
Computing Betti Tables and Minimal Presentations
of Zero-Dimensional Persistent Homology
Dmitriy Morozov #

International Computer Science Institute, Berkeley, CA, USA
Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Luis Scoccola #

Centre de Recherches Mathématiques et Institut des sciences mathématiques, Laboratoire de
combinatoire et d’informatique mathématique de l’Université du Québec à, Montréal, Canada
Université de Sherbrooke, Québec, Canada

Abstract
The Betti tables of a multigraded module encode the grades at which there is an algebraic change in
the module. Multigraded modules show up in many areas of pure and applied mathematics, and in
particular in topological data analysis, where they are known as persistence modules, and where
their Betti tables describe the places at which the homology of filtered simplicial complexes changes.
Although Betti tables of singly and bigraded modules are already being used in applications of
topological data analysis, their computation in the bigraded case (which relies on an algorithm
that is cubic in the size of the filtered simplicial complex) is a bottleneck when working with large
datasets. We show that, in the special case of 0-dimensional homology (relevant for clustering and
graph classification) Betti tables of bigraded modules can be computed in log-linear time. We also
consider the problem of computing minimal presentations, and show that minimal presentations of
0-dimensional persistent homology can be computed in quadratic time, regardless of the grading poset.

2012 ACM Subject Classification Mathematics of computing → Algebraic topology; Theory of
computation → Computational geometry

Keywords and phrases Multiparameter persistence, Zero-dimensional homology, Minimal presenta-
tion, Betti table

Digital Object Identifier 10.4230/LIPIcs.SoCG.2025.69

Related Version Full Version: https://arxiv.org/abs/2410.22242 [30]

Funding Dmitriy Morozov: National Science Foundation, award DMS-2324632.
Luis Scoccola: National Science Foundation through grants CCF-2006661 and CAREER award
DMS-1943758, while at Northeastern University; EPSRC grant “New Approaches to Data Science:
Application Driven Topological Data Analysis”, EP/R018472/1, while at University of Oxford.

Acknowledgements We thank the anonymous reviewers and the SoCG’25 program committee for
helpful comments and for spotting an issue with Definition 24, and its corresponding fix.

1 Introduction

Betti tables and persistence. Betti tables are a classical descriptor of a multigraded
modules [18, 29, 34], which encode the grades of the generators in a minimal projective
resolution of the module (see, e.g., Figure 1 and Example 15). Informally, one can interpret
the Betti tables of a graded module as recording the grades at which there is an algebraic
change in the module. Graded modules have applications in a wide variety of areas of
pure and applied mathematics, including topological data analysis, and more specifically,
persistence theory [33, 6], where they are known as persistence modules, and where they are
used to describe the varying topology of simplicial complexes and other spaces as they are
filtered by one or more real parameters.

© Dmitriy Morozov and Luis Scoccola;
licensed under Creative Commons License CC-BY 4.0

41st International Symposium on Computational Geometry (SoCG 2025).
Editors: Oswin Aichholzer and Haitao Wang; Article No. 69; pp. 69:1–69:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dmitriy@mrzv.org
https://orcid.org/0000-0002-4330-6670
mailto:luis.scoccola@gmail.com
https://orcid.org/0000-0002-4862-722X
https://doi.org/10.4230/LIPIcs.SoCG.2025.69
https://arxiv.org/abs/2410.22242
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

69:2 Betti Tables and Minimal Presentations of Zero-Dimensional Persistent Homology

Informally, one-parameter persistence modules correspond to Z-graded k[x]-modules,
and can thus be classified up to isomorphism effectively. Multiparameter persistence mod-
ules [11, 6] correspond to Zn-graded k[x1, . . . , xn]-modules, and thus do not admit any
reasonable classification up to isomorphism (formally, one is dealing with categories of wild
representation type [31]; see [11, 2, 4] for manifestations of this phenomenon in persistence
theory). For this reason, much of the research in multiparameter persistence is devoted to
the study of incomplete descriptors of multiparameter persistence modules. Betti tables
(also known as multigraded Betti numbers) provide one of the simplest such descriptors,
and various properties of this descriptor from the point of view of persistence theory are
well understood, including their effective computation [27, 25, 19, 3], their relationship to
discrete Morse theory [22, 1, 21], their optimal transport Lipschitz-continuity with respect
to perturbations [32], and their usage in supervised learning [28, 39].

Two-parameter persistent homology. The simplest case beyond the one-parameter case
(i.e., the singly graded case) is the two-parameter case (i.e., the bigraded case). Here,
one is usually given a finite simplicial complex K together with a function f : K −→ R2

mapping the simplices of K to R2, which is monotonic, i.e., such that f(σ) ≤ f(τ) whenever
σ ⊆ τ ∈ K (see Figure 1 for an example). By filtering K using f and taking homology
in dimension i ∈ N with coefficients in a field k, one obtains an R2-graded module, or
equivalently, a functor Hi(K, f ; k) : R2 −→ Veck. Examples include geometric complexes of
point clouds filtered by a function on data points, such as a density estimate [8, 12], and graphs
representing, say, molecules or networks, filtered by two application-dependent quantities [15].
Applying homology to a bifiltered simplicial complex is justified by the fact that the output is
automatically invariant under relabeling, meaning that any operation based on this module,
such as computing its Betti tables, will result in a relabeling-invariant descriptor. In this
setup, one of the main stability results of [32] implies that, for f, g : K −→ R2 any two
monotonic functions, we have ∥µf − µg∥K

1 ≤ 2 · ∥f − g∥1, where ∥ − ∥K
1 denotes the

Kantorovich–Rubinstein norm between signed measures (also known as the 1-Wasserstein
distance), and µf and µg are the signed measures on R2 obtained as the alternating sum
of Betti tables of Hi(K, f ; k) and Hi(K, g; k), respectively; see [28, Theorem 1] for details.
The upshot is that the Betti tables of the homology of bifiltered simplicial complexes form a
perturbation-stable, relabeling-invariant descriptor of bifiltered simplicial complexes.

The current standard algorithm for computing the Betti tables of Hi(K, f ; k) in the two-
parameter case is the Lesnick–Wright algorithm [27], which runs in time O(|K|3). Because
of results such as those of [17], one does not expect to find algorithms with better worst-case
time complexity than matrix-multiplication time, at least when i ∈ N is arbitrary. Current
options to speed up practical computations include sparsifying the filtered complex before
computing homology [42], as well as computational shortcuts that are known to significantly
reduce computational time in practice [25, 3]. Nevertheless, computational cost is still a
main bottleneck in real-world applications of persistence, limiting the size of the datasets on
which it can be applied.

Zero-dimensional persistent homology. In many applications, persistent homology in
dimension zero is all that is required, as it encodes information about the changes in
connectivity of filtered simplicial complexes, making it useful for clustering [10, 9, 14, 8, 35, 38]
and graph classification [41, 13, 24, 28, 23].

But, if one is only interested in 0-dimensional homology H0(K, f ; k), algorithms relying on
linear algebra are usually far from the most efficient ones: For example, in the one-parameter
case, the Betti tables of the 0-dimensional homology of an R-filtered graph (G, f) can be

D. Morozov and L. Scoccola 69:3

u

v

e1

e2

1 2 3 4 5 6

1

2

3

4

5

6
w

x1

e3

x2

x3

x1 x2

x3

f(w) = (2, 6)

f(v) = (2, 1)

f(u) = (1, 3)

f(e2) = (5, 3)

f(e1) = (3, 5)

f(e3) = (6, 6)

d2

d1

d3

h1

f(h2) = (2, 6)

f(h1) = f(x1) = f(x2) = f(x3)

= f(d1) = f(d2) = f(d3)

= (6, 2)

Figure 1 Left. A bifiltered graph (G, f) with vertex set {u, v, w, x1, x2, x3} and edge set
{e1, e2, e3, h1, h2, d1, d2, d3}. Right. The bifiltered graph schematically mapped to R2, together
with the Betti tables β0(H0(G, f)) (circles), β1(H0(G, f)) (crosses), β2(H0(G, f)) (stars), and
β0(H1(G, f)) (squares).

computed in O(|G| log |G|) time by first sorting the simplices of G by their f -value, and then
doing an ordered pass using a union-find data structure; in the language of barcodes, the
Betti tables simply record the endpoints of the barcode, and the barcode can be computed
using the elder rule (see [16, pp. 188] or [35, Algorithm 1]).

Contributions. The paper is concerned with the following question: What is the complexity
of computing the Betti tables of graphs filtered by posets other than R?

We introduce algorithms for the computation of a minimal set of generators and of a
minimal presentation of 0-dimensional persistent homology indexed by an arbitrary poset.

▶ Theorem A. Let P be any poset, and let (G, f) be a finite P-filtered graph. Algorithm 2
computes the 0th Betti table of H0(G, f ; k) in O

(
|G|

)
time. Algorithm 3 computes a minimal

presentation (and hence the 0th and 1st Betti tables) of H0(G, f ; k) in O(|G|2) time.

We also introduce a more efficient algorithm specialized to the two-parameter case, which
computes all Betti tables, that is, 0th, 1st, and 2nd, by Hilbert’s syzygy theorem.

▶ Theorem B. Let (G, f) be a finite R2-filtered graph. Algorithm 4 computes minimal
presentations and the Betti tables of H0(G, f ; k) and H1(G, f ; k) in O(|G| log |G|) time.

Of note is the fact that Betti tables of 0-dimensional two-parameter persistent homology
can be computed in log-linear time, as in the one-parameter case.

As another main contribution, we establish a connection between minimal presentations
and connectivity properties of filtered graphs (Theorems 23 and 25), which allows us to
abstract away the algebraic problem, and focus on a simpler combinatorial problem. The
correctness of our algorithms is based on this. Another interesting consequence of these
results is that, for arbitrary posets, the 0th and 1st Betti tables of 0-dimensional persistent
homology are independent of the field of coefficients, while for the poset R2, all Betti tables
of a filtered graph are independent of the field of coefficients.

Summary of approach and structure of the paper. The main body of the paper has three
sections: one on background (Section 2), one on theoretical results (Section 3), and one on
algorithms (Section 4). [30, Appendix A] contains proofs.

SoCG 2025

69:4 Betti Tables and Minimal Presentations of Zero-Dimensional Persistent Homology

In order to describe and prove the correctness of our algorithms, we introduce, in the theory
section, the notion of a minimal filtered graph (Definition 17). Informally, a minimal filtered
graph is one whose vertices and edges induce a minimal presentation of its 0-dimensional
persistent homology (see Theorem 23). A graph is not minimal if it has some edge that can
be either contracted or deleted without changing its 0-dimensional persistent homology (for
example, the graph of Figure 1 has both contractible and deletable edges, and is thus not
minimal; see Examples 15 and 18). The idea is that, by contracting and deleting edges that do
not change 0-dimensional persistent homology, one inevitably ends up with a minimal filtered
graph, from which a minimal presentation can be easily extracted. Our main theoretical
contributions (Theorems 23 and 25) make this idea precise by giving an explicit minimal
presentation of H0 of any minimal filtered graph, and an explicit minimal resolution of H0 of
any minimal R2-filtered graph. Our main algorithmic contributions are efficient algorithms
for contracting and deleting edges as necessary. Algorithm 4 makes use of a dynamic tree
data structure [40], which is the main ingredient that allows us to compute the Betti tables
of bifilitered graphs in log-linear time; we give more details in Section 4.

Remark about multi-critical filtrations. The filtrations considered in this paper are 1-
critical, meaning that each simplex (vertex or edge, in the case of graphs) appears at exactly
one grade. In [30, Appendix B], we describe a simple preprocessing step to turn a finite
multi-critical filtration by a lattice into a 1-critical filtration with the same 0-dimensional
homology. In the two-parameter case, this construction does not change the input complexity,
but for other lattices it may increase the input size. Note that the construction does not
(necessarily) preserve 1-dimensional homology.

Related work. To the best of our knowledge, the only subcubic algorithm related to
Algorithm 4 is that of [8], which, in particular, can be used to compute the Betti tables of H0
of a function-Rips complex of a finite metric space X in time O(|X|2 log |X|). When applied
to a function-Rips complex, our Algorithm 4 has the same time complexity; however, our
Algorithm 4 applies to arbitrary bifiltered graphs, while function-Rips complexes are very
special (and do not include arbitrary filtered graphs). The inner workings of Algorithm 4
are also different from those of [8]: While we rely on dynamic trees, their algorithm relies
on a dynamic minimum spanning tree, and, notably, on the fact that, in a function-Rips
bifiltration, vertices are filtered exclusively by one of the two filtering functions (so that
vertices are linearly ordered in the bifiltration).

The computation of minimal presentations of Rn-filtered complexes is studied in [5]. Since
they consider homology in all dimensions, their complexity is significantly worse than the
quadratic complexity of Algorithm 3, which only applies to 0-dimensional homology.

Part of the contributions in this paper could be rephrased using the language of discrete
Morse theory for multiparameter filtrations [1, 37, 7], specifically, Algorithms 1 and 2 are
essentially computing acyclic matchings which respect the filtration. However, this point of
view requires extra background, and, to the best of our understanding, cannot be used to
describe the more interesting Algorithm 4.

2 Background

As is common in persistence theory, we assume familiarity with very basic notions of category
theory, specifically, that of a category and of a functor. We let k denote a field, Veck denote
the category of k-vector spaces, and Set denote the category of sets. When the field k plays
no role, we may denote Veck simply by Vec. Proofs can be found in [30, Appendix A.1].

D. Morozov and L. Scoccola 69:5

Graphs and filtered graphs. A graph G = (V, E, ∂) consists of finite sets V and E, and
a function ∂ : E −→ V × V . We refer to the elements of V as vertices, typically denoted
v, w, x, y ∈ V , and to the elements of E as edges, typically denoted e, d, h ∈ E. If ∂e = (v, w),
we write e0 = v and e1 = w. The size of a graph G is |G| = |V | + |E|.

A subgraph of a graph G = (V, E, ∂) is a graph G′ = (V ′, E′, ∂′), where V ′ ⊆ V , E′ ⊆ E,
and such that ∂′ = ∂|E′ takes values in V ′ × V ′ ⊆ V × V . If G′ is a subgraph of G, we write
G′ ⊆ G.

If E′ ⊆ E is a set of edges of G, we let G \ E′ be the subgraph of G with the same vertices
and E \ E′ as set of edges.

Let P be a poset. A P-filtered graph (G, fV , fE) consists of a graph G and functions
fV : V −→ P and fE : E −→ P such that fV (e0) ≤ fE(e) and fV (e1) ≤ fE(e) for all e ∈ E.
When there is no risk of confusion, we refer to P-filtered graphs simply as filtered graph, and
denote both fV and fE by f and the filtered graph (G, fV , fE) by (G, f).

If (G, f) is a P-filtered graph and r ∈ P, we let (G, f)r be the subgraph of G with vertices
{v ∈ V : f(v) ≤ r} and edges {e ∈ E : f(e) ≤ r}.

Persistence modules and persistent sets. Let P be a poset. A P-persistence module is a
functor P −→ Vec, where P is the category associated with P. Explicitly, a P-persistence
module M : P −→ Vec consists of the following:

for each r ∈ P, a vector space M(r);
for each pair r ≤ s ∈ P, a linear morphism φM

r,s : M(r) −→ M(s); such that
for all r ∈ P, the linear morphism φM

r,r : M(r) −→ M(r) is the identity;
for all r ≤ s ≤ t ∈ P, we have φM

s,t ◦ φM
r,s = φM

r,t : M(r) −→ M(t).
When there is no risk of confusion, we may refer to a P-persistence module as a persistence
module. An n-parameter persistence module (n ≥ 1 ∈ N) is an Rn-persistence module.

A morphism g : M −→ N between persistence modules is a natural transformation
between functors, that is, a family of linear maps {gr : M(r) −→ N(r)}r∈P with the property
that φN

r,s ◦ gr = gs ◦ φM
r,s : M(r) −→ N(s), for all r ≤ s ∈ P. Such a morphism is an

isomorphism if gr : M(r) −→ N(r) is an isomorphism of vector spaces for all r ∈ P.
If M, N : P −→ Vec are persistence modules, their direct sum, denoted M ⊕N : P −→ Vec,

is the persistence module with (M ⊕ N)(r) := M(r) ⊕ N(r) and with φM⊕N
r,s := φM

r,s ⊕ φN
r,s :

M(r) ⊕ N(r) −→ M(s) ⊕ N(s), for all r ≤ s ∈ P.

Similarly, a P-persistent set is a functor P −→ Set. The concepts of n-parameter persistent
set, and of morphism and isomorphism between persistent sets are defined analogously.

Persistent homology and connected components of filtered graphs. If S ∈ Set, we let
⟨S⟩k ∈ Vec denote the free vector space generated by S; this defines a functor ⟨−⟩k : Set −→
Veck. Let G = (V, E, ∂) be a graph. Consider the k-linear map

⟨E⟩k
d−−→ ⟨V ⟩k (1)

e 7−−→ e1 − e0

The 0-dimensional homology of G, denoted H0(G; k), is the k-vector space coker(d), and the
1-dimensional homology of G, denoted H1(G; k), is the k-vector space ker(d). In particular,
every vertex v ∈ V gives an element [v] ∈ H0(G; k). When there is no risk of confusion, we
omit the field k and write Hi(G) instead of Hi(G; k).

SoCG 2025

69:6 Betti Tables and Minimal Presentations of Zero-Dimensional Persistent Homology

Homology is functorial, in the following sense. If G′ = (V ′, E′, ∂′) is a subgraph of G, we
have a commutative square

⟨E′⟩k ⟨V ′⟩k

⟨E⟩k ⟨V ⟩k

d′

d

induced by the inclusions V ′ ⊆ V and E′ ⊆ E. This induces linear maps H0(G′) −→ H0(G)
and H1(G′) −→ H1(G). Moreover, the morphism H•(G′′) −→ H•(G) induced by a subgraph
G′′ ⊆ G′ ⊆ G is equal to the composite H•(G′′) −→ H•(G′) −→ H•(G).

If (G, f) is a P-filtered graph, and i ∈ {0, 1}, we get a P-persistence module Hi(G, f) :
P −→ Vec, with Hi(G, f)(r) = Hi((G, f)r), and with structure morphism Hi(G, f)(r) −→
Hi(G, f)(s) for r ≤ s ∈ P induced by the inclusion of graphs (G, f)r ⊆ (G, f)s.

The set of connected components of G, denoted π0(G), is the quotient of V by the
equivalence relation ∼ where v ∼ w ∈ V if and only if there exists a path in G between v and
w. If v ∈ V , we let [v] ∈ π0(G) denote its connected component, so that [v] = [w] ∈ π0(G) if
and only if v and w belong to the same connected component.

The set of connected components is also functorial with respect to inclusions G′ ⊆ G,
since [v] = [w] ∈ π0(G′) implies [v] = [w] ∈ π0(G). In particular, if (G, f) is a P-filtered
graph, we get a P-persistent set π0(G, f) : P −→ Set, with π0(G, f)(r) = π0((G, f)r), and
with the structure morphism π0(G, f)(r) −→ π0(G, f)(s) for r ≤ s ∈ P induced by the
inclusion of graphs (G, f)r ⊆ (G, f)s.

The following is straightforward to check.

▶ Lemma 1. If G is a graph, then the map ⟨π0(G)⟩k −→ H0(G) sending a basis element
[v] ∈ π0(G) to [v] ∈ H0(G) is well-defined and an isomorphism of vector spaces. In particular,
if (G, f) is a P-filtered graph, composing the persistent set π0(G, f) : P −→ Set with the
free vector space functor ⟨−⟩k : Set −→ Vec yields a persistence module isomorphic to
H0(G, f) : P −→ Vec. ⌟

Projective persistence modules. Given r ∈ P, let Pr : P −→ Vec be the persistence module
with Pr(s) = k if r ≤ s and Pr(s) = 0 if r ≰ s, with all structure morphisms k −→ k being
the identity. Equivalently, one can define Pr to be H0({x}, ∅, ∂, f), with f(x) = r.

▶ Notation 2. If I is a finite set and f : I −→ P is any function, we can consider the direct
sum M =

⊕
i∈I Pf(i) : P −→ Vec. When we need to work with elements of such a direct sum,

we distinguish summands by writing M =
⊕

i∈I

(
Pf(i) · {i}

)
, so that

(
Pf(i) · {i}

)
(r) = 0 if

r ≱ f(i) and
(
Pf(i) · {i}

)
(r) is equal to the free vector space generated by {i}, for r ≥ f(i).

▶ Definition 3. A persistence module M : P −→ Vec is projective of finite rank if there
exists a function βM : P −→ N of finite support such that M ∼=

⊕
r∈Pn PβM (r)

r .

Note that, drawing inspiration from commutative algebra, projective persistence modules
are sometimes also called free. The following result justifies the term projective used in
Definition 3; see, e.g., [36, Section 3.1] for the usual notion of projective module.

▶ Lemma 4. Let g : M −→ N be a surjection between P-persistence modules, and let
h : P −→ N with P projective of finite rank. There exists a morphism h′ : P −→ M such that
g ◦ h′ = h.

D. Morozov and L. Scoccola 69:7

Resolutions, presentations, and Betti tables. The next result is standard; see, e.g., [26,
Proposition 6.24].

▶ Lemma 5. If M is projective of finite rank, then there exists exactly one function (neces-
sarily of finite support) βM : P −→ N such that M ∼=

⊕
r∈P PβM (r)

r . ⌟

▶ Definition 6. The Betti table of a persistence module M : P −→ Vec that is projective of
finite rank is the function βM : P −→ N of Lemma 5.

The following notation is sometimes convenient.

▶ Notation 7. If r ∈ P, we let δr : P −→ N be the function defined by δr(r) = 1 and δr(s) = 0
if s ̸= r. In particular, δr = βPr : P −→ N.

▶ Definition 8. Let M : P −→ Vec be a P-persistence module. A finite projective cover of M

is a surjective morphism P −→ M where P is projective of finite rank, and
∑

r∈P βP (r) ∈ N
is minimal.

▶ Definition 9. Let M : P −→ Vec be a P-persistence module, and let k ∈ N. A finite
projective k-resolution (resp. minimal finite projective k-resolution) of M , denoted C• −→ M ,
is a sequence of morphisms Ck

∂k−→ Ck−1
∂k−1−−−→ · · · ∂2−→ C1

∂1−→ C0
∂0−→ M satisfying

C0 −→ M is surjective (resp. a projective cover);
∂i ◦ ∂i+1 = 0, for every 0 ≤ i ≤ k − 1 (so that ∂i+1 factors through ker ∂i);
Ci+1

∂i+1−−−→ ker(∂i) is surjective (resp. a projective cover), for every 0 ≤ i ≤ k − 1;
Ci is projective of finite rank, for every 0 ≤ i ≤ k.

In particular, a minimal finite projective 0-resolution is simply a projective cover.

▶ Notation 10. Since we only consider finite resolutions, we omit the word “finite” and simply
say projective k-resolution. A (minimal) projective presentation is a (minimal) projective
1-resolution.

▶ Definition 11. Let k ∈ N. A persistence module M : P −→ Vec is finitely k-resolvable if
it admits a finite projective k-resolution.

▶ Definition 12. Let M : P −→ Vec be finitely k-resolvable and let 0 ≤ i ≤ k. The ith Betti
table of M is the function βM

i : P −→ N (necessarily of finite support) defined as βM
i := βCi ,

where C• −→ M is a minimal k-resolution of M .

▶ Notation 13. When convenient, we write βi(M) instead of βM
i for the Betti tables of a

persistence module M .

The Betti tables of M are also sometimes called the (multigraded) Betti numbers of M .
The Betti tables of M , as defined in Definition 12, are independent of the choice of minimal
presentation or resolution, thanks to the following standard result.

▶ Lemma 14. Let k ∈ N. If M : P −→ Vec is finitely k-resolvable, then it admits a minimal
projective k-resolution C• −→ M . Moreover, any other projective k-resolution C ′

• −→ M has
the property that βCi ≤ βC′

i for all 0 ≤ i ≤ k.

▶ Example 15. Consider the graph G = (V, E, ∂) with V = {x, y}, E = {a, b}, and
∂(a) = ∂(b) = (x, y). Consider the filtration f : G −→ R2 with f(x) = f(y) = (0, 0),
f(a) = (0, 1), and f(b) = (1, 0). Then, a minimal resolution of H0(G, f) is given by

0 −→ P(1,1) · {α} ∂2−→ P(1,0) · {a} ⊕ P(0,1) · {b} ∂1−→ P(0,0) · {x} ⊕ P(0,0) · {y} ∂0−→ H0(G, f),

SoCG 2025

69:8 Betti Tables and Minimal Presentations of Zero-Dimensional Persistent Homology

where ∂0({x}) = [x], ∂0({y}) = [y], ∂1({a}) = ∂1({b}) = {y} − {x}, and ∂2({α}) = {a} − {b}.
In particular, β0(H0(G, f)) = δ(0,0)+δ(0,0), β1(H0(G, f)) = δ(1,0)+δ(0,1), and β2(H0(G, f)) =
δ(1,1). This can be easily checked by hand, but it also follows from Theorems 23 and 25,
since (G, f) is a minimal filtered graph, in the sense of Definition 17, which we give in the
next section.

3 Theory

We start with a simple, standard result which says that a projective presentation of 0-
dimensional homology is given by using the grades of vertices as generators, and the grades
of edges as relations. Proofs can be found in [30, Appendix A.2].

▶ Lemma 16. Let P be a poset, let (G, f) be a P-filtered graph, and consider the following
morphism of projective modules⊕

e∈E

Pf(e) · {e}
∂

(G,f)
1−−−−−−→

⊕
v∈V

Pf(v) · {v}

{e} 7−−−−−−→ {e1} − {e0}

Then H0(G, f) ∼= coker
(

∂
(G,f)
1

)
and H1(G, f) ∼= ker

(
∂

(G,f)
1

)
. In particular, H0(G, f) is a

finitely presentable persistence module.

The point of minimal filtered graphs, which we now introduce, is that they make the
presentation in Lemma 16 minimal (see Theorem 23).

▶ Definition 17. Let (V, E, ∂, f) be a filtered graph and let e ∈ E.
The edge e is collapsible if e0 ̸= e1 and f(e) = f(ei) for some i ∈ {0, 1}.
The edge e is deletable if [e0] = [e1] ∈ π0(V, E \ {e}, ∂, f)(f(e)).

A filtered graph (G, f) is
vertex-minimal if it does not contain any collapsible edges.
edge-minimal if it does not contain any deletable edges.
minimal if it is vertex-minimal and edge-minimal.

▶ Example 18. The graph of Example 15 is minimal, as neither of the two edges is collapsible
or deletable. On the other hand, the graph of Figure 1 is not minimal since h1, h2, d1, d2,
and d3 are collapsible, and e3 is deletable.

As their name suggests, collapsible and deletable edges can be collapsed or deleted:

▶ Construction 19. Let (G, f) = (V, E, ∂, f) be a filtered graph.
If e ∈ E is collapsible, let i ∈ {0, 1} be such that f(e) = f(ei). Define the simple collapse
G ↓ e := (V \ {ei}, E \ {e}, ∂′), where ∂′ = (φ × φ) ◦ ∂ and φ : V −→ V is given by
φ(v) = v if v ̸= ei and φ(v) = e1−i if v = ei.
If e ∈ E is any edge, define the simple deletion G \ e := (V, E \ {e}, ∂).

We now study the effect of collapsing collapsible edges, and of deleting deletable edges.
We start with a useful observation, whose proof is straightforward.

▶ Lemma 20. Let (G, f) be a filtered graph and let e and d be two different edges of G.
1. Assume that e is collapsible. If d is not collapsible (resp. deletable) in (G, f), then d is

not collapsible (resp. deletable) in (G ↓ e, f).
2. If d is not collapsible (resp. deletable) in (G, f), then d is not collapsible (resp. deletable)

in (G \ e, f). ⌟

D. Morozov and L. Scoccola 69:9

▶ Lemma 21. If (G, f) = (V, E, ∂, f) is a filtered graph and e ∈ E is collapsible, then
Hi(G, f) ∼= Hi(G ↓ e, f) for i ∈ {0, 1}.

▶ Lemma 22. If (G, f) = (V, E, ∂, f) is a filtered graph and e ∈ E is deletable, then
H0(G, f) ∼= H0(G \ e, f) and H1(G, f) ∼= H1(G \ e, f) ⊕ Pf(e).

Next is a construction of a minimal presentation of H0 of a minimal filtered graph.

▶ Theorem 23. Let P be a poset, let (G, f) is a P-filtered graph, and let ∂
(G,f)
1 : C1 −→ C0

be the morphism of Lemma 16.
1. If (G, f) is vertex-minimal, then the map C0 −→ coker(∂(G,f)

1) is a projective cover. In
this case, β0

(
H0(G, f)

)
=

∑
v∈V δf(v).

2. If (G, f) is a minimal filtered graph, then C1
∂

(G,f)
1−−−−→ C0 −→ coker(∂(G,f)

1) is a minimal
presentation. In this case, we also have β1

(
H0(G, f)

)
=

∑
e∈E δf(e).

We now focus on the case of R2-filtered graphs. If (G, f) is an R2-filtered graph, let
fx, fy : G −→ R denote the first and second coordinates of f , respectively.

▶ Definition 24. Let (V, E, ∂, f) be a minimal R2-filtered graph, and let ≺ be a total order
on the set of edges E that refines the lexicographic order induced by f (i.e., e ≺ e′ implies
that fx(e) < fx(e′) or fx(e) = fx(e′) and fy(e) ≤ fy(e′)). An edge d ∈ E is cycle-creating
with respect to ≺ if [d0] = [d1] ∈ π0(V, {e ∈ E : e ≺ d}, ∂).

Thus, d ∈ E is cycle-creating if there exists a list of edges e1, . . . , ek ∈ E with ei ≺ d

for 1 ≤ i ≤ k, and a list of signs s1, . . . , sk ∈ {+, −}, such that s1e1, . . . , skek is a directed
path from d0 to d1. Such a path w = (s•, e•) is called a witness for d, and we denote
f(w) :=

(
fx(d) , max1≤i≤k fy(ei)

)
. A minimal witness w of a cycle-creating edge d is one

for which fy(w) ∈ R is as small as possible.
Since ≺ refines the lexicographic order, we have fx(ei) ≤ fx(d) for all i; thus, if

max1≤i≤k fy(ei) ≤ fy(d), we would have that [d0] = [d1] ∈ π0(V, E \ {d}, ∂, f)(f(d)), which
contradicts the fact that the filtered graph is minimal. This means that if w is a witness
for d, then max1≤i≤k fy(ei) > fy(d), and thus f(d) < f(w).

▶ Theorem 25. Let (G, f) = (V, E, ∂, f) be a minimal R2-filtered graph, and ≺ a total order
on E refining the lexicographic order. For each d ∈ E cycle-creating, let wd = (s•

d, e•
d) be a

minimal witness wrt to ≺. The kernel of the morphism ∂
(G,f)
1 of Lemma 16 is given by:

⊕
d∈E

cycle-creating

Pf(wd) · {d} κ(G,f)

−−−−−→
⊕
e∈E

Pf(e) · {e}

{d} 7−−−−−−→ {d} −
(
s1

d{e1
d} + · · · + sk

d{ek
d}

)
.

It follows that
β0(H0(G, f)) =

∑
v∈V δf(v);

β1(H0(G, f)) =
∑

e∈E δf(e);
β0(H1(G, f)) = β2(H0(G, f)) =

∑
d∈E,cycle-creating δf(wd);

βi(H0(G, f)) = 0 for i ≥ 3, and βi(H1(G, f)) = 0 for i ≥ 1.

SoCG 2025

69:10 Betti Tables and Minimal Presentations of Zero-Dimensional Persistent Homology

4 Algorithms

Outline. We first introduce some technical notions and overview the algorithms.
Two P-filtered graph (G, f) and (G′, f ′) are homology-equivalent (over k) if H0(G, f ; k) ∼=

H0(G′, f ′; k) and H1(G, f ; k) ∼= H1(G′, f ′; k).
Algorithm 2 reduces the input filtered graph to a vertex-minimal filtered graph by

collapsing edges; it relies on Algorithm 1, which collapses local collapsible edges. A local
collapsible edge of (G, f) is an edge e such that e0 ̸= e1 and f(e) = f(e0) = f(e1). Algorithm 2
then identifies minimal vertices, that is, vertices with no adjacent collapsible edge decreasing
the grade, and runs a depth-first search from each of these to build and collapse a tree of
collapsible edges.

Algorithm 3 first calls Algorithm 2 to perform all collapses and then deletes deletable
edges until there are no more deletable edges. It then builds the presentation of Lemma 16.

Algorithm 4 first calls Algorithm 2 to perform all collapses, and then goes through all edges,
with respect to the lex order on their grades, and identifies deletable edges, non-deletable
edges, and cycle-creating edges.

Dynamic dendrograms. Since this is used in Algorithm 4, we now introduce the dynamic
dendrogram data structure, which, informally, represents a dendrogram where elements
merge as time goes from −∞ to ∞, and is dynamic in that one is allowed to change the
dendrogram by making two elements merge earlier.

▶ Definition 26. Let (G, f) = (V, E, ∂, f) be a [−∞, ∞)-filtered graph. A dynamic dendro-
gram D for (G, f) is a data structure supporting the following operations:

If v, w ∈ V , the operation D.time_of_merge(v, w) returns the smallest r ∈ [−∞, ∞) such
that [v] = [w] ∈ π0(G, f)(r), or ∞ if [v] ̸= [w] ∈ π0(G, f)(r) for all r ∈ [−∞, ∞).
If v, w ∈ V and t ∈ [−∞, ∞), the operation D.merge_at_time(v, w, t) modifies the
dendrogram so that it is a dynamic dendrogram for (V, E ⊔ {e}, ∂′, f ′), with f ′|E = f ,
∂′|E = ∂, f ′(e) = t, and ∂′(e) = (v, w).

A dynamic dendrogram D can easily and efficiently be implemented using a mergeable
tree T in the sense of [20]. These trees store heap-ordered forests, i.e., a collection of rooted
labeled trees, where the labels decrease (or in our case increase) along paths to the root. The
data structures support a wealth of operations for dynamic updates. We need only three
of them: insert(v, t) inserts node v with label t into the forest; nca(v, w) finds the nearest
common ancestor of two nodes v and w; merge(v, w) merges the paths of v and w to their
root(s) while preserving the heap order. We use these operations to implement dynamic
dendrograms as follows:

To implement D.time_of_merge(v, w), return the label of T.nca(v, w).
To implement D.merge_at_time(v, w, t), let h be a new vertex not already in the merge-
able tree T , do T.insert(h, t), then T.merge(v, h), and T.merge(w, h).

Presentation matrices. In the algorithms, to represent a Betti table βi(M) we use a list of
elements of the indexing poset. If we have represented the 0th and 1st Betti tables of M

with lists β0 and β1, we represent a minimal presentation for M with a sparse matrix using
coordinate format, that is, with a list of triples (i, j, v) representing the fact that v is the
entry at row i and column j, and where i represents the ith element of β0 and j represents
the jth element of β1.

D. Morozov and L. Scoccola 69:11

Algorithm 1 Collapse local collapsible edges.

Input: Filtered graph (G, f) = (V, E, ∂, f)
Output: Filtered graph (G′, f) homology-equivalent to (G, f) and without local

collapsible edges
1 Initialize dictionary φ with identity map, φ[v] = v for v ∈ V

2 Initialize empty set visited
3 Initialize E′ ← E

4 for v ∈ V do ▷ Run depth-first search from v on local edges
5 Initialize stack with (v, ∅, v)
6 while stack is not empty do
7 (v, e, u)← stack.pop()
8 if u /∈ visited then
9 add u to visited

10 if e ̸= ∅ then
11 φ[u]← v

12 remove e from E′

13 for e ∈ E with {e0, e1} = {u, x} and f(e) = f(x) = f(u) do ▷ local
collapsible

14 push (v, e, x) onto stack
15 V ′ ← {v ∈ V : φ[v] = v}
16 return (G′, f) = (V ′, E′, (φ× φ) ◦ ∂, f)

Algorithm 2 Collapse to vertex-minimal filtered graph.

Input: Filtered graph (G, f) = (V, E, ∂, f)
Output: Vertex-minimal filtered graph (G′, f) homology-equivalent to (G, f), and

β0(H0(G, f))
1 (Gi, f) = (Vi, Ei, ∂i, f)← Algorithm 1(G, f)
2 Initialize dictionary φ with identity map, φ[v] = v for v ∈ Vi

3 Initialize empty set visited
4 Initialize E′ ← Ei

5 for v in Vi do ▷ Run depth-first search from minimal vertices
6 if ∃ edge e ∈ Ei with {e0, e1} = {u, v} and f(e) = f(v) > f(u) then ▷ v is not

minimal
7 continue
8 Initialize stack with (v, ∅, v)
9 while stack is not empty do

10 v, e, u← stack.pop()
11 if u /∈ visited then
12 add u to visited
13 if e ̸= ∅ then
14 φ[u]← v

15 remove e from E′

16 for every edge e ∈ Ei with {e0, e1} = {u, x} with f(e) = f(x) > f(u) do
17 push (v, e, x) onto stack
18 V ′ ← {v ∈ Vi : φ[v] = v}
19 return (G′, f) = (V ′, E′, (φ× φ) ◦ ∂i, f) and β0 = [f(v) : v ∈ V ′]

SoCG 2025

69:12 Betti Tables and Minimal Presentations of Zero-Dimensional Persistent Homology

Algorithm 3 Minimal presentation of P-filtered graph.

Input: Filtered graph (G, f) = (V, E, ∂, f)
Output: Minimal presentation of H0(G, f ; k)

1 Initialize β0, β1 with empty lists
2 Initialize empty sparse matrix M and empty dictionary row_idx
3 (V ′, E′, ∂′, f)← Algorithm 2(G, f)
4 for e ∈ E′ do ▷ Check each edge, and delete it if it is deletable
5 Define set of vertices Ve ← {v ∈ V ′ : f(v) ≤ f(e)}
6 Define set of edges Ee ← {d ∈ E′ : f(d) ≤ f(e)} \ e

7 Run breadth-first search on (Ve, Ee, ∂′) starting from e0
8 if e1 is reachable from e0 then ▷ [e0] = [e1] ∈ π0(Ve, Ee, ∂′) so e is deletable
9 E′ ← E′ \ {e}

10 for v ∈ V ′ do
11 β0.append(f(v))
12 row_idx[v]← |β0|
13 for e ∈ E′ do ▷ The morphism ∂

(V ′,E′,∂′)
1 of Lemma 16

14 β1.append(f(e))
15 M.append(row_idx[e0] , |β1| , −1)
16 M.append(row_idx[e1] , |β1| , 1)
17 return β0, β1,M

Algorithm 4 Betti tables and minimal presentation of R2-filtered graph.

Input: Filtered graph (G, f) = (V, E, ∂, f)
Output: Betti tables β0, β1, β2 and minimal presentation of H0(G, f ; k), and

β1
0 := β0(H1(G, f ; k))

1 Initialize β0, β1, β2, β1
0 with empty lists

2 Initialize empty sparse matrix M and empty dictionary row_idx
3 (V ′, E′, ∂′, f)← Algorithm 2(G, f)
4 Let D be a dynamic dendrogram on (V ′, ∅, ∂, g), with g(v) = −∞ for all v ∈ V ′

5 for (x, y) ∈ R2 s.t. f−1(x, y) ̸= ∅ in lex order do ▷ Visit grades lexicographically
6 for v ∈ V ′ with f(v) = (x, y) do ▷ All vertices belong to the projective cover
7 β0.append((x, y))
8 row_idx[v]← |β0|
9 for e ∈ E′ with f(e) = (x, y) do

10 s← D.time_of_merge(e0, e1)
11 if s ≤ y then ▷ The edge is deletable, so it only affects H1
12 β1

0 .append((x, y))
13 else ▷ Edge is not deletable, so belongs to relations in resolution
14 D.merge_at_time(e0, e1, y)
15 β1.append((x, y))
16 M.append(row_idx[e0] , |β1| , −1)
17 M.append(row_idx[e1] , |β1| , 1)
18 if s <∞ then ▷ The edge is cycle-creating
19 β2.append((x, s))
20 β1

0 .append((x, s))
21 return β0, β1, β2, β1

0 ,M

D. Morozov and L. Scoccola 69:13

Complexity and correctness. We conclude the paper by using the theoretical results of
Section 3 to prove the main results in the introduction. Proofs for the results in this section
are in [30, Appendix A.3].

We start by with a convenient lemma, which gives conditions under which one can
collapse an entire subgraph and produce a homology-equivalent filtered graph. The following
definition describes the type of subgraph that can be collapsed.

▶ Definition 27. Let (G, f) = (V, E, ∂, f) be a filtered graph. A subset E′ ⊆ E is a monotonic
forest of (G, f) if:
1. The subgraph of G spanned by the edges in E′ is a forest.
2. For every vertex v in the forest, there exists at most one edge e ∈ E′ such that {e0, e1} =

{v, w} and f(w) < f(v).

▶ Lemma 28. Let (G, f) = (V, E, ∂, f) be a filtered graph, and let E′ ⊆ E be a set of
collapsible edges, which forms a monotonic forest. If e ∈ E′, then all the edges in E′ \ {e}
are collapsible in (G ↓ e, f). In particular, the whole forest E′ can be collapsed (in any order)
to obtain a filtered graph that is homology-equivalent to (G, f).

▶ Lemma 29. Let (G, f) be a P-filtered graph. Algorithm 1 outputs a filtered graph homology-
equivalent to (G, f) and without local collapsible edges in time O(|G|).

▶ Proposition 30. Let (G, f) be a P-filtered graph. Algorithm 2 outputs a vertex-minimal
filtered graph homology-equivalent to (G, f) and β0(H0(G, f)) in O(|G|) time.

▶ Proposition 31. Let (G, f) be a finite P-filtered graph. Algorithm 3 outputs a minimal
presentation of H0(G, f) in O(|G|2) time.

With these results, we prove Theorem A and Theorem B in [30, Appendix A.4].

References
1 Madjid Allili, Tomasz Kaczynski, and Claudia Landi. Reducing complexes in multidimensional

persistent homology theory. J. Symbolic Comput., 78:61–75, 2017. doi:10.1016/j.jsc.2015.
11.020.

2 Ulrich Bauer, Magnus B. Botnan, Steffen Oppermann, and Johan Steen. Cotorsion torsion
triples and the representation theory of filtered hierarchical clustering. Adv. Math., 369:107171,
51, 2020. doi:10.1016/j.aim.2020.107171.

3 Ulrich Bauer, Fabian Lenzen, and Michael Lesnick. Efficient two-parameter persistence
computation via cohomology. In 39th International Symposium on Computational Geometry,
volume 258 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 15, 17. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.SoCG.2023.15.

4 Ulrich Bauer and Luis Scoccola. Multi-parameter persistence modules are generically inde-
composable. International Mathematics Research Notices, 2025(5):rnaf034, February 2025.
doi:10.1093/imrn/rnaf034.

5 Matías Bender, Oliver Gäfvert, and Michael Lesnick. Efficient computation of multiparameter
persistence, (in preparation).

6 Magnus Bakke Botnan and Michael Lesnick. An introduction to multiparameter persistence.
In Representations of algebras and related structures, EMS Ser. Congr. Rep., pages 77–150.
Eur. Math. Soc., Zürich, [2023] ©2023.

7 Guillaume Brouillette, Madjid Allili, and Tomasz Kaczynski. Multiparameter discrete morse
theory. Journal of Applied and Computational Topology, pages 1–42, 2024.

8 Chen Cai, Woojin Kim, Facundo Mémoli, and Yusu Wang. Elder-rule-staircodes for augmented
metric spaces. SIAM J. Appl. Algebra Geom., 5(3):417–454, 2021. doi:10.1137/20M1353605.

SoCG 2025

https://doi.org/10.1016/j.jsc.2015.11.020
https://doi.org/10.1016/j.jsc.2015.11.020
https://doi.org/10.1016/j.aim.2020.107171
https://doi.org/10.4230/LIPIcs.SoCG.2023.15
https://doi.org/10.1093/imrn/rnaf034
https://doi.org/10.1137/20M1353605

69:14 Betti Tables and Minimal Presentations of Zero-Dimensional Persistent Homology

9 Gunnar Carlsson and Facundo Mémoli. Multiparameter hierarchical clustering methods. In
Classification as a tool for research, Stud. Classification Data Anal. Knowledge Organ., pages
63–70. Springer, Berlin, 2010. doi:10.1007/978-3-642-10745-0_6.

10 Gunnar Carlsson and Facundo Mémoli. Classifying clustering schemes. Found. Comput. Math.,
13(2):221–252, 2013. doi:10.1007/s10208-012-9141-9.

11 Gunnar Carlsson and Afra Zomorodian. The theory of multidimensional persistence. In
Computational geometry (SCG’07), pages 184–193. ACM, New York, 2007. doi:10.1145/
1247069.1247105.

12 Mathieu Carrière and Andrew J. Blumberg. Multiparameter persistence images for topological
machine learning. In Proceedings of the 34th International Conference on Neural Information
Processing Systems, NIPS ’20, Red Hook, NY, USA, 2020. Curran Associates Inc.

13 Mathieu Carriere, Frederic Chazal, Yuichi Ike, Theo Lacombe, Martin Royer, and Yuhei
Umeda. Perslay: A neural network layer for persistence diagrams and new graph topological
signatures. In Silvia Chiappa and Roberto Calandra, editors, Proceedings of the Twenty Third
International Conference on Artificial Intelligence and Statistics, volume 108 of Proceedings
of Machine Learning Research, pages 2786–2796. PMLR, 26–28 August 2020. URL: https:
//proceedings.mlr.press/v108/carriere20a.html.

14 Frédéric Chazal, Leonidas J. Guibas, Steve Y. Oudot, and Primoz Skraba. Persistence-based
clustering in Riemannian manifolds. J. ACM, 60(6):Art. 41, 38, 2013. doi:10.1145/2535927.

15 Andac Demir, Baris Coskunuzer, Ignacio Segovia-Dominguez, Yuzhou Chen, Yulia Gel, and
Bulent Kiziltan. Todd: topological compound fingerprinting in computer-aided drug discovery.
In Proceedings of the 36th International Conference on Neural Information Processing Systems,
NIPS ’22, Red Hook, NY, USA, 2024. Curran Associates Inc.

16 Herbert Edelsbrunner and John L. Harer. Computational topology. American Mathematical
Society, Providence, RI, 2010. An introduction. doi:10.1090/mbk/069.

17 Herbert Edelsbrunner and Salman Parsa. On the computational complexity of Betti numbers:
reductions from matrix rank. Proceedings of the twenty-fifth annual ACM-SIAM symposium
on discrete algorithms, pages 152–160, 2014. doi:10.1137/1.9781611973402.11.

18 David Eisenbud. Commutative algebra, volume 150 of Graduate Texts in Mathemat-
ics. Springer-Verlag, New York, 1995. With a view toward algebraic geometry. doi:
10.1007/978-1-4612-5350-1.

19 Ulderico Fugacci, Michael Kerber, and Alexander Rolle. Compression for 2-parameter persistent
homology. Comput. Geom., 109:Paper No. 101940, 28, 2023. doi:10.1016/j.comgeo.2022.
101940.

20 Loukas Georgiadis, Haim Kaplan, Nira Shafrir, Robert E. Tarjan, and Renato F. Werneck.
Data structures for mergeable trees. ACM Trans. Algorithms, 7(2), March 2011. doi:
10.1145/1921659.1921660.

21 Andrea Guidolin and Claudia Landi. Morse inequalities for the Koszul complex of multi-
persistence. J. Pure Appl. Algebra, 227(7):Paper No. 107319, 26, 2023. doi:10.1016/j.jpaa.
2023.107319.

22 Andrea Guidolin and Claudia Landi. On the support of betti tables of multiparameter
persistent homology modules. arXiv preprint arXiv:2303.05294, 2023.

23 Olympio Hacquard and Vadim Lebovici. Euler characteristic tools for topological data analysis.
Journal of Machine Learning Research, 25(240):1–39, 2024. URL: http://jmlr.org/papers/
v25/23-0353.html.

24 Christoph Hofer, Florian Graf, Bastian Rieck, Marc Niethammer, and Roland Kwitt. Graph
filtration learning. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pages 4314–4323. PMLR, 13–18 July 2020. URL: https://proceedings.mlr.press/
v119/hofer20b.html.

https://doi.org/10.1007/978-3-642-10745-0_6
https://doi.org/10.1007/s10208-012-9141-9
https://doi.org/10.1145/1247069.1247105
https://doi.org/10.1145/1247069.1247105
https://proceedings.mlr.press/v108/carriere20a.html
https://proceedings.mlr.press/v108/carriere20a.html
https://doi.org/10.1145/2535927
https://doi.org/10.1090/mbk/069
https://doi.org/10.1137/1.9781611973402.11
https://doi.org/10.1007/978-1-4612-5350-1
https://doi.org/10.1007/978-1-4612-5350-1
https://doi.org/10.1016/j.comgeo.2022.101940
https://doi.org/10.1016/j.comgeo.2022.101940
https://doi.org/10.1145/1921659.1921660
https://doi.org/10.1145/1921659.1921660
https://doi.org/10.1016/j.jpaa.2023.107319
https://doi.org/10.1016/j.jpaa.2023.107319
http://jmlr.org/papers/v25/23-0353.html
http://jmlr.org/papers/v25/23-0353.html
https://proceedings.mlr.press/v119/hofer20b.html
https://proceedings.mlr.press/v119/hofer20b.html

D. Morozov and L. Scoccola 69:15

25 Michael Kerber and Alexander Rolle. Fast minimal presentations of bi-graded persistence
modules. Proceedings of the Symposium on Algorithm Engineering and Experiments (ALENEX),
pages 207–220, 2021. doi:10.1137/1.9781611976472.16.

26 Michael Lesnick. Notes on multiparameter persistence (for amat 840), 2023.
27 Michael Lesnick and Matthew Wright. Computing minimal presentations and bigraded Betti

numbers of 2-parameter persistent homology. SIAM J. Appl. Algebra Geom., 6(2):267–298,
2022. doi:10.1137/20M1388425.

28 David Loiseaux, Luis Scoccola, Mathieu Carrière, Magnus Bakke Botnan, and Steve Oudot.
Stable vectorization of multiparameter persistent homology using signed barcodes as measures.
Advances in Neural Information Processing Systems, 36, 2024.

29 Ezra Miller and Bernd Sturmfels. Combinatorial commutative algebra, volume 227 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 2005.

30 Dmitriy Morozov and Luis Scoccola. Computing betti tables and minimal presentations of
zero-dimensional persistent homology, 2024. doi:10.48550/arXiv.2410.22242.

31 L. A. Nazarova. Partially ordered sets of infinite type. Izv. Akad. Nauk SSSR Ser. Mat.,
39(5):963–991, 1219, 1975.

32 Steve Oudot and Luis Scoccola. On the Stability of Multigraded Betti Numbers and Hilbert
Functions. SIAM J. Appl. Algebra Geom., 8(1):54–88, 2024. doi:10.1137/22M1489150.

33 Steve Y. Oudot. Persistence theory: from quiver representations to data analysis, volume 209
of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI,
2015. doi:10.1090/surv/209.

34 Irena Peeva. Graded syzygies, volume 14 of Algebra and Applications. Springer-Verlag London,
Ltd., London, 2011. doi:10.1007/978-0-85729-177-6.

35 Alexander Rolle and Luis Scoccola. Stable and consistent density-based clustering via mul-
tiparameter persistence. Journal of Machine Learning Research, 25(258):1–74, 2024. URL:
http://jmlr.org/papers/v25/21-1185.html.

36 Joseph J. Rotman. An introduction to homological algebra. Universitext. Springer, New York,
second edition, 2009. doi:10.1007/b98977.

37 Sara Scaramuccia, Federico Iuricich, Leila De Floriani, and Claudia Landi. Computing
multiparameter persistent homology through a discrete morse-based approach. Computational
Geometry, 89:101623, 2020. doi:10.1016/j.comgeo.2020.101623.

38 Luis Scoccola and Alexander Rolle. Persistable: persistent and stable clustering. Journal of
Open Source Software, 8(83):5022, 2023. doi:10.21105/joss.05022.

39 Luis Scoccola, Siddharth Setlur, David Loiseaux, Mathieu Carrière, and Steve Oudot. Dif-
ferentiability and optimization of multiparameter persistent homology. In Forty-first Inter-
national Conference on Machine Learning, 2024. URL: https://openreview.net/forum?id=
ixdfvnO0uy.

40 Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J. Comput.
System Sci., 26(3):362–391, 1983. doi:10.1016/0022-0000(83)90006-5.

41 Qi Zhao and Yusu Wang. Learning metrics for persistence-based summaries and applications
for graph classification, pages 9859 – 9870. Curran Associates Inc., Red Hook, NY, USA, 2019.

42 Ángel Javier Alonso, Michael Kerber, and Siddharth Pritam. Filtration-domination in bifiltered
graphs. 2023 Proceedings of the Symposium on Algorithm Engineering and Experiments
(ALENEX), pages 27–38, 2023. doi:10.1137/1.9781611977561.ch3.

SoCG 2025

https://doi.org/10.1137/1.9781611976472.16
https://doi.org/10.1137/20M1388425
https://doi.org/10.48550/arXiv.2410.22242
https://doi.org/10.1137/22M1489150
https://doi.org/10.1090/surv/209
https://doi.org/10.1007/978-0-85729-177-6
http://jmlr.org/papers/v25/21-1185.html
https://doi.org/10.1007/b98977
https://doi.org/10.1016/j.comgeo.2020.101623
https://doi.org/10.21105/joss.05022
https://openreview.net/forum?id=ixdfvnO0uy
https://openreview.net/forum?id=ixdfvnO0uy
https://doi.org/10.1016/0022-0000(83)90006-5
https://doi.org/10.1137/1.9781611977561.ch3

	1 Introduction
	2 Background
	3 Theory
	4 Algorithms

