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Abstract—The co-optimization of behind-the-meter distributed
energy resources is considered for prosumers under the net en-
ergy metering tariff. The distributed energy resources considered
include renewable generations, flexible demands, and battery en-
ergy storage systems. An energy management system co-optimizes
the consumptions and battery storage based on locally available
stochastic renewables by solving a stochastic dynamic program
that maximizes the expected operation surplus. To circumvent
the exponential complexity of the dynamic program solution, we
propose a closed-form and linear computation complexity co-
optimization algorithm based on a relaxation-projection approach
to a constrained stochastic dynamic program. Sufficient conditions
for optimality for the proposed solution are obtained. Numerical
studies demonstrate orders of magnitude reduction of computation
costs and significantly reduced optimality gap.

Index Terms—Battery storage systems, distributed energy
resources, dynamic programming, energy management systems,
flexible demands, Markov decision process, net energy metering.

I. INTRODUCTION

ENERGY sustainability entails full coordination and utiliza-
tion of the flexible behind-the-meter (BTM) distributed

energy resources (DER) [1], [2]. In this work, we consider
the problem of co-optimizing BTM DER that include flexi-
ble demand, renewable distributed generation (DG), and BTM
storage motivated by the increasing electrification in distribution
networks with flexible consumption [3], battery systems [4] and
the potential of aggregated DER in achieving energy sustain-
ability and resiliency [1], [5].

The settings we have in mind are smart homes with DER as
illustrated in Fig. 1, where an intelligent energy management
system (EMS) optimizes the prosumer’s consumption bundle
and storage operation, given available renewables, consumption
preferences and flexibility, storage capabilities, and the retail
price of electricity from a distribution system operator (DSO) or
an aggregator. In particular, we are interested in the net energy
metering (NEM) retail tariff that determines the payment based
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Fig. 1. Net energy metering scheme, with d, g ∈ R+ being the variables of
consumption and renewable DG, respectively, whereas e, z ∈ R+ are the vari-
ables of storage output and net consumption, respectively. Arrows of variables
correspond to the positive direction.

on the net energy consumption measured by the revenue meter.
A review of NEM-based tariffs and their impacts on prosumer
decisions can be found in [6], [7].

Our setting also includes EMS for buildings and small
campuses of commercial or industrial customers, including
community solar/storage programs. Also relevant is the DER
aggregation for participation in the wholesale electricity market
as articulated in the Federal Energy Regulatory Commission
(FERC) order 2222 [5]. In that context, the technique developed
here can be used by DER aggregators or energy communities
to schedule a large number of small but ubiquitous DGs and
flexible demands [8].

Co-optimizing BTM DER becomes more imperative as the
difference between the export and import prices under NEM in-
creases. This is because the value of self-consuming, or storing,
the renewable DG becomes more valuable than exporting it to
the grid. The challenge of co-optimizing BTM DER is twofold.
First, the optimal real-time scheduling of consumption and
storage operations requires knowing the underlying probabilistic
models of the renewables. Despite recent advances in machine
learning technologies, learning the optimal scheduling policy
from historical data or online reinforcement learning remains
difficult. Existing techniques typically do not have performance
guarantees appropriate for practical applications, nor reasonable
computation and sample complexities of learning [9], [10].

Second, scalable solutions are necessary for co-optimizing
a large number of controllable energy devices in building or
microgrid-level co-optimizations. The computation and coordi-
nation costs may be prohibitive in practice. To this end, linear
complexity co-optimization algorithms with possibly decentral-
ized low-cost hardware implementation and minimal communi-
cation overhead are highly desirable. To our best knowledge, no
such solutions currently exist.
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A. Related Work

There is significant literature on managing BTM energy
storage [4], [11], [12], [13], and managing flexible demands
(i.e., demand side management) [2], [14], [15] when co-existing
with other DERs, although the literature on co-optimizing BTM
DERs is relatively limited, with no prior analytical work in the
context of the retail electricity market under NEM tariffs and
no existing co-optimization algorithms with linear computation
costs. Here, we discuss some of the existing approaches having
similar optimization structures as that considered in this work.

We classify existing DER optimization solutions into static
and dynamic optimizations. Under static optimizations, one of
the earliest storage and flexible demand co-optimization formu-
lations is [9], where the authors optimize across several types of
BTM DER, including rooftop solar, thermal storage, and flexible
demands to maximize customer surplus. The optimization is
deterministic, assuming perfect prediction of available rooftop
solar within the scheduling horizon. The work in [10] formulates
a mixed-integer linear program that co-optimizes energy storage
and flexible loads using a divide-and-conquer algorithm. In [16],
a BTM storage management algorithm with a closed-form pol-
icy is proposed, which takes into account charging-discharging
inefficiencies and effects on battery degradation. The authors,
however, do not consider the flexibility of consumption and
assume a sub-optimal policy that requires renewables to feed
the loads first. In [17], storage-consumption co-optimization
is considered without BTM renewables. The optimization is a
deterministic linear program with a decentralized implementa-
tion. A stochastic co-optimization of storage and renewables
is formulated in [18]. Such a formulation can be considered
as a storage-consumption co-optimization if the renewables are
treated as a negative demand subject to curtailment. Proposed
for a day-ahead market operation, the technique in [18] does not
consider real-time scheduling based on available renewables.

The second category is stochastic dynamic programming,
where the available renewables at each time t are used in
scheduling decisions. Optimizing storage operations has been
studied in many settings without storage-consumption co-
optimization. In [4], [11], [12], the problem of storage manage-
ment for stochastic demand is formulated as an infinite-horizon
average/discounted-cost dynamic programs where renewable
generation, inelastic demand, and energy prices are modeled as
exogenous random processes. The objective is to minimize the
costs of energy purchases and storage operations. The resulting
solutions have the characteristics of optimal inventory con-
trol with a two-threshold policy—the so-called (s, S) policy—
defined on the space of the battery state-of-charge (SoC).

Closer to the formulation considered in this work is the
surplus maximization dynamic programming in [19] that allows
prosumers to export power back to the grid under differenti-
ated buying and selling prices. Among dynamic programming
solutions, [19] and [20] stand out for the co-optimization of
storage and the time-of-service of the deferrable load. We note
that co-optimizing storage and time-of-service of deferrable load
is very different from the co-optimization in our work, which
optimizes the quantity (not the time of service) of the elastic
demand. A recent work along this line under NEM tariff is [21].

Finally, a practical and widely-used alternative to dynamic
programming is the model predictive control (MPC) proposed
in [13], [22], [23], [24], [25]. One of the earliest presentations
is [22] where a quadratic program is solved in each interval based
on the look-ahead forecast of renewables with the co-optimized
storage and generation decisions in the immediate interval
implemented. An MPC-based method is proposed in [13] for
residential appliance and storage scheduling. However, renew-
able DG generation and selling back to the grid feature were
not considered. In [23], an MPC-based EMS that co-optimizes
household temperature and electric vehicle and home batteries
under the existence of renewable DG with the objective of
minimizing household energy payment under NEM 1.0 (i.e.,
equivalent grid buy and sell rates [7]). Using the same objective
in [23], the authors in [24] use MPC to co-optimize heat pumps
and electric vehicle charging while meeting the household’s
comfort requirements. Lastly, heat pumps and battery energy
storage are co-optimized in [25] to provide demand response in
distribution networks under the influence of network constraints.
A receding horizon MPC-based method was used to control the
flexible resources.

We omit the literature on price arbitrage in the wholesale/retail
markets. Under well-designed NEM tariffs, price arbitrage is
infeasible because sell (export) prices are uniformly lower than
retail (consumption) prices.

Our work is built upon [15], where the optimal consumption
decision without BTM storage is considered under the general
form of the NEM X tariff. It is shown in [15] that the optimal con-
sumption decision is a two-threshold policy based on the avail-
able BTM renewables; when the level of renewable is below the
lower threshold or above the higher threshold, the optimal con-
sumptions are constants, and the optimal net consumption (con-
sumption − renewables) decreases piecewise linearly with the
available renewables. Between the two renewable-independent
thresholds, there is a net-zero consumption zone, where the total
consumption matches the BTM renewables, and the prosumer is
effectively off the grid. This general characteristic carries over to
the storage-consumption co-optimization, where the flexibility
of both demands and energy storage is utilized to maximize
prosumer’s surplus. See Section III–IV.

B. Summary of Results and Contributions

The main contribution of this work is a linear-complexity
heuristic solution to the storage and flexible demand co-
optimization, which makes it possible to schedule a large number
of flexible demands and storage resources in a decentralized
fashion as closed-form functions of the BTM renewables. By
linear complexity, we mean that the computation and communi-
cation costs scale linearly with the number of energy-consuming
devices (the size of the consumption bundle) and the scheduling
horizon.

To circumvent the intractability of solving a stochastic dy-
namic program that requires backward induction to co-optimize
storage and flexible demands, we propose a suboptimal but linear
complexity co-optimization algorithm, referred to as myopic
co-optimization (MCO), that relaxes the storage SoC limits
constraints and projects the problem into the feasible solution set
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if the solution generates an infeasible action. In particular, the
MCO clips the storage charging/discharging amount to the upper
or lower limits (Theorem 1). Significantly, the MCO does not
require the underlying probability distributions of the renewable
generation. We demonstrate in simulations that MCO is optimal
in some cases even when SoC constraints are binding, and the
performance loss is quite small.

We then propose a sufficient condition for the MCO to be
optimal and obtain structural properties of the optimal co-
optimization policy (Theorem 2). We show that under the suffi-
cient optimality condition, the optimal policy is based on a set
of global thresholds on the BTM renewables. These thresholds
can be computed in closed form. In such cases, the optimal
storage operation and consumption levels of all flexible de-
mands are expressed in closed-form as functions of the BTM
renewables.

We show several novel insights of storage-demand co-
optimization under NEM. One is complementarity condition
(Lemma 2), showing that, under NEM, storage charging can
only happen when the prosumer is not a net-consumer, and
storage discharging can only happen when the prosumer is not
a net-producer. The second is the role of the co-optimization in
enlarging the net-zero zone where the prosumer is operationally
“off the grid”, which benefits DSOs in terms of reducing con-
gestion and reverse power flows (RPF). Crucial to regulators,
the characterized optimal prosumer’s response elucidates how
the design of the NEM tariff influences their consumption and
storage operation decisions.

In Section V, we present simulation results comparing the
performance of the proposed MCO algorithm with the standard
MPC algorithm and several solutions offered in Tesla’s Pow-
erwall modules. We demonstrate that significant gain in perfor-
mance over the MPC benchmark because the proposed technique
eliminates the need for renewable predictions. Substantial gains
were also observed over commercial solutions.

C. Mathematical Notations and Paper Organization

The paper’s nomenclature is given in the appendix. Through-
out the paper, we use boldface letters to indicate column vectors
as in x = (x1, . . . , xn). In particular, 1 is a column vector
of all ones. For a vector x, x� is the transpose of x. For a
multivariate function f of x, we use interchangeably f(x) and
f(x1, . . . , xn). We use (xt) to denote a time series indexed
by t. A finite sequence (xt) may be represented by a column
vector denoted by x = (xt). For vectors x,y, x � y is the
element-wise inequality xi ≤ yi for all i, and [x]+, [x]− are the
element-wise positive and negative parts of vector x, i.e.,
[xi]

+ = max{0, xi}, [xi]
− = −min{0, xi} for all i, and x =

[x]+ − [x]−. Finally, the conditional distribution of xt+1 given
xt is expressed as Fxt+1|xt

.
The rest of the paper is organized as follows. Section II

presents the DER models and the DER co-optimization problem.
Section III proposes the linear-complexity co-optimization algo-
rithm and establishes the theoretical results. Section IV delivers
insights and intuitions on the co-optimization solution structure,
followed by the simulation results in Section V and the paper’s
conclusion in Section VI.

II. CO-OPTIMIZATION PROBLEM FORMULATION

A. BTM DER Models

For the system model in Fig. 1, we consider the sequential
co-scheduling of consumption (dt) and storage operation (et)
over a finite horizon indexed by t = 0, . . . , T − 1. The proposed
approach applies to EMS optimized locally for individual cus-
tomers, hence network effects are not relevant.

a) Renewable: The BTM renewable generation (gt) is an
exogenous (positive) Markovian random process.

b) Battery storage: The battery SoC of the storage is de-
noted by st ∈ [0, B] with B as the maximum operational SoC.
The storage control in interval t is denoted by et ∈ [−e, ē], where
e and ē are the maximum energy discharging and charging limits,
respectively. The battery is charged when et > 0 and discharged
when et < 0.

The evolution of st driven by control et is given by

st+1 = st + τ [et]
+ − [et]

−/ρ, t = 0, . . . , T − 1, (1)

where τ ∈ (0, 1] and ρ ∈ (0, 1] are the charging and discharging
efficiencies, respectively. For brevity, we relegate incorporating
the long-term storage degradation caused by short-term charg-
ing/discharging actions to [26, Appendix D], which is done by
exploiting a simple modification to the objective function in (7)
allowing us to incorporate long-term per-unit degradation cost
from charging/discharging actions.

c) Flexible demand and utility of consumption: We as-
sume the prosumer has K controllable devices whose energy
consumption bundle in interval t is denoted by

dt = (dt1, . . . , dtK) ∈ D := {d : 0 � d � d} ⊆ R
K
+ ,

whered is the consumption bundle’s upper limit. The prosumer’s
total consumption dt and net consumption zt in interval t are
defined, respectively, by

dt := 1�dt, zt := dt + et − gt. (2)

Following the standard microeconomics theory, we assume the
prosumer preference on consumption set D is characterized by
a utility Ut(dt) of consuming dt in interval t [27]. Ut(dt) is
assumed to be additive, with marginal utility function denoted
by Lt. Specifically, for t = 0, . . . , T − 1,

Ut(dt) :=
K∑

k=1

Utk(dtk),Lt := ∇Ut = (Lt1, . . . , LtK).

We assumeUt(dt) is concave, non-decreasing, and continuously
differentiable. In practice, Ut(dt) is unknown. Here we assume
that Ut(dt) can be learned using a variety of machine-learning
algorithms. See, e.g., [28].

B. NEM X Tariff Model

NEM tariff is a billing mechanism that determines prosumer
credits and payments within each billing period based on the
net consumption computed over the net billing period. The net
billing period can be as short as 5 minutes and as long as a day
or a month. For ease of presentation, we restrict ourselves to the
case that the NEM billing period is the same as the prosumer’s
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scheduling period, which allows us to index the billing period
also by t.

We adopt the NEM X tariff model proposed in [7], [15].
For t = 0, . . . , T − 1, given the NEM X tariff parameter πt =
(π+

t , π
−
t ), the customer’s payment under NEM X is

PNEM
πt

(zt) := π+
t [zt]

+ − π−
t [zt]

−, (3)

where π+
t ≥ 0 is the retail rate, and π−

t ≥ 0 the export (com-
pensation) rate. A prosumer is a net-consumer facing π+

t when
zt ≥ 0 and a net-producer facing π−

t when zt < 0. Throughout
this work, we assume max{(π−

t )} < min{(π+
t )}, which avoids

risk-free price arbitrage, as the NEM X rates are deterministic
and known apriori.

C. Consumption and Storage Co-Optimization

We formulate the prosumer decision problem as a T -stage
Markov decision process (MDP). The state xt := (st, gt) ∈ X
of the MDP in interval t includes the battery SoC st and
renewable generation gt, whose evolution is defined by (1)
and the exogenous Markov random process (gt). The initial
state is denoted by x0 = (s, g). The randomness in this MDP
formulation arises from the stochastic renewable generation.

An MDP policy μ := (μ0, . . . , μT−1) is a sequence of de-
cision rules, xt

μt→ ut := (dt, et), specifying consumption and
storage operation in each t. For t = 0, . . . , T − 1, the control
action ut generates a prosumer surplus defined by

SNEM
πt

(ut; gt) := Ut(dt)− PNEM
πt

(1�dt + et − gt). (4)

The stage reward is defined by the prosumer surplus and the
terminal salvage value of the storage:

rt (xt, ut) :=

{
SNEM
πt

(ut; gt), t ∈ [0, T − 1]

γ(sT − s), t = T,
(5)

with γ being the marginal value of energy in the storage that
represents the value of the stored energy to be used in future
scheduling. With little loss of generality, we assume

1

τ
max{(π−

t )} ≤ γ ≤ ρmin{(π+
t )}. (6)

When (6) is not satisfied, the co-optimization policy is relatively
easier to obtain and trivial in some cases. See [26, Appendix C]
for a complete solution when (6) is relaxed, and for a discussion
on why meeting (6) is more practical.

The storage-consumption co-optimization is defined by

P : Maximize
μ=(μ0,...,μT−1)

Eμ

{
γ(sT − s) +

T−1∑
t=0

rt (xt, ut)

}
(7a)

Subject to for all t = 0, . . . , T − 1,

zt = 1�dt + [et]
+ − [et]

− − gt (7b)

st+1 = st + τ [et]
+ − [et]

−/ρ (7c)

gt+1 ∼ Fgt+1|gt (7d)

0 ≤ st ≤ B (7e)

0 ≤ [et]
− ≤ e (7f)

0 ≤ [et]
+ ≤ e (7g)

0 � dt � d (7h)

x0 = (s, g), (7i)

where the expectation is taken over the exogenous stochastic
generation (gt). Note that, by definition, [et]+ · [et]− = 0.

The value function at time t, denoted byVt(·), maps statext to
the maximum total cumulative reward under the optimal policy
from t to the end of the scheduling.

We note that no linear complexity solution exists for (7). The
optimal solution obtained from the standard backward induction
has exponential complexity with respect to the state of the
dynamic program, which highlights the importance of a low-
complexity solution as presented in the next section. A similar
stochastic dynamic program was formulated in [16] but with a
non-flexible consumption, and a sub-optimal policy that requires
the renewables to feed the loads first. The work in [19] also uses
a similar program, which, unlike [16], considers co-optimizing
storage and consumption. However, the solution in [16] is not
closed-form and the consumption was co-optimized in terms of
time-of-service of the deferrable load rather than quantity of the
flexible load.

Alternative to dynamic programming formulation, MPC-
based models were proposed in [13], [22], [23], [24], [25],
mainly requiring renewable forecasts, the quality of which af-
fects the MPC algorithm performance and computation com-
plexity.

III. LINEAR-COMPLEXITY MYOPIC CO-OPTIMIZATION

We propose here a linear-complexity co-optimization algo-
rithm to solve a myopic version of the stochastic dynamic
program in (7), hence removing the requirement to look-ahead of
available renewables in the future, and the non-linear complexity
of the typical (s, S) optimal inventory control solutions with
lower/upper thresholds s/S on the SoC [29].

Conceptually, the MCO algorithm relaxes the SoC limits
constraint (7e) that introduces strong temporal coupling, and
then it projects the relaxed problem to the feasible solution set
when the storage charging/discharging action in each interval
violate (7e). In simpler words, for every t ∈ [0, T − 1], the MCO
algorithm considers a natural heuristic that “clips” the storage
charging/discharging amount when the updated storage SoC
exceeds the SoC limits in (7e), and therefore solves the following
myopic program:

Pt : Maximize
dt∈RK

+ ,et∈R
Ut(dt)− PNEM

πt
(zt) + γ(τ [et]

+ − [et]
−/ρ)

(8a)

Subject to : zt = 1�dt + [et]
+ − [et]

− − gt (8b)

0 ≤ [et]
− ≤ min{e, ρst} (8c)

0 ≤ [et]
+ ≤ min{e, (B − st)/τ} (8d)

0 � dt � d̄, (8e)
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where the last term of the objective function captures the terminal
benefit of the energy stored in the storage, and the clipping action
is tackled by (8c)–(8d).

A. Myopic Co-Optimization Optimal Scheduling

The following theorem delineates the closed-form solution of
the optimal storage and demand schedules of (8). The optimal
schedules are all threshold policies based on the renewable gt
with thresholds that can be computed apriori.

Theorem 1 (Myopic co-optimization optimal scheduling):
For every t ∈ [0, T − 1], the optimal storage e†t and total demand
d†t under the myopic co-optimization Pt that is a relaxation of P
in (7) are monotonically increasing piecewise-linear functions
of gt with the following ordered thresholds

Δ+
t ≤ σ+

t ≤ σ+o
t ≤ σ−o

t ≤ σ−
t ≤ Δ−

t ,

defined by

Δ+
t := max{ft(π+

t )− e†t, 0}, Δ−
t := ft(π

−
t ) + e†t,

σ+
t := max{ft(γ/ρ)− e†t, 0}, σ−

t := ft(τγ) + e†t,

σ+o
t := ft(γ/ρ), σ−o

t := ft(τγ), (9)

where ft(πt) :=
∑K

k=1 ftk(πt) is the aggregated inverse
marginal utilities adjusted by consumption limits

ftk(πt) := max{0,min{L−1
tk (πt), d̄k}}, ∀k (10)

and

e†t := min{e, ρst}, e†t := min{e, (B − st)/τ}. (11)

Given the realized renewable gt in interval t, the optimal storage
schedule is

e†t(gt) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−e†t, gt ≤ σ+
t

gt − σ+o
t , gt ∈ (σ+

t , σ
+o
t )

0, gt ∈ [σ+o
t , σ−o

t ]

gt − σ−o
t , gt ∈ (σ−o

t , σ−
t )

e†t, gt ≥ σ−
t ,

(12)

and the optimal demand schedule, for every k, is

d†tk(gt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ftk(π
+
t ), gt < Δ+

t

ftk(f
−1
t (gt + e†t)), gt ∈ [Δ+

t , σ
+
t ]

ftk(f
−1
t (γ/ρ)), gt ∈ (σ+

t , σ
+o
t )

ftk(f
−1
t (gt)), gt ∈ [σ+o

t , σ−o
t ]

ftk(f
−1
t (τγ)), gt ∈ (σ−o

t , σ−
t )

ftk(f
−1
t (gt − e†t)), gt ∈ [σ−

t ,Δ
−
t ]

ftk(π
−
t ), gt > Δ−

t .

(13)

By definition, the total demand is d†t(gt) :=
∑K

k=1 d
†
tk(gt).

Proof: See [26, Appendix B]. �
The linear-complexity and closed-form solution in Theorem 1

brings immense intuitions on prosumer response under NEM
policies (see Section IV), and enables ubiquitous DER schedul-
ing, which is further explained in Section III-C.

Fig. 2. Optimal prosumer decisions under the myopic co-optimization: op-
timal net consumption z†t (red), optimal total consumption d†t (black), opti-

mal storage operation e†t (blue), and optimal DG-adjusted total consumption

d̃†t := d†t − gt (green), assuming that Δ+
t ≥ e†t and e†t = e†t.

Theorem 1 leads to Corollary 1 below showing that, to the
DSO, a prosumer with optimal consumption-storage operation
under the myopic co-optimization exhibits three distinct patterns
(depicted in Fig. 2) first observed in [15] for prosumers with
DG and flexible loads, but without BESS: i) net consumption
when the renewable is in the net-consuming zone of (0,Δ+

t ),
ii) net-production when the renewable is in the net-producing
zone of (Δ−

t ,∞), and iii) off-the-grid in the net-zero zone of
[Δ+

t ,Δ
−
t ]. It is the net-zero zone that is particularly intriguing

as it shows the benefit of BTM DER in reducing RPF in the
distribution network and the dependency of the prosumer surplus
on the NEM X rates, which are further illuminated in Section V
with simulations.

Corollary 1: For every t ∈ [0, T − 1], the optimal net con-
sumption z†t under the myopic co-optimization Pt is a mono-
tonically decreasing piecewise-linear function of gt, given by

z†t(gt) =

⎧⎪⎨
⎪⎩
Δ+

t − gt, gt < Δ+
t

0, gt ∈ [Δ+
t ,Δ

−
t ]

Δ−
t − gt, gt > Δ−

t .

(14)

Proof: See [26, Appendix B]. �
As shown in Fig. 2, the storage maximally discharges when

gt ≤ σ+
t , and maximally charges when gt ≥ σ−

t , whereas when
gt ∈ [σ+

t , σ
−
t ], the storage output transitions from maximally

discharging to maximally charging as gt increases. When gt ∈
[σ+o

t , σ−o
t ], the storage neither charges nor discharges, and the

prosumer consumption matches the renewables. Note that e†t is
determined by only the (inner) thresholds within (Δ+

t ,Δ
−
t ) as

shown in Fig. 2. These thresholds are not affected by NEM X
parameters (π+

t , π
−
t ), which means that e†t is scheduled indepen-

dent of (π+
t , π

−
t ).

Although the proposed linear-complexity solution in Theo-
rem 1 may not be optimal, we demonstrate, in Section V, that
the solution gap compared to a performance upper bound is
relatively small. We also compare the proposed MCO solu-
tion with state-of-the-art approaches such as MPC solutions
that solve a sequence of rolling-window convex optimization
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problems with some fixed forecast horizon. The cost of the
MPC solution is quite high compared with the MCO scheduling,
and it requires renewable forecasts, the quality of which affects
its performance. The simulation, in Section V, shows that the
proposed MCO scheduling algorithm outperformed the MPC
solution consistently.

B. Optimality of the MCO Algorithm: A Sufficient Condition

Theorem 2 below provides a sufficient condition for the
proposed MCO algorithm (Theorem 1) to be optimal.

Theorem 2 (Sufficient optimality condition): The MCO algo-
rithm is the optimal solution to the stochastic dynamic program
in (7) if (i) B > 2Tτe, and (ii) s ∈ (Te/ρ,B − Tτe).

Proof: See [26, Appendix B]. �
The proof of Theorem 2 leverages Lemmas 1–3 in the ap-

pendix that highlight the structural properties of the optimal
prosumer decisions under the sufficient optimality conditions,
which are reasonable when battery size B is large or the charg-
ing/discharging limits e, e are relatively small. In practice, the
two sufficient conditions may not hold in general, but may
actually hold if the battery is co-optimized only with a fraction
of prosumer flexible loads, making the size to charging limits
ratio large. Such practice can be extrapolated to a community-
based storage that may serve only a fraction of the community
members. Our numerical results, in Section V, show that in some
operating conditions defined by charging limits and renewable
generation levels, the MCO algorithm performs optimally by
meeting a theoretical upper bound on total reward, even when
the sufficient optimality conditions in Theorem 2 are violated.
For example, we found that the algorithm is optimal whenever
a storage SoC constraint binds and continue to bind for the rest
of the scheduling horizon.

C. Implementation Complexity and Decentralization

The closed-form co-optimization solution given in (9)–(13)
has a linear computation cost for the EMS. Note that functions
ft, ftk in (10) and thresholds in (9) can all be computed offline.
Once the renewable generation gt is measured, the closed-form
expressions of the optimal individual consumption imply that
the total computation cost is O(K), i.e., linear with respect
to the number of energy-consuming devices. The only com-
munication cost comes from communicating gt to individual
devices, which is also of the order O(K) if done sequentially.
Note that the implementation of the co-optimization can be
easily decentralized. There is no need to have communications
among devices and from devices to the EMS. The only com-
munication is the broadcast of the level of renewables gt to all
devices.

It is worth noting that the computation of global thresholds and
consumption-storage decisions does not require the knowledge
of the underlying probability distribution of gt. Indeed, the
solution given in Theorem 1 applies to arbitrary BTM stochastic
generation, which eliminates the need to learn the stochastic
model of gt.

Fig. 3. Optimal prosumer decisions under special case in Section IV-A
with decision thresholds: Δ+

t = max{ft(π+
t )− e, 0}, σ+

t = max{ft(γ)−
e, 0}, σ−

t = ft(γ) + e,Δ−
t = ft(π

−
t ) + e, and assuming Δ+

t ≥ e and e = e.

IV. OPTIMAL SOLUTION STRUCTURE AND INSIGHTS

In this section, we use the optimal solution under the sufficient
optimality condition in Theorem 2 to deliver insights and intu-
itions on the solution structure. To this end, the optimal solution
under the sufficient optimality condition is stated in Corollary 2
next.

Corollary 2: For every t ∈ [0, T − 1], under the sufficient op-
timality conditions in Theorem 2, the optimal storage operation
e∗t , consumption d∗tk, total consumption d∗t , and net consumption
z∗t are as described in Theorem 1, but with replacing e†t and e†t
by e and e, respectively.

Proof: See [26, Appendix B]. �
The implication of Corollary 2 is that the optimal solution to

the myopic co-optimization in (8) has the same structure as that
in the solution of the stochastic dynamic program in (7) under
the sufficient optimality condition. This means that the threshold
policy, closed-formedness, and monotonicity properties hold.

A. Optimal Prosumer Decisions: Insights and Intuitions

We consider a special case under the sufficient optimality
condition to gain insights into the structure of the optimal
prosumer decisions in Corollary 2, which has the same structure
as that in Theorem 1.

For simplicity, we assume that the prosumer has a single flex-
ible demand (K = 1) with utility function Ut(·) and marginal
utility Lt(·) = ∇Ut(·). The storage is assumed to be lossless,
i.e., τ = ρ = 1, and the consumption limits constraint in (7h)
is ignored. Let u∗

t := (d∗t , e
∗
t) be the optimal consumption and

storage decisions in interval t.
The red line in Fig. 3 shows the threshold structures in

Theorem 1. The reason behind the three zone structure is that
the condition π−

t ≤ γ ≤ π+
t makes exporting DER to the grid

less attractive than using DER to gain more surplus through
consumption or storing renewable for future use. The increasing
gt is used with a priority order: 1) offset the consumption to
reduce payment, 2) charge the battery, and, 3) export to the grid
if there is still excess power left.
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The black and blue lines of Fig. 3 depicts the optimal con-
sumption and storage decisions, respectively. The intuitions of
these decisions over the three zones are explained next.

1) Net Consumption Zone (z∗t ≥ 0): At gt = 0, the storage
will not charge by Lemma 2. By Lemma 1, discharging storage
to compensate consumption has a marginal value of π+

t higher
than keeping it in the storage. Hence, it is better to maximally
discharge the storage, but not exceed d∗t . The optimal consump-
tion is given by

max
dt

(
Ut(dt)−π+

t (dt+e∗t)
) ⇒

{
d∗t=ft(π

+
t )

e∗t = −min{ft(π+
t ), e}.

As shown in Fig. 3, as gt increases, the renewable gt and storage
are used to reduce payment with the marginal benefits of π+

t

until the net consumption z∗t is brought down to zero at gt = Δ+
t ,

which makes Δ+
t = max{ft(π+

t )− e, 0}.
2) Net-Production Zone (z∗t ≤ 0): In this zone, the prosumer

is a net-producer facing the compensation rate of π−
t . The

optimal consumption is given by

max
dt

(
Ut(dt)−π−

t (dt + e∗t−gt)
) ⇒

{
d∗t=ft(π

−
t )

e∗t=min{ft(π−
t ), e}.

As shown in Fig. 3, as gt decreases from a very large value, the
net consumption z∗t increases to zero at gt = Δ−

t , which makes
Δ−

t = ft(π
−
t ) + e.

3) Net-Zero Zone (z∗t = 0): In this zone, there is no pay-
ment to/from the utility company. The prosumer schedules its
consumption d∗t to maximize its utility subject to that the con-
sumption is offset by a combination of available renewable and
storage operation.

Consider the case when gt = Δ+
t + ε for some small ε > 0.

This ε amount of renewable energy can be used to increase con-
sumption for higher utility (surplus). While increasing consump-
tion gains in utility, it decreases the marginal utility. So long that ε
is small enough thatLt(ft(π

+
t ) + ε) ≥ γ, it is optimal to use the

entire ε renewable to increase consumption to d∗t = ft(π
+
t ) + ε.

When gt = σ+
t := max{ft(γ)− e, 0}, the marginal value

of increasing consumption is equal to charging the storage.
Therefore, for gt > σ+

t , the optimal storage operation e∗t is first
reducing the amount of storage discharge followed by increasing
level of storage charging until at gt = σ−

t := ft(γ) + e when
the maximum charging level e is reached. When gt > σ−

t , the
prosumer gains further by increasing its consumption until the
marginal utility of consumption matches π−

t , at which point
d∗t = ft(π

−
t ) and gt = Δ−

t = ft(π
−
t ) + e. When gt ≥ Δ−

t , the
prosumer becomes a net-producer.

Lastly, in the special case of passive prosumers, under which
consumptions are not co-optimized with storage and renewables,
we found, in [30], that the prosumer’s optimal policy is to
schedule the storage so that it minimizes the absolute value of
net-consumption |zt|.

V. NUMERICAL RESULTS

In this section, numerical analysis is implemented on a stan-
dard residential customer under NEM X to show the perfor-
mance of the myopic co-optimization and the benefits of the

co-optimization policy to prosumers and DSOs, over a one-day
operation horizon T = 24 hours starting at midnight. Additional
results on the benefits of the co-optimization are relegated to [26,
Appendix E].

To model prosumer’s consumption preferences, we adopted
a widely-used quadratic concave utility function:

Utk (dtk)=

{
αtkdtk− 1

2βtkd
2
tk, 0 ≤ dtk ≤ αtk

βtk

α2
tk

2βtk
, dtk > αtk

βtk

, ∀k,

for t = 0, . . . , T − 1, where αtk and βtk are some utility pa-
rameters that are learned and calibrated from inputs, includ-
ing historical prices1 and consumption2 and by predicating an
elasticity for every device type [7]. Two load types with two
different utility functions of the form above were considered: 1)
HVAC, 2) other household loads.3 We modeled the stochastic
household’s rooftop solar using the California Solar Initiative’s
summer months PV profile data with a 5.1 (kW) capacity
collected over 2011 to 2016.4 The summer period is a more
challenging one given that both the consumption, generation,
and net consumption profiles are relatively higher.

The prosumer has a battery with specifications similar to
Tesla Powerwall,5 i.e, B = 13.5 (kWh), and τ = ρ = 0.95.
Other battery parameters, including charge/discharge limits, are
introduced locally in Sections V-A–V-C.

To model the NEM tariff, we used the retail price π+ of
the 2020 Pacific Gas and Electric (PG&E) utility’s summer
time-of-use (ToU) rates with a 16–21 peak time,6 which has
a peak and offpeak rates of π+

ON = 0.40 ($/kWh), π+
OFF = 0.30

($/kWh), respectively. The export rate π− is introduced locally
in Sections V-A–V-C. Needless to say, under the regulated retail
electricity market, both π+ and π− are fixed and known to
prosumers apriori. The salvage value rate γ was set so that the
condition in (6) is satisfied.

A. Performance of Myopic Co-Optimization Algorithm

We present simulation results that evaluate the performance
of the MCO algorithm developed in Section III.

1) Simulation Settings: Starting the daily schedule at mid-
night, we set the initial storage SoC to empty with s = 0 (kWh).
Setting s = 0 (kWh) puts the myopic co-optimization algo-
rithm in the disadvantaged position of violating the sufficient
optimality condition from the first interval. This setting might
not be the case in practice, so we only consider it when we
evaluate the performance of the MCO. We consider different,
more practical, initial SoC when we study prosumer benefits in
Section V-C. The export rate was assumed to be π− = 0.4π+

OFF.
Using the renewable PV historical data, we compute the hourly
mean and variance representing an average summer day. The
renewables profile’s random vector is then generated from a

1We used PG&E historical prices, which can be found at PGE Tariffs.
2The residential load profile data is taken from NREL open dataset for a

nominal household in Los Angeles. We used June-August data.
3The elasticities of HVAC and other home appliances are taken from [31].
4The data can be found at California DG Statistics.
5The specifications of Tesla Powerwall 2 can be found at Tesla Powerwall.
6The PG&E E-TOU rate (option B) can be found at PG&E E-TOU-B.
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Fig. 4. Solution gap of MCO and MPC algorithms under different renewable
levels. The two vertical lines represent the C − 8 and C − 4 storage charg-
ing/discharging levels.

normal distribution with the calculated mean and variance. For
MCO, realizations of renewables were generated one sample
at a time, and the storage control and consumption decisions
were computed and implemented sequentially. Note that the
renewables underlying probability distribution is not needed
here. For MPC, renewables were also generated one sample at a
time and a forecast of renewables in the future M = 4 intervals
was made. AnM -interval one-shot scheduling optimization was
implemented based on a convex relaxation of P in (7), giving
a slight advantage of MPC over MCO. The decision of the
immediate scheduling interval was implemented sequentially.

2) Performance Measure, Gap Analysis, and Benchmark:
The performance measure is the cumulative prosumer reward
defined in (5). Because the optimal scheduling policy is un-
known, we use a theoretical upper bound as the benchmark and
define the percentage gap as a proxy for performance.

The theoretical upper bound is obtained using a non-causal
policy μ� that (i) assumes the realization of the renewable for
the entire scheduling period, (ii) solves a convex optimization
of the one-shot deterministic optimization defined in (7) relaxed
by ignoring simultaneous charging-discharging constraint, and
(iii) compute Rμ� as an upper bound of the cumulative reward.

We evaluated the performance measured in the percentage gap
of MCO with an MPC-based algorithm. LetRμMCO andRμMPC be
the cumulative rewards of MCO and MPC over T , respectively.
The gap to performance upper bound for each Monte Carlo run
is defined by

GμMCO :=
RμMCO −Rμ�

Rμ�

×100, GμMPC :=
RμMPC −Rμ�

Rμ�

×100.

Note that if the gap is zero, the algorithm is optimal. When it is
not, the performance may or may not be optimal.

3) Results and Discussions: Using 500 Monte Carlo runs on
the renewable DG, Fig. 4 shows the average solution gap of
the MCO algorithm (yellow) and the MPC algorithm (blue)
compared to the upper bound under varying storage charg-
ing/discharging rates. The columns, from left to right, show the
solution gap under 50% of baseline mean of renewables (i.e.,
the mean of each interval is 50% the mean of baseline), baseline
mean of renewables (i.e., from historical data), and 150% of

TABLE I
COMPUTATIONAL EFFICIENCY.‡

baseline. The rows, from top to bottom, show the solution gap
under 50% of baseline standard deviation of renewables (i.e., the
standard deviation of each interval is 50% the standard deviation
of baseline), baseline standard deviation of renewables, and
150% of baseline.

In all renewable level cases, MCO outperformed MPC. For
the practical battery setting—the 8-hour (C − 8) and 4-hour
(C − 4) charging cases, and for all renewable level cases,
MCO achieved a solution gap that did not exceed 0.75% well
within the practically acceptable performance levels. Also in
all renewable level cases, the solution gap saturated after a
certain charging/discharging power. In both the baseline and
50% of baseline mean renewable levels under baseline and
150% of baseline standard deviation, the solution gap under
MPC is on average more than 15 times greater than it is under
MCO. In the 150% of baseline mean renewable case and for
all standard deviation levels, MCO’s solution gap was zero
when the charge/discharge power was less than ∼1.7 (kW).
The optimality of MCO below ∼1.7 (kW) is because the higher
renewable level managed to adequately increase the SoC in the
midday, ensuring that the minimum SoC limit is not reached
again (given e = e) when the renewable output fades out. As
the charging/discharging power increased, the prosumer was
able to reach maximum SoC of B during midday, or mini-
mum SoC of 0 later in the day, or both. The zero gap when
e = e < 1.7 (kW) shows, one of the scenarios whereby MCO
is optimal even though the sufficient optimality condition was
violated.

Over all cases, the solution gap of both algorithms increased
when the mean and standard deviation of renewables were in-
creased. For instance, when the standard deviation of renewables
increased from 50% to 150% of baseline under the baseline mean
case, the MCO’s solution gap increased from 0.07% to 0.075%
and the MPC’s solution gap increased from 0.59% to 1.65%
when the charging/discharging power was at (C − 4). This is
because when the mean was higher, the probability of violating
the SoC limits increased. The same reasoning follows when the
standard deviation was increased.

B. Computational Efficiency Comparison

In Table I, we compare the computational efficiency of MCO
and MPC algorithms over the one-day operation horizon. The
second and third columns in Table I, respectively, show the
computation time in seconds and the worst-case run time of the
MCO and MPC algorithms whenK = 1 explicitly by taking use
of the discrete structure of the optimization problem.
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TABLE II
CUMULATIVE SURPLUS GAIN (%) OVER CONSUMER’S SURPLUS

As shown in Table I, for our relatively small problem of 24
intervals, MPC’s computations with 4 hours lookahead were
170 times longer than MCO’s computation time. Increasing
the lookahead window to M = 12 increased the computation
time ratio with MCO to 192. This ratio would be even
higher if a more complex renewable forecasting approach was
adopted [32]. The computational complexity of the MCO grows
linearly with T i.e., O(T ), whereas, under MPC, it grows at
least to the fourth power with the size of the lookahead window,
i.e., O(T (M4)). The computational complexity is higher when
the utility’s quadratic functional form is replaced with the more
general class of concave functions.

C. Prosumer Benefits

We present here the prosumer benefits achieved by the co-
optimization policy and other scheduling policies.

1) Simulation Settings: Five customer types are considered.
1) Consumers: customers without BTM DER. 2) Solar ex-
porters: prosumers who discharge the storage during ToU peak
hours to match consumption, in order to sell back the renewable
generation. This is similar to Tesla Powerwall’s solar energy
exports mode. 3) Self-powered customers: prosumers who, for
every t, schedule their storage to negate the DG-adjusted con-
sumption d̃t [30]. This is also Tesla Powerwall’s self-powered
mode. 4) Active SDG customers: prosumers who co-optimize
storage and consumption based on available BTM DG according
to MCO. 5) Packaged SDG customers: prosumers who emulate
the case when DG and storage are combined in a single unit
whose control prioritizes using renewables to charge the storage
before meeting the consumption. Specifically, if

1) gt > 0: the storage charges e∗t = min(gt, e) and d∗tk for
every k is as in [15], but with g̃t := gt − et instead of gt.

2) gt = 0: the optimal policy co-optimizing the storage and
consumption is as in Theorem 1.

Throughout the analysis, the initial storage SoC s was set at
s = 12.15 (kWh), and the battery SoC limits were set at B =
12.83 (kWh), and B = 0.68 (kWh).7

2) Prosumer Surplus: We compared the cumulative rewards
achieved by the five customer types. Using consumers as the
reference, Table II shows the percentage gain in total surplus
under different storage charging/discharging powers and two
export rates8 over that achieved by a consumer.

7Here we consider a more general setting where the SoC constraints are given
by B ≤ st ≤ B.

8The social marginal cost (SMC) rate πSMC in Table II is as discussed in [6],
which is slightly above the wholesale price. The day-ahead LMP data is taken
from CAISO SP15 for the period June-August, 2019 (OASIS-CAISO).

Fig. 5. Net consumption distribution (e = e = 1 (kW)).

The highest surplus was achieved by active SDG prosumers,
as they were the most effective in avoiding buying at π+ and
being compensated at π−. The active SDG prosumer, under
e = e = 1.5 (kW) and π− = πSMC, achieved a cumulative sur-
plus gain of 102%, whereas solar exporter, self-powered pro-
sumer, and packaged SDG prosumer have only gained 83.5%,
95.8%, and 87.7%, respectively. Table II shows that reducingπ−

decreased all surpluses, but increased the surplus differences
between active SDG and other prosumers because the con-
sumption of active SDG dynamically increases to avoid/reduce
net exports at the decreased sell rate. The cumulative surplus
gain differences between active SDG and self-powered, and
solar export prosumers were 3.7% and 7.3%, respectively, under
π− = 0.6π+

OFF and e = e = 1.5 (kW), which increased to 6.2%
and 18.5% when the sell rate was reduced to π− = πSMC �
0.6π+

OFF.
When the storage output was increased (from 0.5 (kW) to

1.5 (kW)), the optimality of active SDG became more apparent,
and the influence of π− diminished as more generation was
kept behind the meter. The active SDG prosumer’s cumulative
surplus gain, under e = e = 0.5 (kW), increased by 9.6% when
the export rate increased to 0.6π+, but when e = e = 1.5 (kW),
the surplus gain increase was only 1.9%.

We use the net consumption distribution of different customer
types in Fig. 5 to expand on the intuition behind Table II.
The distribution was acquired by implementing 50,000 Monte
Carlo runs on renewable DG. Fig. 5 shows that, given the high
amount of exported power of solar exporters (top left), their
cumulative surplus was heavily influenced by π− (see Table II).
Self-powered prosumers (top right) had less energy imports
probability than packaged SDG prosumers (bottom left), but
higher exports probability, because they avoided buying from the
grid by using their renewables and storage to satisfy the demand.
Their energy exports are higher than packaged and active SDG
prosumers because only the storage reacts to absorb excess
generation. The packaged SDG prosumers’ policy of prioritizing
charging the storage from DG and increasing consumption to ab-
sorb g̃t reduced net exports, but not net imports. Lastly, the active
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SDG prosumer’s co-optimization of storage and consumption
(bottom right) noticeably centered the net consumption around
the origin (zero), showing the co-optimization efficacy in putting
the prosumer off the grid. Higher net-zero zone probability
enabled active SDG prosumers to avoid buying at π+ or selling
at π−, resulting in the high surplus gain (Table II).

VI. CONCLUSION

This paper presents the first decentralized linear complex-
ity solution to the DER co-optimization of BTM storage and
consumption decisions under the general NEM-X tariff models.
The developed technique applies more broadly to the residential
and commercial/industrial energy management systems and is
optimal under certain operating conditions. The results demon-
strate that the widely deployed NEM tariff leads to rich structural
properties of the co-optimization and results in a highly effec-
tive, low-cost, and scalable solution to an otherwise intractable
stochastic dynamic programming problem. Although not always
optimal, the developed approach shows promising performance
in simulations.

Several theoretical and practical issues remain, showing some
limitations of the proposed approach. One limitation is that the
proposed model excludes the optimization of certain deferrable
loads, such as EV charging with deadlines. Such problems
cannot be modeled directly under the optimization problem
presented here; a non-trivial modification is needed, as shown
in [21]. Another limitation is that it is not obvious how the
practical implementation of the algorithm can accommodate
flexible loads with non-linear operating conditions. Lastly, the
impact of DER co-optimization benefits on agents other than
prosumers, such as grid operators and utilities in the form of
the reduction of RPF and utility’s net costs is studied through
simulations in [26, Appendix D]). Expanded characterization of
such social benefits requires a separate study.

APPENDIX

A. NOMENCLATURE

Abbreviations
BTM Behind the meter.
DER Distributed energy resources.
DG Distributed generation.
DSO Distribution system operator.
EMS Energy management system.
MCO Myopic co-optimization.
MDP Markov decision process.
MPC Model predictive control.
NEM Net energy metering.
RPF Reverse power flows.
SoC State of charge.

Parameters and Indices

B ∈ R+ Storage SoC upper limit.
d ∈ R

K
+ Consumption bundle’s upper limit.

e, e ∈ R+ Storage charging and discharging limits.
γ ∈ R+ Salvage (marginal) value of storage energy.
k,K Device index and total number of devices.

π+
t , π

−
t ∈ R+ NEM buy and export rates.

ρ, τ ∈ R+ Storage discharging and charging efficiencies.
t, T Time index and total number of intervals.

Variables and Functions

d,d∗ Consumption and optimal consumption
bundles.

dt, d
∗
t Total consumption and optimal total

consumption.
dtk, d

∗
tk kth device’s consumption and optimal

consumption.
d̃t, d̃

∗
t DG-adjusted and optimal DG-adjusted total

consumption.
et, e

∗
t Storage and optimal storage control.

ftk Inverse marginal utility of device k.
gt ∈ R+ BTM renewable generation.
Ltk(·) Marginal utility function of device k.
μt Decision rule of an MDP policy.
PNEM
πt

(·) Payment function under NEM tariff π.
rt(·) Stage reward function.
st Storage SoC in interval t.
SNEM
πt

(·) Surplus function under NEM tariff π.
ut Control action of the MDP.
Utk(·) Utility function of device k.
V (·) Optimal reward-to-go function.
xt State of the MDP.
zt, z

∗
t Net-consumption and optimal net-consum-

ption.

B. Preliminary: Prosumer Without Storage (e = e = 0)

Without storage, the optimal consumption of a prosumer is a
static optimization. The optimal consumption is shown to have
a two-threshold three-zone structure.

The following Theorem is shown in [15].
Theorem 3 (Prosumer consumption decision under NEM X):

When e = e = 0, the optimal prosumer consumption policy
under max{(π−

t )} ≤ min{(π+
t )}, for every t is given by two

thresholds

Δ+
t := ft(π

+
t ), Δ−

t := ft(π
−
t ) (15)

that partition the range of DER production into three zones:
1) Net consumption zone: gt < Δ+

t . The prosumer is a net-
consumer with consumption

d∗tk = ftk(π
+
t ), ∀k. (16)

2) Net producing zone: gt > Δ−
t . The prosumer is a net-

producer with consumption

d∗tk = ftk(π
−
t ), ∀k. (17)

3) Net-zero energy zone: Δ+
t ≤ gt ≤ Δ−

t . The prosumer is
a net-zero consumer with consumption:

d∗tk = ftk(f
−1
t (gt)), ∀k. (18)

C. Preliminary: Lemmas 1–3

We present here three lemmas that highlight the struc-
tural properties of the optimal prosumer decisions of P under

Authorized licensed use limited to: Cornell University Library. Downloaded on August 24,2025 at 21:31:47 UTC from IEEE Xplore.  Restrictions apply. 



2346 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 15, NO. 4, OCTOBER 2024

the sufficient optimality conditions: (i) B > 2Tτe, and (ii)
s ∈ (Te/ρ,B − Tτe). To this end, we introduce Bellman’s
optimality condition. For t ∈ [0, T − 1], the Bellman’s optimal-
ity condition is given by

Vt(xt) = max
ut∈A(xt)

[
rt(xt, ut) + E

(
Vt+1(xt+1)

∣∣∣xt

)]
, (19)

where A(xt) is the constraint set on ut defined in P .
Lemma 1 (Marginal value of storage): The value func-

tion Vt(·) is monotonically increasing for all t. For all Δ ∈
[−e/ρ, ēτ ] and st +Δ ∈ [0, B],

Vt(st +Δ, gt) = Vt(xt) + γΔ ⇒ ∂

∂s
Vt(xt) = γ, (20)

i.e., the marginal value of energy in the storage is γ.

Proof of Lemma 1

We show first that the value function Vt(xt) is monotonically
increasing. From Bellman’s optimality condition (19), for all
ε > 0,

Vt(st + ε, gt) ≥ γε+ Vt(st, gt) > Vt(st, gt), ∀st ∈ (0, B),

where the first inequality comes from a suboptimal policy for
which the ε-level of energy in the storage is not used in the
decision process after t. Likewise,

Vt(st, gt + ε) ≥ Vt(st, gt) + π−
t ε > Vt(st, gt),

where the first inequality comes from that the ε additional
generation exported to the grid. Therefore, the value function
Vt is monotonically increasing with the system state xt.

Next we show (20) by backward induction. Let Δs = (Δ, 0).
At t = T − 1,

VT−1(xT−1 +Δs) = max
u=(d,e)

[
rT−1(xT−1 +Δs, u)

+ γ(sT−1 +Δ+ τ [e]+ − [e]−/ρ)
]

(a)
= max

u=(d,e)

[
rT−1(xT−1, u)

+ γ(sT−1 + τ [e]+ − [e]−/ρ)
]
+ γΔ

= VT−1(xT−1) + γΔ,

where (a) is from that the stage-reward rt(·) in (5) does not
depend on st unless t = T .

Assuming (20) holds for t+ 1, we have, in interval t,

Vt(xt +Δs) = max
u=(d,e)

[
rt(xt +Δs, u)

+E
(
Vt+1(st+τ [e]+ − [e]−/ρ+Δ, gt+1)|xt

) ]

= γΔ+ max
u=(d,e)

[
rt(xt, u)

+ E
(
Vt+1(st +τ [e]+ − [e]−/ρ, gt+1)

∣∣xt

)]

= Vt(xt) + γΔ.

�
Lemma 2 (Storage-consumption complementarity): Under

B > 2Tτe, and s ∈ (Te/ρ,B − Tτe), and for all t, the optimal
co-optimization decisions obey (a) e∗tz

∗
t ≤ 0, and (b) e∗t d̃

∗
t ≤ 0,

where d̃∗t := d∗t − gt is the DG-adjusted total consumption.

Proof of Lemma 2

a) Proof of e∗tz
∗
t ≤ 0 Proof by contradiction. Suppose that

e∗t > 0, when z∗t > 0. Let ẽt := e∗t − ε > 0 for some ε > 0 such
that z̃t := d∗t + ẽt − gt > 0.

Consider the stage reward rt(xt, (ẽt,d
∗
t)) in interval t:

rt(xt, (ẽt,d
∗
t)) = Ut(d

∗
t)− π+

t (d
∗
t + ẽt − gt)

= rt(xt, (e
∗
t ,d

∗
t)) + π+

t ε.

The value function in interval t is given by

Vt(xt) = rt(xt, (e
∗
t ,d

∗
t)) + E

(
Vt+1(st + τe∗t , gt+1)

∣∣∣xt

)
= rt(xt, (ẽt + ε,d∗

t))

+ E

(
Vt+1 (st + τ ẽt + τε, gt+1)

∣∣∣xt

)
= rt(xt, (ẽt,d

∗
t)) + E

(
Vt+1 (st + τ ẽt, gt+1)

∣∣∣xt

)
− ε(π+

t − τγ)

< rt(xt, (ẽt,d
∗
t)) + E

(
Vt+1 (st + τ ẽt, gt+1)

∣∣∣xt

)
,

where the last inequality uses the assumption in (6). Therefore,
e∗t > 0 cannot be optimal.

Next, suppose that e∗t < 0 and z∗t < 0. Let ẽt := e∗t + ε < 0
for some ε > 0 such that d∗t + ẽt − gt < 0.

Consider the stage reward rt(xt, (ẽt,d
∗
t)) in interval t:

rt(xt, (ẽt,d
∗
t)) = U(d∗

t)− π−
t (d

∗
t + ẽt − gt)

= rt(xt, (e
∗
t ,d

∗
t))− π−

t ε.

The value function in interval t is given by

Vt(xt) = rt(xt, (e
∗
t ,d

∗
t)) + E

(
Vt+1 (st + e∗t/ρ, gt+1)

∣∣∣xt

)
= rt(xt, (ẽt − ε,d∗

t))

+ E

(
Vt+1

(
st +

1

ρ
(ẽt − ε), gt+1

) ∣∣∣xt

)

= rt(xt, (ẽt,d
∗
t)) + E

(
Vt+1 (st + ẽt/ρ, gt+1)

∣∣∣xt

)
− ε(γ/ρ− π−

t )

< rt(xt, (ẽt,d
∗
t)) + E

(
Vt+1 (st + ẽt/ρ, gt+1)

∣∣∣xt

)
.

Therefore, e∗t < 0 cannot be optimal.
b) Proof of e∗t(d

∗
t − gt) ≤ 0:If z∗t > 0, by the complemen-

tarity property, e∗t ≤ 0. With z∗t = d∗t + e∗t − gt > 0, we have
d∗t − gt > 0, hence e∗t(d

∗
t − gt) ≤ 0.

Likewise, If z∗t < 0, then e∗t ≥ 0, implying d∗t − gt < 0.
Again, e∗t(d

∗
t − gt) ≤ 0. �
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Lemma 3 (Optimal storage operation): Under B > 2Tτe,
and s ∈ (Te/ρ,B − Tτe), and for all t, at the optimal total
consumption d∗t , we have

e∗t =
{
max{gt − d∗t ,−e}, gt ≤ d∗t
min{gt − d∗t , e}, gt > d∗t ,

(21)

and e∗t ≤ gt.

Proof of Lemma 3

From the optimality equation with the optimal consumption
d∗
t and total consumption d∗t = 1�d∗

t ,

Vt(x) = max
et∈[−e,e]

[
rt(xt, (et,d

∗
t)) + E

(
Vt+1(st + τ [et]

+

− [et]
−/ρ, gt+1)

∣∣∣xt

)]

= max
et∈[−e,e]

[
Ut(d

∗
t)− PNEM

πt
(d∗t + et − gt)

+ E

(
Vt+1(st, gt+1)

∣∣∣xt

)
+ γτ [et]

+ − γ[et]
−/ρ

]

= max
et∈[−e,e]

[
(τγ − πt(et))[et]

+ + (πt(et)− γ/ρ)[et]
−

− πt(e)(d
∗
t − gt)

]
+ Ct, (22)

where Ct is a constant independent of e and

πt(et) =

{
π+
t , d∗t + et − gt ≥ 0

π−
t , otherwise.

Case I (d∗t ≥ gt): By the complementarity property, we have

e∗t ≤ 0, and z∗t ≥ 0. Let the feasible regions of et be E +
t :=

[−e, e] ∩ {et : gt − d∗t ≤ et ≤ 0}, within which [et]
+ = 0 and

πt(et) = π+
t . The optimization in (22) becomes

max
et∈E +

t

[
(τγ − πt(et))[et]

+ + (πt(et)− γ/ρ)[et]
−

− πt(et)(d
∗
t − gt)

]

= max
et∈E+

t

[
(π+

t − γ/ρ)[et]
− − π+

t (d
∗
t − gt)

]
.

With π+
t ≥ γ/ρ and et ≥ gt − d∗t , we have

e∗t = max{−e, gt − d∗t}. (23)

Case II (d∗t ≤ gt): By the complementarity property, we have
e∗t ≥ 0, and z∗t ≤ 0. Let the feasible regions of et be
E −
t := [−e, e] ∩ {et : et ≤ gt − d∗t}, within which [et]

− = 0
and πt(et) = π−

t . The optimization in (22) becomes

max
et∈E −

t

[
(τγ − πt(et))[et]

+ + (πt(et)− γ/ρ)[et]
−

− πt(et)(d
∗
t − gt)

]

= max
et∈E −

t

[
(τγ − π−

t )[et]
+ − π−

t (d
∗
t − gt)

]

With π−
t ≤ τγ and et ≤ gt − d∗t , we have

e∗t = min{e, gt − d∗t}. (24)

Combining (23)–(24), we have (21).
To show e∗t ≤ gt, we note that gt ≥ e∗t when e∗t ≤ 0. When

e∗t > 0, z∗t = d∗t + e∗t − gt ≤ 0, by the complementarity condi-
tion. therefore, d∗t ≥ 0 implies e∗t ≤ gt. �
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