merge trees. Other topological

descriptors such as Reeb graphs and Morse complexes may
capture different topological relations such as level set or gradient
relations. We would like to explore topology tracking with partial
optimal transport using other types of topological descriptors,
which are left for future work. Second, we provide experimental
justifications for parameter tuning; understanding parameter tuning
from a theoretical standpoint seems elusive. For future work, given
the efficiency of our implementation, we would like to perform
experiments involving datasets from large-scale simulations.

ACKNOWLEDGMENTS

This project was partially supported by DOE DE-SC0021015, NSF
IIS 2145499, 1IS 1910733, and DMS 2107808. We would like to
thank Andi Walther for sharing the Cloud dataset and Dwaipayan
Chatterjee for processing the dataset.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

REFERENCES

(1]

(2]

[3]

(4]

[3]

(6]

(71

(8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

[23]

P.-T. Bremer, G. Weber, J. Tierny, V. Pascucci, M. Day, and J. Bell,
“Interactive exploration and analysis of large-scale simulations using
topology-based data segmentation,” IEEE Transactions on Visualization
and Computer Graphics, vol. 17, no. 9, pp. 1307-1324, 2011.

W. Engelke, T. B. Masood, J. Beran, R. Caballero, and 1. Hotz,
“Topology-based feature design and tracking for multi-center cyclones,”
in Topological Methods in Data Analysis and Visualization VI: Theory,
Algorithms, and Applications. Springer, 2021, pp. 71-85.

B. Friesen, A. Almgren, Z. Lukic, G. Weber, D. Morozov, V. Beckner,
and M. Day, “In situ and in-transit analysis of cosmological simulations,”
Computational Astrophysics and Cosmology, vol. 3, pp. 1-18, 2016.

C. Heine, H. Leitte, M. Hlawitschka, F. Turicich, L. D. Floriani, G. Scheuer-
mann, H. Hagen, and C. Garth, “A survey of topology-based methods in
visualization,” Computer Graphics Forum, vol. 35, no. 3, pp. 643-667,
2016.

L. Yan, T. B. Masood, R. Sridharamurthy, F. Rasheed, V. Natarajan,
1. Hotz, and B. Wang, “Scalar field comparison with topological descrip-
tors: Properties and applications for scientific visualization,” Computer
Graphics Forum, vol. 40, no. 3, pp. 599-633, 2021.

F. Mémoli, “On the use of Gromov-Hausdorff distances for shape
comparison,” Eurographics Symposium on Point-Based Graphics, pp.
81-90, 2007.

——, “Gromov-Wasserstein distances and the metric approach to object
matching,” Foundations of Computational Mathematics, vol. 11, no. 4, pp.
417-487, 2011.

G. Peyré, M. Cuturi, and J. Solomon, “Gromov-Wasserstein averaging
of kernel and distance matrices,” Proceedings of the 33rd International
Conference on Machine Learning, PMLR, vol. 48, pp. 2664-2672, 2016.
S. Chowdhury and F. Mémoli, “The Gromov-Wasserstein distance between
networks and stable network invariants,” Information and Inference: A
Journal of the IMA, vol. 8, no. 4, pp. 757-787, 2019.

H. Xu, D. Luo, H. Zha, and L. C. Duke, “Gromov-Wasserstein learning
for graph matching and node embedding,” in International Conference on
Machine Learning. PMLR, 2019, pp. 6932-6941.

H. Xu, D. Luo, and L. Carin, “Scalable Gromov-Wasserstein learning
for graph partitioning and matching,” Advances in Neural Information
Processing Systems, vol. 32, pp. 3052-3062, 2019.

S. Chowdhury and T. Needham, “Generalized spectral clustering via
Gromov-Wasserstein learning,” in International Conference on Artificial
Intelligence and Statistics. PMLR, 2021, pp. 712-720.

D. Alvarez-Melis and T. Jaakkola, “Gromov-Wasserstein alignment of
word embedding spaces,” Proceedings of the Conference on Empirical
Methods in Natural Language Processing, pp. 1881-1890, 2018.

P. Demetci, R. Santorella, B. Sandstede, W. S. Noble, and R. Singh,
“SCOT: Single-Cell Multi-Omics Alignment with Optimal Transport,”
Journal of Computational Biology, vol. 29, no. 1, pp. 3-18, 2022.

K.-T. Sturm, “The space of spaces: curvature bounds and gradient flows
on the space of metric measure spaces,” Memoirs of the American
Mathematical Society, vol. 290, no. 1443, 2023.

S. Chowdhury and T. Needham, “Gromov-Wasserstein averaging in a
Riemannian framework,” in 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), 2020, pp. 3676—
3684.

M. Li, S. Palande, L. Yan, and B. Wang, “Sketching merge trees for
scientific visualization,” IEEE Workshop on Topological Data Analysis
and Visualization (TopoInVis) at IEEE VIS, 2023.

J. Curry, H. Hang, W. Mio, T. Needham, and O. B. Okutan, “Decorated
merge trees for persistent topology,” Journal of Applied and Computa-
tional Topology, pp. 1-58, 2022.

E. Gasparovic, E. Munch, S. Oudot, K. Turner, B. Wang, and Y. Wang,
“Intrinsic interleaving distance for merge trees,” La Matematica, vol. 4,
pp. 40-65, 2025.

F. Mémoli, A. Munk, Z. Wan, and C. Weitkamp, “The ultrametric Gromov-
Wasserstein distance,” Discrete and Computational Geometry, vol. 70, pp.
1378-1450, 2023.

T. Vayer, L. Chapel, R. Flamary, R. Tavenard, and N. Courty, “Fused
Gromov-Wasserstein distance for structured objects,” Algorithms, vol. 13,
no. 9, p. 212, 2020.

L. Chapel, M. Z. Alaya, and G. Gasso, “Partial optimal transport
with applications on positive-unlabeled learning,” Advances in Neural
Information Processing Systems, vol. 33, pp. 2903-2913, 2020.

U. Bauer, X. Ge, and Y. Wang, “Measuring distance between Reeb graphs,”
in Proceedings of the thirtieth annual symposium on Computational
geometry, 2014, pp. 464-473.

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

(34]

(351

(36]

[37]

[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

16

D. Morozov, K. Beketayev, and G. Weber, “Interleaving distance between
merge trees,” in Proceedings of Topology-Based Methods in Visualization,
2013.

V. De Silva, E. Munch, and A. Patel, “Categorified Reeb graphs,” Discrete
& Computational Geometry, vol. 55, no. 4, pp. 854-906, 2016.

P. K. Agarwal, K. Fox, A. Nath, A. Sidiropoulos, and Y. Wang,
“Computing the Gromov-Hausdorff distance for metric trees,” ACM
Transactions on Algorithms (TALG), vol. 14, no. 2, pp. 1-20, 2018.

U. Bauer, C. Landi, and F. Memoli, “The Reeb graph edit distance
is universal,” Foundations of Computational Mathematics, vol. 21, pp.
1441-1464, 2021.

B. Di Fabio and C. Landi, “The edit distance for Reeb graphs of surfaces,”
Discrete & Computational Geometry, vol. 55, pp. 423—461, 03 2016.

B. Bollen, P. Tennakoon, and J. A. Levine, “Computing a stable distance
on merge trees,” IEEE Transactions on Visualization and Computer
Graphics, vol. 29, no. 1, pp. 1168-1177, Jan. 2023.

K. Beketayev, D. Yeliussizov, D. Morozov, G. Weber, and B. Hamann,
“Measuring the distance between merge trees,” in Topological Methods in
Data Analysis and Visualization II1: Theory, Algorithms, and Applications,
2014, pp. 151-166.

B. Bollen, E. Chambers, J. A. Levine, and E. Munch, “Reeb graph metrics
from the ground up,” arXiv preprint arXiv:2110.05631, 2022.

F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch, “The
state of the art in flow visualisation: Feature extraction and tracking,”
Computer Graphics Forum, vol. 22, no. 4, pp. 775-792, 2003.

R. Bujack, L. Yan, I. Hotz, C. Garth, and B. Wang, “State of the art
in time-dependent flow topology: Interpreting physical meaningfulness
through mathematical properties,” Computer Graphics Forum, vol. 39,
no. 3, pp. 811-835, 2020.

M. Soler, M. Plainchault, B. Conche, and J. Tierny, “Lifted Wasserstein
matcher for fast and robust topology tracking,” in I[EEE 8th Symposium
on Large Data Analysis and Visualization (LDAV), Berlin, Germany, 2018,
pp. 23-33.

M. Soler, M. Petitfrere, G. Darche, M. Plainchault, B. Conche, and
J. Tierny, “Ranking viscous finger simulations to an acquired ground truth
with topology-aware matchings,” in IEEE 9th Symposium on Large Data
Analysis and Visualization, 2019, pp. 62-72.

M. Pont, J. Vidal, J. Delon, and J. Tierny, “Wasserstein distances,
geodesics and barycenters of merge trees,” IEEE Transactions on
Visualization and Computer Graphics, vol. 28, no. 1, pp. 291-301, 2022.
L. Yan, T. B. Masood, F. Rasheed, 1. Hotz, and B. Wang, “Geometry-
aware merge tree comparisons for time-varying data with interleaving
distances,” IEEE Transactions on Visualization and Computer Graphics
(TVCG), vol. 29, no. 8, pp. 3489-3506, 2023.

J. Lukasczyk, G. Weber, R. Maciejewski, C. Garth, and H. Leitte, “Nested
tracking graphs,” Computer Graphics Forum, vol. 36, no. 3, pp. 12-22,
2017.

J. Lukasczyk, C. Garth, G. H. Weber, T. Biedert, R. Maciejewski, and
H. Leitte, “Dynamic nested tracking graphs,” IEEE Transactions on
Visualization and Computer Graphics, vol. 26, no. 1, pp. 249-258, 2019.
H. Saikia and T. Weinkauf, “Global feature tracking and similarity
estimation in time-dependent scalar fields,” Computer Graphics Forum,
vol. 36, no. 3, pp. 1-11, 2017.

——, “Fast topology-based feature tracking using a directed acyclic graph,”
in Topological Methods in Data Analysis and Visualization V: Theory,
Algorithms, and Applications. Springer, 2017, pp. 155-169.

V. Divol and T. Lacombe, “Understanding the topology and the geometry
of the space of persistence diagrams via optimal partial transport,” Journal
of Applied and Computational Topology, vol. 5, no. 1, pp. 1-53, 2021.

J. Helman and L. Hesselink, “Representation and display of vector field
topology in fluid flow data sets,” Computer, vol. 22, no. 8, pp. 27-36,
1989.

J. L. Helman and L. Hesselink, “Surface representations of two-and three-
dimensional fluid flow topology,” in Proceedings of the 1st conference on
Visualization’90. 1IEEE Computer Society Press, 1990, pp. 6-13.

T. Wischgoll, G. Scheuermann, and H. Hagen, “Tracking closed stream-
lines in time dependent planar flows,” in Proceedings of the Vision
Modeling and Visualization Conference, 2001, pp. 447-454.

X. Tricoche, G. Scheuermann, and H. Hagen, “Topology-based visu-
alization of time-dependent 2D vector fields,” in Symposium on Data
Visualisation, 2001, pp. 117-126.

X. Tricoche, T. Wischgoll, G. Scheuermann, and H. Hagen, “Topology
tracking for the visualization of time-dependent two-dimensional flows,”
Computers & Graphics, vol. 26, no. 2, pp. 249-257, 2002.

H. Theisel and H.-P. Seidel, “Feature flow fields,” in Symposium on Data
Visualisation, vol. 3, 2003, pp. 141-148.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[49]

[50]

(511

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[591

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(711
[72]
(73]

[74]

T. Weinkauf, H. Theisel, A. Van Gelder, and A. Pang, “Stable Feature
Flow Fields,” IEEE Transactions on Visualization and Computer Graphics,
vol. 17, no. 6, pp. 770-780, Jun. 2011.

J. Reininghaus, J. Kasten, T. Weinkauf, and I. Hotz, “Efficient computation
of combinatorial feature flow fields,” IEEE Transactions on Visualization
and Computer Graphics, vol. 18, no. 9, pp. 1563-1573, 2012.

J. Lukasczyk, G. Aldrich, M. Steptoe, G. Favelier, C. Gueunet, J. Tierny,
R. Maciejewski, B. Hamann, and H. Leitte, “Viscous fingering: A
topological visual analytic approach,” Applied Mechanics and Materials,
vol. 869, pp. 9-19, 2017.

W. Widanagamaachchi, C. Christensen, V. Pascucci, and P.-T. Bremer,
“Interactive exploration of large-scale time-varying data using dynamic
tracking graphs,” in IEEE Symposium on Large Data Analysis and
Visualization (LDAV). 1EEE, 2012, pp. 9-17.

R. Hendrikson, “Using Gromov-Wasserstein distance to explore sets of
networks,” University of Tartu, Master Thesis, vol. 2, 2016.

T. Vayer, N. Courty, R. Tavenard, and R. Flamary, “Optimal transport for
structured data with application on graphs,” International Conference on
Machine Learning, pp. 6275-6284, 2019.

A. Figalli, “The optimal partial transport problem,” Archive for rational
mechanics and analysis, vol. 195, no. 2, pp. 533-560, 2010.

J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. Peyré, “Iterative
Bregman projections for regularized transportation problems,” SIAM
Journal on Scientific Computing, vol. 37, no. 2, pp. A1111-A1138, 2015.
L. Chizat, G. Peyré, B. Schmitzer, and F.-X. Vialard, “Scaling algorithms
for unbalanced optimal transport problems,” Mathematics of Computation,
vol. 87, no. 314, pp. 2563-2609, 2018.

A. Thual, Q. H. Tran, T. Zemskova, N. Courty, R. Flamary, S. Dehaene,
and B. Thirion, “Aligning individual brains with fused unbalanced Gromov
Wasserstein,” in Advances in Neural Information Processing Systems,
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh,
Eds., vol. 35. Curran Associates, Inc., 2022, pp. 21 792-21 804.

M. Frank and P. Wolfe, “An algorithm for quadratic programming,” Naval
Research Logistics Quarterly, vol. s, no. 1-2, pp. 95-110, 1956.

R. Flamary, N. Courty, A. Gramfort, M. Z. Alaya, A. Boisbunon,
S. Chambon, L. Chapel, A. Corenflos, K. Fatras, N. Fournier et al.,
“POT: Python optimal transport,” Journal of Machine Learning Research,
vol. 22, no. 78, pp. 1-8, 2021.

J. Tierny, G. Favelier, J. A. Levine, C. Gueunet, and M. Michaux, “The
Topology ToolKit,” IEEE Transactions on Visualization and Computer
Graphics, vol. 24, no. 1, pp. 832-842, 2018.

C. Gueunet, P. Fortin, J. Jomier, and J. Tierny, “Task-based augmented
merge trees with Fibonacci heaps,” in 2017 IEEE 7th Symposium on Large
Data Analysis and Visualization (LDAV). 1EEE, 2017, pp. 6-15.

J. Lukasczyk, C. Garth, R. Maciejewski, and J. Tierny, “Localized topo-
logical simplification of scalar data,” IEEE Transactions on Visualization
and Computer Graphics, vol. 27, no. 2, pp. 572-582, 2020.

H. Edelsbrunner, D. Letscher, and A. Zomorodian, “Topological persis-
tence and simplification,” Discrete & Computational Geometry, vol. 28,
pp- 511-533, 2002.

P. Skraba and K. Turner, “Wasserstein stability for persistence diagrams,”
arXiv preprint arXiv:2006.16824, 2020.

D. Cohen-Steiner, H. Edelsbrunner, and J. Harer, “Stability of persistence
diagrams,” Discrete & Computational geometry, vol. 37, no. 1, pp. 103—
120, 2007.

F. Chazal, D. Cohen-Steiner, L. J. Guibas, F. Mémoli, and S. Y.
Oudot, “Gromov-Hausdorff stable signatures for shapes using persistence,”
Computer Graphics Forum, vol. 28, no. 5, pp. 1393-1403, 2009.

S. Popinet, “Free computational fluid dynamics,” ClusterWorld, vol. 2,
no. 6, 2004. [Online]. Available: http://gfs.sf.net/

T. Giinther, M. Gross, and H. Theisel, “Generic objective vortices for flow
visualization,” ACM Transactions on Graphics, vol. 36, no. 4, pp. 1-11,
2017.

C. Jung, T. Tél, and E. Ziemniak, “Application of scattering chaos to
particle transport in a hydrodynamical flow,” Chaos: An Interdisciplinary
Journal of Nonlinear Science, vol. 3, no. 4, pp. 555-568, 1993.

T. Giinther, “Computer graphics laboratory research visualization data.”
[Online]. Available: https://cgl.ethz.ch/research/visualization/data.php

D. Whalen and M. L. Norman, “The IEEE SciVis Contest,” http://vis.
computer.org/VisWeek2008/vis/contests.html, 2008.

, “Ionization front instabilities in primordial H II regions,” The
Astrophysical Journal, vol. 673, no. 2, p. 664, 2008.

A. Walther and A. Heidinger, “Implementation of the daytime cloud
optical and microphysical properties algorithm (DCOMP) in PATMOS-x,”
Journal of Applied Meteorology and Climatology, vol. 51, pp. 1371-1390,
07 2012.

(751

[76]

(771

(78]

[79]

[80]

[81]

[82]

[83]

17

D. Chatterjee, S. Schnitt, P. Bigalke, C. Acquistapace, and S. Crewell,
“Capturing the diversity of mesoscale trade wind cumuli using comple-
mentary approaches from self-supervised deep learning,” Geophysical
Research Letters, vol. 51, no. 12, p. €2024GL108889, 2024.

B. Nouri, P. Kuhn, S. Wilbert, N. Hanrieder, C. Prahl, L. F. Zarzalejo,
A. Kazantzidis, P. Blanc, and R. Pitz-Paal, “Cloud height and tracking
accuracy of three all sky imager systems for individual clouds,” Solar
Energy, vol. 177, pp. 213-228, 2019.

B. Kuo, W. Wang, C. Bruyere, T. Scheitlin, and D. Middleton,
“Hurricane Isabel WRF model data visualization.” [Online]. Available:
https://www.earthsystemgrid.org/dataset/isabeldata.html

B. Geveci and C. Garth, “The IEEE SciVis Contest,” 2016. [Online].
Available: https://www.uni-kl.de/sciviscontest

S. Gerber, P-T. Bremer, V. Pascucci, and R. Whitaker, “Visual exploration
of high dimensional scalar functions,” IEEE Transactions on Visualization
and Computer Graphics, vol. 16, pp. 1271-1280, 2010.

P.-T. Bremer, D. Maljovec, A. Saha, B. Wang, J. Gaffney, B. K. Spears,
and V. Pascucci, “ND2AV: N-dimensional data analysis and visualization —
analysis for the national ignition campaign,” Computing and Visualization
in Science, vol. 17, no. 1, pp. 1-18, 2015.

H. Saikia, “The merge tree library (mtlib).” [Online]. Available:
https://github.com/hsaikia/mtlib

J. Ahrens, B. Geveci, and C. Law, “ParaView: An end-user tool for large-
data visualization,” in Visualization Handbook, C. D. Hansen and C. R.
Johnson, Eds. Burlington: Butterworth-Heinemann, 2005, pp. 717-731.

W. Schroeder, K. Martin, and B. Lorensen, The Visualization Toolkit.
Kitware, 2006.

Mingzhe Li is a Ph.D. student at the School
of Computing and the Scientific Computing and
Imaging (SCI) Institute, University of Utah. His
recent work combines optimal transport with topo-
logical data analysis in visualizing time-varying
scientific simulations.

Xinyuan Yan is a Ph.D. student at the School
of Computing and the SCI Institute, University
of Utah. His current research focuses on visual
analytics, set visualization, and explainable Al.

Lin Yan is an Assistant Professor of Computer
Science at the lowa State University. She re-
ceived her Ph.D. in computing from the University
of Utah in 2022. She studies complex data from
scientific simulations by combining techniques
from topological data analysis, statistics, machine
learning, and visualization.

Tom Needham is an Assistant Professor of Math-
ematics at Florida State University. He received
his Ph. D. in Mathematics from University of Geor-
gia. He works on applications of geometry and
topology to problems in data science, computer
vision and signal processing.

Bei Wang is an Associate Professor at the
School of Computing and a faculty member at
the SCI Institute, University of Utah. She received
her Ph.D. in Computer Science from Duke Uni-
versity. Her research interests include topological
data analysis, data visualization, computational
and applied topology, computational geometry,
machine learning, and data mining.

http://gfs.sf.net/
https://cgl.ethz.ch/research/visualization/data.php
http://vis.computer.org/VisWeek2008/vis/contests.html
http://vis.computer.org/VisWeek2008/vis/contests.html
https://www.earthsystemgrid.org/dataset/isabeldata.html
https://www.uni-kl.de/sciviscontest
https://github.com/hsaikia/mtlib

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

APPENDIX A
A NEwW STABILITY THEOREM FOR GW DISTANCE

In this section, we consider merge trees arising from functions
on simplicial complexes and their associated measure network
representations. Our goal is to prove the stability theorem, Theo-
rem 2, which is a result in the tradition of topological data analysis
(e.g., [65], [66], [67]). That is, we would like to show that a small
change in the function data produces a small change in merge tree
representations, as measured by the GW distance. We first remind
the reader of technical details and notations before restating and
proving the theorem.

Let X be a finite, connected, geometric simplicial complex with
a vertex set V. Let f : X — R be a function obtained by starting
with a function f:V — R on the vertex set and extending linearly
over higher dimensional simplices. These are the types of functions
we deal with in our visualization pipelines. Let 77 denote the merge
tree for f, defined as a quotient space Ty = X / ~. Of course, when
dealing with merge trees computationally, they are represented by
finite sets of points. A labeling of a merge tree T is a map from a
finite set 7 : S — T, which is surjective onto the set of leaf nodes
of T [19]. Given a labeling, one can construct a least common
ancestor matrix W, indexed over S x S, where W (s,7) is the height
of the highest point along the unique geodesic path from 7(s) to
w(t) in T. It is shown in [19, Lemma 2.9] that a merge tree with
labeling is uniquely encoded by its least common ancestor matrix.
We will specifically choose a labeling of Ty given by restricting the
quotient map X — 7 to the finite vertex set V. In the following
part of this section, let 7y : V — T denote this labeling map and
let Wy denote the least common ancestor matrix for this labeling.

Let p be a probability distribution over the vertex set V. We
will assume that p is balanced, in the sense that for any u,v,w €V,
we have p(u) - p(v) < p(w); this property holds for the uniform
distribution, for example. We then define the measure network
representation of T to be Gy = (V, p,Wy), with W, denoting the
least common ancestor matrix, as defined above. We can also define
a family of weighted norms on the space of functions f: V — R by

1/q
Np(v) :

Remark 1. The reader might observe that the vertex set of Gy is
the same as that of the mesh X. Generically, this will be the case
for the merge tree associated to f, as a generic function will take
distinct values on all vertices, so that no vertices are identified
when constructing the merge tree. Even if vertices do get identified,
the measure network representation Gy will be weakly isomorphic
to the merge tree, in the sense that the GW distance between Gy
and the merge tree is zero—see Definition 2.3 and Theorem 2.4 of
[9]. This means that the measure network construction Gy used
in the stability result is a valid representation of the merge tree
structure used throughout the paper.

1 fllza(p) := (Z If(v

veV

We now restate Theorem 2.
Theorem 2. Let f,g:X — R be functions defined as above and
let p be a balanced probability distribution. Then
|V|2/quf &llo(p)

dg" (Gy,Gy) < 13)

The proof of the theorem will use Lemma 1.

18

Lemma 1. The least common ancestor matrix Wy of f : X — R
can be expressed as

We(v,w) = mm _max f(w),

uy,uy,..
where the minimum is over paths v =uy,uy, ... ,u, =w €V where
each pair of consecutive vertices is connected by an edge of X.

Proof. We first show that

Wy(v,w) = infmax f(y(r)),
where the infimum is over continuous piecewise linear paths 7 :
[0,1] — X with ¥(0) = v and y(1) = w. Indeed, any path y from
v to w projects under the quotient map to a continuous path ¥ :
[0,1] — Ty from 7s(v) to 7s(w) (7ry denoting the restriction of the
quotient map X — T to the vertex set, as above) with property
that f(y(¢)) = f(7(¢)) (f denoting both the map f : X — R and the
induced map f: Ty — R, by abuse of notation). Then, we have
infmax f(y()) = infmax f (()) > infmax f (n (1)),
where the latter infimum is over all continuous paths 1 joining
my(v) to mp(w) in Ty. Since any such path will pass through the
highest point along the unique geodesic path from 7;(v) to ms(w),
this infimum is equal to Wy (v,w). Conversely, the geodesic path
n from 7(v) to w(w) can be lifted to a piecewise linear path 7
joining v to w in X with f(n(¢)) = f(7(¢)) for all 7. It follows that
Wi (sw) = max £ (1)) = max £ (7 (1)) > infmax £ (7(1)).
To complete the proof, we claim that any piecewise linear
path 7y joining v to w in X can be replaced by a path that passes
only through edges of X, without increasing the maximum height
along the path. Indeed, this can be done constructively. First,
break the image of the path into a sequence of concatenated paths
N, %,-.., Y, Where each 7 is contained in the relative interior of a
simplex X; of X. By construction, X; will be either a face of X, 1,
or vice versa. Moreover, X; =v and X,, = w (i.e., 71 and 7, are
constant paths). To each ¥, associate the vertex u; of X;, which
takes the lowest height. It follows that u; and u; | are either equal
or are connected by an edge for all i; we can ensure an edge path
without repeats by simply removing repeated consecutive vertices.
Since values of f on X are defined by linear interpolations of vertex
values, f(u;) is at most the max value of f over %. This completes
the proof of the claim. It follows that

We(v,w) = iI}l/fmtaxf(y(t)) > min max f(u;).

UL,UD sl U
Since any edge path defines, in particular, a piecewise linear path,
this inequality is actually an equality and it completes the proof of
the lemma. O

Proof. (Proof of Theorem 2) The proof follows from a sequence
of inequalities

245" (G, Gy) < |Wr = WellLa(pxp) (14)
< VI (W= W)« (px p) /]|l (15)
< VI (F —) %p"||cn (16)
< V) £ = glliap) 17

We explain the notation and give a proof for each inequality below.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

The right-hand side of Eq. (14) uses a weighted LY norm as
defined above, for functions on V x V. That is, for F : V xV — R,
we have

1/q
IF Il La(px p) (Z [F(v,w)|?p(v)p(w)) ~

v,wev

The inequality follows because the right-hand side is equal to the
result of evaluating the quW loss on the coupling induced by the
identity map on V.

For F :V xV — R, we define

(F(px p)7) () 2= F () (p(v) - p () V.
Then, Eq. (15) follows from
HWf_WSHLq(pxp) = H(Wf_Wg) * (p Xp)l/qu
< VI (W = W) % (p % p) /]|,

where || - || denotes the standard g-norm (identifying the space of
functions on V x V with RMZ) and the last inequality is a standard
estimate on g-norms.

Similar to the above, for a function 4 : V — R, we define

(hep!/7) (v) = h(v)p(v) /1.

To establish Eq. (16), we refer to Lemma 1. Let v,w € V be arbitrary
vertices and assume without loss of generality that Wr(v,w) >

W, (v,w). We have
(Wi (v, w) = We (v, w)| = Wy (v,w) = We (v, w)
= min max f(u;)— mm maxg(x,)
ULyl U~ Xy
Let x7,...,x; be a path realizing W, (v,w) and suppose that among

these xj’s, f(x}) is maximized at x}. Then

min maxf(ul) < maxf(1) < fxg)

UL yeensllp X}

and
min_ maxg(x;) = maxg(x}) > g(x{),
X]yeeXn Xj xl
hence
min maxf(u,)— mm maxg(x,) <maxf(¥) —max g(x})
ULyl Ui Xy x; xli‘
<) — &lx)-
Using the assumption that p is balanced, we have
1
Wy~ v)-p(w)'/?

We)(p x p)/ (v w)| < (F() — 8(x0) (p

< (F() = 8()) pla) /4
< max |(£(u) — g(u))p(u) /7|
= 1(f &) # p"9|e-
Finally, Eq. (17) follows from a general bound on g-norms:
10 = &) p e < I1(F =) 5P llg = IIf = glla(r)
This equation completes the proof. O

Let us make some remarks about the result. First, if p is chosen
to be uniform, then the same proof gives an improved bound with
a smaller power of |V|:

1
dg" (G, Ge) < §|V|1/q‘|f_g“L‘1(p)

19

Next, the proof appears to be inefficient in that no optimization
over couplings is used and that we pass through an co-norm rather
than working directly with g-norms throughout. However, Eq. (13)
is asymptotically tight up to a universal constant, as is shown by
the following example. Let V = {vy,...,v2,+1} and form X by
joining v; to v;11 by an edge for i = 1,...,2n. Define functions
f,&:V — R by setting g(v;) =0 for all i and

0 i#n+1
f(Vl)*{ 1 i=n+l.
Let p be a probability distribution on nodes with
N_) po i #n+1
p(VZ)_{ P1 l:n+1,

where specific values of pg and p; are to be determined. Let
Gy (V,p,Wy) and G4(V, p,W,) be the associated measure network
representations of the merge trees.

Proposition 1. With f, g, Gy and G4 as above, there exist choices
of po and p1 such that p is a balanced distribution and

dV(Gs,G,) \!
1"# :C-|V|2+c‘v|,
§||f—g||Lq(p)

Jor a universal constant C, where c|y| represents a set of lower
order terms in |V|.

Proof. The coupling induced by the identity map is an optimal
coupling of G and G, hence

247" (G, Ge) = Wy = WellLa(pwp) = [WrllLa(pxp)

1/q
= (wa<v,w>qp<v>p<w)>

1
= (2pgn* + pi +4popin) e ,

where the last quantity is obtained by counting entries equal to one

in the least common ancestor matrix Wy. On the other hand,

If = &llzagp) = 1fllLagq)
1/q
1
)) _Pl/q~

- (zrorpe
v
Since [V| =2n+ 1, we have
1
§|V|2P%+(P(2)+2P0P1)W|

2pgn” + pi +4popin =

1
+ (P8 +pt+2pop1)

2
and it follows that

q

d7"(Gr,Gg) \" 1 Vzp(z)

Tir _5‘ |“= +cp)-
2||f_g||Lq(p) D1

The claim is proved (setting C = %) if we can choose 2p3 =p1
such that 2n- pg+ p; = 1 and pg, p1 > 0, so that p defines a valid
probability density. Solving the system of equations with the given
constraints, we get

po=—n+vVn*+2.

Moreover, we can check inequalities to show that the resulting
probability density is balanced; the least obvious is p% < po, which
holds as soon as n > 2. O

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Finally, we prove Corollary 1, which we restate here for
convenience.
Corollary 1. Let f,g: X — R be functions defined as above and
let p be a balanced probability distribution. Let Gy (respectively,
Gyg) denote the representation of the merge tree Ty (Tg) defined by
the shortest path strategy. Then

4™ (G, Gy) < (IVI/1+2) I1f = gllzagy)

Proof. Throughout this proof, we use Wy and W, to represent
least common ancestor matrices, and we use Dy and D, to denote
matrices of shortest path distances. Observe that for any v,w € V
(the vertex set of X),

Dy(v,w) = 2Wr(v,w) — f(v) = f(w). (18)

Using notation from the proof of Theorem 2, it follows that
d7" (Gy,Gg) <Dy = Dgllapnp) (19)
=[@Wr=f=f)— W —g—8)llLapxp) (20)
<2(|Wr —Wellza(pxep) + 20 f = 8llzagp) 21
< VI = gllzagp) +201f — 8llagp) (22)

and the claim follows, once we justify the steps. Eq. (19) holds by
the same reasoning as in the proof of Theorem 2, Eq. (20) is an
application of Eq. (18), Eq. (21) is the triangle inequality for the
L7 norm, together with marginalizing out a copy of p in the second
term, and Eq. (22) follows from the proof of Theorem 2. O

APPENDIX B
EXPERIMENTS FOR THE STABILITY THEOREM

In this section, we present experiments that demonstrate our new
stability theorem for GW distance in Appendix A. First, we
create a scalar field f using a mixture of Gaussian functions.
Second, we introduce different levels of noise 1 to the scalar
field, f;. In particular, we add noise sampled uniformly from
1€ {1%,2%,...,10%} of the range of f, see Fig. 22. For each
instance of 1, we generate 20 random scalar fields.

We now compute the GW distance between the original scalar
field f and the noisy scalar fields f;. We use the shortest path and
lowest common ancestor strategies for encoding edge information
and uniform strategy for encoding the node information (so that
the probability distribution over the vertex set is always balanced).

Fig. 22. Left, a scalar field consists of multiple Gaussian functions. Right:
ten datasets with different levels of noise.

20

As stated in Theorem 2, when the probability distribution over
the vertex set is balanced, the upper bound for the GW distance
using lowest common ancestor strategy is %|V\2/‘1Hf—g||Lq(p)
referred to as the loose bound. Furthermore, if the probability
distribution on the node is uniform, there is a tighter upper bound
of %|V|1/‘1Hf—g||Lq(p); referred to as the right bound.

Our experimental results are shown in Fig. 23. In (a), we
compute the GW distance between f and f; across varying 1 using
the lowest common ancestor strategy. For each fixed 1, we compute
the GW distances across 20 instances and plot the corresponding
box plot. We also plot the box plots associated with the tight and
the loose bound, respectively. The line plots connect the mean
values of these box plots. As shown in (a) and the zoomed-in view
(b), the average GW distance (in blue) is upper bounded by the
tight bound (in red), which is then upper bounded by the loose
round (in yellow); thus validating Theorem 2.

On the other hand, as shown in Fig. 23(c), using the shortest
path strategy, the bound for the GW distance (|V\2/ 14+2) | f —
8llza(p) 18 consistently higher than the GW distance itself in all our
experiments; thus validating Corollary 1.

371 —— GW Distance (LCA strategy) -
30{ —— Loose Bound =

—— Tight Bound =
254 _
551 —ac

S

151 ——
10 - G @
S S

-

o - ———————— e e — = e o = o e = e e]

0 —e= —— == & |

1“’/6 2% 3% 4“’/6 5“36 GL/u 7“% 8% 9% 10I%

079 —— GW Distance (LCA strategy)
Tight Bound

0.6

0.5

P, -

T - Ll . v - bt T - o
1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

07 —— GW Distance (SP strategy)

604 —— Bound
50 A
40
30 4

20

104

T T T T T T T T T T
1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Fig. 23. Box plots for the GW distance, the loose bound, and the tight
bound under the lowest common ancestor (LCA) strategy (a-b), and the
shortest path (SP) strategy (c).

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

APPENDIX C
PARAMETER TUNING DETAILS

We include details about parameter tuning for GFT and LWM
described in Sec. 6 for reproducibility. We also provide all
parameters across the three methods.

Parameters for GFT. A is a parameter used in GFT to balance
the weight between region overlap size and histogram similarity.
We follow the GitHub implementation (https://github.com/hsaikia/
mtlib) to determine A using a binary search. Furthermore, GFT
ignores matched feature pairs that have small region overlap and
low histogram similarity (referred to as their combined similarity).
We sort all matched pairs across all time steps based on their
combined similarity. We keep a certain percentage of the matched
pairs based on the similarity.

Parameters for LWM. There are five parameters introduced in
LWM: o, B, %, %» %. o and B are weights associated with
the Wasserstein distance, whereas ¥, ¥, ¥; are the weights for
geometric distances between critical points on the corresponding
axes. According to [34], when tracking local maxima, there are
guidelines to follow: ¥ = 79, = %, = ¥, a@ = 0.1B. Hence, we use
grid search to determine ¥ and f3.

Fig. 24 evaluates oversegmentations and mismatches during the
parameter tuning process. We first apply a grid search for ¥ and
B: fixing B for each curve, we compute the maximum matched
distance with different values of ¥, and find the optimal value of y
at the elbow points. Using these optimal 7y, we then compute the
number of trajectories w.r.t. 8.

Following this strategy for the HeatedCylinder,
Unsteady CylinderFlow, and VortexStreet datasets, we
set k=% =%=7=01, a =01, B =1 However, for
lonization Front, we notice that when > 0.1, the maximum
matched distance is much higher than the one with 8 = 0,
which implies significant mismatches when 8 > 0.1. Therefore,
regardless of the number of trajectories, we set ¥, = %, =¥, = 0.1,
o = B = 0. It is noticeable that in LWM, 8 does not affect much
on feature tracking for these four test datasets (see Fig. 24 bottom).
The geometric information appears to be the dominant factor in
matching.

Parameter settings for all datasets. We summarize parameter
settings for all datasets.

For Heated Cylinder dataset, pFGW sets € = 6%, o = 0.1,
L* =0.00997; GFT retains 5% of the matched pairs; LWM uses
Yy=0.1,5=1.

For Unsteady Cylinder Flow dataset, pFGW sets € = 1%, o =
0.1 and L* = 0.03768. For VortexStreet dataset, pPFGW sets € =
1%, oc = 0.1, and L* = 0.02537. Both Unsteady Cylinder Flow and
Vortex Street datasets use the same GFT and LWM configurations
as Heated Cylinder.

For the lonization Front dataset: pFGW sets € = 10%, a = 0.4,
and L* = 0.02693; GFT retains 5% of the matched pairs; LWM
uses y=0.1, B =0.0.

For the Isabel dataset: we did not include GFT results; LWM
sets Y= 1 and B = 1. For pFGW, we use € = 10%, a = 0.6,
L*=0.4010. L* value is large because there are large gaps between
time instances in this dataset and the hurricane also makes large
movement across these time steps.

For the Cloud dataset: pFGW uses € = 50%, o = 0.1 and
L* = 0.0653; GFT retains 2% of all possible matches. After
extensive parameter tuning, LWM sets = 0.00 and ¥ = 1.0,
which emphasize the importance of critical point location.

21

For the ViscousFingering dataset: pFGW uses € = 1%,
o =0.1, and L* = 0.1369. LWM sets = 0.00 (producing the
fewest isolated local maxima), and y = 1.0. GFT retains 10% of
all possible matches.

APPENDIX D
SUBSAMPLING AND ROBUST TRACKING

For both the VortexStreet and Isabel datasets, we observe that
topology-based feature tracking (such as pFGW and LWM) behaves
better than geometry-based methods (such as GFT) when there are
not sufficient region overlaps between adjacent time steps. In this
section, we further examine the robustness of the three methods
by subsampling time steps from previous datasets. We generate
subsampled datasets by sampling a single instance for every 6, 15,
and 10 time steps for Heated Cylinder, Unsteady Cylinder Flow,
and lonization Front datasets, respectively.

D.1

The tracking results for these subsampled datasets are shown
in Fig. 25, using the original tracking pFGW results (first column)
as a reference. We expect the tracked trajectories to be similar for
a robust tracking method, with and without subsampling.

For the subsampled Heated Cylinder dataset in Fig. 25 (top),
all three methods preserve the overall shape of trajectories,
whereas pFGW demonstrates a slight advantage. In particular,
some trajectories obtained by pFGW are missing by LWM (c.f,,
red boxes), whereas GFT produces oversegmentations (c.f., blue
boxes).

For the subsampled Unsteady Cylinder Flow dataset in Fig. 25
(middle), LWM introduces obvious mismatches by matching
geometrically distant critical points, whereas GFT creates a great
number of broken trajectories on the left. In comparison, pFGW
produces better tracking results without oversegmentations or
mismatches.

For the subsampled lonization Front dataset in Fig. 25 (bot-
tom), all three methods show their limitations on tracking. LWM
is able to preserve only a subset of long-term features and misses
other features. GFT fails to preserve any major trajectories under
subsampling. In comparison, pFGW is able to replicate major
patterns of the trajectories, especially the long-term ones. However,
we can also see some mismatches in its tracking results.

Based on these visualizations, pFGW is better than the other
methods shown for preserving trajectories under subsampling while
minimizing oversegmentations and mismatches. To evaluate these
results quantitatively, we now discuss quantitative comparisons.

Qualitative Comparisons

D.2 Quantitative Comparisons

We utilize the notion of the Jaccard index to study the similarity
between two sets of trajectories. Let a and b denote a pair of
trajectories, each of which contains a finite number of critical points
sampled at discrete time steps. We define the overlap between a
and b as their Jaccard index,

_lanb|
~Jaub|’

J(a,b)

Let A and B be two sets of trajectories produced by two tracking
methods, respectively. For each trajectory a € A, define its matched
trajectory 7(a) € B such that m(a) = argmax,gJ(a,b). For any a,
7(a) may not be unique.

https://github.com/hsaikia/mtlib
https://github.com/hsaikia/mtlib

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 22
\ —- B=0.0 oa01 | —- B=0.0 11 —- B=0.0 o7 | —- B=0.0
o4 . B=0.1 : B=0.1 ol g=0.1 . B=0.1
! — p=02 | o | — B=0.2 71l — 5=02 | oo} — B=0.2
| p=0.3 | B=03 | o6 | g=0.3 | g=0.3
21 i -= p=04 | 1 h —-- B=0.4 i -- B=04 | s | —-= B=04
. — B=0.5 - — B=0.5 05 . — B=05 J — B=05
| B=0.6 | | = B=0.6 | B=06 | oafyl B=0.6
o] -= B=07 |~ -= B=07 |77 | -- p=07 \ -= p=07
. — B=0.8 — p=038 sl — B=0.8 o1\ — B=0.8
|_ —- B=0.9 | oas —- B=0.9) \ —- B=0.9 > —- B=0.9
o -— B=1.0 -- B=1.0 o2 \ -— B=1.0 02 \ -= B=1.0
) 0.10 ‘ ‘
0.1 . 01
0.05 |
" ol A L T S e
o 0.2 0.4 0.6 0.8 1 o 0.2 0.4 0.6 0.8 1 o 0.2 0.4 0.6 0.8 1 o 0.2 0.4 0.6 0.8 1
\ \4 \
26 19
— N " — N —N g — N
54
25 18
as
52
224 24 2 50
a8
a
23 16
a6
a2
44
22 15
o 0.2 0.4 0.6 0.8 1 o 0.2 0.4 0.6 0.8 1 o 0.2 0.4 0.6 0.8 1 o 0.2 0.4 0.6 0.8 1
B B B B

Fig. 24. Parameter tuning of the LWM approach. From left to right: for the Heated Cylinder, Unsteady Cylinder Flow, VortexStreet, and lonization Front
datasets, respectively. For each dataset, the top shows the maximum matched distances L at each choice of as y changes. We use the elbow
points to find the optimal value of y that produces the lowest L. The bottom shows the number of trajectories N as 8 changes with the optimal 7.

LWM Subsampling

GFT Subsampling

pFGW Subsampling

;l

Fig. 25. Tracking results of Heated Cylinder (top), Unsteady Cylinder Flow (middle), and lonization Front (bottom) dataset under subsampling. From
left to right: the original pFGW, pFGW, LWM, and GFT with subsampling, respectively.

We then introduce two measures that quantify the similarity
between A and B:

considering the lengths of trajectories in the summations. S and Sy
are not symmetric and have optimal values of 1 when A = B.

S(A,B) = Yucat(a,m(a)) In a subsampled dataset, a number of critical points may

’ |A] be missing from the original dataset. Let A be the set of sub-

¥ end (@, (@)l trajectories from the original tracking results restricted to the

Sw(A,B) = % subsampled time steps. Let B be the set of trajectories obtained
acA

from the subsampled dataset. S(A,B) and Sy (A,B) describe
how well a tracking algorithm preserves the trajectories against
subsampling, whereas S(B,A) and Sw(B,A) indicate how well a

S captures the average overlap of all trajectories in A against
their matched ones in B, whereas Sy is a weighted version of S

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

tracking algorithm avoids mismatches in the subsampled dataset.
In our experiment, we ignore (sub)trajectories of length 1 as they
are isolated critical points.

Dataset Method | S(A,B) S(B,A) Sw(A,B) Sw(B,A)
GFT 0.763 0.806 0.804 0.828
Heated Cylinder LWM 0.877 0.926 0.930 0.967
pFGW 0.902 0.902 0.944 0.940
GFT 0.670 0.858 0.716 0.839
Unsteady Cylinder Flow LWM 0.344 0.587 0.488 0.617
pFGW 0.907 0.990 0.957 0.991
GFT 0.314 0.452 0.228 0.419
lonization Front LWM 0.341 0.556 0.413 0.535
pFGW 0.552 0.624 0.588 0.598

TABLE 2

Similarity measures between a pair of tracking results with and without
subsampling. For a fixed tracking method, A denotes the trajectories
restricted to subsampled time steps. B denotes the trajectories from the
subsampled dataset. The highest scores are in bold.

The quantitive evaluation results are provided in Table 2. pPFGW
is shown to have better performance than GFT and LWM in terms of
capturing original trajectories under subsampling in almost all cases.
In particular, for the Unsteady Cylinder Flow and lonization Front
datasets, pFGW obtains significantly higher similarity measures
than GFT and LWM. These results align well with our observations
in Fig. 25 that pFGW is better at preserving trajectories and
avoiding mismatches for subsampled datasets.

Drawbacks of GFT and LWM are also evident in Table 2.
For GFT, S(A,B) and Sy (A, B) over the Unsteady Cylinder Flow
dataset are low because GFT fails to maintain continuity of
trajectories on the left. For the lonization Front dataset, GFT
does not maintain long-term trajectories, leading to low similarity
measures. For LWM, similarity measures are lowest for the
Unsteady Cylinder Flow dataset due to significant mismatches in
the tracking results. LWM maintains only a few long-term features
for the lonization Front dataset, leading to measures lower than
those from pFGW.

To summarize, based on both qualitative and quantitative
evaluations, GFT appears to lose its ability to track features
when there are not sufficient time resolutions for geometry-based
tracking, for instance, the subsampled lonization Front dataset.
Whereas LWM captures major features during tracking, it is not
as robust as pFGW in tracking features for datasets with low time
resolutions. For example, for the subsampled lonization Front
datasets, LWM misses a large portion of the original trajectories.
For the Unsteady Cylinder Flow dataset, LWM generates many
obvious mismatches. Such drawbacks are also clearly reflected
in the similarity measures. In comparison, our pFGW method
performs quite well in robustly tracking features on datasets with
low time resolutions.

	Introduction
	Related Work
	Technical Background
	Merge Trees
	Measure Networks
	Wasserstein and Gromov-Wasserstein Distance
	Partial Wasserstein and Partial GW Distances

	Method
	Partial Fused Gromov-Wasserstein Distance
	Modeling Merge Trees as Measure Networks
	Encoding Intrinsic Information
	Encoding Extrinsic Information
	Simple Examples

	Flexible Topology Tracking
	Tracking Framework
	A Discussion on Flexibility

	A New Stability Result
	Experiments
	Datasets Overview
	Heated Cylinder Dataset
	Parameter Tuning
	Tracking Result
	Comparison with Previous Approaches

	Unsteady Cylinder Flow
	Tracking Results
	Comparison with Previous Approaches

	2D von Kárman Vortex Street Dataset
	Tracking Results
	Comparison with Previous Approaches

	Ionization Front Dataset
	Tracking Results
	Comparison with Previous Approaches

	Cloud Dataset
	Tracking Results
	Comparison with Previous Approaches

	3D Isabel Dataset
	3D Viscous Fingering Dataset
	Tracking Results
	Comparison with Previous Approaches

	Runtime Analysis

	Probabilistic Tracking Graphs
	Conclusion
	References
	Biographies
	Mingzhe Li
	Xinyuan Yan
	Lin Yan
	Tom Needham
	Bei Wang

	Appendix A: A New Stability Theorem for GW Distance
	Appendix B: Experiments for the Stability Theorem
	Appendix C: Parameter Tuning Details
	Appendix D: Subsampling and Robust Tracking
	Qualitative Comparisons
	Quantitative Comparisons

