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Abstracts

Recently, various methods have been developed for synthesizing zinc oxide (ZnO)
nanostructures, including physical and chemical vapor deéposition, as well as wet chemistry. These
common methods require either high temperature, high vacuum; or toxic chemicals. In this study,
we report the growth of zinc oxide ZnO nanowires by a new-hot water deposition (HWD) method
on various types of substrates, including copper plates, foams, and meshes, as well as on indium
tin oxide (ITO)-coated glasses (ITO/glass). HWD'isiderived from the hot water treatment (HWT)
method, which involves immersing piece(s) of metal and substrate(s) in hot deionized water (DI)
water and does not require any additives or catalysts. Metal acts as the source of metal oxide
molecules that migrate in water and deposit.on the substrate surface to form metal oxide
nanostructures (MONSTRs). The, morphological and crystallographic analyses of the source-
metals and substrates revealed the’presence of uniformly crystalline ZnO nanorods after the HWD.
In addition, the growth mechanism of ZnO nanowires using HWD is discussed. This process is
simple, inexpensive, low temperature, scalable, and eco-friendly. Moreover, HWD can be used to
deposit a large variety of MONSTRSs on almost any type of substrate material or geometry.

Keywords: Metal oxide nanostructures, zinc oxide, nanowires, deposition, hot water treatment,
substrate, low temperature.

Introduction

Zinc oxide (ZnO) nanostructures, such as nanowires, nanorods, and nanoneedles, have
received great interest because of their unique optical, electronic, magnetic, mechanical, and
antimicrobial properties [1-7]. With a direct wide bandgap (3.37 e V) and high exciton binding
energy-(60'meV) at room temperature [8-10], ZnO has been extensively investigated because of
its potential use in various applications, including optoelectronic, photonic, field emission, energy
storage.and conversion, catalysis, and sensing devices [11-16]. Different methods for synthesizing
ZnO_nanostructures have been reported in the literature, some of which involve either high-



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - NANO-137776.R3

temperature or high-vacuum physical and chemical vapor deposition techniques [17-22], that are
commonly employed for producing various types of thin films [23-25]. However, theseapproaches
are generally expensive and energy-demanding, because they typically require relatively ‘more
complicated equipment and high-temperature growth conditions. Alternatively, various’ low-
temperature solution-based approaches (e.g., hydrothermal method) have recently been developed
to fabricate ZnO nanostructures with promising potential for scaled-up production and commercial
feasibility [26-31]. However, such wet-chemical synthesis methods still require potentially toxic
chemicals and additives.

Recently, formation of metal oxide nanostructures (MONSTRs) on metal substrates using
a simple hot water treatment (HWT) method has been reported [32-37]. HWT is a solvent-free
method that involves immersing a metal in hot water at a relatively low temperature as low as ~50
°C. HWT can also be used to grow nanostructures on a wide variety of metallic materials including
elemental metals, alloys, and compounds [38]. The surface.morphology, crystal structure, and
chemical composition of the substrates treated with /hot water showed the growth of well-
developed nanoscale features of the thermodynamically stable metal oxides [39]. Various
nanostructures were observed on the substrate surface after.the HWT, including cubes, pyramids,
plates, wires, spheres, and leaf-like nanostructures. As illustrated in Figure 1, a hot water treatment
growth mechanism that includes the combination of surface diffusion and a dissolution-
precipitation process called “plugging’’ was proposed to explain the growth of nanoscale features
as opposed to smooth thin films [40-42]Briefly, during the HWT, metal oxide molecules form on
the surface of a metallic substrate through a,water-metal surface reaction. This is followed by
plugging, which involves the releéase of metal oxide molecules from the metal surface, migration
through water, and re-deposition/ontoranother metal surface point. Re-deposited molecules can
initiate the formation of isolated MONSTRs. However, the random nature of plugging might not
be sufficient to explain the“smooth crystalline surfaces observed in HWT nanostructures.
Therefore, surface diffusion along with plugging is believed to be the main mechanism behind the
formation of MONSTRS, with smooth crystal facets. Nevertheless, HWT is limited to the re-
deposition of MONSTRs on the metal source itself. The synthesis of metal-oxide nanostructures
on different substrates is essential because the substrate can significantly influence the properties
of the nanomaterial, suchas its electronic and optical characteristics [43]. Different substrates
allow the production of nanestructures with tailored functionalities suited for specific applications,
including flexible electronics and high-performance sensors. Additionally, selecting an
appropriate substrate enhances the stability of nanostructures and facilitates their incorporation
into devices, which is vital for their real-world application in areas such as microelectronics and
photonics [44, 45]. Therefore, there is still a need to grow MONSTRs on a variety of substrates
that are different from the source metal utilizing a hot water process without the need for any
chemical additives.
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Figure 1: HWT method to grow MONSTRs on a metal surface, which acts both as the source and
substrate, through plugging and surface diffusion mechanisms.

In this study, inspired by HWT, we developed a newanethod edlled hot water deposition
(HWD) for growing MONSTRs of a metal oxide on a substrate susface of various types. HWD
involves growth mechanisms similar to those of HWT, with the main difference being the
migration and deposition of metal oxide molecules on a substrate that differs from the source metal.
HWD offers advantages similar to those of HWT, in€luding simplicity, low cost, low temperature,
scalability, high-throughput, and does notdnvolve any chemical agents or surface activators.
Moreover, HWD can be used to deposit a‘large variety of MONSTR on almost any type of
substrate material or geometry.

Methods and Materials

Commercial-grade Zn plates and powders (99% purity) were used as the source materials,
while Cu mesh, foam, plates (99% purity), and indium tin oxide (ITO)-coated glasses (ITO/glass)
(9-12 ohm/sq) served as the substrate materials. The HWD process for Zn and Cu plates (Figure
3) was performed for 2 hours by immersing the Zn source and Cu substrate in 100 mL of ultra-

pure deionized water (DI) water (18.2 MQ. cm) and maintaining the water temperature at 75 °C

using a thermocouple: For thesrémaining experiments, the same parameters and setups were
employed with a longer treatment time of 3 hours. To deposit ZnO on the Cu plate, mesh and
ITO/glass substrates, a Zn plate was used as the source material, facing the substrate materials and
separated by two inert.nonconductive polymeric spacers with a diameter of 4 mm. The setup was
held together using polymeric clips and positioned vertically by touching the bottom of the beaker.
With Zn powdert as the source material, Cu foam was placed directly on the Zn powder without
the use of a spacer. After HWD, substrate samples were dried with nitrogen. Morphological
analyses were performed using a scanning electron microscope (SEM, JOEL JSM-7000F, Tokyo,
Japan) and transmission electron microscopy (TEM; Hitachi HF3300, Ibaraki Prefecture, Japan
located at Oak Ridge National Laboratory). The crystal structures and compositions of the as-
grown ZnO nanorods were analyzed using X-ray diffraction XRD (Rigaku Miniflex 600, Tokyo,
Japan).anhd energy dispersive spectroscopy (EDS, EDAX Apex).
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Results and Discussion
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Figure 2: HWD method to grow MONSTRs on a substrate surface’using metal as the source.

As illustrated in Figure 2, the HWD process/nvelves a source metal and a target substrate
that are both immersed in hot water facing gach other. Water temperature between 50 - 95 °C is
expected to be sufficient for the growth of MONSTRs by HWD, based on the results reported for
HWT [38]. To demonstrate HWD, we chose ZnO nanowires as the material of interest because of
their potential applications, as summarizedsabove. For this purpose, we first used commercial
grade plates of Zn as the source metal and«Cu as the substrate, on which the ZnO MONSTR was
to be deposited. The polished Cu and Zn plates'were positioned vertically, as shown in Figure 2,
facing each other in hot DI water for.2 hours at 75 °C and separated by 4 mm. In our earlier work
[38], we observed that Zn has a/faster response to HWT than Cu and can form ZnO nanowires
with hexagonal cross-sections after.approximately 30 - 45 minutes of treatment. In contrast, Cu
takes approximately 4 hours to,grow Cu,O nanocubes and 16 hours to grow CuO nanoleaves [46].
Therefore, it is expected that zinc oxide molecules will form before copper oxide molecules during
the HWD experiments.Itis.also expected that ZnO molecules will migrate from Zn toward the Cu
surface as part of the’plugging mechanism and deposit on Cu as ZnO nanowires.
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Figure 3: ZnO nanowires were deposited on a Cu plate substrate (right).after 2 hours of HWD at
75 °C using a Zn plate as the source (left). ZnO nanowires also grew on the Zn plate through the
HWT mechanism.

SEM images of the Zn and Cu plates, shown in Figure 3, after2 hours of the HWD process
revealed that ZnO nanowires with lengths of a few hundreds of nanometers and hexagonal cross-
sections of approximately 75 - 150 nm grew on both the Zn plate (source metal) and Cu plate
(substrate) following the proposed growth mechanisms of HWT (re-deposition) and HWD
(deposition), respectively. SEM images also‘showed that the ZnO MONSTRs uniformly covered
the entire Cu substrate surface. EDS was used to analyze the chemical composition of the as-grown
Zn0 nanorods on top of Cu plates. The distribution of Zn, Cu, and O was determined by EDS
elemental mapping, as shown in Figtre 4. The presence of 14.6 % Cu may be attributed to the
underlying Cu substrate, as evidenced by‘the gaps between the nanorods in Figure 4(a). Figure
4(b) presents a depiction of Zn, €u, and O molecules superimposed on the SEM image. This figure
illustrates that the majority of the Cu molecules are situated in the interstices between the ZnO
nanowires, while the oxygen molecules are distributed uniformly across the substrate, primarily
resting on the nanorods. The atomie,percentages of Zn, Cu, and O are displayed in Figure 4(c) as
31.6%, 14.6%, and 53.8%, respectively. Additionally, the higher atomic percentage of O can be
attributed to the nativeoxide layerbeneath the ZnO nanorods, which may have formed after HWD
when the samples were exposed to the environment. To assess the purity of the ZnO nanowires
and analyze the spatial distribution of elements, we conducted line scan analysis using EDS (see
Supplementary Information). The ZnO nanowires were detached from the Cu substrate and
deposited onto_earbon tape for analysis. The results confirmed the absence of Cu contamination in
the nanowires, indicating that the nanowire synthesis was successful and free from substrate
material interference. This ensured the structural integrity and purity of the ZnO nanowires for
further characterization.
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Figure 4: (a) SEM image, (b) corresponding superimposed EDS elemental. map on the SEM image,
and (c) elemental composition of ZnO nanostructures grown on Cu plate by HWD.

The crystallographic information of the ZnO nanowiresswas analyzed by XRD. (Figure
5(a)). The sharp ZnO <100> peak at 28 = 32.07° [crystallography open database entry 1011258]
indicates that the ZnO nanowires had a well-developed, highly oriented crystal structure. The more
dominant Cu <111> and <200> peaks at 20 = 43.72° and 50.927 respectively [crystallography

open database entry 4313203], are attributed to the underlying,Cu substrate. The XRD pattern of
ZnO exhibited a single prominent peak, which was attributéd to the preferred orientation of the
Zn0O nanostructures grown on the Cu substrate:In contrast to the randomly oriented crystallites in
the powdered samples that produce multiple diffraction peaks, the ZnO nanostructures on the Cu
substrate are potentially preferentiallysaligned, resulting in the predominance of a single peak in
the diffraction data. TEM was used to further investigate the crystallinity of the ZnO nanowires
grown on the Cu plate. The ZnO nanowires ‘were scraped off from the Cu plate after HWD and
placed on a Cu mesh TEM grid for TEM analysis. The low-magnification TEM image shown in
Fig. 5(b) shows an average ZnO diameter of approximately 110 nm, which is consistent with the
values found in the SEM images (Figure 3). The dark stripes observed in Fig. 5(b), oriented
perpendicular to the nanorod axis, are likely the result of nanoscale stacking faults, potentially
involving dislocations, grain boundaries, or twin boundaries [47]. Such planar defects disrupt the
periodic atomic arrangement, leading to increased electron scattering in comparison to undisturbed
regions, which appear.as darkibands. The TEM image in Figure 5(c) reveals that the nanowire is a
single crystal. The lattice spacing was measured to be 0.26 nm using ImageJ software, which
corresponds to the (002) plane of wurtzite ZnO, according to the Crystallography Open Database
(entry 1011258). This result,.in conjunction with the XRD data, suggests that the ZnO nanowires
likely exhibitta_hexagonal wurtzite structure with a preferred orientation along the c-axis.
However; further characterization, such as SAED analysis, is necessary to conclusively confirm
the crystal structure and orientation of the ZnO nanowires. The hexagonal wurtzite structure of
ZnQ offers, the highest thermodynamic stability among its various structural configurations [48].
Due to the elevated surface energy of the axial crystal facet of ZnO nanowires, this facet exhibits
a higher growth rate compared to the lateral facets, promoting the preferential addition of atoms
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along the c-axis [49]. As a result, during HWD, ZnO molecules likely adhere more readily:to the
axial facet, leading to the preferential formation of the nanowire morphology.

Intensity (a.u.)

20 25 30 3B 40 45 50 55 60
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Figure 5: (a) XRD profile of ZnO on Cu plate, (b) TEM imageiand (c) high resolution TEM image
of ZnO nanowire after 2 hours of HWD.

Moreover, we investigated the ability of HWD: to grow ZnO MONSTRs on different
substrate types. In addition to the flat Cu plate, 3D substrate geometries, including Cu mesh and
foam, as well as ITO/glass as an oxide material, were usedias substrates for the HWD of the ZnO
nanowires. The HWD experiments were conducted for 3:hours at 75 °C. The SEM images in Figure
6 reveal the uniform deposition of ZnO nanowires on all the substrates studied. Our results also
show that different forms of metal sources, e.g.,;metal powders, can be used in HWD. As shown
in Figure 6, commercial grade micropatticles of Zn powder successfully acted as the source for
growing ZnO nanowires on Cu foam. Depending.on the Zn source (plate vs. powder) and substrate
type, ZnO nanowires had different. diameters in the range of 50 - 150 nm on Cu mesh, 25 - 75 nm
on Cu foam (Zn powder source); 100.- 200 nm on Cu plate, and 150 - 200 nm on ITO/glass
substrates.
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Figure 6: ZnO nanowires deposited on several types of substrate geometries and materials
including Cu mesh, Cu foam, Cu plate, and ITO/glass after.3 hoursiof HWD at 75 °C. Zn plate or
Zn powder was used as the source.

Figure 7 illustrates a possible growth mechanism by’ which the HWD technique. As
previously discussed, ZnO molecules near the source metal (Zn plate or powders) must have
formed prior to any copper oxide molecules from the substrate (Cu mesh, foam, or plate) during
the brief period of the HWD in this study. Moreover, our research found that ITO/glass were not
reactive to the HWT (see Appendix). Therefore, during the HWD process, the ZnO molecules may
have been released and migrated into the water, similar to the regular HWT process. However,
migrated ZnO molecules can now be deposited.on both the substrate and the source (Zn or powder)
to form MONSTRs. As shown in Figure 3, hexagonal ZnO nanowires are observed on both the Zn
and Cu substrates. The vast majofity 0f ZnO molecules are likely entrapped within the confined
space situated between the plates; as this area was only accessible to the outside water from the
top, whereas the remaining sides were obstructed by Teflon rods or the base of the beaker. This
trapping of metal oxide molecules may have contributed to the dense growth of the ZnO
nanostructures, as evidenced by the SEM images.

Page 8 of 14



Page 9 of 14

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - NANO-137776.R3

Metal oxide formation .
; Plugging

Oxide release  Migration
|
|
. & ®
\

Surface diffusion

Deposition

Metal oxide nanostructure

Metal oxide
nanostructure!

Metal source Substrate

Figure 7: Proposed growth mechanism of HWD method to deposit MONSTRs on a substrate
surface, in addition to source itself (re-deposition) through plugging and surface diffusion.

Furthermore, the smooth facets of these hexagonal nanowires are believed to be due to the
surface diffusion of the metal oxide molecules on the nanostructure surface after the rough surface
is created by the random nature of plugging (i.e., release, migration, and re-deposition) [38]. The
variation in the diameters of the ZnO nanewires is attributable to the surface-area-to-volume ratio
(SA/V) of the different substrates. When Zn plates are utilized as the source, the concentrations of
the released ZnO molecules/are expected to be similar. Additionally, the geometrical shapes of the
ITO/glass and Cu plates are analogous; hence, their SA/Vs values might also be comparable. As a
result, the diameters of the ZnO nanowires on these substrates were within a similar range, as
depicted in the SEM images in Figure 6. However, the Cu mesh had a larger SA/V than the
ITO/glass and Cu plates. Consequently, the Cu mesh should possess shorter nanowires with
smaller diameters, givensthat the same amount of released and migrated ZnO molecules are now
being deposited on a larger surface area than in the cases of ITO/glass and Cu plates. We observed
shorter ZnO.diametetrs on Cu mesh, as shown in Figure 6. In contrast, the ZnO nanowires observed
on the Cu foam substrates where we used Zn powder as the source had the shortest lengths and
smallest diameters. It is reasonable to expect that Zn powder could provide a more substantial
release of ZnO molecules because of its larger surface area compared to Zn plate, thereby
enhaneingthe deposition rate. However, it appears that the Zn particles were not small enough or
their surface was passivated with a thicker native oxide layer that might have hindered the release
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of ZnO molecules and consequently the deposition rate, leading to smaller nanowires. Further
research is required to determine the growth mechanism of the HWD process. In addition,
substrates with other shapes and compositions should be investigated in the future.

Conclusion

In summary, we presented a novel HWD method for producing nanostructured metal
oxides by immersing a source metal and a substrate in hot water. We used:Zn plates and powder
as the source materials, and Cu foam, mesh, plates, and ITO/glass substrates. SEM images revealed
that uniform nanowires were formed on all the substrates studied after only-2-3 hours of HWD,
and elemental mapping showed the presence of Zn and O on the surface of the substrates. XRD
and TEM results demonstrated the excellent quality of the wurtzite ZnQ nanowires. The growth
mechanism of MOSNTRs during HWD can be attributed to the plugging process and the surface
diffusion of metal oxides. Additionally, the variations in the surface-area-to-volume ratio of the
source and substrate materials could account for the differences observed in the diameters of the
grown ZnO nanowires. Our study demonstrates that HWD/is a low-temperature process that does
not require any special environments, chemicals, or processing techniques, such as vacuum, acidic
or alkaline solutions, catalysts, or lithographic processing. Furthermore, our study showed that
MOSNTRSs can be grown using HWD on substrate materials with different configurations. Finally,
HWD presents the possibility of growing MOSTRs onra range of substrate geometries, including
1D (e.g., wires and rods), 2D (e.g., plates, foils;.and thin films), and 3D (e.g., powder, pipe, mesh,
and foam).
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