
Efficient Federated Learning Using Dynamic Update and
Adaptive Pruning with Momentum on Shared Server Data

JI LIU, Hithink RoyalFlush Information Network Co., Ltd., Hangzhou, China
JUNCHENG JIA, School of Computer Science and Technology, Soochow University, Suzhou, China and
Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing, China
HONG ZHANG, School of Computer Science and Technology, Soochow University, Suzhou, China
YUHUI YUN, Baidu Research, Beijing, China
LEYE WANG, Key Lab of High Confidence Software Technologies, Ministry of Education and Software
Institute, Peking University, Beijing, China
YANG ZHOU, Department of Computer Science and Software Engineering, Auburn University, Auburn,
AL, USA
HUAIYU DAI, Department of Electrical and Computer Engineering, North Carolina State University,
Raleigh, NC, USA
DEJING DOU, BEDI Cloud and School of Computer Science, Fudan University, Beijing, China

Despite achieving remarkable performance, Federated Learning (FL) encounters two important problems, i.e.,
low training efficiency and limited computational resources. In this article, we propose a new FL framework,
i.e., FedDUMAP, with three original contributions, to leverage the shared insensitive data on the server in
addition to the distributed data in edge devices so as to efficiently train a global model. First, we propose a
simple dynamic server update algorithm, which takes advantage of the shared insensitive data on the server
while dynamically adjusting the update steps on the server in order to speed up the convergence and improve
the accuracy. Second, we propose an adaptive optimization method with the dynamic server update algorithm
to exploit the global momentum on the server and each local device for superior accuracy. Third, we develop a
layer-adaptive model pruning method to carry out specific pruning operations, which is adapted to the diverse
features of each layer so as to attain an excellent tradeoff between effectiveness and efficiency. Our proposed
FL model, FedDUMAP, combines the three original techniques and has a significantly better performance
compared with baseline approaches in terms of efficiency (up to 16.9 times faster), accuracy (up to 20.4%
higher), and computational cost (up to 62.6% smaller).

Ji Liu, Juncheng Jia, and Hong Zhang contributed equally to this research.
Authors’ Contact Information: Ji Liu (corresponding author), Hithink RoyalFlush Information Network Co., Ltd., Hangzhou,
China; e-mail: jiliuwork@gmail.com; Juncheng Jia, School of Computer Science and Technology, SoochowUniversity, Suzhou,
China and Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing, China; e-mail:
jiajuncheng@suda.edu.cn; Hong Zhang, School of Computer Science and Technology, Soochow University, Suzhou, China;
e-mail: hzhanghzhang@stu.suda.edu.cn; Yuhui Yun, Baidu Research, Beijing, China; e-mail: yunyh0331@gmail.com; Leye
Wang, Key Lab of High Confidence Software Technologies, Ministry of Education and Software Institute, Peking University,
Beijing, China; e-mail: leyewang@pku.edu.cn; Yang Zhou, Department of Computer Science and Software Engineering,
Auburn University, Auburn, Alabama, USA; e-mail: yangzhou@auburn.edu; Huaiyu Dai, Department of Electrical and
Computer Engineering, North Carolina State University, Raleigh, North Carolina, USA; e-mail: hdai@ncsu.edu; Dejing Dou,
BEDI Cloud and School of Computer Science, Fudan University, Beijing, China; e-mail: dejingdou@gmail.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 2157-6912/2024/11-ART122
https://doi.org/10.1145/3690648

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 6, Article 122. Publication date: November 2024.

https://orcid.org/0000-0003-4710-5697
https://orcid.org/0000-0001-8276-7640
https://orcid.org/0000-0001-9529-1872
https://orcid.org/0009-0006-4749-3481
https://orcid.org/0000-0002-7627-8485
https://orcid.org/0000-0001-7839-4933
https://orcid.org/0000-0002-0078-4891
https://orcid.org/0000-0003-2949-6874
mailto:permissions@acm.org
https://doi.org/10.1145/3690648
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3690648&domain=pdf&date_stamp=2024-11-20

122:2 J. Liu et al.

CCS Concepts: • Theory of computation ! Parallel computing models; Distributed computing
models;Convex optimization; •Computingmethodologies!Machine learning; •Computer systems
organization! Heterogeneous (hybrid) systems;

Additional Key Words and Phrases: Federated learning; Distributed machine learning; Model pruning; Hetero-
geneity; Momentum

ACM Reference format:
Ji Liu, Juncheng Jia, Hong Zhang, Yuhui Yun, Leye Wang, Yang Zhou, Huaiyu Dai, and Dejing Dou. 2024.
Efficient Federated Learning Using Dynamic Update and Adaptive Pruning with Momentum on Shared Server
Data. ACM Trans. Intell. Syst. Technol. 15, 6, Article 122 (November 2024), 28 pages.
https://doi.org/10.1145/3690648

1 Introduction
With a large quantity of data distributed in numerous edge devices, cloud servers may have some
shared insensitive data for efficient processing [1]. Due to data privacy and security concerns,
multiple legal restrictions [2, 3] have been put into practice, making it complicated to aggregate
the distributed sensitive data within a single high-performance server. As big amounts of training
data generally lead to high performance of machine learning models [4], Federated Learning (FL)
[5–7] becomes a promising approach to collaboratively train a model with considerable distributed
data while avoiding raw data transfer.

Traditional FL exploits non-Independent and Identically Distributed (non-IID) data on
mobile devices to collaboratively train a global model [5]. Within the training process, the weights
or the gradients of the global model are transferred between the devices and the server while the
raw data stays in each device. FL typically utilizes a parameter server architecture [6, 8], where
a parameter server (server) coordinates the distributed training process. The training process
generally consists of multiple rounds, each composed of three stages. First, the server chooses a set
of devices and broadcasts the global model to them. Second, each of the chosen devices trains the
received model using local data and then sends back the updated model. Third, the server gathers
the updated models and aggregates them to form a new global model. This process continues when
the predefined condition, e.g., a maximum round number or the convergence of the global model,
is not achieved.

Although keeping data within the devices can protect data privacy and security, FL encounters
two major challenges, which hinder its application in real-world environments.The first challenge is
the limited data within a single edge device, which leads to ineffective local training while potential
large amounts of shared insensitive data remain useless on the server. The second challenge is the
modest edge devices with limited communication and computation capacity [9], which corresponds
to inefficient local training on devices. To address the first challenge, we leverage the shared insensi-
tive data on the server and design a new FL framework to improve the accuracy of the global model.
To address the second challenge, we propose an adaptive optimization method and an adaptive prun-
ing method within the proposed FL framework to improve model accuracy and reduce training cost.

In addition to the distributed data in edge devices, insensitive data can be transferred to the
servers in the cloud to leave space for critical sensitive personal data [10, 11], e.g., Amazon Cloud
[12], Microsoft Azure [13], and Baidu Artificial Intelligence Cloud [14]. The insensitive data may
exist on the server by default before the training process. For instance, the server may have prior
learning tasks, either training or inference, which have already collected some data to be re-used
for the new task of interest. In addition, some end users may offload some insensitive data to the
server with certain incentive mechanism such as for crow-sourcing tasks [15], or simply to free

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 6, Article 122. Publication date: November 2024.

https://doi.org/10.1145/3690648

Efficient FL Using Dynamic Update and Adaptive Pruning 122:3

up some local storage space [16]. Some other recent works are based on the insensitive shared
data on the server [17–19]. The shared insensitive data can help improve the efficiency of the FL
training process without the restriction of data distribution (see details in Section 3.2). The shared
insensitive data can be transferred to the devices for local training in order to improve the accuracy
of the global model [1, 20]. Although the shared data on the server is not sensitive, they still contain
some important personal information. Thus, transferring the shared data to devices may still incur
privacy or security problem. In addition, this approach leads to significantly high communication
overhead. Furthermore, the existing approaches are inefficient when the shared server data is
simply processed as that in edge devices [11] or when knowledge transfer is utilized to deal with
heterogeneous models [21, 22].

Adaptive optimization methods, such as Stochastic Gradient Descent with Momentum
(SGDM) [23], Adaptive Moment Estimation (Adam), and Adaptive Gradient (AdaGrad),
have gained superb advance in accelerating the training speed and the final accuracy. Most of the
existing FL literature adopts the adaptive optimization methods either on the server side [24–27] or
on the device side [27–31]. However, applying the adaptive optimization on either of them often
leads to inefficient learning results with inferior accuracy. The adaptive optimization methods
can be exploited on both sides, as shown in [32], but the momentum transfer may incur severe
communication costs with limited bandwidth between the devices and the server.

Model pruning reduces the size of a model into a slim one while the accuracy remains acceptable.
These kinds of methods can be exploited in the training process to improve the efficiency of the train-
ing and to significantly reduce the overhead brought by a big model [33]. However, existing pruning
approaches incur severe accuracy degradation. The simple application of existing pruning methods
in FL does not consider the diverse dimensions and features of each layer [34]. In addition, as a big
model may consist of numerous neurons, simple model pruning strategies cannot choose proper
portions of the model to prune and may lead to low training efficiency and inferior accuracy [1].

In this work, we introduce a novel efficient FL framework, i.e., FedDUMAP, which enables
collaborative training of a global model based on the sensitive device data and insensitive server
data with a powerful server and multiple modest devices. We denote the sensitive data as the data
that contain personal information and cannot be shared or transferred according to the users. In
addition, the insensitive data can contain personal information while it can be transferred to a
cloud server. In order to handle the two aforementioned problems, we utilize the shared insensitive
data on the server to improve the accuracy of the global model with adaptive optimization with the
consideration of the non-IID degrees, which represent the difference between a dataset (either on
the server or a device) and the global dataset, i.e., the data on all the devices.

FedDUMAP consists of threemodules, i.e., FedDU, FedDUM, and FedAP. FedDU is an FL algorithm,
which dynamically updates the global model based on the distributed sensitive device data and
the shared insensitive server data. In addition, FedDU dynamically adjusts the global model based
on the accuracy and the non-IID degrees of the server data and the device data. Furthermore, we
propose a novel adaptive optimization method on top of FedDU, i.e., FedDUM, to improve the
accuracy of the model without transferring the momentum from devices to the server or from
the server to the devices. We decouple the optimization on the server and the device sides while
exploiting the model generated with adaptive optimization from each device to enable the adaptive
optimization on the server side. Besides, FedAP removes useless neurons in the global model to
reduce the model size so as to reduce the computational overheads and the computation costs
on devices without degrading noticeable accuracy. FedAP considers the features of each layer to
identify a proper pruning rate, based on the non-IID degrees. Furthermore, FedAP prunes the
neurons according to the rank values, which can preserve the performance of the model. To the best
of our knowledge, we are among the first to propose exploiting non-IID degrees for dynamic global

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 6, Article 122. Publication date: November 2024.

122:4 J. Liu et al.

model updates while utilizing adaptive optimization and adaptive pruning for FL. This manuscript
is an extension of a conference version [35]. In this article, we make four following contributions:

(1) A novel dynamic FL algorithm, i.e., FedDU, which utilizes both shared insensitive server data
and distributed sensitive device data to collaboratively train a global model. FedDU dynami-
cally updates the global model with the consideration of the model accuracy, normalized
gradients from devices, and the non-IID degrees of both the server data and the device data.

(2) A new adaptive optimization method, i.e., FedDUM, which decouples the optimization
between the server side and the device side while exploiting the models generated from
devices for the optimization on the server side without additional communication cost.

(3) An original adaptive pruning method, i.e., FedAP, which considers the features of each layer
to identify a proper pruning rate based on the non-IID degrees. FedAP prunes the model
based on the rank values to preserve the performance of the global model.

(4) Extensive experimentation demonstrates significant advantages of FedDUMAP, including
FedDU, FedDUM, and FedAP, in terms of efficiency, accuracy, and computational cost based
on three typical models and two real-life datasets.

The rest of this article is organized as follows. Section 2 explains the related work. Section 3
proposes our framework, i.e., FedDUMAP, including FedDU, FedDUM, and FedAP. Section 4 presents
the experimental results using three typical models and two real-life datasets. Finally, Section 5
concludes the article.

2 Related Work
FL was proposed to train a model using the distributed data within multiple devices while only
transferring the model or gradients [5]. Some works ([36–45] and references therein) either focus
on the device scheduling or the model aggregation within the server or even with a hierarchical
architecture to improve the accuracy of the global model, which only deals with the distributed
device data. In order to leave space for sensitive data on devices and with incentive mechanisms
[11], some insensitive data are transferred to the server or the cloud, which can be directly utilized
for training. When all the data are transferred to the server, the server data can be considered as
IID data [11]. However, transferring all the data including the sensitive data incurs severe privacy
and security issues with significant communication costs, which is not realistic [46]. Some existing
works utilize the insensitive server with heterogeneous models [47], or within one-shot model
training [4], based on knowledge transfer methods [48, 49], or label-free data [22, 50]. However,
the aforementioned approaches are inefficient [4, 47] or ineffective [22] without the consideration
of the non-IID degrees or big models. Furthermore, while it may lead to significant communication
overhead, the transfer of the insensitive server data to devices [1, 20] may incur severe privacy and
security issues. The proper devices can be selected for training based on the server data [51], which
can be integrated with our proposed approach.

Without adaptive optimization within the model aggregation process, traditional methods,
e.g., Federated averaging (FedAvg) [5], may incur the client drift problem, which makes the
global model over-fitted to local device data [52]. While control parameters [52] can help alleviate
the problem, they require the devices to participate all through the training process [52, 53],
which may not be feasible in cross-device FL. Adaptive optimization methods, e.g., AdaGrad [24],
Yogi [25], Adam [26, 27], and momentum [32, 54–56] can be exploited to address the client drift
problem. However, the existing approaches generally consider only one side, i.e., either server
side [57] or device side [28], which may lead to inferior accuracy. Furthermore, the devices may

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 6, Article 122. Publication date: November 2024.

Efficient FL Using Dynamic Update and Adaptive Pruning 122:5

have heterogeneous non-IID data, which makes the direct application of the momentum method
insufficient [29]. Although adaptive optimization is applied on both the device side and the server
side in some recent works [32], the communication of momentum between the server and devices
may incur high communication costs.

Model pruning can reduce the size of the model, which corresponds to smaller communication
overhead and computation costs compared with the original model within the training process
[33, 58–60] and the inference process [61] of FL. However, the shared insensitive server data is
seldom utilized. Two types of techniques exist for the pruning process, including filter (structured)
pruning and weight (unstructured) pruning. The unstructured pruning set the chosen parameters
to 0 while the structure of the original model remains unchanged. Although the accuracy remains
almost the same as that of the original one [62] while reducing communication overhead [33],
the unstructured pruning cannot reduce computational cost with general-purpose computing
resources, e.g., edge devices [34]. On contrary, structured pruning can modify the model structure
by abandoning selected neurons or filters in the original model. As some parts of the original
model are removed, the structured pruning leads to significantly smaller computational costs and
communication overhead [34]. However, it is non-trivial to determine the pruning rate, which
hinders the application of unstructured pruning in the training process of FL. Sparsification,
quantization [63, 64], or dropout [65, 66] are efficient techniques to reduce the communication
overhead as well, which is out of the scope of this article and can be combined with our proposed
approach for better performance.

In this article, we utilize both the shared insensitive server data and the distributed sensi-
tive device data for FL training. We propose an FL framework, i.e., FedDUMAP, consisting of
FedDU, FedDUM, and FedAP. FedDU dynamically adjusts the global model with the shared in-
sensitive server data based on the non-IID degrees and model accuracy. FedDUM considers an
adaptive optimization method on both the device and the server sides without additional com-
munication overhead. Furthermore, FedAP prunes the global model with the consideration of
the features of each layer and removes the filters based on the rank values to reduce commu-
nication and computational costs while achieving high accuracy. The pruning rate is calculated
based on the non-IID degrees. FedDUMAP can achieve high accuracy and efficient training at the
same time.

3 Method
In this section, we propose our FL framework, i.e., FedDUMAP. We first present the system model.
Then, we detail FedDU, which dynamically updates the global model. Afterward, we explain the
adaptive momentum-based optimization, i.e., FedDUM, to improve the accuracy of the global
model. Finally, we reveal the design of FedAP, which reduces the size of the global model to reduce
communication and computational costs.

3.1 System Model
Figure 1 shows the training process of FedDUMAP, where the FL system consists of a server
and # edge devices. The description of major notations is summarized in Table 1. We consider a
powerful server and modest devices. The shared insensitive data is stored on the server, and the
distributed sensitive data is dispersed in edge devices. Both the server data and the device data can
be utilized to update the model during the FL training process of FL. Let us assume that a dataset
⇡: = {G:, 9 ,~:, 9 }=:9=1, composed of =: samples, resides on Device : . We take ⇡0 as the server data,
and ⇡: ,: < 0 as the device data. G:, 9 refers to the 9th sample on Device : , while ~:, 9 represents

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 6, Article 122. Publication date: November 2024.

122:6 J. Liu et al.

Fig. 1. The training process of FedDUMAP Framework.

Table 1. Summary of Main Notations

Notation Definition
; # 0 The number of edge devices; the number of devices selected for an iteration; the number of selected devices

⇡: ; ⇡0; : The local dataset on Device : ; the server data; the index of a device
=: ; =0 The number of samples on Device : ; the number of samples on the server

G:, 9 ; ~:, 9 The 9th input data sample in Device : ; the label of G:, 9
X; Y The data sample set; the label set

F ;FC ;FC� 1
2 The parameters of the global model; the global model in Round C ; the aggregated model in Round C

%: = {%: (~) |~ 2 Y} The distribution of data in Device : with 0 representing the server
%: (~) The probability that a data sample corresponds to Label ~ in Device :
%< ; % The average distribution of two datasets; the distribution of all the device data
% 0

C The distribution of all the data in the selected devices in Round C
D(%:) The non-IID degree of data on Device :
D ; DC The set of all devices and the server; the set of selected devices in Round C
�: (F) The local loss function in Device :
⇢; ⌫; [The local epoch; the local batch size; the learning rate
g ; gC4 5 5 The number of iterations performed in the server update; the effective steps for the server update in Round C
6C0 (·) The normalized stochastic gradients on the server in Round C
=0; =0 The total number of samples in all the selected devices; the number of samples in the server data
FC� 1

2 ,8 The parameters of the 8th local iteration of the updated aggregated model in Round C
022C The accuracy of the aggregated model in Round C

,: ;, 0: The initial parameters of the local model in Device : ; the parameters of the local model in Device : after) rounds
� (, 0:) The Hessian matrix of the loss function on Device :
_<: ; 3: The<th eigenvalue in the Hessian matrix on Device : ; the rank of the Hessian matrix on Device :

?⇤; ?⇤: ; ?
⇤
; The expected global pruning rate; the expected pruning rate on Device : ; the expected pruning rate of Layer ;

n A small value to avoid the division by 0
M ; @; The number of parameters in the model; the number of parameters in Layer ;
A 9
;
; 3; The rank of the 9th filter in Layer ; ; the number of filters in Layer ;

the corresponding label. We utilize X to represent the set of samples and Y to represent the set of
labels. Then, we formulate the objective of the training process as follows:

min
F

� (F), with � (F) ¨ 1
=

#’
:=1

=:�: (F), (1)

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 6, Article 122. Publication date: November 2024.

Efficient FL Using Dynamic Update and Adaptive Pruning 122:7

where �: (F) ¨ 1
=:

Õ
{G:,9 ,~:,9 }2D:

5 (F , G:, 9 ,~:, 9) represents the loss function on Device : with
5 (F , G:, 9 ,~:, 9) capturing the error of the inference results based on the model with the sample pair
{G:, 9 ,~:, 9 } andF refers to the global model.

With the distributed non-IID data in FL [36], we utilize the Jensen–Shannon divergence [67] to
quantize the non-IID degree of a dataset as shown in Formula (2)

D(%:) =
1
2
DKL (%: | |%<) +

1
2
DKL (% | |%<), (2)

where %< = 1
2 (%: + %), % =

Õ#
:=1 =:%:Õ#
:=1 =:

, %: = {%: (~) |~ 2 Y}, %: (~) refers to the possibility that a
sample is related to Label ~, and DKL (·| |·) corresponds to the Kullback–Leibler (KL) divergence
[68] as defined in Formula (3)

DKL (%8 | |% 9) =
’
~2Y

%8 (~) log
✓
%8 (~)
% 9 (~)

◆
. (3)

When the distribution of a dataset differs from that of the global dataset more significantly, the
corresponding non-IID degree becomes higher. Although the raw data is not transferred from
devices to the server or from the server to the devices in FedDUMAP, we assume that %: and
=: incur little privacy concern [69], and can be transferred from devices to the server before the
FL training process. When this statistical meta information, i.e., %: (~), cannot be shared because
of restrictions, we can utilize gradients to calculate the data distribution of the dataset on each
device [70].

The FL training process contains multiple rounds in FedDUMAP, each of which consists of 6
steps. In Step ①, a set of devices (DC with C referring to the round number) is randomly selected to
participate in the training process of Round C and the server broadcasts the global model to the
device of DC . Afterward, each device updates the received model with the adaptive momentum-
based optimization based on the local data in Step ②. Then, in Step ③, the selected devices upload
updated models to the server, and the server aggregates all the received models based on FedAvg
[5] in Step ④. In addition, the server updates (see details of the server update in Section 3.2)
aggregated model utilizing the shared insensitive server data and the adaptive momentum-based
optimization method (see details in Section 3.3) in Step ⑤. Furthermore, in a predefined round,
the server performs model pruning based on the accuracy of the global model and the non-IID
degrees (see details in Section 3.4). While Steps ①–④ resemble those within traditional FL, we
propose exploiting the insensitive server data to improve the performance of the global model (in
FedDU) with adaptive momentum-based optimization (in FedDUM) on both the server and device
sides (Step ⑤) and an adaptive model pruning method (in FedAP) to improve the efficiency of the
training process (Step ⑥).

3.2 Server Update
In this section, we explain the design of FedDU, which exploit both the shared insensitive server
data and the distributed sensitive device data to adjust the global model. We exploit the non-IID
degrees and the model accuracy to determine the weights of aggregated model and those of the
normalized gradients based on the server data in FedDU, so as to avoid over-fitting to the server
data.

We assume that the size of the insensitive server data is significantly bigger than the dataset
within a single device. In this case, the straightforward combination of the aggregated model from
the devices and the gradients calculated based on the shared insensitive server data leads to inferior
accuracy due to objective inconsistency [71]. Inspired by [71], we normalize the gradients generated

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 6, Article 122. Publication date: November 2024.

122:8 J. Liu et al.

using the server data to deal with this issue. The model aggregation in FedDU is formulated as
Formula (4)

FC = FC� 1
2 � gC�14 5 5 [6

(C�1)
0 (FC� 1

2), (4)

whereFC refers to the weights of the global model in Round C ,FC� 1
2 is the weights of the aggregated

model from the selected devices in Round C as formulated in Formula (5) [5], gC�14 5 5 corresponds
to the size of effective steps for normalized gradients calculated based on the shared insensitive
server data as shown in Formula (7), [represents the learning rate, 6C0 (·) refers to the normalized
gradients generated based on the server data in Round C as formulated in Formula (6)

FC� 1
2 =

’
:2DC

=:
=0

(FC�1 � [6C�1: (FC�1)), (5)

where =0 = Õ
:2DC =: refers to the size of the dataset on all the selected devices, 6C�1: (·) corresponds

to the gradients generated using the dataset on Device :

6 (C�1)0 (FC� 1
2) =

Õg
8=1 6

(C�1)
0 (FC� 1

2 ,8)
g

, (6)

whereFC� 1
2 ,8 represents the parameters of the global model after aggregating the gradients based

on the server data, at 8th iteration of Round C , 6 (C�1)0 (·) refers to the gradients calculated using the
server data, and g = d |=0 |⇢

⌫ e corresponds to the number of iterations of Round C , ⇢ is the number of
local epochs, ⌫ is the batch size. Each round corresponds to multiple iterations with a mini-batch
of sampled shared insensitive server data.

While gC4 5 5 has a significant impact on the training process, we dynamically choose an effective
step size with the consideration of the model accuracy, the non-IID degrees of both the server data
and the device data, with the number of rounds, as formulated in Formula (7)

gC4 5 5 = 5 0 (022C) ⇤ =0 ⇤D(% 0C)
=0 ⇤D(% 0C) + =0 ⇤D(%0)

⇤ C ⇤ 3420~C ⇤ g, (7)

where 022C represents the model accuracy calculated based on the server data in Round C , i.e.,FC� 1
2

defined in Formula (5), =0 corresponds to the size of the shared insensitive server data, D(·) is
shown in Formula (2), % 0C =

Õ
:2DC =:%:Õ
:2DC =:

refers to the distribution of the distributed sensitive data
in all the chosen devices in Round C , %0 is the distribution of the shared insensitive server data,
3420~ 2 (0, 1) is utilized to ensure the convergence of the global model toward the solution of
Formula (1), and C corresponds to a hyper-parameter. 5 0 (022) is calculated using 022 . 022 is small
at the beginning of the training. In this stage, the value of 5 0 (022) should be prominent so as to
take advantage of the server data to improve the accuracy of the global model. Then, at a late stage
of the training process, 5 0 (022) should be small to attain the objective defined in Formula (1) while
avoiding over-fitting to the shared insensitive server data.

When the distribution of server data resembles that of the overall device data, i.e., D(%0) is small,
or the distribution of the data of the chosen devices differs much from the overall device data, i.e.,
D(% 0C) is significant, we take a significant value of gC4 5 5 to improve the accuracy of the global
model. Furthermore, the data size improves the importance of the dataset, as well. In addition, the
weight of the device data is =0

D(% 0C)
and that of the server data is =0

D(%0) . Finally, we have
=0

D(%0)
=0

D(%0) +
=0

D(% 0C)
as the importance of the server data, which is the second part of Formula (7).

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 6, Article 122. Publication date: November 2024.

Efficient FL Using Dynamic Update and Adaptive Pruning 122:9

Algorithm 1: Federated Dynamic Server Update (FedDU)
Input:

DC : The set of selected devices in Round C
D: : The dataset on Device : with 0 representing that on the server
FC�1: The global model in Round C � 1
⇢: The number of local epochs
⌫: The local batch size
3420~: The decay rate
% : The set of data distribution {%: |: 2 {0} [DC } with 0 representing the server
[: The learning rate

Output:
FC : The global model in Round C

1: for : in DC (in parallel) do
2: Calculate 6C�1: (FC�1) usingFC�1, D:

3: end for
4: CalculateFC� 1

2 usingFC�1,[according to Formula 5
5: CalculateFC usingFC� 1

2 ,3420~, ⇢,⌫, %,[according to Formula 4

Algorithm 1 explains FedDU. The model is updated using the local dataset on each chosen device
(Lines 1–3). Afterward, the models are aggregated using Formula (5) (Line 4). Finally, the aggregated
model is updated utilizing the shared insensitive server data based on Formula (4) (Line 5).

Let us assume that the expected squared norm of stochastic gradients on the server is bounded,
i.e., E | |60 | |2  ⌧2. Then, in Round C , gC4 5 5  ⇠ · 3420~C · g . Afterward, the server update term can be
less than⇠ ·3420~C ·g ·[·⌧ . In this case, after sufficient steps, the server update becomes negligible,
i.e., E[limC!1 gC�14 5 5 [6

C�1
0 (FC� 1

2)]  limC!1⇠ · 3420~C�1 · g · [·⌧ = 0, with 0 < 3420~ < 1. Finally,
FedDU degrades to FedAvg [5], the convergence of which is guaranteed with a decaying learning
rate [[72, 73].

3.3 Momentum-Based Optimization
In order to further improve the accuracy of the global model, we exploit momentum within the
server update on the server and within the local iteration on each device. In this section, we propose
a simple adaptive momentum approach, i.e., FedDUM, which enables the optimization on both the
server and the devices without additional communication cost.

The centralized SGDM can be formulated as
<C = V ⇤<C�1 + (1 � V) ⇤ 6(FC�1),FC = FC�1 � [⇤<C , (8)

where < is momentum. A simple application of the momentum into the FL environment is
to decompose the SGDM to each device while aggregating the momentum as formulated in
Formula (9)

<C
: = V ⇤<C�1

: + (1 � V) ⇤ 6: (FC�1
:),

FC
: = FC�1

: � [⇤<C
: ,

<C =
’
:2DC

=:
=0
<C�1

: ,

FC =
’
:2DC

=:
=0

FC�1
: .

(9)

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 6, Article 122. Publication date: November 2024.

122:10 J. Liu et al.

In order to extend the optimization into multiple local epochs, we can formulate the process as
follows:

<0C,C
0

: = V 0 ⇤<0C,C 0�1: + (1 � V 0) ⇤ 60: (F 0C,C
0�1

:),
F 0C,C

0

: = F 0C,C
0�1

: � [0 ⇤<0C,C 0: ,

<C =
’
:2DC

=:
=0
<0C,⇢�1: ,

FC =
’
:2DC

=:
=0

F 0C,⇢�1: ,

(10)

where<0C,C 0: represents the local momentum within Device : at global Round C and local Iteration
C 0, V 0 is the local weight for gradients, 60: refers to the gradients with the parameters of the model
F 0C,C

0

: , and [0 is the local learning rate. Please note that 60: and [0 are local hyper-parameters on
each device and are different from those in Formulas (8) and (9), which refer to global parameters
on the server. We have the first momentum equal to the global momentum, i.e.,<0C,0: = <C , and
the first parameters of the model equal to the global parameters, i.e., F 0C,0: = FC . However, this
simple decomposition may deviate from the momentum of the centralized optimizer and harm the
local training [32]. In addition, the communication of momentum, i.e.,<0C,⇢�1: and<C , may incur
significant communication cost. Inspired by [74], we restart the local adaptive optimization and set
the momentum buffers to zero at the beginning of local iterations. Furthermore, we calculate the
difference between the updated model and the original model as the total gradients as defined in
Formula (12). Then, we can utilize Formula (11) below to perform the local iteration in each selected
device, which replaces Formula (5) in Algorithm 1 with adaptive momentum

<0C,C
0

: = V 0 ⇤<0C,C 0�1: + (1 � V 0) ⇤ 60: (F 0C,C
0�1

:),F 0C,C 0: = F 0C,C
0�1

: � [0 ⇤<0C,C 0: , (11)

with<0C,0: = 0 andF 0C,0: = FC . This operation only requires the parameters of the model transferred
from the server to devices without additional communication costs compared with FedAvg. After-
ward, we exploit Formula (12) below to calculate the gradients on the server, and utilize Formula
(8) to replace Formula (4) in Algorithm 1 with adaptive momentum

FC� 1
2 =

’
:2DC

=:
=0

F 0C�1,⇢�1: ,6(FC�1) = FC� 1
2 + gC�14 5 5 [6

(C�1)
0 (FC� 1

2) �FC , (12)

where gC�14 5 5 [6
(C�1)
0 (FC� 1

2) is the same as that in Formula (4). This only requires the transfer of
the parameters of the local updated model, which does not incur additional communication cost
compared with FedDU.

FedDUM is shown in Algorithm 2. The local model update is performed according to Formula
(11) in parallel in each selected device (Lines 1–3). Then, the aggregated gradient is calculated
using Formula (12) (Line 4). Afterward, the new global model is updated using the gradients and
momentum according to Formula (8) (Line 5).

In order to analyze the adaptive optimization on devices, we have the following assumptions:

Assumption 1 (Lipschitz Gradient). There exists a constant !6 such that k6: (F1) � 6: (F2)k 
!6kF1 �F2k for anyF1,F2 and : = 1, · · · ,# .

Assumption 2 (Bounded Gradient). k6: k!1 < 1 for any : = 1, 2, · · · ,# .

Assumption 3 (Bounded Momentum). k<: k!1 < 1 for any : = 1, 2, · · · ,# .

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 6, Article 122. Publication date: November 2024.

Efficient FL Using Dynamic Update and Adaptive Pruning 122:11

Algorithm 2: Federated Dynamic Update with Momentum (FedDUM)
Input:

DC : The set of selected devices in Round C
D: : The dataset on Device : with 0 representing that on the server
FC�1: The global model in Round C � 1
⇢: The number of local epochs
⌫: The local batch size
3420~: The decay rate
% : The set of data distribution {%: |: 2 {0} [DC } with 0 representing the server
[: The learning rate

Output:
FC : The global model in Round C

1: for : in DC (in parallel) do
2: CalculateF 0C�1,⇢�1: usingFC�1, D: , ⌫, ⇢ using Formula 11
3: end for
4: Calculate 6(FC�1) usingF 0C�1,⇢�1: ,3420~, ⇢,⌫, %,[according to Formula 12
5: CalculateFC using 6(FC�1) according to Formula 8

Then, we can get the following theorem:

Theorem 3.1. Local momentum deviates from the centralized one at linear rate $ (4_+⇢).

Proof. From the perspective of dynamics of Ordinary Differential Equations [32], we can
formulate the difference between the local optimization and the centralized optimization as

✓
k<C,⇢�1

: �<C,⇢�1k
kFC,⇢�1

: �FC,⇢�1k

◆
 4�⇢

✓
k<C,0

: �<
C k

kFC,0
: �F

C k

◆
+ (1 � V 0)

π ⇢�1

0
4�(⇢�C 0)

✓
k'C,C 0 k/[0

0

◆
3C 0 . (13)

where <C,C 0 represents the momentum in centralized optimization, FC,C 0 represents the
model in centralized optimization, 'C,C

0
=
Õ

92DC , 9<:
= 9

=0
�
6 9 (FC,C 0) � 6: (FC,C 0)

�
, and

� =
✓
�(1 � V 0)/[0 (1 � V 0)!6/[0

1 0

◆
. The eigenvalue of Matrix � is _± = � (1�V

0)±
p
(1�V 0)2+4(1�V 0)!6
2[0 .

Note that<C,0
: = 0 andFC,0

: = FC . In addition, k4�C k  ⇠�4_
+C 0 for any C 0 � 0 for some constant ⇠�.

Then, we have

k<C,C 0

: �<
C,C 0 k + kFC,C 0

: �F
C,C 0 k

⇠�k<C k4_+C 0 + 4_
+C 0 (1 � V 0)

π C 0

0
4�_

+g �k'C,C 0 k/[0� 3g
⇠�k<C k4_+⇢ + 4_

+⇢ (1 � V 0)
π ⇢�1

0
4�_

+g �k'C,C 0 k/[0� 3g
=$ (4_+⇢).

(14)

É

In the experimentation, we set the local epoch to a small number, e.g., 5, to reduce the deviation
between local momentum and centralized optimization.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 6, Article 122. Publication date: November 2024.

122:12 J. Liu et al.

Algorithm 3: Federated Adaptive Structured Pruning (FedAP)
Input:

!: The list of convolutional layers to prune
D : The set of all devices and the server
F : The initial model
F⇤: The current model in Round C
, = [E1, E2, · · · , EM]: The list of parameters in ModelF⇤

Output:
F 0: The pruned model in Round C

1: F 0 F⇤

2: for : 2 D (in parallel) do
3: Calculate the expected pruning rate ?⇤:
4: end for
5: Calculate ?⇤ according to Formula 15
6: , = [E>1 , E>2 , · · · , E>'] Sort, in ascending order of |E |
7: V = |E> b'⇤?⇤c |
8: for ; 2 ! do
9: ,; = [E1, E2, · · · , E@;] The parameters in Layer ;

10: , 0; [E1, E2, · · · , E@0;] with each |E@ | < V

11: ?⇤;
⇠0A38=0;8C~ (, 0

;)
@;

12: Calculate the ranks '; of each filter in Layer ;
13: Sort the filters according to '; in an ascending order
14: F 0; Preserve the last 3; � b?⇤; ⇤ 3; c filters in ';
15: F 0 Replace the ;th layer ofF 0 withF 0;
16: end for

3.4 Adaptive Pruning
In this section, we present our layer-adaptive pruning method, i.e., FedAP. FedAP considers the
diverse features of each layer, the non-IID degrees of both the sensitive shared server data and
the distributed sensitive device data, to remove useless filters in the convolutional layers while
preserving the accuracy. FedAP can reduce the communication overhead and the computational
costs of the training process. Please note that FedAP is performed only once on the server in a
predefined round.

Algorithm 3 details FedAP. On the server and each device (Lines 2–4), we calculate a proper
pruning rate based on the shared sensitive server data or the distributed sensitive device data
(Line 3). We denote the initial model ,: on the server or Device : . At Round) , the updated
model is denoted by, 0: . Then, the difference between the current model and the original one is
�: =,: �, 0: . Afterward, we can calculate the Hessian matrix, i.e.,� (, 0:). We sort the eigenvalues
of � (, 0:) in ascending order, i.e., {_<: |< 2 (1,3:)} with< referring the index of an eigenvalue and
3: referring to the rank of the Hessian matrix. We take ⌫: (�:) = � (, 0:) � œ!(�: +, 0:) as a base
function with œ!(·) corresponding to the gradients. We denote the Lipschitz constant of ⌫: (�:)
as L: . Inspired by [62], we take the first<: , which meets the condition of _<:+1 � _<: > 4L: , to
reduce accuracy degradation. Then, we can calculate the proper pruning rate by ?⇤: = <:

3:
, which

is the ratio between the size of pruned eigenvalues and that of all the eigenvalues. As the proper
pruning rate significantly differs in diverse devices due to the non-IID distribution, we utilize

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 6, Article 122. Publication date: November 2024.

Efficient FL Using Dynamic Update and Adaptive Pruning 122:13

Formula (15) to generate an aggregated proper pruning rate for the global model (Line 5)

?⇤ =
=’

:=0

=:
D(%:)+nÕ=

: 0=0
=:0

D(%:0)+n
⇤ ?⇤: , (15)

where n represents a small value to avoid the division of zero. We take a global threshold value (V)
calculated based on the aggregated proper pruning rate to serve as a baseline value for generating
the pruning rate of each layer. V is the absolute value of the b' ⇤ ?⇤c-th smallest parameter in
all the parameters (Lines 6 and 7). Afterward, for each convolutional layer (Line 8), we calculate
the proper pruning rate by calculating the ratio between the number of parameters with inferior
absolute values than V and the number of all the parameters (Lines 9–11). Inspired by [34], we
remove the filters corresponding to the smallest ranks in feature maps (the output of filters) based
on the proper pruning rate in the layer (Lines 12–15). We take '; = {A 9; | 9 2 (1,3;)} to represent
the ranks of feature maps at Layer ; , where 3; refers to the number of filters in this layer. As the
feature maps are almost the same for a given model [34], we take the ranks calculated based on the
server data and perform the pruning operations on the server because of its powerful computation
capacity. We calculate the feature maps in '; in Line 12 and sort them in Line 13. We keep the
filters having the last 3; � b?⇤; ⇤ 3; c ranks in the sorted '; , so as to attain the highest pruning rate
?;  ?⇤; (Line 14). In the end, we take the preserved filters in the original model as the layer of
the pruned model (Line 15). When there is no available server data, the pruning process can also
be performed on the server based on the rank values '; calculated using the dataset on a device,
which are transferred to the server, with the execution of Line 12 being carried out at that device.

4 Experiments
In this section, we demonstrate the experimental results to show the advantages of FedDUMAP by
comparing it with state-of-the-art baselines, i.e., FedAvg [5], FedKT [4], FedDF [22], Data-sharing
[1], Hybrid-FL [11], server-side momentum [25], device-side momentum [75], FedDA [32], HRank
[34], IMC [62], and PruneFL [33].

4.1 Experimental Setup
We evaluate FedDUMAP using an FL system consisting of a parameter server and 100 devices.
In each round, we randomly choose 10 devices. We utilize two real-life datasets, i.e., CIFAR-10
and CIFAR-100 [76], in the experimentation. We exploit four models, i.e., a simple synthetic
Convolutional Neural Network (CNN), ResNet18 (ResNet) [77], Visual Geometry Group
(VGG) 11 [78], and LeNet5 (LeNet) [79]. The experimentation of CNN, VGG, and LeNet is carried
out on both CIFAR-10 and CIFAR-100, while that of ResNet is performed on CIFAR-100.

CNN consists of three 3 ⇤ 3 convolution layers, a fully connected layer, and a final softmax output
layer. The first layer contains 32 channels, while the second and third layers have 64 channels. The
first and the second layers are followed by 2 ⇤ 2 max pooling. The fully connected layer contains 64
units and exploits ReLu activation. CNN contains 122,570 parameters in total. The mini-batch size
is set to 10 for the local model update, and the selected device executes ⇢ = 5 local epochs. The
local learning rate [is 0.1 with a decay rate of 0.99. C is set to 1. The experimentation is carried out
using 33 Tesla V100 GPUs to simulate an FL environment composed of a parameter server and 100
devices. We carry out the pruning process in Round 30 in all the experimentation with adaptive
pruning. In addition, we exploit the Savitzky–Golay filter [80] to smooth the accuracy in figures.

The CIFAR-10 dataset contains 60,000 images (50,000 for training and 10,000 for testing), each
corresponding to one of ten categories. We take 40,000 images in the training dataset as device
data and randomly select ? * 40,000 images from the remaining 10,000 images as server data, with

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 6, Article 122. Publication date: November 2024.

122:14 J. Liu et al.

Fig. 2. The accuracy of FedDU with diverse amounts of server data on CIFAR-10. About 1%, 5%, and 10%
represent the value of ? (see details in Section 4.1).

0% < ? < 25%. ? represents the ratio between the size of the shared insensitive server and that of
the distributed sensitive device data. For the non-IID setting, we sort the device data according to
the label and then divide these data evenly into 2 ⇤ 100 fractions. Each device is randomly assigned
2 fractions, and most devices contain the data with 2 labels. We utilize the same method to handle
the CIFAR-100 dataset.

4.2 Evaluation with Non-IID Data
We first conduct comparison of FedDU with FedAvg, FedKT, FedDF, Data-sharing, and Hybrid-FL
in terms of model accuracy. Then, we compare FedDUM with server-side momentum, device-side
momentum, and FedDA. Afterward, we show the advantages of the adaptive pruning method, i.e.,
FedAP, with the comparison of FedAvg, IMC, HRank, and PruneFL, in terms of model efficiency.
Last but not least, we demonstrate that FedDUMAP, which consists of both FedDUM and FedAP,
significantly outperforms the eight state-of-the-art baselines in terms of accuracy, efficiency and
computational cost. Finally, we present our ablation study.
4.2.1 Evaluation on FedDU. In this part, we compare FedDU with five baseline methods, i.e.,

FedAvg, FedKT, FedDF, Data-sharing, and Hybrid-FL. Afterward, we analyze the effect of g4 5 5 , the ef-
fect of 5 0 (022), the effect of C, and the effect of the non-IID degree of server data. Data-sharing trans-
fers the shared server data to devices in order to combine the local data and the server data, which
may have a smaller non-IID degree compared with the original local data, so as to improve the accu-
racy of the updated model on the device. Hybrid-FL takes the shared server data of significant size as
an ordinary dataset on a device and utilizes the FedAvg algorithm to perform the training process.

In order to take advantage of the server data, we have significant effective steps at the beginning,
which leads to a quick increase of accuracy. Then, at the end of the training, we reduce the effective
steps and focus on the device data to achieve high accuracy. Figure 2 shows that FedDU corresponds
to excellent efficiency and high accuracy compared with baseline methods with CIFAR-10. In
addition, with more server data, FedDU can achieve better performance in terms of accuracy (up to
5.3% higher) for both CNN and VGG. As shown in Figures 3 and 4, FedDU leads to a higher accuracy
compared with FedAvg (up to 5.7%), FedKT (up to 22.6%), FedDF (up to 5.0%), Data-sharing (up to
11.7%), and Hybrid-FL (up to 19.5%) for both CNN and ResNet when ? = 5% and 10%. In contrast,
Data-sharing has slightly higher accuracy (up to 1.2%) compared with FedDU for VGG, as the more
complex model can be better trained with augmented data. Compared with FedDU, Data-sharing
needs to transfer the server data to devices, which may incur privacy issues and corresponds to
high communication overhead. In addition, Data-sharing leads to a much longer training time to
achieve the accuracy of 0.6 (for CNN, up to 15.7 times slower) and 0.4 (for LeNet, up to 28.9 times
slower) than FedDU on CNN.

We have similar results on CIFAR-100 as that of CIFAR-10. As shown in Figure 5, FedDU
corresponds to a higher accuracy compared with Data-sharing (up to 14.0%), FedKT (up to 16.0%),

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 6, Article 122. Publication date: November 2024.

Efficient FL Using Dynamic Update and Adaptive Pruning 122:15

Fig. 3. The accuracy and training time with diverse model update methods corresponding to FedDU with
? = 5% and ? = 10%. CNN is with CIFAR-10 and ResNet is with CIFAR-100.

Fig. 4. The accuracy and training time with diverse model update methods corresponding to FedDU based
on CIFAR-10.

Fig. 5. The accuracy and training time with diverse model update methods corresponding to FedDU based
on CIFAR-100.

FedDF (up to 17.0%), Hybrid-FL (up to 20.4%), and FedAvg (up to 2.0%) with CNN, VGG, LeNet and
ResNet, when ? = 5% and ? = 10%. In addition, Data-sharing suffers from a much longer training
time to achieve the accuracy of 0.2 (up to 25.2 times slower) than FedDU.

Effect of g4 5 5 . First, we fix the number of effective steps, and we denote this setting FedDU-Static
(FedDU-S). We carry out the experiments with diverse values, i.e., g4 5 5 = 5, g4 5 5 = 10, g4 5 5 = 20,
and g4 5 5 = =0⇢

⌫ > 20. As shown in Table 2, when the effective number of steps is small, i.e., g4 5 5 = 5
or 10, the corresponding accuracy is higher than FedAvg with a small margin, e.g., up to 1.7% for

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 6, Article 122. Publication date: November 2024.

122:16 J. Liu et al.

Table 2. The Accuracy with Diverse Effective Steps on CIFAR-10

Method ?
g4 5 5 (CNN) g4 5 5 (VGG)

5 10 20 =0⇢
⌫ 5 10 20 =0⇢

⌫

A 0.626 0.666
D

1%
0.638 0.670

S 0.628 0.638 0.631 0.577 0.668 0.672 0.668 0.627
D

5%
0.663 0.700

S 0.636 0.639 0.648 0.436 0.674 0.684 0.690 0.651
D

10%
0.675 0.723

S 0.640 0.643 0.658 0.429 0.682 0.689 0.707 0.664

“A” represents FedAvg. “D” represents FedDU. “S” represents FedDU-S. Bold values represent
the best performance.

Table 3. The Accuracy with 5 0 (022) = 1 � 022 and
5 0 (022) = 1

022+n on CIFAR-10

Method ?

CNN VGG
Accuracy Accuracy

1 � 022 1
022+n 1 � 022 1

022+n
FedAvg 0.626 0.666

FedDU

1% 0.638 0.637 0.670 0.677
5% 0.663 0.660 0.700 0.697
10% 0.675 0.668 0.723 0.711

Bold values represent the best performance.

CNN and 2.3% for VGG. However, when the number of effective steps is huge, e.g., =0⇢
⌫ > 200, the

accuracy becomes the lowest. This is expected as the global model is updated too much toward the
central data, which degrades the final performance. We find that dynamical adjustment of g4 5 5 ,
i.e., FedDU, can significantly improve the accuracy (up to 1.7% higher accuracy compared with the
static method).
Effect of 5 0 (022). We can choose a synthetic function of 5 0 (022) between 1 � 022 and 1

022+n . As
shown in Table 3, we empirically find that the performance corresponding to 1 � 022 is similar to
that corresponding to 1

022+n in terms of accuracy, while 1 � 022 is slightly better (0.32% on average).
Thus, we choose 1 � 022 in FedDU.
Effect of C. In order to choose an appropriate value of C, we empirically analyze the perfor-

mance corresponding to diverse values of C, i.e., 1.5, 1, 0.5. As shown in Table 4, we find that the
performance of C = 1 has the highest accuracy on average. Then, we choose C = 1 in FedDU.
Influence of the Non-IID Degree of Server Data. The non-IID degree of server data can have a

significant influence on the training process. When the non-IID degree is small, the distribution of
the server data is similar to that of the global distribution of all the device data, which is beneficial
to the training process. Otherwise, the server data is of less help. In order to analyze the influence
of the non-IID degree of the server data, we carry out the experiment with diverse non-IID degrees,
e.g., 0.61, 0.31, and 9.0⇥10�6. As shown in Figure 6, when the non-IID degree is smaller, the training

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 6, Article 122. Publication date: November 2024.

Efficient FL Using Dynamic Update and Adaptive Pruning 122:17

Table 4. The Accuracy with Diverse Values of C on CIFAR-10

Method ?
C (CNN) C (VGG)

1.5 1 0.5 1.5 1 0.5
FedAvg 0.626 0.666

FedDU

1% 0.636 0.638 0.634 0.673 0.670 0.672
5% 0.651 0.663 0.647 0.685 0.700 0.690
10% 0.669 0.675 0.668 0.724 0.723 0.715

Bold values represent the best performance.

Fig. 6. The accuracy of FedDU with the server data of diverse non-IID degrees on CIFAR-10. About 1%, 5%,
and 10% represent the value of ? (see details in Section 4.1). “3” represents the non-IID degree. 31 = 0.61,
32 = 0.31, and 33 = 9.0 ⇥ 10�6.

Table 5. The Accuracy of FedDU with the Server Data of Diverse Non-IID
Degrees on CIFAR-10

Method ?
3 (CNN) 3 (VGG)

0.61 0.31 9.0 ⇥ 10�6 0.61 0.31 9.0 ⇥ 10�6

FedAvg 0.626 0.666

FedDU

1% 0.635 0.638 0.625 0.671 0.670 0.662
5% 0.659 0.663 0.659 0.704 0.700 0.700
10% 0.645 0.675 0.667 0.696 0.723 0.718

“3” represents the non-IID degree. See details of ? in Section 4.1. Bold values represent
the best performance.

is more efficient and it takes much shorter time to achieve a target accuracy (up to 6.6 times faster
to achieve the accuracy of 0.6). However, as shown in Table 5, the accuracy is not directly related
to the non-IID degrees.

4.2.2 Evaluation on FedDUM. In this section, we compare FedDUM with two adapted adaptive
optimization methods, i.e., server-side momentum (FedDU-SM) [25] and device-side momentum
(FedDU-DM) [75], as well as FedDA (FedDU-DA) [32]. For a fair comparison, each optimization
method is combined with FedDU to utilize the server data in order to improve the accuracy.

As shown in Figure 7, compared with FedAvg and FedDU, FedDUM achieves significantly higher
accuracy within the same training time for CNN (up to 6.5% for FedAvg, 1.6% for FedDU), VGG
(up to 7.2% for FedAvg, 1.5% for FedDU), and LeNet (up to 4.0% for FedAvg, 1.1% for FedDU) on
CIFAR-10. FedDUM leads to a higher accuracy compared with FedDU-SM (up to 4.4%), FedDU-DM

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 6, Article 122. Publication date: November 2024.

122:18 J. Liu et al.

Fig. 7. The accuracy of FedDUM with diverse adaptive optimization methods on CIFAR-10.

Fig. 8. The accuracy of FedDUM with diverse adaptive optimization methods on CIFAR-100.

(up to 1.6%), and FedDU-DA (up to 6.2%). In addition, FedDU-DA corresponds to a longer total
training time (up to 91.8% compared with other methods) because of additional communication
cost. Furthermore, FedDUM corresponds to a shorter training time to achieve the target accuracy
(up to 1.9 times faster than FedAvg, 44.2% faster than FedDU-SM, 42.9% faster than FedDU-DM and
3.1 times faster than FedDA).

We have similar results on CIFAR-100. As shown in Figure 8, compared with FedAvg and FedDU,
FedDUM achieves significantly higher accuracy for CNN (up to 1.6% for FedAvg), VGG (up to 4.2%
for FedAvg, 1.8% for FedDU), and LeNet (up to 1.1% for FedAvg, 0.1% for FedDU), except one case,
i.e., slightly lower (0.4%) for CNN compared with FedDU. The advantages of FedDUM become
significant compared with FedDU-SM (up to 4.4%), FedDU-DM (up to 1.6%), and FedDU-DA (up to
6.2%), in terms of accuracy. In addition, FedDU-DA corresponds to a longer total training time (up to
91.8% compared with other methods). Furthermore, FedDUM corresponds to a shorter training time
to achieve the target accuracy (up to 1.4 times faster than FedAvg, 1.6 times faster than FedDU-SM,
51.8% times faster than FedDU-DM, and 4.0 times faster than FedDA).

4.2.3 Evaluation on FedAP. In this section, we compare FedAP with three baseline methods, i.e.,
HRank [34], IMC [62], and PruneFL [33]. We utilize HRank with the shared insensitive server data
with multiple pruning rates, e.g., 0.2, 0.4, 0.6, and 0.8, within the FL training process. Similarly, we
exploit IMC based on the server data in the FL training process. HRank is a structured pruning
method, while PruneFL and IMC are unstructured techniques.

Figure 9 reveals the results based on CNN and VGG with CIFAR10 in terms of training time.
FedAP can generate a proper pruning rate (37.8% on average for CNN and 72.0% on average for
VGG), with a faster training speed (up to 1.8 times faster) and an excellent accuracy (up to 0.1%
accuracy reduction compared with that of FedAvg). However, both the training time and the
accuracy decrease at the same time when the pruning rate increases with HRank. FedAP generates
adaptive pruning rates for each layer while the accuracy is almost the same as that of FedAvg. Then,
we compare FedAP with FedAvg, IMC, and PruneFL. Figure 10 demonstrates that the training speed
of FedAP is significantly higher than baselines. In addition, FedAP achieves the highest accuracy

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 6, Article 122. Publication date: November 2024.

Efficient FL Using Dynamic Update and Adaptive Pruning 122:19

Fig. 9. The accuracy and the training time with FedAvg, HRank of diverse pruning rates, and FedAP on
CIFAR-10.

Fig. 10. The accuracy and the training time with FedAvg, IMC, PruneFL, and FedAP with? = 5% and ? = 10%.
CNN is with CIFAR-10 and ResNet is with CIFAR-100.

Fig. 11. The accuracy and training time with FedAvg, IMC, PruneFL, and FedAP based on CIFAR-10.

while its training time is significantly shorter to achieve the target accuracy of 0.55. As unstructured
pruning techniques cannot reduce computational costs with general-purpose hardware, the training
time remains unchanged. On the contrary, FedAP corresponds to a much smaller computational
cost (up to 55.7% reduction).

As shown in Figure 11 and Tables 6 and 7, FedAP achieves the highest accuracy and incurs
a negligible accuracy reduction (up to 0.1% than FedAvg) while its training time is significantly
shorter to achieve the accuracy of 0.6 (up to one time faster than FedAvg, 50.3% faster than IMC,
and 49.1% faster than PruneFL).

As shown in Figure 12 and Table 8, with CNN and VGG on CIFAR-100, FedAP achieves the
highest accuracy and incurs a negligible accuracy reduction (up to 0.2% and 0.7%) while its training
time is significantly shorter to achieve the accuracy of 0.3 (up to 8.2% faster than IMC, 1.4 times
faster than PruneFL, and 66.4% faster than FedAvg). As shown in Table 9, similarly with LeNet,
FedAP achieves the highest accuracy while its training time is significantly shorter to achieve the
accuracy of 0.25 (up to 13.0% faster than IMC, 47.3% faster than PruneFL, and 64.3% faster than
FedAvg).

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 6, Article 122. Publication date: November 2024.

122:20 J. Liu et al.

Table 6. The Final Accuracy, Training Time,
and Computational Cost of VGG with FedAvg,
IMC, PruneFL, and FedAP Based on CIFAR-10

Methods Accuracy Time(0.6) MFLOPs
FedAvg 0.666 15,953 153.4
IMC 0.645 11,992 153.4

PruneFL 0.652 11,896 153.4
FedAP 0.670 7,980 56.1

Bold values represent the best performance. “MFLOPs”
represents the computational cost of devices.

Table 7. The Final Accuracy, Training Time, and
Computational Cost of LeNet with FedAvg, IMC,

PruneFL, and FedAP Based on CIFAR-10

Methods Accuracy Time(0.49) MFLOPs
FedAvg 0.523 502 0.7
IMC 0.513 583 0.7

PruneFL 0.515 529 0.7
FedAP 0.522 483 0.6

Bold values represent the best performance.

Fig. 12. The accuracy and training time with FedAvg, IMC, PruneFL, and FedAP based on CIFAR-100.

Table 8. The Final Accuracy, Training Time, and Computational Cost with FedAvg,
IMC, PruneFL, and FedAP Based on CIFAR-100

Method
CNN VGG

Accuracy Time(0.3) MFLOPs Accuracy Time(0.3) MFLOPs
FedAvg 0.363 494 4.6 0.340 12,798 153.5
IMC 0.347 480 4.6 0.321 8,317 153.5

PruneFL 0.355 457 4.6 0.303 18,817 153.5
FedAP 0.361 360 2.5 0.333 7,689 59.7

Bold values represent the best performance.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 6, Article 122. Publication date: November 2024.

Efficient FL Using Dynamic Update and Adaptive Pruning 122:21

Table 9. The Final Accuracy, Training Time, and
Computational Cost of LeNet with FedAvg, IMC,

PruneFL, and FedAP Based on CIFAR-100

Methods Accuracy Time(0.25) MFLOPs
FedAvg 0.253 897 0.7
IMC 0.257 617 0.7

PruneFL 0.255 804 0.7
FedAP 0.259 546 0.6

Bold values represent the best performance.

Table 10. The Final Accuracy, Training Time, and Computational Cost with Diverse Approaches on
CIFAR-10

Method
CNN VGG LeNet

Accuracy Time MFLOPs Accuracy Time MFLOPs Accuracy Time MFLOPs
FedAvg 0.626 838 4.5 0.666 15,953 153.3 0.523 824 0.7
D-S 0.634 4,447 4.5 0.735 6,726 153.3 0.435 NaN 0.7

FedKT 0.458 942 4.5 0.631 11,772 153.3 0.442 523 0.7
FedDF 0.634 1,047 4.5 0.547 12,035 153.3 0.474 513 0.7

Hybrid-FL 0.480 NaN 4.5 0.656 14,785 153.3 0.400 NaN 0.7
ServerM 0.670 383 4.5 0.694 10,797 153.3 0.528 346 0.7
DeviceM 0.676 431 4.5 0.722 10,700 153.3 0.560 280 0.7
FedDA 0.655 582 4.5 0.695 20,333 153.3 0.501 1,171 0.7
IMC 0.608 1,316 4.5 0.645 11,992 153.3 0.513 733 0.7

PruneFL 0.605 1,536 4.5 0.652 11,896 153.3 0.515 837 0.7
FedDUMAP 0.684 248 2.7 0.728 4,677 57.3 0.561 249 0.6

“Accuracy” represents the accuracy of the final global model. “Time” represents the training time (s) to achieve the accuracy
of 0.6 for CNN and VGG, and 0.5 for LeNet. “NaN” represents that the accuracy does not achieve the required accuracy.
“D-S” represents Data-sharing. Bold values represent the best performance.

4.2.4 Evaluation on FedDUMAP. In this section, we compare FedDUMAP, consisting of both
FedDUM and FedAP, with the baseline approaches. We present the comparison results of CNN,
VGG, LeNet with CIRAR-10 and CIFAR-100.

As shown in Table 10, FedDUMAP with CNN achieves higher accuracy compared with FedAvg
(5.8%), Data-sharing (5.0%), Hybrid (20.4%), ServerM (1.4%), DeviceM (0.8%), FedDA (2.9%), IMC
(7.6%), and PruneFL (7.9%) for CNN. In addition, FedDUMAP has a shorter training time to achieve
the target accuracy (up to 2.4 times faster than FedAvg, 16.9 times faster than Data-sharing, 4.3
times faster than IMC, and 5.2 times faster than PruneFL) and a much smaller computational cost
(up to 41.3% compared with others).

As shown in Table 10, FedDUMAP with VGG achieves a higher accuracy compared with FedAvg
(6.2%), IMC (8.3%), PruneFL (7.6%), Hybrid-FL (7.2%), ServerM (3.4%), DeviceM (0.6%), FedDA (3.3%),
IMC (8.3%), and PruneFL (7.6%). Although slightly outperforming FedDUMAP (0.7%), Data-sharing
incurs severe data security problems. In addition, FedDUMAP corresponds to a shorter training time
to achieve the accuracy of 0.6 (up to 2.4 times faster than FedAvg, 43.8% faster than Data-sharing,

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 6, Article 122. Publication date: November 2024.

122:22 J. Liu et al.

Table 11. The Final Accuracy, Training Time, and Computational Cost with Diverse Approaches Based on
CIFAR-100

Method
CNN VGG LeNet

Accuracy Time MFLOPs Accuracy Time MFLOPs Accuracy Time MFLOPs
FedAvg 0.363 494 4.6 0.340 12,798 153.3 0.253 897 0.7
D-S 0.243 NaN 4.6 0.340 11,842 153.3 0.159 NaN 0.7

FedKT 0.223 484 4.5 0.313 9,770 153.3 0.170 718 0.7
FedDF 0.213 476 4.5 0.098 11,247 153.3 0.171 694 0.7

Hybrid-FL 0.179 NaN 4.6 0.308 22,177 153.3 0.134 NaN 0.7
ServerM 0.342 667 4.6 0.323 13,775 153.3 0.256 862 0.7
DeviceM 0.386 306 4.6 0.364 8,011 153.3 0.264 558 0.7
FedDA 0.349 777 4.6 0.319 26,422 153.3 0.258 891 0.7
IMC 0.347 480 4.6 0.321 8,317 153.3 0.257 617 0.7

PruneFL 0.355 457 4.6 0.303 18,817 153.3 0.255 804 0.7
FedDUMAP 0.383 202 2.8 0.396 3,849 61.8 0.270 393 0.6

“Accuracy” represents the a ccuracy of the final global model. “Time” represents the training time (s) to achieve the accuracy
of 0.3 for CNN and VGG, and 0.25 for LeNet. “NaN” represents that the accuracy does not achieve the required accuracy.
“D-S” represents Data-sharing. Bold values represent the best performance.

2.2 times faster than Hybrid-FL, 1.6 times faster than IMC and 1.5 times faster than PruneFL) and
a much smaller computational cost (up to 62.6% reduction for FedAvg, Data-sharing, Hybrid-FL,
IMC, and PruneFL).

We obtain similar findings with LeNet. As shown in Table 10, FedDUMAP achieves a higher
accuracy compared with FedAvg (3.8%), Data-sharing (12.6%), Hybrid-FL (16.1%), ServerM (3.3%),
DeviceM (0.1%), FedDA (6.0%), IMC (4.8%) and PruneFL (4.6%). In addition, FedDUMAP corresponds
to a shorter training time to achieve the accuracy of 0.5 (up to 2.3 times faster than FedAvg, 1.9
times than IMC, 2.4 times than PruneFL) and a much smaller computational cost (up to 14.3%
reduction for FedAvg, Data-sharing, Hybrid-FL, IMC, and PruneFL).

As shown in Tables 11, with CNN, VGG, and LeNet on CIFAR-100, FedDUMAP achieves a higher
accuracy compared with FedAvg (up to 5.6%), Data-sharing (up to 14.0%), Hybrid-FL (up to 20.4%),
ServerM (up to 7.3%), DeviceM (up to 3.2%), FedDA (up to 7.7%), IMC (up to 7.5%) and PruneFL
(up to 9.3%), except for a single case, i.e., slightly lower than DeviceM (0.3%) for CNN. In addition,
FedDUMAP corresponds to a shorter training time to achieve the accuracy of 0.3 (up to 2.3 times
faster than FedAvg, 2.1 times faster than Data-sharing, 4.8 times faster than Hybrid-FL, 1.4 times
faster than IMC and 3.9 times faster than PruneFL) and a much smaller computational cost (up to
59.7% reduction compared with other methods).

4.2.5 Ablation Study. We conduct the ablation study by measuring the final accuracy, the
training time to achieve the accuracy of 0.6 for CNN and VGG, 0.3 for LeNet with CIFAR-10, and
the computational cost of FedAvg, FedDU, FedDUM, FedAP, FedDUAP, and FedDUMAP. As shown
in Figure 13 and Table 12, the efficiency of FedDUMAP significantly outperforms FedDU, FedDUM,
and FedAvg (up to 2.4 times faster), while the accuracy of FedDUMAP is much higher than that of
FedDU, FedAP, and FedAvg (up to 6.2%). In addition, the computational cost of FedDUMAP is the
smallest for CNN, while it is slightly higher (2.1%) than FedAP for VGG due to the dynamic server

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 6, Article 122. Publication date: November 2024.

Efficient FL Using Dynamic Update and Adaptive Pruning 122:23

Fig. 13. The accuracy of FL with FedAvg, FedDU, FedAP, and FedDUAP based on CIFAR-10.

Table 12. The Final Accuracy, Training Time, and Computational Cost with FedAvg, FedDU, FedAP, and
FedDUAP with CIFAR-10

Method
CNN VGG LeNet

Accuracy Time MFLOPs Accuracy Time MFLOPs Accuracy Time MFLOPs
FedAvg 0.626 838 4.5 0.666 15,953 153.3 0.523 824 0.7
FedDU 0.675 284 4.5 0.723 8,268 153.3 0.552 284 0.7
FedDUM 0.691 311 4.5 0.738 7,490 153.3 0.563 284 0.7
FedAP 0.625 696 3.0 0.670 7,980 56.0 0.522 754 0.6

FedDUAP 0.662 278 2.8 0.714 4,719 58.4 0.553 267 0.6
FedDUMAP 0.684 248 2.7 0.728 4,677 57.3 0.561 249 0.6

“Accuracy” represents the accuracy of the final global model. “Time” represents the training time (s) to achieve the accuracy
of 0.6 for CNN and VGG, and 0.5 for LeNet. Bold values represent the best performance.

Fig. 14. The accuracy of FL with FedAvg, FedDU, FedAP, and FedDUAP based on CIFAR-100.

update. Although FedDUMAP achieves slightly lower accuracy compared with FedDUM (up to
1.0%), FedDUMAP is much more efficient than FedDU and FedDUM (up to 76.8% faster).

In order to reveal the advantages of FedDUMAP, we also conduct the ablation study with CIFAR-
100. We measure the final accuracy, the training time to achieve the accuracy, and the computational
cost of diverse methods.

As shown in Figure 14 and Table 13, the efficiency of FedDUMAP significantly outperforms
FedDU (up to 2.3 times faster), FedDUM (up to 43.1% faster), and FedAvg (up to 2.3 times faster),
while the accuracy of FedDUMAP is much higher than that of FedDU (up to 0.2%), FedAP (up to
6.3%), and FedAvg (up to 5.6%). FedDUMAP corresponds to the shortest training time with CNN,
VGG, and LeNet. In addition, the computational cost of FedDUMAP is the smallest for LeNet while
it is slightly higher than FedAP for CNN (16.0%) and VGG (3.5%) due to the dynamic server update.
Furthermore, FedDUMAP has slightly higher accuracy (up to 1.4% for VGG) compared with that of

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 6, Article 122. Publication date: November 2024.

122:24 J. Liu et al.

Table 13. The Final Accuracy, Training Time, and Computational Cost with FedAvg, FedDU, FedAP, and
FedDUAP Based on CIFAR-100

Method
CNN VGG LeNet

Accuracy Time MFLOPs Accuracy Time MFLOPs Accuracy Time MFLOPs
FedAvg 0.363 494 4.6 0.340 12,798 153.3 0.253 897 0.7
FedDU 0.373 667 4.6 0.364 6,155 153.3 0.263 574 0.7
FedDUM 0.379 355 4.6 0.382 5,276 153.3 0.264 572 0.7
FedAP 0.361 360 2.4 0.333 7,689 59.6 0.259 546 0.6

FedDUAP 0.363 269 2.6 0.366 3,913 62.6 0.263 485 0.6
FedDUMAP 0.383 202 2.8 0.396 3,849 61.8 0.270 393 0.6

“Accuracy” represents the accuracy of the final global model. “Time” represents the training time (s) to achieve the accuracy
of 0.3 for CNN and VGG, and 0.25 for LeNet. Bold values represent the best performance.

FedDUM, and the accuracy of FedDUMAP is much higher (up to 5.6% for VGG) than that of FedAvg.
In addition, FedDUMAP is much more efficient than FedDUM (up to 43.1% faster for CNN).

5 Conclusion
In this article, we propose a novel FL framework FedDUMAP, which leverages both the shared
insensitive server data and the distributed sensitive device data to train the global model. Further-
more, the non-IID degrees of the data are also considered in the FL training process. FedDUMAP
consists of a dynamic update FL algorithm, i.e., FedDU, a simple yet efficient adaptive optimization
method on top of FedDU, i.e., FedDUM, and an adaptive pruning method, i.e., FedAP. We conduct
extensive experimentation to evaluate the performance of FedDUMAP with different models and
real-life datasets. According to the experimental results, FedDUMAP significantly outperforms the
baseline approaches in terms of accuracy (up to 20.4% higher), efficiency (up to 16.9 times faster),
and computational cost (up to 62.6% smaller).

References
[1] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. 2018. Federated learning with

non-iid data. arXiv:1806.00582. Retrieved from https://doi.org/10.48550/arXiv.1806.00582
[2] Official Journal of the European Union. 2016. General Data Protection Regulation. Retrieved February 12, 2021 from

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
[3] 2018. California Consumer Privacy Act Home Page. Retrieved February 14, 2021 from https://www.caprivacy.org/
[4] Qinbin Li, Bingsheng He, and Dawn Song. 2021. Practical one-shot federated learning for cross-silo setting. In

Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI ’21), 1484–1490.
[5] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. 2017. Communication-

efficient learning of deep networks from decentralized data. In Proceedings of the Artificial Intelligence and Statistics
(AISTATS ’17), 1273–1282.

[6] Ji Liu, Jizhou Huang, Yang Zhou, Xuhong Li, Shilei Ji, Haoyi Xiong, and Dejing Dou. 2022. From distributed machine
learning to federated learning: A survey. Knowledge and Information Systems 64, 4 (2022), 885–917.

[7] Ji Liu, Chunlu Chen, Yu Li, Lin Sun, Yulun Song, Jingbo Zhou, Bo Jing, and Dejing Dou. 2024. Enhancing trust and
privacy in distributed networks: A comprehensive survey on blockchain-based federated learning. Knowledge and
Information Systems 66 (2024), 1–27.

[8] Ji Liu, Zhihua Wu, Danlei Feng, Minxu Zhang, Xinxuan Wu, Xuefeng Yao, Dianhai Yu, Yanjun Ma, Feng Zhao, and
Dejing Dou. 2023. Heterps: Distributed deep learning with reinforcement learning based scheduling in heterogeneous
environments. Future Generation Computer Systems 148 (2023), 106–117.

[9] He Li, Kaoru Ota, and Mianxiong Dong. 2018. Learning IoT in edge: Deep learning for the internet of things with
edge computing. IEEE Network 32, 1 (2018), 96–101.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 6, Article 122. Publication date: November 2024.

https://doi.org/10.48550/arXiv.1806.00582
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://www.caprivacy.org/

Efficient FL Using Dynamic Update and Adaptive Pruning 122:25

[10] Jian Shen, Jun Shen, Xiaofeng Chen, Xinyi Huang, and Willy Susilo. 2017. An efficient public auditing protocol
with novel dynamic structure for cloud data. IEEE Transactions on Information Forensics and Security 12, 10 (2017),
2402–2415.

[11] Naoya Yoshida, Takayuki Nishio, Masahiro Morikura, Koji Yamamoto, and Ryo Yonetani. 2020. Hybrid-FL for wireless
networks: Cooperative learning mechanism using non-IID data. In Proceedings of the IEEE International Conference on
Communications (ICC ’20), 1–7.

[12] Amazon. 2021. Amazon Cloud. Retrieved December 30, 2021 from https://aws.amazon.com
[13] Microsoft Azure. 2021. Microsoft Azure. Retrieved December 30, 2021 from https://azure.microsoft.com/
[14] Baidu. 2021. Baidu AI Cloud. Retrieved December 30, 2021 from https://cloud.baidu.com/
[15] Kun Wang, Xin Qi, Lei Shu, Der-jiunn Deng, and Joel J. P. C. Rodrigues. 2016. Toward trustworthy crowdsourcing in

the social internet of things. IEEE Wireless Communications 23, 5 (2016), 30–36.
[16] Xi Ye, Yushu Zhang, Xiangli Xiao, Shuang Yi, and Rushi Lan. 2023. Usability enhanced thumbnail-preserving encryption

based on data hiding for JPEG images. IEEE Signal Processing Letters 30 (2023), 793–797.
[17] Kun Yang, Shengbo Chen, and Cong Shen. 2022. On the convergence of hybrid server-clients collaborative training.

IEEE Journal on Selected Areas in Communications 41, 3 (2022), 802–819.
[18] Hang Gu, Bin Guo, Jiangtao Wang, Wen Sun, Jiaqi Liu, Sicong Liu, and Zhiwen Yu. 2022. FedAux: An efficient

framework for hybrid federated learning. In Proceedings of the IEEE International Conference on Communications (ICC
’22). IEEE, 195–200.

[19] Zhuotao Lian, Qingkui Zeng, Weizheng Wang, Thippa Reddy Gadekallu, and Chunhua Su. 2022. Blockchain-based
two-stage federated learning with non-IID data in IoMT system. IEEE Transactions on Computational Social Systems
10 (2022), 1701-1710.

[20] Tehrim Yoon, Sumin Shin, Sung Ju Hwang, and Eunho Yang. 2021. FedMix: Approximation of Mixup under Mean
Augmented Federated Learning. In Int. Conf. on Learning Representations (ICLR).

[21] Jie Zhang, Song Guo, Xiaosong Ma, Haozhao Wang, Wenchao Xu, and Feijie Wu. 2021. Parameterized knowledge
transfer for personalized federated learning. In Proceedings of the Advances in Neural Information Processing Systems
(NeurIPS ’21), Vol. 34, 1–13.

[22] Tao Lin, Lingjing Kong, Sebastian U. Stich, and Martin Jaggi. 2020. Ensemble distillation for robust model fusion in
federated learning. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS ’20), 1–13.

[23] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. 2013. On the importance of initialization and
momentum in deep learning. In Proceedings of the International Conference on Machine Learning (ICML ’13), 1139–1147.

[24] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research 12, 7 (2011), 2121–2159.

[25] S. Reddi, Manzil Zaheer, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. 2018. Adaptive methods for nonconvex
optimization. In Proceedings of the Annual Conference on Neural Information Processing Systems (NeurIPS ’18), 1–17.

[26] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv:1412.6980. Retrieved
from https://doi.org/10.48550/arXiv.1412.6980

[27] Jed Mills, Jia Hu, and Geyong Min. 2019. Communication-efficient federated learning for wireless edge intelligence in
IoT. IEEE Internet of Things Journal 7, 7 (2019), 5986–5994.

[28] Honglin Yuan, Manzil Zaheer, and Sashank Reddi. 2021. Federated composite optimization. In Proceedings of the
International Conference on Machine Learning (ICML ’21), Vol. 139, 12253–12266.

[29] Wei Liu, Li Chen, Yunfei Chen, and Wenyi Zhang. 2020. Accelerating federated learning via momentum gradient
descent. IEEE Transactions on Parallel and Distributed Systems (TPDS) 31, 8 (2020), 1754–1766.

[30] Hongchang Gao, An Xu, and Heng Huang. 2021. On the convergence of communication-efficient local SGD for
federated learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, 7510–7518.

[31] Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and Michael Rabbat. 2020. SlowMo: Improving communication-efficient
distributed SGD with slow momentum. In Proceedings of the International Conference on Learning Representations
(ICLR ’20), 1–27.

[32] Jiayin Jin, Jiaxiang Ren, Yang Zhou, Lingjuan Lyu, Ji Liu, and Dejing Dou. 2022. Accelerated federated learning
with decoupled adaptive optimization. In Proceedings of the International Conference on Machine Learning. PMLR,
10298–10322.

[33] Yuang Jiang, Shiqiang Wang, Víctor Valls, Bong Jun Ko, Wei-Han Lee, Kin K. Leung, and Leandros Tassiulas. 2023.
Model pruning enables efficient federated learning on edge devices. IEEE Transactions on Neural Networks and Learning
Systems 34, 12 (2023), 10374–10386. DOI: https://doi.org/10.1109/TNNLS.2022.3166101

[34] Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong Tian, and Ling Shao. 2020. HRank:
Filter pruning using high-rank feature map. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR ’20), 1529–1538.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 6, Article 122. Publication date: November 2024.

https://aws.amazon.com
https://azure.microsoft.com/
https://cloud.baidu.com/
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1109/TNNLS.2022.3166101

122:26 J. Liu et al.

[35] Hong Zhang, Ji Liu, Juncheng Jia, Yang Zhou, Huaiyu Dai, and Dejing Dou. 2022. FedDUAP: Federated learning
with dynamic update and adaptive pruning using shared data on the server. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI ’22), 1–7. In press.

[36] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, and Mehdi Bennis, Arjun Nitin Bhagoji, Kallista
Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G.L. D’Oliveira, Hubert Eichner, Salim
El Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco
Gruteser, Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi,
Gauri Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède
Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, Mariana Raykova, Hang
Qi, Daniel Ramage, Ramesh Raskar, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha
Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han
Yu, and Sen Zhao. 2021. Advances and Open Problems in Federated Learning. Foundations and Trends® in Machine
Learning 14, 1 (2021), 1–121.

[37] Chendi Zhou, Ji Liu, Juncheng Jia, Jingbo Zhou, Yang Zhou, Huaiyu Dai, and Dejing Dou. 2022. Efficient device
scheduling with multi-job federated learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36,
9971–9979.

[38] Guanghao Li, Yue Hu, Miao Zhang, Ji Liu, Quanjun Yin, Yong Peng, and Dejing Dou. 2022. FedHiSyn: A hierarchical
synchronous federated learning framework for resource and data heterogeneity. In Proceedings of the International
Conference on Parallel Processing (ICPP ’22), 1–10. In press.

[39] Ji Liu, Tianshi Che, Yang Zhou, Ruoming Jin, Huaiyu Dai, Dejing Dou, and Patrick Valduriez. 2024. AEDFL: efficient
asynchronous decentralized federated learning with heterogeneous devices. In Proceedings of the SIAM International
Conference on Data Mining (SDM ’24). SIAM, 833–841.

[40] Ji Liu, Juncheng Jia, Tianshi Che, Chao Huo, Jiaxiang Ren, Yang Zhou, Huaiyu Dai, and Dejing Dou. 2024. FedASMU:
Efficient asynchronous federated learning with dynamic staleness-aware model update. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 38, 13900–13908.

[41] Tianshi Che, Yang Zhou, Zijie Zhang, Lingjuan Lyu, Ji Liu, Da Yan, Dejing Dou, and Jun Huan. 2023. Fast federated
machine unlearning with nonlinear functional theory. In Proceedings of the International Conference on Machine
Learning. PMLR, 4241–4268.

[42] Ji Liu, Xuehai Zhou, Lei Mo, Shilei Ji, Yuan Liao, Zheng Li, Qin Gu, and Dejing Dou. 2023. Distributed and deep
vertical federated learning with big data. Concurrency and Computation: Practice and Experience 35, 21 (2023), e7697.

[43] Ji Liu, Juncheng Jia, Beichen Ma, Chendi Zhou, Jingbo Zhou, Yang Zhou, Huaiyu Dai, and Dejing Dou. 2022. Multi-job
intelligent scheduling with cross-device federated learning. IEEE Transactions on Parallel and Distributed Systems 34, 2
(2022), 535–551.

[44] Tianshi Che, Zijie Zhang, Yang Zhou, Xin Zhao, Ji Liu, Zhe Jiang, Da Yan, Ruoming Jin, and Dejing Dou. 2022.
Federated fingerprint learning with heterogeneous architectures. In Proceedings of the IEEE International Conference
on Data Mining (ICDM ’22). IEEE, 31–40.

[45] Ji Liu, Daxiang Dong, Xi Wang, An Qin, Xingjian Li, Patrick Valduriez, Dejing Dou, and Dianhai Yu. 2023. Large-scale
knowledge distillation with elastic heterogeneous computing resources. Concurrency and Computation: Practice and
Experience 35, 26 (2023), e7272.

[46] Eunjeong Jeong, Seungeun Oh, Hyesung Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun Kim. 2018. Communication-
efficient on-device machine learning: Federated distillation and augmentation under non-iid private data.
arXiv:1811.11479. Retrieved from https://doi.org/10.48550/arXiv.1811.11479

[47] Chaoyang He, Murali Annavaram, and Salman Avestimehr. 2020. Group knowledge transfer: Federated learning of
large CNNs at the edge. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS ’20), Vol. 33,
1–17.

[48] Daxiang Dong, Ji Liu, Xi Wang, Weibao Gong, An Qin, Xingjian Li, Dianhai Yu, Patrick Valduriez, and Dejing Dou.
2022. Elastic deep learning using knowledge distillation with heterogeneous computing resources. In Proceedings
of the European Conference on Parallel Processing workshop (European Conference on Parallel Processing workshop),
116–128.

[49] Ji Liu, Daxiang Dong, XiWang,Weibao Gong, An Qin, Xingjian Li, Patrick Valduriez, Dejing Dou, and Dianhai Yu. 2022.
Large-scale knowledge distillation with elastic heterogeneous computing resources. Concurrency and Computation:
Practice and Experience 35 (2022), 1–16. In press.

[50] Wonyong Jeong, Jaehong Yoon, Eunho Yang, and Sung Ju Hwang. 2020. Federated semi-supervised learning with
inter-client consistency & disjoint learning. In Proceedings of the International Conference on Learning Representations
(ICLR ’20), 1–15.

[51] Lokesh Nagalapatti and Ramasuri Narayanam. 2021. Game of gradients: Mitigating irrelevant clients in federated
learning. AAAI Conference on Artificial Intelligence 35, 10 (2021), 9046–9054.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 6, Article 122. Publication date: November 2024.

https://doi.org/10.48550/arXiv.1811.11479

Efficient FL Using Dynamic Update and Adaptive Pruning 122:27

[52] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and Ananda Theertha Suresh.
2020. Scaffold: Stochastic controlled averaging for federated learning. In Proceedings of the International Conference on
Machine Learning (ICML ’20), 5132–5143.

[53] Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew Mattina, Paul Whatmough, and Venkatesh Saligrama.
2021. Federated learning based on dynamic regularization. In Proceedings of the International Conference on Learning
Representations (ICLR ’21), 1–36.

[54] Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Stoica, Vladimir Braverman, Joseph Gonzalez,
and Raman Arora. 2020. FetchSGD: Communication-efficient federated learning with sketching. In Proceedings of the
International Conference on Machine Learning (ICML ’20), 8253–8265.

[55] Jed Mills, Jia Hu, Geyong Min, Rui Jin, Siwei Zheng, and Jin Wang. 2021. Accelerating federated learning with a global
biased optimiser. arXiv:2108.09134. Retrieved from https://doi.org/10.48550/arXiv.2108.09134

[56] Tianshi Che, Ji Liu, Yang Zhou, Jiaxiang Ren, Jiwen Zhou, Victor S Sheng, Huaiyu Dai, and Dejing Dou. 2023. Federated
learning of large language models with parameter-efficient prompt tuning and adaptive optimization. arXiv:2310.15080.
Retrieved from https://doi.org/10.48550/arXiv.2310.15080

[57] Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný, Sanjiv Kumar, and
Hugh Brendan McMahan. 2021. Adaptive federated optimization. In Proceedings of the International Conference on
Learning Representations (ICLR ’21), 1–38.

[58] Ang Li, Jingwei Sun, Pengcheng Li, Yu Pu, Hai Li, and Yiran Chen. 2021. Hermes: An efficient federated learning
framework for heterogeneous mobile clients. In Proceedings of the 27th Annual International Conference on Mobile
Computing and Networking, 420–437.

[59] Ang Li, Jingwei Sun, Xiao Zeng, Mi Zhang, Hai Li, and Yiran Chen. 2021b. Fedmask: Joint computation and
communication-efficient personalized federated learning via heterogeneous masking. In Proceedings of the 19th
ACM Conference on Embedded Networked Sensor Systems, 42–55.

[60] Yongheng Deng, Weining Chen, Ju Ren, Feng Lyu, Yang Liu, Yunxin Liu, and Yaoxue Zhang. 2022. TailorFL: Dual-
personalized federated learning under system and data heterogeneity. In Proceedings of the 20th ACM Conference on
Embedded Networked Sensor Systems, 592–606.

[61] Sixing Yu, Phuong Nguyen, Ali Anwar, and Ali Jannesari. 2021. Adaptive dynamic pruning for non-IID federated
learning. arXiv:2106.06921. Retrieved from https://www.cs.iastate.edu/swapp/files/inline-files/yu_ea_flpruning_arxiv-
june-2021.pdf

[62] Zeru Zhang, Jiayin Jin, Zijie Zhang, Yang Zhou, Xin Zhao, Jiaxiang Ren, Ji Liu, Lingfei Wu, Ruoming Jin, and Dejing
Dou. 2021. Validating the lottery ticket hypothesis with inertial manifold theory. In Proceedings of the Advances in
Neural Information Processing Systems (NeurIPS ’21), Vol. 34, 1–15.

[63] Jakub Konečnỳ, H. Brendan McMahan, Felix X. Yu, Peter Richtárik, Ananda Theertha Suresh, and Dave Bacon.
2016. Federated learning: Strategies for improving communication efficiency. arXiv:1610.05492. Retrieved from
https://doi.org/10.48550/arXiv.1610.05492

[64] Juncheng Jia, Ji Liu, Chendi Zhou, Hao Tian, Mianxiong Dong, and Dejing Dou. 2024. Efficient asynchronous federated
learning with sparsification and quantization. Concurrency and Computation: Practice and Experience 36, 9 (2024),
e8002.

[65] Nader Bouacida, Jiahui Hou, Hui Zang, and Xin Liu. 2021. Adaptive federated dropout: Improving communication
efficiency and generalization for federated learning. In Proceedings of the IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS ’21), 1–6.

[66] Yuanyuan Chen, Zichen Chen, Pengcheng Wu, and Han Yu. 2022. FedOBD: Opportunistic block dropout for efficiently
training large-scale neural networks through federated learning. arXiv:2208.05174. Retrieved from https://doi.org/10.
48550/arXiv.2208.05174

[67] Bent Fuglede and Flemming Topsoe. 2004. Jensen-Shannon divergence and Hilbert space embedding. In Proceedings
of the International Symposium on Information Theory (ISIT ’04), 31.

[68] Solomon Kullback. 1997. Information Theory and Statistics. Courier Corporation.
[69] Fan Lai, Xiangfeng Zhu, Harsha V. Madhyastha, and Mosharaf Chowdhury. 2021. Oort: Efficient federated learning via

guided participant selection. In Proceedings of the USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’21), 19–35.

[70] Miao Yang, Ximin Wang, Hua Qian, Yongxin Zhu, Hongbin Zhu, Mohsen Guizani, and Victor Chang. 2022. An
improved federated learning algorithm for privacy-preserving in cybertwin-driven 6G system. IEEE Transactions on
Industrial Informatics 18 (2022), 6733–6742.

[71] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent Poor. 2020. Tackling the objective inconsistency
problem in heterogeneous federated optimization. In Proceedings of the Advances in Neural Information Processing
Systems (NeurIPS ’20), 1–13.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 6, Article 122. Publication date: November 2024.

https://doi.org/10.48550/arXiv.2108.09134
https://doi.org/10.48550/arXiv.2310.15080
https://www.cs.iastate.edu/swapp/files/inline-files/yu_ea_flpruning_arxiv-june-2021.pdf
https://www.cs.iastate.edu/swapp/files/inline-files/yu_ea_flpruning_arxiv-june-2021.pdf
https://doi.org/10.48550/arXiv.1610.05492
https://doi.org/10.48550/arXiv.2208.05174
https://doi.org/10.48550/arXiv.2208.05174

122:28 J. Liu et al.

[72] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. 2020. On the convergence of fedavg on
non-IID data. In Proceedings of the International Conference on Learning Representations (ICLR ’20), 1–26.

[73] Fan Zhou and Guojing Cong. 2018. On the convergence properties of a k-step averaging stochastic gradient descent
algorithm for nonconvex optimization. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI ’18), 3219–3227.

[74] Jianyu Wang, Zheng Xu, Zachary Garrett, Zachary Charles, Luyang Liu, and Gauri Joshi. 2021. Local adaptivity in
federated learning: Convergence and consistency. In Proceedings of the International Workshop on Federated Learning
for User Privacy and Data Confidentiality in Conjunction with ICML (FL-ICML ’21), 1–22.

[75] Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U. Stich, and Ananda
Theertha Suresh. 2020. Mime: Mimicking centralized stochastic algorithms in federated learning. arXiv:2008.03606.
Retrieved from https://doi.org/10.48550/arXiv.2008.03606

[76] Alex Krizhevsky and Geoffrey Hinton. 2009. Learning Multiple Layers of Features From Tiny Images. Technical Report,
University of Toronto (2009).

[77] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR ’16), 770–778.

[78] Karen Simonyan and Andrew Zisserman. 2015. Very deep convolutional networks for large-scale image recognition.
In Proceedings of the International Conference on Learning Representations (ICLR ’15), 1–14.

[79] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document
recognition. Proceedings of the IEEE 86, 11 (1998), 2278–2324.

[80] William H. Press and Saul A. Teukolsky. 1990. Savitzky-Golay smoothing filters. Computers in Physics 4, 6 (1990),
669–672.

Received 29 December 2022; revised 2 January 2024; accepted 31 July 2024

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 6, Article 122. Publication date: November 2024.

https://doi.org/10.48550/arXiv.2008.03606

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 System Model
	3.2 Server Update
	3.3 Momentum-Based Optimization
	3.4 Adaptive Pruning

	4 Experiments
	4.1 Experimental Setup
	4.2 Evaluation with Non-IID Data

	5 Conclusion
	References

