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Abstract. We prove that the time of classical existence of smooth solutions to the
relativistic Euler equations can be bounded from below in terms of norms that measure
the “(sound) wave-part” of the data in Sobolev space and “transport-part” in higher
regularity Sobolev space and Hölder spaces. The solutions are allowed to have nontrivial
vorticity and entropy. We use the geometric framework from [M. M. Disconzi and J.
Speck, The relativistic Euler equations: Remarkable null structures and regularity prop-
erties, Ann. Henri Poincaré 20(7) (2019) 2173–2270], where the relativistic Euler flow
is decomposed into a “wave-part”, that is, geometric wave equations for the velocity
components, density and enthalpy, and a “transport-part”, that is, transport-div-curl
systems for the vorticity and entropy gradient. Our main result is that the Sobolev norm
H2+ of the variables in the “wave-part” and the Hölder norm C0,0+ of the variables
in the “transport-part” can be controlled in terms of initial data for short times. We
note that the Sobolev norm assumption H2+ is the optimal result for the variables
in the “wave-part”. Compared to low-regularity results for quasilinear wave equations
and the three-dimensional (3D) non-relativistic compressible Euler equations, the main
new challenge of the paper is that when controlling the acoustic geometry and bound-
ing the wave equation energies, we must deal with the difficulty that the vorticity and
entropy gradient are four-dimensional space-time vectors satisfying a space-time div-
curl-transport system, where the space-time div-curl part is not elliptic. Due to lack
of ellipticity, one cannot immediately rely on the approach taken in [M. M. Disconzi
and J. Speck, The relativistic Euler equations: Remarkable null structures and regular-
ity properties, Ann. Henri Poincaré 20(7) (2019) 2173–2270] to control these terms.
To overcome this difficulty, we show that the space-time div-curl systems imply elliptic
div-curl-transport systems on constant-time hypersurfaces plus error terms that involve
favorable differentiations and contractions with respect to the four-velocity. By using
these structures, we are able to adequately control the vorticity and entropy gradient
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with the help of energy estimates for transport equations, elliptic estimates, Schauder
estimates and Littlewood–Paley theory.

Keywords: Local well-posedness; low regularity; acoustic geometry; Schauder estimates;
Strichartz estimates.
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1. Introduction

This paper is concerned with the special relativistic Euler equations on the

Minkowski background (R1+3, M), where M is the Minkowski metric. For use

throughout the paper, we fix a coordinate system {x³}³=0,1,2,3, relativea to which

M³´ := diag(−1, 1, 1, 1), where the speed of light is set to be 1. For these equations,

there is considerable freedom in the choice of state-space variables, that is, the fun-

damental unknowns of the PDEs. In this work, we choose the logarithmic enthalpy

h, the entropy s and the four-velocity v, which is a future-directed M -timelike vec-

torfield normalized as M(v, v) = −1. We allow for nontrivial vorticity. All other

unknowns in the system can be considered as functions of the state-space variables.

We denote the pressure as p = p(h, s), the fluid density as � = �(h, s) and speed of

sound as c :=
√

∂p

∂� . In this coordinate system, the relativistic Euler equations can

be expressed asb

vκ∂κh + c2∂κvκ = 0, (1.1a)

vκ∂κ(v�)³ + ∂³h + (v�)³vκ∂κh − q∂³s = 0, (1.1b)

vκ∂κs = 0, (1.1c)

where q := θ
H is temperature over enthalpy, which can be expressed as q = q(h, s).

Also see Secs. 2.2 and 2.3 for the details.

Our work intimately depends on a new formulation of the equations derived by

Disconzi–Speck [12], where the authors found that the flow splits into a “sound-

wave-part” (“wave-part” for short) for (h, s, v) and a “transport-div-curl-part”

(“transport-part” for short) for the vorticity ω and the entropy gradient S. Schemat-

ically, the geometric formulation takes the following formc:

aThroughout this paper, we use the notation that Greek “space-time” indices take on the val-
ues 0, 1, 2, 3, while Latin “spatial indices” take on the values 1, 2, 3. We use Einstein summation
convention throughout the paper.
bFor Greek and Latin indices, for any vectorfield or one-form V , we lower and raise indices with the
Minkowski metric M³´ := diag(−1, 1, 1, 1) and its inverse by using the notation (V�)´ := M³´V ³

and (V �)´ := (M−1)³´V³.
cWe denote schematic spatial partial derivatives and space-time partial derivatives by ∂ and ∂∂∂,
respectively. Also we use the following schematic notations throughout the paper where A, B, C

are arrays of variables:

• L [A](B) denotes any scalar-valued function that is linear in the components of B with coeffi-
cients that are a function of the components of A.
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Wave equations:

�gΨ = L (�Ψ)[�C,D] + Q(�Ψ)[∂∂∂�Ψ,∂∂∂�Ψ]. (1.2)

Transport equations:

Bω³ = L (�Ψ, �ω, �S)[∂∂∂�Ψ], (1.3a)

B(S	)³ = L (�Ψ, �S)[∂∂∂�Ψ]. (1.3b)

Transport-Div-Curl system:

BC³ = F(Cα) := Q(�Ψ)[∂∂∂�Ψ, (∂∂∂ω,∂∂∂�S,∂∂∂�Ψ)] + Q(�S)[∂∂∂�Ψ,∂∂∂�Ψ]

+ L (�Ψ, �ω, �S)[∂∂∂�Ψ,∂∂∂�S], (1.4a)

BD = F(D) := L (�Ψ, �S)[∂∂∂ω] + Q(�Ψ)[∂∂∂�Ψ, (∂∂∂ �S,∂∂∂�Ψ)]

+ Q(�S)[∂∂∂�Ψ,∂∂∂�Ψ] + L (�Ψ, �ω, �S)[∂∂∂�Ψ], (1.4b)

vort³(S) = 0, (1.4c)

∂³ω³ = L (ω)[∂∂∂�Ψ], (1.4d)

where �Ψ := (v0, v1, v2, v3, h, s), g = g(�Ψ) is a solution-dependent Lorentzian metric

which governs the geometry of sound waves, C � vort(ω) and D � divS are special

modified fluid variables, and B is the material derivative, which is parallel to v³.

See Definition 2.3 for the definition of ω, Definition 2.6 for the definition of S and

Sec. 2.4 for the precise definitions of g, C,D,B and more details of the geometric

formulation of the equations. This formulation reveals miraculous regularity and

geometric properties of the flow, which is used in a fundamental way in the present

work. These geometric properties are not visible in first-order equations (1.1). In

this paper, we show that under low-regularity assumptions on the “wave-part” (see

Sec. 3.5 for more details of “wave-part”) of the initial data, the regularity of solutions

of the relativistic Euler equations can be preserved for a short time. Specifically, we

assume that the “wave-part” of the data belongs to H2+, and that the “transport-

part” C and D are in Hölder space C0,0+. Our proof shows, in particular, that it is

possible to avoid instantaneous shock formation, which in [19] was shown to occur

in the irrotational case (i.e. for quasilinear wave equations) for initial data in H2.

In particular, our regularity assumptions are optimal with respect to the “sound-

wave-part” of the data. One cannot hope to avoid singularities globally in time: it is

known that, even in the irrotational and isentropic case, the compression of sound

waves can cause shocks to develop from regular initial data in finite time. Moreover,

in more than one space dimension and away from symmetry, these singularities are

known to be stable as in [7].

• Q[A](B, C) denotes any scalar-valued function that is quadratic in the components of B and C

with coefficients that are a function of the components of A.
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For the irrotational and isentropic case in [7], the relativistic Euler equations

reduce to a system of covariant quasilinear wave equations for the first derivatives

ψ³ := ∂³φ of a potential function φ of the following form:

�g(ψ)(ψ³) = Q(ψ)[∂∂∂ψ,∂∂∂ψ]. (1.5)

Classical local well-posedness in H(5/2)+ for the quasilinear wave system (1.5) can

be obtained by applying energy estimates and Sobolev embedding, see Kato [14].

Starting in the late 90s, the regularity needed for local well-posedness for quasilinear

wave equations was improved in a series of works by Bahouri–Chemin, Smith–

Tataru and Klainerman–Rodnianski, see [4, 5, 16, 15, 26, 27]. The optimal result

for low regularity H2+ of quasilinear wave equations was first achieved by Smith–

Tataru in [23]. In [30], Wang reached the same result as in [23] by using a geometric

approach. With the presence of vorticity, Disconzi–Luo–Mazzone–Speck, Wang and

Zhang–Andersson proved low-regularity local well-posedness result for the three-

dimensional (3D) compressible Euler equations in [11, 31, 32], respectively. In all

three works, the regularity of “wave-part” is in the optimal level H2+. We will

discuss the details of the assumptions for the data in [11, 31] in Sec. 1.1.

Compared to the non-relativistic case, the first fundamental form of Σt :=

{t} × R
3 is no longer conformally flat in the relativistic case, leading to more com-

plicated geometry. One of the main challenges of this paper is that (1.2)–(1.4)

seemingly suffers from a loss of derivative. This is because at the level of regular-

ity, C,D � ∂∂∂2�Ψ, which is an issue since C and D show up as the source terms in

the right-hand side of the wave equation (1.2). In [11], this was solved by using

Hodge theory on the spacelike hypersurfaces Σt. In our case, the transport-div-curl

system (1.4) is a space-time (non-elliptic Hodge) system, from which we have to

extract a quasilinear elliptic Hodge system on the spacelike hypersurfaces, that is,

we rewrite (see Proposition 5.9) the space-time div-curl system (1.4) into a spatial

elliptic div-curl system with source terms that can be controlled only due to the

special structure of the equations

Gab∂a((ω�), S)b = F, (1.6)

∂a((ω�), S)b − ∂b((ω�), S)a = Hab. (1.7)

In (1.6), G−1 := G−1(v) is the inverse of a Riemannian metric on constant-time

hypersurfaces (see Eq. (5.18c) for the definition of G−1). By using these struc-

tures, we are able to adequately control the vorticity and entropy gradient by using

energy estimates for transport equations, elliptic estimates, Schauder estimates and

Littlewood–Paley theory.

We now state the main results of this paper.

Theorem 1.1 (Main theorem). Consider a smoothd solution to the relativistic

Euler equations whose initial data on the initial Cauchy hypersurface Σ0 := {0}×R
3

dBy smooth we mean as smooth as necessary for the analysis arguments to go through. We note
that all of our quantitative estimates depend only on the Sobolev and Hölder norms.
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satisfies following assumptions for some real number 2 < N < 5/2, 0 < α < 1,

c1 > 0 and D:

(1) “Wave-part”: ‖h, v‖HN (Σ0) f D,

(2) “Transport-part”: ‖ω‖HN (Σ0) + ‖s‖HN+1(Σ0) f D, In addition, modified fluid

variables C and D (C � vort(ω) and D � divS, see Sec. 2.2.2 for the definition

of operator vort and ω, Definition 2.6 for the definition of S and Sec. 2.8 for

the definition of C and D) satisfy the Hölder norm bound ‖C,D‖C0,α(Σ0) f D,

(3) The image of data functions is contained in an interior of a compact subset R
(defined in Sec. 3.5) and the enthalpy H is positive, i.e. H g c1 > 0.

Then the solution’s time of classical existence T := T (D,R) > 0 can be

controlled in terms of only D and R. Moreover, the Sobolev and some Hölder

regularities of the data are propagated by the solution.

See Sec. 1.5 for the main ideas behind proving Theorem 1.1.

1.1. Overview of previous low-regularity results

There have been many developments on low-regularity problems for quasilinear

wave equations and the non-relativistic 3D compressible Euler equations in past

two decades. For quasilinear wave equations of the form (1.5), Bahouri–Chemin

[5] and Tataru [26] independently showed local well-posedness with H(2+ 1
4 )+ data.

The improvements rely on Strichartz estimates based on Fourier integral parametrix

representations. Bahouri–Chemin improved their earlier result to H(2+ 1
5 )+ in [4].

Tataru pushed the results down to H(2+ 1
6 )+ in [27] and Klainerman reached the

same level in [15]. Klainerman–Rodnianski achieved H(2+ 2−
√

3
2 )+ in [16]. The opti-

mal low-regularity result H2+ for generic quasilinear wave equations was first

achieved by Smith–Tataru in [23] by using wave-packets and properties of the geom-

etry of characteristic light cones that were introduced in [16]. Besides the improve-

ments over Sobolev exponents, a commuting vectorfield approach for Strichartz esti-

mates was introduced by Klainerman in [15] and a fundamental decomposition of a

Ricci component of g was used for improving the regularity in the causal geometry

by Klainerman–Rodnianski in [16]. Recently, Wang gave a second proof of Smith–

Tataru [23] by using this geometric approach. The proof in Wang [30] relied on an

upgraded version of Klainerman–Rodnianski’s vectorfield method with the help of

conformal energy estimates. We again emphasize that, for the general quasilinear

wave equation of the form (1.5), it is impossible to prove any well-posedness result

with data in H2. Specifically, Lindblad provided an example of ill-posedness for

a quasilinear wave equation with H2 initial data in [19]; see also [1–3] for more

ill-posedness results for the compressible inviscid fluid. For the non-relativistic

compressible Euler flow with vorticity and entropy, under the H2+ assumptions

on “wave-part” and ”transport-part” of the data, Disconzi–Luo–Mazzone–Speck

[11] and Wang [31] proved local well-posedness result for 3D compressible Euler
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equations. By assuming the Hölder regularity C0,³ for the data of the modified

fluid variables C and D (our analogue of C and D are defined in Definition 2.8), the

authors are able to prove a Schauder estimate in [11] for a transport-div-curl system

in order to propagate the vorticity and entropy gradient along the waves. A method

of decomposing the velocity is given in [31] for the isentropic compressible Euler

equations, which allowed Wang to remove the Hölder assumption on vorticity. In

[32], Zhang–Andersson combined the methods in [23, 31] to give an alternate proof

of the same result as in Wang [31].

1.2. A brief overview of the strategy of the proof

Klainerman [15], Klainerman–Rodnianski [16] and Wang [30] developed a geomet-

ric approach for proving the low-regularity well-posedness for the quasilinear wave

equations. The new formulation (1.2)–(1.4) provided by Disconzi–Speck [12] makes

it possible to import the geometric techniques from [16, 15, 30] to the “sound-wave-

part” of compressible Euler flow. The main difference with the wave problem is the

addition of another characteristic speed into the problem, namely, the “transport-

part”. These two parts of the equations and solutions interact with each other,

which creates substantial difficulties for understanding the Euler flow. See Sec.

1.3 for further discussions of the geometric formulation. See also Luk–Speck [22]

for similar formulations for 3D isentropic compressible Euler equation and Speck

[24] for 3D compressible Euler equations with any equation of state. The main

tool for controlling the solution in the low-regularity setting, by using energy esti-

mate (see Christodoulou [7, Chap. 1] for the energy current and its properties) and

Littlewood–Paley theory, is the following estimatese:

‖(h, s, v)‖H2+ε(Σt) � ‖(h, s, v)‖H2+ε(Σ0) +

∫ t

0

(‖∂∂∂(h, s, v)‖L∞
x (Στ ) + 1)

×‖(h, s, v)‖H2+ε(Στ )dτ. (1.8)

In order to make (1.8) useful, one needs to control ‖∂∂∂(h, s, v)‖L1
t L∞

x
. Since one

is not able to apply Sobolev embedding to recover the bound below H5/2+, we

instead use a geometric approach to show the following Strichartz estimates :

‖∂∂∂(h, s, v)‖L2
t L∞

x
� T 2·

∗ . This is done by a bootstrap argument with bootstrap

assumptions ‖∂∂∂(h, s, v)‖L2
t L∞

x
f 1, where T∗ is the bootstrap time. In order to

prove the Strichartz estimates, we apply a series of reductions. We reduce the

Strichartz estimates to decay estimates by using a T T ∗ argument, then to a confor-

mal energy estimate (see Definition 7.5 for the definition of conformal energy and

Theorem 7.6 for boundness theorem for conformal energy) by Littlewood–Paley

theory. See Sec. 1.5.4 for overview of the reduction, Sec. 4 for an extended overview

of a global structure and Secs. 6 and 7 for details.

eWe denote the constant-time hypersurface at time t by Σt. Moreover, A � B means A ≤ C · B

for some universal constant C depending on region R and data D.
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A crucial step in our geometric approach is the introduction of an acoustical

function u satisfying the acoustical eikonal equation (g−1)³´∂³u∂´u = 0, where the

acoustical metric g = g(h, v, s) is a Lorentzian metric (see Definition 2.10 for the

definition of g) distinct from the Minkowski metric. With the help of u, we construct

a null frame and control the acoustic geometry along acoustic null cones, which are

the level sets of u (see the figure on p. 65). This allows us to derive suitable estimates

for conformal energy. Disconzi–Luo–Mazzone–Speck [11] and Wang [31] showed that

given good control over the “transport-part”, we can run the machinery of Strichartz

estimates for the “wave-part” where we treat the “transport-part” as a favorable

source term. Thus, good control over the “transport-part” is a crucial component of

our analysis. Inspired by the analysis of the 3D non-relativistic compressible Euler

case in [11], we derive elliptic and Schauder estimates for the transport-div-curl

systems to bound the H1+¸ and C0,³ norms of C,D when the wave-part is rough.

The main new difficulty that is not found in 3D non-relativistic compressible

Euler is: due to the space-time structure of the relativistic Euler flow, we encounter

space-time velocity, vorticity and the div-curl system where the ellipticity is not

immediately apparent. To overcome this difficulty, we exploit two crucial aspects.

We first note that the v-directional derivative of the vorticity and entropy gradient is

favorable due to the transport phenomena. To obtain control of v-orthogonal direc-

tional derivatives, we reduce the space-time div-curl system of vorticity and entropy

gradient to a dynamic div-curl system on the constant-time hypersurfaces. By com-

bining these special structures of relativistic Euler equations with Littlewood–Paley

decomposition and properties of pseudodifferential operators, we derive estimates

for vorticity and entropy.

We present the logical graph of this paper in Sec. 1.5.

1.3. Geometric formulation of the relativistic Euler equations

Due to the coupling of sound waves with vorticity and entropy in Eqs. (1.2)–(1.4),

when considering the relativistic Euler equations with an arbitrary equation of state,

one needs to precisely and carefully split the dynamics into a “wave-part”, which

describes the propagation of sound waves, and a “transport-part”, which describes

the evolution of vorticity and entropy. For the 3D non-relativistic compressible Euler

equations with any equation of state, Speck [24] derived a system consisting of geo-

metric wave equations and transport-div-curl equations. This geometric formulation

is used for the low-regularity problem in [11, 31]. See also Luk–Speck [21, 22] for

the geometric formulation of the compressible Euler in the barotropic case and its

application to the shock formation problem. Disconzi–Speck [12] derived the geo-

metric formulation of the relativistic Euler equations with vorticity and dynamic

entropy that we used in this paper. It allows us to describe the influence of trans-

port phenomena on the wave-part of the system and the acoustic geometry with

rough sound wave data given in the relativistic Euler flow. These geometric formula-

tions have origins in Christodoulou and Christodoulou–Miao’s proof of stable shock
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formation for the relativistic Euler equations and non-relativistic 3D compressible

Euler equations in the irrotational and isentropic case [7, 9]. Also see [6, 20] for more

results concerning shock formation problem of the compressible Euler equations.

The new geometric formulation from [12] (see (1.2)–(1.4) and Proposition 2.17

for the formulation) splits the dynamics into a “wave-part”, which consists of geo-

metric wave equations for the fluid variables h, v, s, and a “transport-div-curl-part”,

which governs the transport equations of special vorticity, entropy gradient and

modified fluid variables C,D (C,D are special combinations of variables whose essen-

tial terms are the vorticity of vorticity and divergence of entropy gradient that are

defined in Definition 2.8) and div-curl systems for the special vorticity and entropy

gradient. The advantage of the geometric formulation is that one can do analysis on

both “wave-part” and “transport-part”, which are highly coupled. Here, we briefly

summarize the new formulation and its connection to establishing the Strichartz

estimate as follows:

• The “wave-part” of the formulation involves wave equations with principal part

�g. Properties of this operator are intimately related to the acoustic geome-

try, which is constructed via an acoustical function u. Here, u is a solution to

the acoustical eikonal equation (g−1)³´∂³u∂´u = 0, where the acoustical metric

g = g(h, v, s) is the Lorentzian metric defined in Definition 2.10. With the help

of u, we construct a null frame and derive some transport equations as well as

div-curl systems for some particular connection coefficients along acoustic null

cones, which are the level sets of u (see the figure on p. 65). We note that these

equations for the connection coefficients are derived from basic geometry con-

siderations and are independent of the relativistic Euler equations. By using a

delicate decomposition of certain curvature components, which are highly tied to

the geometric wave equations (2.29), we can control a large group of geometric

quantities that are fundamental for deriving the conformal energy estimates. We

emphasize already that achieving control of these geometric quantities is essential

for controlling certain conformal energy for solutions to the linear wave equation

corresponding to the acoustical metric g, i.e. solutions ϕ to the PDE �g(
Ψ)ϕ = 0.

It is crucial to control the conformal energy in order to derive the decay estimates,

which we again emphasize are the main ingredient needed to obtain the desired

Strichartz estimate. We will describe conformal energy and decay estimates with

more details in Sec. 1.5.

• The “transport-div-curl-part” of the formulation allows one to control the vor-

ticity and entropy at one derivative level above standard estimates. The analysis

uses transport estimates as well as Hodge estimates at constant-time hypersur-

faces. This is highly nontrivial and more complicated compared to non-relativistic

3D compressible Euler because the Hodge system that we encounter is a space-

time div-curl system. In total, we are able to show that the transport terms are

“good” source terms in the wave equation estimates. We point out the vorticity

and entropy gradient also appear in PDEs that we use to control the acoustic
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geometry because of the geometric wave equations (1.2). This shows that there are

interactions between the vorticity, entropy, sound waves and acoustic geometry.

1.4. Comparison with low-regularity results for 3D non-relativistic

compressible Euler equations

Recently, [11, 31] proved low-regularity results for the 3D non-relativistic compress-

ible Euler equations with the help of the geometric formulation in [24]. In [11],

Disconzi–Luo–Mazzone–Speck showed that if the “wave-part” of the data is ini-

tially in H2+, and the “transport-part” C,D are in C0,³, then the regularity of

the solutions can be preserved for short times. For barotropic flow, Wang proved a

similar result by removing the Hölder assumption for C,D and assuming the H2+

assumptions on the “transport-part” in [31]. For the relativistic Euler equations, we

prove a similar result as in [11] for the 3D compressible Euler equations. That is, we

allow any equation of state and we have the same level of regularity assumptions on

the initial data. Due to the geometric nature of the relativistic Euler flow, the vor-

ticity ω³ in this paper is a space-time v-orthogonal vectorfield (see Definition 2.3)

which solves a space-time transport-div-curl system. In the 3D non-relativistic com-

pressible Euler case, the geometry of vorticity is much simpler: it is a Σt-tangent

vectorfield and solves a div-curl system with constant coefficients on constant-time

slices.

In the relativistic Euler equations, vorticity and entropy gradient satisfy trans-

port equations in the v-direction. To control generic v-orthogonal (with respect

to Minkowski metric) derivatives of vorticity and entropy gradient, we rely on a

space-time div-curl system. Moreover, using the transport equations satisfied by

the modified fluid variables C,D, we can control these quantities not only along

constant-time slices, but also along null cones, which is fundamental in our work.

To derive sufficient regularity for vorticity, entropy gradient and modified fluid vari-

ables along constant-time slices, we rewrite the space-time div-curl system into a

spatial div-curl system with source terms that can be controlled only due to the spe-

cial structure of the equations. A crucial ingredient in our analysis is that the spatial

divergence equation has the form (G−1)ij∂i(ω�)j = · · · where G−1 := G−1(v) is the

inverse of a Riemannian metric on constant-time hypersurfaces (see Eq. (5.18c) for

the definition of G−1). Because the coefficient metric G of the divergence equation

is Riemannian, by using the technique of freezing the spatial points, we are able

to derive a localized div-curl system with constant-coefficient principle terms, such

that the Fourier transform of vorticity and entropy gradient is bounded in the fre-

quency space by the source terms of the div-curl system. This allows us to control

appropriate Hölder norms of ∂ω, ∂S in terms of the same Hölder norms of C,D,∂∂∂�Ψ.

The analysis relies on the Littlewood–Paley theory as well as the standard theorem

in pseudodifferential operators. We take a similar approach when deriving the ellip-

tic div-curl estimates in L2 space, where we need to control derivatives of vorticity

and the entropy gradient by ∂∂∂�Ψ, the modified fluid variables C and D. Finally, we
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use the transport equations (1.4a) and (1.4b) and initial assumptions of C,D to

bound the Hölder norm of C,D by ∂ω, ∂S to close the estimates for ∂ω, ∂S.

1.5. Main idea of the proof of Theorem 1.1

Theorem 1.1 provides a priori estimates for smooth solutions, which is needed for a

full proof of local well-posedness. The remaining aspects of a full proof of local well-

posedness could be shown by deriving uniform estimates for sequences of smooth

solutions and their differences. We refer readers to [23, Secs. 2 and 3] for the proof

of local well-posedness based on a priori estimates.

In this section, we present the logic of proofs in this paper, that is, the bootstrap

argument. The colored steps involve new ingredients, where we need to do analysis

based on the special structure of the relativistic Euler equations (see Secs. 1.5.1

and 1.5.3 for a discussion of these steps). The uncolored steps are introduced in

the previous low-regularity problem works (see Secs. 1.5.4–1.5.7 for a discussion of

these steps). We emphasized that, with the estimates we derive in the colored steps,

the proofs of the uncolored steps are essentially the same as in [4, 5, 11, 16, 15, 23,

27, 30]. Hence in this work, we provide all of the details for the colored steps, and

give terse sketches for the uncolored steps with the appropriate citations.

1.5.1. Overview of elliptic and energy estimates

In this section, we provide an overview of how energy estimates work and are related

to the bootstrap assumptions (1.15a) and (1.15b). We provide representative energy
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estimates for wave variables, vorticity and entropy gradient by using the basic energy

estimates (see Sec. 5.1.1) and L2 elliptic estimates (see Sec. 5.1.2). Then we leave

the discussion of the key assumptions to future sections and detailed estimates in

Sec. 5.1.

We first consider the energy estimates for the “wave-part”. Given any 2 < N <

5/2, 0 < t f T∗ where 0 < T∗ � 1 denotes the bootstrap time. By the vectorfield

multiplier method and Littlewood–Paley calculus applied to Eq. (1.2), we derive

the following energy estimates for the “wave-part”:

‖∂∂∂�Ψ‖2
HN−1(Σt)

� ‖∂∂∂�Ψ‖2
HN−1(Σ0) +

∫ t

0

(‖∂∂∂�Ψ‖L∞
x (Στ ) + 1)‖∂∂∂�Ψ, �C,D‖2

HN−1(Στ )dτ,

(1.9)

which is an analogue of (1.8). We will provide a detailed expression and its proof

in Sec. 5.1.3.

To control �C,D on the right-hand side of (1.9), we then consider the energy

estimates for the “transport-part”. We first need an important L2 elliptic div-curl

estimate

‖(∂�ω, ∂�S)‖L2
x(Σt) � ‖∂∂∂�Ψ, �C,D‖L2

x(Σt). (1.10)

We note that the proof of (1.10) requires a rewriting div-curl system (5.17a) and

(5.17b) for vorticity and entropy gradient, where one has to exploit the structure

of the relativistic Euler equations. By splitting the space-time div-curl systems into

time and spatial directions of derivatives, taking the advantage of the transport

equations (1.3a) and (1.3b) for ω and S, we write time derivative of vorticity and

entropy gradient components as a combination of spatial derivatives of ω and S.

We obtain a new spatial div-curl system of the form

(G−1)ab∂a((ω�), S)b = F, (1.11a)

∂a((ω�), S)b − ∂b((ω�), S)a = Hab, (1.11b)

where G−1 = G−1(v) is Riemannian, F = D + l.o.t. and H = C + l.o.t. (1.11) is a

PDE system on constant-time slices. Note that Eq. (1.11a) is a quasilinear diver-

gence equation while the analogue in [11] is a constant-coefficient equation. Then

by Littlewood–Paley estimates and a partition of unity argument, we prove (1.10)

in Proposition 5.8.

As in Proposition 5.8, by (1.10) and Littlewood–Paley calculus, we also have,

for 2 < N < 5/2

‖(∂�ω, ∂�S)‖HN−1(Σt) � ‖∂∂∂�Ψ, �C,D‖HN−1(Σt). (1.12)

By applying energy estimates and Littlewood–Paley calculus on evolution equa-

tions (1.4a) and (1.4b) for �C,D, we have the following energy estimate for �C,D:

‖�C,D‖2
HN−1(Σt)

� ‖�C,D‖2
HN−1(Σ0)

+

∫ t

0

(‖∂∂∂�Ψ,∂∂∂�ω,∂∂∂ �S‖L∞
x (Στ ) + 1)

×‖∂∂∂�Ψ,∂∂∂�ω,∂∂∂�S, �C,D‖2
HN−1(Στ )dτ. (1.13)
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By elliptic estimates (1.12), (1.13) and (1.9), we have

‖∂∂∂�ω,∂∂∂�S‖2
HN−1(Σt)

� ‖∂∂∂�Ψ, �C,D‖2
HN−1(Σt)

� ‖∂∂∂�Ψ, �C,D‖2
HN−1(Σ0) +

∫ t

0

(‖∂∂∂�Ψ,∂∂∂�ω,∂∂∂�S‖L∞
x (Στ ) + 1)

×‖∂∂∂�Ψ,∂∂∂�ω,∂∂∂�S, �C,D‖2
HN−1Στ

dτ. (1.14)

The results of energy estimates are obtained in Sec. 5.1.3.

From (1.9), (1.13), (1.14) and Grönwall’s inequality, we see that if ‖∂∂∂�Ψ,∂∂∂�ω,

∂∂∂�S‖L1
t L∞

x (M) is bounded (note that C � vort(ω) + l.o.t.,D � divS + l.o.t.), the

Sobolev regularity of the data can be propagated by the solution. This drives us to

setup a bootstrap argument with the bootstrap assumptions as introduced in the

next section.

1.5.2. Bootstrap assumptions

As we made it clear in the previous section, our argument crucially relies on the

boundness of the term ‖∂∂∂�Ψ,∂∂∂�ω,∂∂∂�S‖L1
tL∞

x (M). We prove the boundness of this via

a bootstrap argument that we now describe as follows.

Throughout the paper, 0 < T∗ � 1 denotes the bootstrap time. We assume that
�Ψ, �ω, �S is a smooth solution to the relativistic Euler equations. For δ0 > 0 defined

as in Sec. 3.4, we assume the following estimates hold:

‖∂∂∂�Ψ‖2
L2

t L∞
x ([0,T∗]×R3) +

∑

ν≥2

ν2·0‖Pν∂∂∂�Ψ‖2
L2

t L∞
x ([0,T∗]×R3) f 1, (1.15a)

‖∂�ω, ∂�S‖2
L2

t L∞
x ([0,T∗]×R3) +

∑

ν≥2

ν2·0‖Pν∂�ω, Pν∂�S‖2
L2

t L∞
x ([0,T∗]×R3) f 1, (1.15b)

where Pν is the Littlewood–Paley projection (see Sec. 3.2 for definition). The

Littlewood–Paley terms in the assumptions are needed for establishing the dyadic

Strichartz estimate in order to improve the bootstrap assumptions.

In the classical local well-posedness problem of the relativistic Euler equa-

tions, the regularity assumptions are (h, v, s) ∈ H(5/2)+(Σ0). This gives the

∂∂∂�Ψ ∈ H(3/2)+(Σ0). One can recover the boundness assumption ‖∂∂∂�Ψ‖L∞
x (Σt) by

standard energy estimates and Sobolev embedding H3/2+ ↪→ L∞ at any constant-

time hypersurface Σt. The lack of Sobolev embedding in the low-regularity level

forces one to find a new machinery to improve the reasonable bootstrap assump-

tions (see Sec. 1.1 for introduction of previous results). Recovering the bootstrap

assumptions occupies a large part of this paper.

1.5.3. Transport-schauder estimates for the transport-div-curl system

In this section, we explain how to improve the bootstrap assumption

(1.15b). In particular, by applying Hölder’s inequality in time, this will show
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‖∂∂∂�ω,∂∂∂�S‖L1
t L∞

x ([0,T∗]×R3) is small. This improvement is conditional on (1.19), which

we explain how to derive in Sec. 1.5.4.

Because of the lack of tools in Hodge estimates in L∞ space, we have assumed

a slight bit of extra regularity for the “transport-part”. That is, we propagate the

Hölder boundness of “transport-part” with given initial data ‖�C,D‖C0,α
x (Σ0) f D

where 0 < α < 1 and D ∈ R. Besides using the transport equations (1.3a) and

(1.3b) which exhibit source terms with surprisingly good structures, we also rely on

the following Schauder-type estimate:

‖∂�ω, ∂�S‖C0,α
x (Σt)

� ‖∂∂∂�Ψ, �C,D‖C0,α
x (Σt)

. (1.16)

In order to control C,D on the right-hand side of (1.16), we use the transport

equations (1.4a) and (1.4b) of C and D, which are coupled to ∂ω, ∂S (see Eqs.

(1.4a) and (1.4b)). By combining the two, under bootstrap assumptions (1.15a), we

can apply Grönwall’s inequality to bound the vorticity and entropy gradient of the

relativistic Euler flow. We will discuss this approach in more details below.

To derive Schauder estimates, we split the derivative of the vorticity ω and

entropy gradient S (see Definitions 2.3 and 2.6 for the definition of ω and S) into v-

tangent direction and the Σt-tangent directions (v is transversal to Σt with respect

to Minkowski metric). Now we highlight the following two features in our analysis:

• The v-tangent direction derivatives of vorticity and entropy gradient are favorable

because of the transport phenomena. That is, by using transport equations (1.3a)

and (1.3b), we are able to obtain the Hölder bound for v-tangent direction of

vorticity and entropy gradient by using bootstrap assumptions.

• To control the Σt-tangent directional derivatives of vorticity and entropy gradient,

we rely on a space-time transport-div-curl system for ω and S. We note that it

is qualitatively distinct from the case in [11] for 3D non-relativistic compressible

Euler equations where the div-curl equations are spatial with constant coefficients.

We now explain how we derive Schauder estimates (1.16). We use the same div-

curl system (1.11a) and (1.11b) as in the L2 elliptic estimates. By partition of

unity, Fourier transform, Littlewood–Paley theory and properties of pseudodiffer-

ential operators, we are able to bound ‖∂∂∂�ω,∂∂∂�S‖C0,α
x (Σt)

by ‖∂∂∂�Ψ, �C,D‖C0,α
x (Σt)

as in

(1.16), see Lemma 5.20 for the detailed proof. Then we bound ‖�C,D‖C0,α
x (Σt)

by

applying transport equations (1.4a) and (1.4b) as follows:

‖�C,D‖
C

0,δ1
x (Σt)

� 1 +

∫ t

0

(‖∂∂∂�Ψ‖
C

0,δ1
x (Στ )

+ 1)‖∂∂∂�Ψ,∂∂∂�ω,∂∂∂�S‖
C

0,δ1
x (Στ )

dτ. (1.17)

Finally, combining (1.16) and (1.17), we use Grönwall’s inequality and bootstrap

assumptions to close the transport-Schauder-type estimates

‖∂∂∂�ω,∂∂∂�S‖C0,α
x (Σt)

� ‖∂∂∂�Ψ‖C0,α
x (Σt)

. (1.18)
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We emphasize that later in the argument, we will integrate (1.18) in time and

combine it with the improved Strichartz estimate (1.19) (which is obtained indepen-

dently of (1.18)). These lead to a strict improvement of the bootstrap assumptions

(1.15b). We provide full details of the Schauder estimates in Sec. 5.

1.5.4. Reductions of the Strichartz-type estimates

Our argument above crucially relies on bounding ‖∂∂∂�Ψ‖L1
tL∞

x (M). In this section, we

explain how we derive strict improvements of bootstrap assumptions (1.15a), that

is, we describe how to derive Strichartz estimates (1.19). By taking the advantage

of the smallness of bootstrap time interval [0, T∗], we will improve our bootstrap

assumptions to the following Strichartz estimates:

‖∂∂∂�Ψ‖2
L2

tL∞
x ([0,T∗]×R3) +

∑

ν≥2

ν2·1‖Pν∂∂∂�Ψ‖2
L2

t L∞
x ([0,T∗]×R3) � T 2·

∗ , (1.19)

where δ > 0 is sufficiently small as in Sec. 3.4 and 8δ0 < δ1 < N − 2, where δ0 is

from the bootstrap assumptions (1.15a) and (1.15b). Note that if T∗ is small, (1.19)

is a strict improvement of (1.15a). We reduce the proof of (1.19) to the proof of

estimates on the acoustic geometry by adopting the geometric approach of [30]. This

reduction is done through the following steps: Improvement of bootstrap assump-

tions ← Strichartz estimates ← Decay estimates ← Conformal energy estimates

← Controlling of the acoustic geometry, where the left arrow indicates that the

latter estimate implies the former. We remind readers of the logic diagram at the

beginning of Sec. 1.5.

• Reduction to dyadic Strichartz estimates. The first step in the proof of (1.19) is

to reduce Strichartz estimates to a dyadic Strichartz estimate. Specifically, for a

fixed large frequency λ, we partition [0, T∗] into disjoint union of sub-intervals

Ik := [tk−1, tk] of total number � λ8¸0 with |Ik| � λ−8¸0 (see Sec. 3.4 for the

definition of ε0). By Littlewood–Paley decomposition and Duhamel principle, the

proof of (1.19) can be reduced to a dyadic Strichartz estimate

‖Pλ∂∂∂ϕ‖Lq
t L∞

x ([τ,tk+1]×R3) � λ
3
2−

1
q ‖∂∂∂ϕ‖L2

x(Στ ), (1.20)

where ϕ is a solution of geometric equation

�gϕ = 0, (1.21)

on the time interval Ik. In (1.20), q > 2 is any real number which is sufficiently

close to 2 and τ ∈ [tk, tk+1]. Here, we focus on large frequencies since control of

small frequency is easier due to Bernstein inequalities.

• Reduction to decay estimates. For a large frequency λ, by rescaling the coordinates

(see Sec. 6.2 for the rescaling) and using an abstract T T ∗ argument, we can

reduce the dyadic Strichartz estimates (1.20) to L2 −L∞ decay estimates at any
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t ∈ [0, T∗;(λ)] where T∗;(λ) is the rescaled bootstrap time (see Sec. 6.2 for the

definition of T∗;(λ))

‖P1Tϕ‖L∞
x (Σt) �

(
1

(1 + |t − 1|) 2
q

+ d(t)

)
(‖∂∂∂ϕ‖L2

x(Σ1) + ‖ϕ‖L2
x(Σ1)), (1.22)

where the timelike vectorfield T is g-unit normal to Σt (that is defined in Def-

inition 2.11) and ϕ is an arbitrary solution to the equation �gϕ = 0 on the

time interval [0, T∗;(λ)]×R3 with ϕ(1, x) supported in the Euclidean ball BR (see

Theorem 6.9 for detailed definition of R). Moreover, the function d(t) satisfies

‖d‖
L

q
2
t ([0,T∗;(λ)])

� 1, (1.23)

for q > 2 sufficiently close to 2.

• Reduction to conformal energy estimates. By product estimates and Littlewood–

Paley theory, we reduce the proof of (1.22) to a proof of the following estimates

for the conformal energy C[ϕ](t) (see Sec. 7.5 for the definition of the conformal

energy C[ϕ](t)) at time t ∈ [1, T∗;(λ)]

C[ϕ](t) �¸ (1 + t)2¸(‖∂∂∂ϕ‖2
L2

x(Σ1)
+ ‖ϕ‖2

L2
x(Σ1)

), (1.24)

where ϕ is an arbitrary solution to the equation �gϕ = 0 on [0, T∗;(λ)]×R3 with

ϕ(1) supported in BR ⊂ M(Int) ∩ Σ1 (see Sec. 7.1 for the definition of M(Int))

where ε > 0 is an arbitrary small number.

We emphasize that both the reduction of (1.22)–(1.24) and the very definition

of C[ϕ] require the acoustic geometry, where its sharp control is needed for deriving

(1.24). We describe how to obtain such control in Secs. 1.5.5–1.5.7. We provide an

overview of the structure over the reductions in Sec. 4 and more detailed discussions

in Sec. 6.

1.5.5. Structures for the causal geometry of the acoustic space-time

In order to reduce the decay estimates to conformal energy estimates (see Secs. 1.5.6

and 4.4 for introduction and Sec. 7.3 for details), one needs sharp information about

the acoustic geometry. In this section, we discuss the geometric framework that is

crucial for our analysis. This part of the result is well known and standard (see

Sec. 1.1 for the introduction of the previous results). The central object of our

geometric framework is the acoustical function u, which is defined as a solution of

the acoustical eikonal equation (g−1)³´∂³u∂´u = 0, where g−1 is the inverse of the

normalized acoustical metric. We denote the level sets of u by Cu, which are forward

truncated null cones (defined in Sec. 7.1).

We construct a null frame, which consists of a null pair L, L and two spherical

vectorfields {eA}A=1,2 (see Sec. 7.2 for detailed definitions). We derive transport

and Hodge-type equations for the Ricci coefficients. An important example is the
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Raychaudhuri equation (see Sec. 8 for definitions of connection coefficients and

PDEs verified by geometric quantities)

Ltrg/χ +
1

2
(trg/χ)2 = −|χ̂|2g/ − kNN trg/χ − RicLL. (1.25)

With the help of a remarkable decomposition of the Ricci curvature tensor

Ric³´ = −1

2
�gg³´(�Ψ) +

1

2
(D³ΓΓΓ´ + D´ΓΓΓ³) + Q(�Ψ)[∂∂∂�Ψ,∂∂∂�Ψ], (1.26)

and the Bianchi identities, where we can substitute �gg³´(�Ψ) in (1.26) by using

relativistic Euler equations (1.2), we are able to obtain some estimates for the Ricci

coefficients, which we will utilize in the following sections. We emphasize that it

is important to have exactly C,D on the right-hand side of (1.2). C,D satisfies the

transport equations (1.4a) and (1.4b), which allows us to derive estimates along

constant-time slices and null hypersurfaces (in Sec. 1.5.1) and control the acoustic

geometry.

The advantage of using the acoustic geometry in this low-regularity setting is

that it reveals the dispersive properties of solutions to the wave equations. That is,

for a solution φ of wave equation �gφ = 0, the derivatives which are tangent to

the characteristic null cones Cu have better decay than the transversal derivatives

parallel to the L direction. We have to control some geometric quantities for several

reasons:

• The acoustic geometry that we setup must be well defined. In particular, we have

to rule out short-time shock formation due to the intersection of distinct null

cones.

• To bound a suitably constructed weighted energy in order to derive decay esti-

mates, a multiplier vectorfield method needs to be introduced. The multipliers

we use are related to L and Σt-tangent sphere normal vector N . Since L and

N depend on the wave variables (h, s, v), the acoustical eikonal function u and

their first derivatives, to control the weighted energy, one needs to control relative

derivatives of the above quantities.

1.5.6. Control of the conformal energy

A crucial part in the reduction of Strichartz estimates is to derive the decay esti-

mates. As we discussed in Sec. 1.5.4, we use the conformal energy method that was

introduced by Wang in [30]. We need to consider both of equation �gϕ = 0 and

the conformal wave equation �g̃(e−σϕ) = · · · (see Definition 8.5 for the definition

of σ and g̃) to control various terms via the energy method. We are interested in

such equations because we have reduced the Strichartz estimates for solution ϕ of

geometric equation �gϕ = 0 (see Sec. 1.5.4 for the reduction).

Since the metric g̃ is only smoother along null hypersurfaces, we have to first use

the original wave equation and choose X = fN (see Sec. 7.6 for the definition of f

and Sec. 7.2 for sphere normal vector N) as the multiplier. By using the divergence
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theorem for a modified current on an appropriate region, we get a Morawetz-type

energy estimate where we obtain a uniform bound for the standard energy of ϕ

along a union of a portion of the constant-time hypersurfaces and null cones.

Then we consider the conformal wave equation. We use the multiplier approach

with r̃pL-type vectorfields in the region {τ1 f u f τ2} ∩ {r̃ g R} where 1 f τ1 <

τ2 < T∗;(λ) to control the conformal energy in the exterior region and to provide

energy decay for each null slice. Finally, we control the conformal energy in the

interior region with the help of the argument in [10] by obtaining energy decay in

each spatial-null slice.

The very definition of the conformal energy, as well as its analysis, requires del-

icate and precise control of the acoustic geometry. We state the boundness theorem

of conformal energy in Theorem 7.6. By using our estimates on the Ricci coeffi-

cients, one could follow the steps listed in [11, Sec. 11] to prove Theorem 7.6. One

could go through the details of the argument in [30, Sec. 7]. Also readers could

look into [15, Sec. 3] for initial ideas. We omit these details because the exact same

arguments hold in our case.

1.5.7. Control of the acoustic geometry

To control the conformal energy, we need to control the acoustic geometry.

Klainerman–Rodnianski [16] and Wang [30] developed an approach of controlling

the geometric quantities in the low-regularity setting. In this paper, we control the

acoustic geometry by following the approach in Wang [30].

First, we provide the PDEs verified by the geometric quantities in [16, Sec. 2].

We write down the geometric transport equations and div-curl system for the con-

nection coefficients. These equations depend on our geometric formalism and are

independent of the relativistic Euler equations. Second, we use the estimates for cer-

tain Ricci and Riemann curvature tensor components by using the decomposition

of the Ricci curvature (1.26) in [16, Lemma 2.1] and the Bianchi identities. It is at

this step that the structure of the relativistic Euler equations is used. Specifically,

we can substitute �gg³´(�Ψ) in (1.26) by using relativistic Euler equations (1.2).

C,D on the right-hand side of (1.2) satisfies the transport-div-curl system, which

allows us to derive elliptic estimates and control the acoustic geometry.

Then by combining the geometric transport equations and the aforementioned

Ricci and Riemann curvature tensor components estimates, one can derive and

analyze the equations for many acoustic variables. These include the important mass

aspect function μ and the conformal factor σ, which introduce the rough geometry.

Finally, we derive mixed space-time norm estimates for all the quantities, which

are needed in the conformal energy estimates. We omit the details of the proof of

controlling the geometry since the argument follows the same as in [11, Sec. 10].

In the following few paragraphs, we show why the standard Morawetz energy

estimates are insufficient. The deformation tensor (K)πππ := LKg is present in the

standard Morawetz-type energy estimates, where K := 1
2

(
u2L + (2t − u)2L

)
and
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L is the Lie derivative. (K)πππ can be expressed by the connection coefficients of the

null frame. We need to control them with the help of the transport and Hodge-type

equations for geometric quantities.

After integrating by parts to obtain the Morawetz-type energy identity, one

needs to control various derivatives of (K)πππ. In particular, ∇/ trg/χ, which is the

angular derivative of the expansion scalar, as well as the mass aspect function

μ := Ltrg/χ + 1
2 trg/χtrg/χ (see Definition 8.4 for the definition of these geometric

quantities). In order to control ∇/ trg/χ, we rely on the Raychaudhuri equation (1.25)

commuted with ∇/ . To control the Ricci term in (1.25), we use (1.26) contracted

with L³L´ . After commuting with ∇/ , we have to control the error term L(∇/ΓΓΓL).

It ∇/ trg/χ and ∇/ΓΓΓL separately. Therefore, standard Morawetz energy estimates are

insufficient in our case.

Therefore, to control all terms at a consistent level of regularity, we use the

approach of Wang [30], which relies on renormalized quantities and a metric that

is conformal to the acoustical metric, where the conformal factor is carefully con-

structed so that the null expansion scalar associated to the conformal metric trg̃/χ̃

is precisely trg/χ + ΓΓΓL. We are able to obtain the regularity theory of trg/χ + ΓΓΓL,

while it seems impossible to treat them independently.

The conformal wave equation attempts to resolve the issues described above,

but introduces the difficult conformal factor σ. Thus, in order to obtain sufficient

regularity for the conformal factor σ, we must in fact control the modified mass

aspect function μ̌

μ̌ := 2∆/σ + μ − trg/χkNN +
1

2
trg/χΓΓΓL, (1.27)

as well as the modified torsion ∇/ σ + ·. These quantities satisfy favorable transport

and div-curl systems, i.e. the source terms have sufficient regularity, moreover, they

have good decay properties. We stress that this analysis relies on obtaining care-

ful control over the top derivatives of the specific vorticity and entropy gradient,

since the modified fluid variables C,D enter as source terms in various geometric

equations, such as the Raychaudhuri equation.

1.6. Paper Outline

The structure of this paper will follow the non-relativistic 3D compressible Euler in

[11]. The logical graph of this paper is in Sec. 1.5.

• In Sec. 2, we first state the notations that we are going to use throughout the

paper. Then we define the fluid variables and tensorfields, including the acousti-

cal metric. We also introduce the geometric formulation of the relativistic Euler

equations.

• In Sec. 3, we define the Littlewood–Paley projections, which are frequently used

in our analysis. We provide the frequency-projected versions of the evolution
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equations (i.e. the relativistic Euler equations) in Lemma 3.3. We state the main

theorem and the bootstrap assumptions in Theorem 3.4 and Sec. 3.6.

• In Sec. 4, we discuss the structure of the proofs which we will follow in the rest

of the paper.

• In Sec. 5, we use the bootstrap assumptions to derive the energy, L2 elliptic and

Schauder estimates for the fluid variables along constant-time hypersurfaces. Note

that Schauder estimates will improve the bootstrap assumption (3.17c) in Sec. 3.6

after the bootstrap assumption (3.17b) is improved by Strichartz estimates.

• In Sec. 6, following the approach of Tataru [27] and Wang [30], we rescale the

fluid solution and reduce the proof of the Strichartz estimates to the proof of a

spatially localized decay estimate. The reduction is essentially the same as one

used by Wang [30], which we refer to for various details.

• In Sec. 7, we implement nonlinear geometric optics by constructing an acoustical

function u and setting up its geometry, including constructing an appropriate null

frame. Finally, we define the conformal energy and state the boundness theorem

of the conformal energy in Theorem 7.6, which plays a crucial role in deriving the

decay estimates that were stated in Theorem 6.9.

• In Sec. 8, we prove the energy estimates for the fluid variables along the acous-

tical null hypersurfaces in Sec. 8.1. We define additional geometric quantities,

including the connection coefficients of the null frame, conformal factors, mass

aspect functions and curvature tensor components. Then we restate the estimates

from [30] that yield control over geometry along the initial data hypersurface. We

state the bootstrap assumptions satisfied by the rescaled fluid variables as well as

the bootstrap assumptions for geometric quantities in Sec. 8.4.2. Then we state

the main estimates for the geometric quantities in Proposition 8.10, followed by

a discussion of its proof in Sec. 8.4.4.

2. The Relativistic Euler Equations and Its Geometric

Formulation

In this section, we provide the standard first-order relativistic Euler equations and

its geometric formulation. The latter will be used throughout our analysis.

2.1. Notations

Greek “space-time” indices take on the values 0, 1, 2, 3, while Latin “spatial” indices

take on the values 1, 2, 3. In this paper, for Greek and Latin indices, for any

vectorfield or one-form V , we lower and raise indices with the Minkowski metric

M³´ := diag(−1, 1, 1, 1) and its inverse by using the notation (V�)´ := M³´V ³

and (V 	)´ := (M−1)³´V³. Similar notations apply to all tensorfields. Moreover,

ε³´γ· denotes the fully antisymmetric symbol normalized by ε0123 = 1. Note that

(ε	)0123 = −1. We use Einstein summation throughout the paper.

We denote Σt := {(t′, x1, x2, x3) ∈ R1+3|t′ ≡ t} as the standard constant-time

slice.
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We denote the spatial partial derivatives by ∂ and the space-time partial deriva-

tives by ∂∂∂.

Remark 2.1. Since M³´ := diag(−1, 1, 1, 1), for any vectorfield or one-form V , we

have the identities ∂∂∂(V�)a = ∂∂∂(V 	)a and ∂∂∂(V�)0 = −∂∂∂(V 	)0.

2.2. Definitions of the fluid variables and related quantities

2.2.1. The basic fluid variables

The fluid velocity v³ is a future-directed four-vector and normalized by (v�)³v³ =

−1. p denotes the pressure, � denotes the proper energy density, n denotes the proper

number density, s denotes the entropy per particle, θ denotes the temperature and

H = (� + p)/n, (2.1)

is the enthalpy per particle. Thermodynamics supplies the following laws:

H =
∂�

∂n

∣∣∣∣
s

, θ =
1

n

∂�

∂s

∣∣∣∣
n

, dH =
dp

n
+ θds, (2.2)

where ∂
∂n |s denotes partial differentiation with respect to n at fixed s and ∂

∂s |n
denotes partial differentiation with respect to s at fixed n.

2.2.2. v-orthogonal vorticity

Definition 2.2 (The v-orthogonal vorticity of a one-form). Given a space-

time one-form V , we define the corresponding v-orthogonal (with respect to

Minkowski metric) vorticity vectorfield as follows:

vort³(V ) := −(ε	)³´γ·(v�)´∂γV·. (2.3)

Definition 2.3 (The v-orthogonal vorticity vectorfield). We define the vor-

ticity vectorfield ω³ as follows:

ω³ := vort³(Hv) = −(ε	)³´γ·(v�)´∂γ(H(v�)·). (2.4)

2.2.3. Auxiliary fluid variables

Definition 2.4 (Logarithmic enthalpy). Let H > 0 be a fixed constant value

of the background enthalpy. We define the logarithmic enthalpy h as follows:

h := ln(H/H). (2.5)

Definition 2.5 (Temperature over enthalpy). We define the quantity q as

follows:

q :=
θ

H
. (2.6)

Definition 2.6 (Entropy gradient one-form). We define the entropy gradient

one-form S³ as follows:

S³ := ∂³s. (2.7)
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2.2.4. Equation of state and speed of sound

Definition 2.7 (Partial derivatives with respect to h and s). If Q is a

quantity that can be expressed as a function of (h, s), then

Q;h = Q;h(h, s) :=
∂Q

∂h

∣∣∣∣
s

, (2.8)

Q;s = Q;s(h, s) :=
∂Q

∂s

∣∣∣∣
h

. (2.9)

We assume an equation of state of the form p = p(�, s). The speed of sound c is

defined as follows:

c :=

√
∂p

∂�

∣∣∣∣
s

. (2.10)

In the rest of the paper, we view the speed of sound be a function of h and s:

c = c(h, s).

We restrict to the physically relevant regime where the speed of sound does not

exceed the speed of light

0 < c f 1. (2.11)

2.3. Standard first-order equations

Considering s, h and {v³}³=0,1,2,3 to be the fundamental unknowns, as in [12,

Sec. 3], the relativistic Euler equations take the form of a quasilinear hyperbolic

system

vκ∂κh + c2∂κvκ = 0, (2.12a)

vκ∂κ(v�)³ + ∂³h + (v�)³vκ∂κh − q∂³s = 0, (2.12b)

vκ∂κs = 0. (2.12c)

2.4. Modified fluid variables and the geometric wave–transport

formulation

In this section we define several variables followed by the new formulation of rela-

tivistic Euler equations.

Definition 2.8 ([12, Definition 2.8, Modified fluid variables]). We define

the modified fluid variables as follows:

C³ := vort³(ω�) + c−2ε³´γ·(v�)´(∂γh)(ω�)· + (θ − θ;h)(S	)³(∂κvκ)

+ (θ − θ;h)v³{(S	)κ∂κh} − (θ − θ;h)(S	)κ{(M−1)³λ∂λ(v�)κ}, (2.13)

D :=
1

n
{∂κ(S	)κ} +

1

n
{(S	)κ∂κh} − 1

n
c−2{(S	)κ∂κh}. (2.14)
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Definition 2.9 (Acoustical metric and its inverse). Let M be the Minkowski

as defined in Sec. 2.1, we define the acoustical metric gAcouαβ
and its inverse

(g−1
Acou)³´ as followsf :

gAcouαβ
:= c−2M³´ + (c−2 − 1)(v�)³(v�)´ , (2.15a)

(g−1
Acou)³´ := c2(M−1)³´ + (c2 − 1)v³v´ . (2.15b)

Definition 2.10 (Adjusted acoustical metric and its inverse). We define the

adjusted acoustical metric g³´ = g³´(�Ψ) and its inverse (g−1)³´ = (g−1)³´(�Ψ) as

followsg:

g³´ = gAcouαβ
(−g00

Acou)

= {c−2M³´ + (c−2 − 1)(v�)³(v�)´}{c2 − (c2 − 1)(v0)2}, (2.16a)

(g−1)³´ =
g³´

Acou

−g00
Acou

=
c2M³´ + (c2 − 1)v³v´

c2 − (c2 − 1)(v0)2
. (2.16b)

We emphasize that (g−1)00 = −1. This helps us to simplify some of our formulas.

Our bootstrap assumption will be so that 0 < c f 1, so (g−1
Acou)00 < 0.

We lower and raise indices with the acoustic metric g and its inverse by using

the notation V´ = g³´V ³ and V ´ = (g−1)³´V³. Note the difference between with

raising and lowering indices with g versus M , see Sec. 2.1.

Definition 2.11. We define the future-directed g-timelike vectorfield

T³ := −g³0. (2.17)

We note that g(T,T) = −1. We note that T³ = −δ0
³ where δ0

³ is the Kronecker

delta.

Definition 2.12. In Cartesian coordinates, the induced metric g and its inverse

on constant-time hypersurface Σt from g are as follows:

gab := gab + TaTb, (2.18a)

(
g−1
)ab

:= gab + TaTb. (2.18b)

By (2.16) and (2.17), one can compute that gab(g
−1)bc = δc

a. We note that g can be

also viewed as a space-time tensor, that is

g³´ := g³´ + T³T´ , (2.19a)

(g−1)³´ := g³´ + T³T´ . (2.19b)

Note that by (2.17) and (g−1)00 = −1, Π·
³ := g´·g³´ can be viewed as g-orthogonal

projection operator from whole space-time onto Σt.

fFor convenience, we write g
αβ

Acou instead of (g−1
Acou)αβ in this paper.

gFor convenience, we write gαβ instead of (g−1)αβ in this paper.
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Proposition 2.13. The metric g and its inverse g−1 have the following spatial

components relative to rectangular coordinates :

(g−1)ab = {c2 − (c2 − 1)(v0)2}−2{c2δab[c2 − (c2 − 1)(v0)2] + c2(c2 − 1)vavb},
(2.20a)

gab = {c−2δab + (c−2 − 1)(v�)a(v�)b}{c2 − (c2 − 1)(v0)2}. (2.20b)

Using (2.16b), (2.17) and (2.18b), (2.20a) is obtained by direct computation. (2.20b)

is obtained by the fact that Ta = 0 for a = 1, 2, 3.

Definition 2.14 (Differential operators defined by g). D denotes the Levi-

Civita connection of g and �g := g³´D³D´ denotes the corresponding covari-

ant wave operator. In Cartesian coordinates, for scalar function ϕ, �gϕ =
1√
|g|

∂³(
√
|g|g³´∂´ϕ), where |g| is the determinant of g.

Definition 2.15 (Arrays of variables). For convenience in presenting the for-

mulations and analysis, we define the following arrays of solution variables:

�v := (v0, v1, v2, v3), �ω := (ω0, ω1, ω2, ω3), (2.21a)

�S := ((S	)0, (S	)1, (S	)2, (S	)3), �C := (C0, C1, C2, C3). (2.21b)

We also define the array �Ψ of wave variables, as follows:

�Ψ := (v0, v1, v2, v3, h, s). (2.22)

Definition 2.16 (Material derivative). We define the material derivativeh B =

B(�Ψ) as follows:

B :=
v³

v0
∂³. (2.23)

2.4.1. The geometric wave–transport formulation of the relativistic Euler

equations

We use the following schematic notations throughout the paper where A, B, C are

arrays of variables:

• L [A](B) denotes any scalar-valued function that is linear in the components of

B with coefficients that are a function of the components of A.

• Q[A](B, C) denotes any scalar-valued function that is quadratic in the compo-

nents of B and C with coefficients that are a function of the components of A.

Proposition 2.17 ([12, (3.1)–(3.12b), The geometric wave–transport for-

mulation of the relativistic Euler equations]). If Ψ ∈ {v0, v1, v2, v3, h, s}
solves the relativistic Euler equations (2.12), then Ψ, ω, S, C,D also satisfy the

hWe note that in [11], B = ∂t + vi∂i.
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following:

Wave equations:

�gAcouΨ = L (�Ψ)[�C,D] + Q(�Ψ)[∂∂∂�Ψ,∂∂∂�Ψ]. (2.24)

Transport equations :

Bω³ = L (�Ψ, �ω, �S)[∂∂∂�Ψ], (2.25a)

B(S	)³ = L (�Ψ, �S)[∂∂∂�Ψ]. (2.25b)

Transport-Div-Curl system:

BC³ = F(Cα) := Q(�Ψ)[∂∂∂�Ψ, (∂∂∂ω,∂∂∂�S,∂∂∂�Ψ)]

+ Q(�S)[∂∂∂�Ψ,∂∂∂�Ψ] + L (�Ψ, �ω, �S)[∂∂∂�Ψ,∂∂∂�S], (2.26a)

BD = F(D) := L (�Ψ, �S)[∂∂∂ω] + Q(�Ψ)[∂∂∂�Ψ, (∂∂∂ �S,∂∂∂�Ψ)]

+ Q(�S)[∂∂∂�Ψ,∂∂∂�Ψ)] + L (�Ψ, �ω, �S)[∂∂∂�Ψ], (2.26b)

vort³(S) = 0, (2.26c)

∂³ω³ = L (�ω)[∂∂∂�Ψ]. (2.26d)

Remark 2.18. The div-curl system (2.26) in the geometric formulation of the

relativistic Euler equations is a space-time div-curl system. This feature causes dif-

ficulties as we want to derive estimates for vorticity and entropy gradient along

the constant-time hypersurface Σt. To solve this issue, we rewrite the div-curl sys-

tem into a dynamic spatial system along constant-time slices and apply theory in

Littlewood–Paley decomposition as well as pseudodifferential operators in Sec. 5.

These difficulties are not present in the non-relativistic 3D compressible Euler equa-

tions because the analogue of (2.26c) and (2.26d) is already a spatial div-curl system.

We now provide some useful identities, which we are going to use throughout

the rest of the paper.

Lemma 2.19 (Identities involving vorticity and entropy gradient). We list

some useful identities in [12, Sec. 4] as follows :

ωκ(v�)κ = 0, (2.27a)

vκ∂³(ω�)κ = −ωκ∂³(v�)κ, (2.27b)

vκ∂³Sκ = −(S	)κ∂³(v�)κ, (2.27c)

∂γ(ω�)· − ∂·(ω�)γ = εγ·κλvκvortλ(ω) − (vκ∂κ(ω�)·)(v�)γ + vκ(∂·(ω�)κ)(v�)γ

+ (vκ∂κ(ω�)γ)(v�)· − vκ(∂·(ω�)κ)(v�)·, (2.27d)

∂γS· − ∂·Sγ = εγ·κλvκvortλ(S) − (vκ∂κS·)(v�)γ

+ vκ(∂·Sκ)(v�)γ + (vκ∂κSγ)(v�)· − vκ(∂·Sκ)(v�)·. (2.27e)
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Discussion of the proof. (2.27a) follows from Definition 2.3. (2.27b) follows from

taking ∂³ derivative of (2.27a). (2.27c) follows from taking ∂³ derivative of (2.12c).

To prove (2.27d) and (2.27e), we use Definition 2.3 to express vortλ(V ) for

V = ω� and V = S, respectively. Then using the fact that

− ε³´γ·ε
·θκλ = δθ

³δκ
γ δλ

´ − δθ
³δλ

γ δκ
´ + δλ

³δθ
γδκ

´ − δλ
³δκ

γ δθ
´ + δκ

³δλ
γ δθ

´ − δκ
³δθ

γδλ
´ , (2.28)

we rearrange the terms and obtain (2.27d) and (2.27e).

We refer readers to [12, Lemma 4.1] for detailed proofs.

In the following proposition, we provide the geometric wave equation with

respect to the rescaled acoustical metric g, which is more convenient for us to

derive energy estimates and construct geometry. We will use this equation in the

rest of the paper.

Proposition 2.20 (Wave equations after rescaling the acoustical metric).

Let g be as defined in Definition 2.10. If Ψ ∈ {v0, v1, v2, v3, h, s} solves the rela-

tivistic Euler equations (2.12), we have the following equation holds :

�gΨ = F(Ψ) := L (�Ψ)[�C,D] + Q(�Ψ)[∂∂∂�Ψ,∂∂∂�Ψ]. (2.29)

Proof of Proposition 2.20 using Proposition 2.17 given.

�gΨ =
1√
|g|

∂³(
√

|g|g³´∂´Ψ)

=
1√

|gAcou|
(−g00

Acou)−2∂³(
√
|gAcou|(−g00

Acou)g³´
Acou∂´Ψ)

=
1√

|gAcou|
(−g00

Acou)−1∂³(
√
|gAcou|g³´

Acou∂´Ψ)

+(−g00
Acou)

−2g³´
Acou∂³(g00

Acou)∂´Ψ

= (−g00
Acou)−1�gAcouΨ + Q(�Ψ)[∂∂∂�Ψ,∂∂∂�Ψ]. (2.30)

Note that g³´
Acou is smooth function of �Ψ and g00

Acou �= 0. Therefore by combining

(2.24) and (2.30), we obtain the desired equation.

3. Norms, Littlewood–Paley Projections, Statement of Main

Results and Bootstrap Assumptions

In this section, we define the norms, define the standard Littlewood–Paley projec-

tions that we use in the analysis, state our main results of the paper and bootstrap

assumptions.
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3.1. Norms

In this paper, for functions f, g on a normed space (X, ‖·‖X), we use the notation

‖f, g‖X := ‖f‖X + ‖g‖X . Similarly, for an array of functions �U = (U1, U2, . . . , Uk),

we have ‖�U‖X :=
∑k

a=1‖Ua‖X . In particular, we use |�U | :=

√∑k
i=1(U

i)2. For

functions f and arrays �g, we also use ‖f, g‖X := ‖f‖X + ‖�g‖X .

Since the volume form on the constant-time hypersurface Σt induced by

Minkowski metric M is dx1dx2dx3, and by identifying (t, x1, x2, x3) ∈ Σt with

(x1, x2, x3) ∈ R, we define the standard Sobolev norm on Σt for s ∈ R: ‖f‖Hs(Σt) :=

‖〈ξ〉sf̂(ξ)‖L2
x(Σt), where 〈ξ〉 := (1 + |ξ|2)1/2.

We denote the standard Hölder seminorm Ċ0,´
x and Hölder norm C0,´

x , where

0 < β < 1, of a function F with respect to flat metric on constant-time hypersurface

Σt by

‖F‖Ċ0,β
x (Σt)

:= sup
x �=y∈Σt

|F (x) − F (y)|
|x − y|´ , (3.1)

‖F‖C0,β
x (Σt)

:= sup
x∈Σt

|F (x)| + sup
x �=y∈Σt

|F (x) − F (y)|
|x − y|´ . (3.2)

We also use the following mixed norms for function F : R3 → R, where 1 f q1 <

∞, 1 f q2 f ∞ and I is an interval of time:

‖F‖L
q1
t L

q2
x (I×Σt)

:=

{∫

I

‖F‖q1

L
q2
x (Στ )

dτ

}1/q1

, (3.3a)

‖F‖L∞
t L

q2
x (I×Σt) := ess sup

τ∈I
‖F‖L

q2
x (Στ ), (3.3b)

‖F‖L
q1
t C0,β

x (I×Σt)
:=

{∫

I

‖F‖q1

C
0,q2
x (Στ )

dτ

}1/q1

, (3.3c)

‖F‖
L∞

t C
0,q2
x (I×Σt)

:= ess sup
τ∈I

‖F‖
C

0,q2
x (Στ )

. (3.3d)

If {Fλ}λ∈2N is a dyadic-indexed sequence of functions on Σt, we define

‖Fν‖l2
ν

L2
x(Σt) :=

⎛
¿
∑

ν≥1

‖Fν‖2
L2

x(Σt)

À
⎠

1/2

. (3.4)

3.2. Littlewood–Paley projections

We fix a smooth function ψ = ψ(|ξ|) : R3 → [0, 1] supported on the frequency space

annulus {ξ ∈ R3|1/2 f |ξ| f 2} such that for ξ �= 0, we have
∑

k∈Z
ψ(2kξ) = 1.

For dyadic frequencies ν = 2k with k ∈ Z, we define the standard Littlewood–Paley
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projection Pν, which acts on scalar functions F : R → C, as follows:

PνF (x) :=

∫

R3

e2πix·ξψ(ν−1ξ)F̂ (ξ)dξ, (3.5)

where F̂ (ξ) :=
∫

R3 e−2πix·ξF (x)dx is the Fourier transform of F . If I ⊂ 2Z is an

interval of dyadic frequencies, then PIF :=
∑

ν∈I PνF and P≤νF := P[−∞,ν]F . For

functions f, g, we use the schematic notation that Pν(f, g) as the linear combination

of Pνf and Pνg, namely, Pνf + Pνg.

Proposition 3.1. For a function F, standard results in Littlewood–Paley theory

give the following:

‖F‖Hs(Σt) ≈ ‖F‖L2
x(Σt) +

(
∑

ν>1

ν2s‖PνF‖L2
x(Σt)

)1/2

, (3.6)

‖F‖C0,s
x (Σt)

≈ ‖F‖L∞
x (Σt) + sup

ν≥2
νs‖PνF‖L∞

x (Σt), (3.7)

where Hs is the standard Sobolev norm and C0,s is the standard Hölder norm. One

can refer [18, Sec. 1; 28, A.1] for the above results.

The following two Lemmas consist of a commuted version of the equations.

Lemma 3.2 commutes �g and B with ∂∂∂ and is needed for below-top-order estimates.

Lemma 3.3 commutes �g and B with Pν∂∂∂ and is needed for the top-order estimates.

Lemma 3.2 (Commuted equations satisfied by one derivative of the solu-

tion variables). We consider the solutions to the equations of Proposition 2.17,

that is, if Ψ ∈ {v0, v1, v2, v3, h, s} solves the relativistic Euler equations (2.12), the

following equations hold :

�g∂∂∂Ψ = L (�Ψ)[∂∂∂ �C,∂∂∂D] + Q(�Ψ)[∂∂∂2�Ψ,∂∂∂�Ψ] + L (�Ψ)[(∂∂∂�Ψ)3], (3.8a)

B∂∂∂C³ = Q(�Ψ)[∂∂∂�Ψ, (∂∂∂2ω,∂∂∂2�S,∂∂∂2�Ψ)] + Q(�Ψ)[(∂∂∂2�Ψ,∂∂∂�ω,∂∂∂�Ψ,∂∂∂ �S), (∂∂∂�ω,∂∂∂ �S,∂∂∂�Ψ)]

+ L (�Ψ)[(∂∂∂�Ψ)2 · (∂∂∂�Ψ,∂∂∂�S,∂∂∂�ω)], (3.8b)

B∂∂∂D = L (�Ψ, �ω, �S)[∂∂∂2ω,∂∂∂2�Ψ,∂∂∂2�S] + Q(�Ψ)[(∂∂∂2�Ψ,∂∂∂�ω,∂∂∂�Ψ,∂∂∂�S), (∂∂∂�S,∂∂∂�Ψ)]

+ L (�Ψ)[(∂∂∂�Ψ)2 · (∂∂∂�Ψ,∂∂∂�S)]. (3.8c)

Sketch of the proof of Lemma 3.2. By commuting (2.29), (2.26a) and (2.26b)

with ∂∂∂, using relations (by Definition 2.8) C = L (�Ψ, �ω, �S)[∂∂∂�ω,∂∂∂�Ψ] and D = L [∂∂∂�S]+

L (�S)[∂∂∂�Ψ], (3.8a)–(3.8c) are derived by straightforward computations.
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The following Lemma provides the commuted equations with the Littlewood–

Paley projections.

Lemma 3.3 ([11, Lemmas 5.2, 5.4, Equations satisfied by the frequency-

projected solution variables]). For solutions to the equations of Proposi-

tion 2.17, the following equations hold :

�gPν∂∂∂Ψ = R(∂∂∂
Ψ);ν, (3.9a)

BPν∂∂∂C³ = R(∂∂∂Cα);ν, (3.9b)

BPν∂∂∂D = R(∂∂∂D);ν, (3.9c)

where

R(∂∂∂
Ψ);ν = Pν∂∂∂F(Ψ) −
∑

(³,´) �=(0,0)

Pν

[
∂∂∂g³´∂³∂´Ψ

]
−ΓΓΓ³Pν∂³∂∂∂Ψ

+
∑

(³,´) �=(0,0)

[
g³´ − P≤νg³´

]
Pν∂³∂´∂∂∂Ψ

+
∑

(³,´) �=(0,0)

{
P≤νg³´Pν∂³∂´∂∂∂Ψ − Pν[g³´∂³∂´∂∂∂Ψ]

}
, (3.10a)

R(∂∂∂Cα);ν = Pν∂∂∂F(Cα) − Pν

[
∂∂∂

(
va

v0

)
∂aC³

]
+

[
va

v0
− P≤ν

(
va

v0

)]
Pν∂a∂∂∂C³

+ P≤ν

(
va

v0

)
Pν∂a∂∂∂C³ − Pν

[
va

v0
∂a∂∂∂C³

]
, (3.10b)

R(∂∂∂D);ν = Pν∂∂∂F(D) − Pν

[
∂∂∂

(
va

v0

)
∂aD

]
+

[
va

v0
− P≤ν

(
va

v0

)]
Pν∂a∂∂∂D

+ P≤ν

(
va

v0

)
Pν∂a∂∂∂D − Pν

[
va

v0
∂a∂∂∂D

]
. (3.10c)

Moreover, the following estimates hold for the remainders where l2ν-seminorm is

taken over dyadic frequencies:

‖νN−2(R(∂∂∂
Ψ);ν, R(∂∂∂Cα);ν, R(∂∂∂D);ν)‖l2
ν

L2
x(Σt)

� ‖∂(�C,D)‖HN−2(Σt) + (‖∂∂∂(�Ψ, �ω, �S)‖L∞
x (Σt) + 1)

× (‖∂∂∂(�Ψ, �ω, �S)‖HN−1(Σt) + 1). (3.11)

Discussion of the proof of Lemma 3.3. We omit the proof of Eqs. (3.10a)–

(3.10c) since it follows from straightforward computations. We use bootstrap

assumptions, product and commutator estimates for Littlewood–Paley calculus to

prove estimates (3.11). We refer readers to [11, Lemma 5.4] for the detailed proofs

where the structure of the equations are the same as in this paper. We note that

we have Ba = va

v0 compared to Ba = va in [11], which doesn’t change the proof or

result in the estimates (3.11).
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3.3. Statement of main theorem

Using the notations introduced in the previous sections, we precisely provide our

assumptions on the data and the statement of the main theorem.

Theorem 3.4 (Main theorem). Consider a solution to the relativistic Euler

equations whose initial data satisfies following assumptions for some real number

2 < N < 5/2, 0 < α < 1, c1 > 0 and D:

(1) ‖h, v, ω‖HN(Σ0) + ‖s‖HN+1(Σ0) f D,

(2) ‖C,D‖C0,α(Σ0) f D,

(3) The data functions are contained in the interior of R (See Definition 3.5 for

definition of R) and the enthalpy H is strictly positive, i.e. H g c1 > 0.

Then the solution’s time of classical existence T > 0 can be bounded from below

in terms of D and R. Moreover, the Sobolev and some Hölder regularityi of the data

are propagated by the solution on the slab of classical existence.

3.4. Choice of parameters

In this section, we introduce several parameters that each of them either measures

the regularity or plays a role in our analysis. We denote the assumed Sobolev reg-

ularity of the “wave-part” of the data and the Hölder regularity of the “transport-

part” of the data by, respectively, 2 < N < 5/2 and 0 < α < 1. For the purpose

of analysis, we choose positive numbers q, ε0, δ0, δ and δ1 that satisfy the following

conditions:

2 < q < ∞, (3.12a)

< ε0 :=
N − 2

10
<

1

10
, (3.12b)

δ0 := min
{
ε2
0,

α

10

}
, (3.12c)

0 < δ :=
1

2
− 1

q
< ε0, (3.12d)

δ1 := min{N − 2 − 4ε0 − δ(1 − 8ε0), α} > 8δ0 > 0. (3.12e)

More precisely, we consider N, α, ε0 and δ0 to be fixed throughout the paper,

while q, δ and δ1 will be treated as parameters. In particular, (3.12e) is related to a

slightly (but enough) improvement of Strichartz estimates (4.1) over the bootstrap

assumptions (3.17).

iWe note that not entire Hölder regularity is propagated in the way that only ‖�Ψ, C,D‖
C0,δ1 (Σt)

(see Sec. 3.4 for the definition of ·1) is bounded by data.
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3.5. Assumptions on the initial data

In this section, we provide the bootstrap assumptions that will be used in the proof

of Theorem 3.4.

Definition 3.5 (Regime of hyperbolicity). We define R as follows:

R := {(h, s, �v, �ω, �S) ∈ R
14 | 0 < c f 1}. (3.13)

With N and α as in Sec. 3.4, we assume that

“Wave− part” ‖h,�v‖HN (Σ0) < ∞, (3.14)

“Transport− part” ‖s‖HN+1(Σ0) + ‖�ω‖HN (Σ0) + ‖�C,D‖C0,α(Σ0) < ∞. (3.15)

Assumptions (3.14) and (3.15) correspond to regularity assumptions on the “wave-

part” and “transport-part” of the data, respectively.

Let intU denote the interior of the set U . We assume that there is a compact

subset R̆ such that

(�Ψ, �ω, �S)(Σ0) ⊂ intR̆ ⊂ R̆ ⊂ intR, (3.16)

where R is defined in (3.13).

3.6. Bootstrap assumptions

Throughout the paper, 0 < T∗ � 1 denotes a bootstrap time that depends only on

initial data. We assume that �Ψ is a smoothj solution to the equation in Sec. 2.3 and

the following estimates hold:

(�Ψ, �ω, �S)([0, T∗] × R
3) ⊂ R, (3.17a)

‖∂∂∂�Ψ‖2
L2

t L∞
x ([0,T∗]×R3) +

∑

ν≥2

ν2·0‖Pν∂∂∂�Ψ‖2
L2

t L∞
x ([0,T∗]×R3) f 1, (3.17b)

‖∂�ω, ∂�S‖2
L2

t L∞
x ([0,T∗]×R3) +

∑

ν≥2

ν2·0‖Pν∂�ω, Pν∂�S‖2
L2

t L∞
x ([0,T∗]×R3) f 1. (3.17c)

In Theorem 5.18, we derive an improvement of (3.17c). In Theorem 6.1, we derive

an improvement of (3.17b). By fundamental theorem of calculus, Eqs. (2.25a) and

(2.25b), (3.17a) is a direct result of (3.17b) and (3.17c).

4. Structure of the Proofs in the Rest of the Paper

In this section, we provide the structure of the proofs in the paper. Our proofs

rely on a bootstrap argument where the bootstrap assumptions are in Sec. 3.6. See

Sec. 1.5 for the logic of the bootstrap argument. The main goal for us is to improve

jBy smooth we mean as smooth as necessary for the analysis arguments to go through. Meanwhile,
all of our quantitative estimates depend only on the Sobolev and Hölder norms.
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the bootstrap assumptions to the following Strichartz-type estimates:

‖∂∂∂�Ψ‖2
L2

tL∞
x ([0,T∗]×R3) +

∑

ν≥2

ν2·1‖Pν∂∂∂�Ψ‖2
L2

tL∞
x ([0,T∗]×R3) � T 2·

∗ , (4.1a)

‖∂∂∂�ω,∂∂∂�S‖2
L2

tL∞
x ([0,T∗]×R3) +

∑

ν≥2

ν2·1‖Pν∂∂∂�ω, Pν∂∂∂�S‖2
L2

tL∞
x ([0,T∗]×R3) � T 2·

∗ . (4.1b)

We prove the (4.1a) through the following series of reductions, see Sec. 1.5.4

for an overview of the logic: Strichartz estimates ← Decay estimates ← Conformal

energy estimates ← Controlling of the acoustic null geometry.

To prove (4.1b), we prove a transport-Schauder-type estimate in Sec. 5, which is

independent of the proof of (4.1a). In Theorem 5.18, we obtain (4.1b) by combining

the transport-Schauder estimate and (4.1a).

4.1. Similarities and differences compared to the 3D compressible

Euler equations

Broadly speaking, we use the same machinery as in [11] to reduce the proof of

the Strichartz estimates to geometric quantities that have to be controlled in order

to derive a conformal energy estimate. This reduction was first introduced and

developed in the context of low-regularity problems for quasilinear wave equations,

as we discussed in Sec. 1.1. Disconzi–Luo–Mazzone–Speck [11] and Wang [31] have

exploited the remarkable structure of the non-relativistic 3D compressible Euler

equations to derive similar low-regularity well-posedness results in the presence of

vorticity and entropy. The main purpose of this paper is to derive similar results

for the relativistic Euler flow by using the remarkable structure of the equations

derived by Disconzi–Speck in [12].

Two main differences in the present paper compared to the non-relativistic case

are (1) the first fundamental form of Σt is no longer conformally flat in the relativis-

tic case, leading to more complicated geometry and (2) the L2 elliptic and Schauder

estimates that we need to handle the vorticity and entropy are more complicated

because unlike in the non-relativistic case, the Hodge systems that we study are

quasilinear (instead of constant coefficient).

4.2. Energy, L2 elliptic and Schauder estimates in Sec. 5

In Sec. 5, first we prove the energy estimates for wave variables h, s, v and transport

variables ω, S, C,D in Proposition 5.1. These estimates are essential to the local well-

posedness Theorem 3.4. We also need these estimates for controlling the acoustic

geometry. We control the H2+¸ norm of wave variables under the bootstrap assump-

tions by using the geometric energy method in Sec. 5.1.1 and commuted equations

in Lemmas 3.2 and 3.3. We refer readers to [29, Sec. 6] for the commutator estimates

involving LP projections in fractional Sobolev spaces. We note that the L2 elliptic

estimates for transport variables ω, S, C,D in Proposition 5.8 is proven based on a

rewritten dynamic div-curl system in Proposition 5.9.
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We then prove the transport-Schauder estimates in the Hölder space C0,·1
x for

the transport variables ω, S, C,D in Theorem 5.18, which recovers the bootstrap

assumptions (3.17c) in condition of (4.1a). To prove these estimates, we use the

div-curl system (5.19) and the transport equations (2.25a) and (2.26b). We prove

Schauder estimates by some standard results in pseudodifferential operators as well

as the Littlewood–Paley decomposition with the help of the equivalence between

Hölder spaces and frequency spaces (3.7).

4.3. Reduction of Strichartz estimates to decay

estimates in Sec. 6

We state the Strichartz estimates for wave variables in Theorem 6.1, which improves

the bootstrap assumptions (3.17b). Our reductions of the Strichartz estimates to

the bounded conformal energy consists of several steps. In Sec. 6, we list several

reductions from Strichartz estimates to a spatially localized decay estimate in The-

orem 6.9. We first use Duhamel’s principle to reduce Theorem 6.1 to a frequency-

localized version of Strichartz estimates in Theorem 6.2. Then after rescaling all

the quantities with respect to the frequency in Sec. 6.2, we run a T T ∗ argument

to reduce Theorem 6.2 to a decay estimate in Theorem 6.8. Finally, by Bernstein

inequalities, partition of unity and Sobolev embedding, we obtain the spatially

localized version of decay estimates in Theorem 6.9. The reductions are by now

standard, therefore we only state the reductions without proof. We refer to Wang

[30, Sec. 3] for the details. It is crucial to derive the decay estimates (6.18). To fur-

ther reduce the decay estimates to conformal energy estimates, we need a geometric

setup, which is in Sec. 7, as we will discuss in the next section.

4.4. Geometric setup and conformal energy in Sec. 7

To control the conformal energy, we use Wang’s approach from [30], which relies on

analysis on a conformal changed acoustic geometry. We reduce the decay estimates

to the conformal energy estimates in Theorem 7.6 in Sec. 7.3 via product estimates

and Bernstein inequality of Littlewood–Paley theory.

In order to define conformal energy and do analysis based on the geometric

structure of the relativistic Euler equations, in Secs. 7.1 and 7.2, we construct the

geometric null frame based on a solution u to the acoustical eikonal equation

(g−1)³´∂³u∂´u = 0. (4.2)

Then we control the acoustic geometry based on the null frame that we just con-

structed. Note that given the control over the acoustic geometry, we have favorable

estimates for the conformal energy as we discuss in Sec. 7.3.2. We will discuss the

control of the acoustic geometry in the next two sections.
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4.5. Energy along acoustic null hypersurfaces and control

of the acoustic geometry in Sec. 8

In Sec. 8, We prove the energy estimates for fluid variables along the acoustic null

cones in Sec. 8.1. This is important since we need to control fluid variables along

the null cones.

Then we control the acoustic geometry. To start with, we list the connection

coefficients in Definition 8.4. We define conformal factor for the metric in Defi-

nition 8.5. We provide initial conditions for geometric cones in Propositions 8.8

and 8.9.

We setup the bootstrap assumptions for geometric quantities in Sec. 8.4.2 and

list the main estimates for the geometric quantities in Proposition 8.10. We give

a discussion of the proof of Proposition 8.10 in Sec. 8.4.4, which improves the

assumptions in Sec. 8.4.2. Proposition 8.10 is proven via doing analysis on the

transport equations and the div-curl systems of the geometric quantities. We only

give a brief discussion of the proof since it follows the same in [11, Sec. 10].

5. Energy, L2 Elliptic and Schauder Estimates

In this section, we first derive the energy and L2 elliptic estimates along constant-

time hypersurfaces. Note that we obtain the same results as in [11, Secs. 4 and 5],

where � in [11] plays the same role as h in this paper. Then we derive transport-

Schauder-type estimates for the vorticity and entropy gradient.

5.1. Energy and L2 elliptic estimates

The following Proposition is the main result of the energy estimates.

Proposition 5.1 (Energy and elliptic estimates). Under the initial data and

bootstrap assumptions of Sec. 3, smooth solutions to the relativistic Euler equations

satisfy the following estimates for 2 < N < 5/2 and t ∈ [0, T∗]:

2∑

k=0

‖∂k
t (h,�v, �ω)‖HN−k(Σt) +

2∑

k=0

‖∂k
t s‖HN+1−k(Σt) +

1∑

k=0

‖∂k
t (�C,D)‖HN−1−k(Σt)

� ‖(h,�v, �ω)‖HN (Σ0) + ‖s‖HN+1(Σ0) + 1. (5.1)

Remark 5.2. We note that 1 on the right-hand side of (5.1) is due to techni-

cal reasons. Specifically, as shown in Sec. 5.1.3, 1 can be replaced by
∫ t

0
‖∂∂∂(�Ψ, �ω,

�S)‖L∞
x (Στ )dτ . By bootstrap assumptions (3.17b) and (3.17c) and Hölder’s inequal-

ity, we could actually bound this term by T
1/2
∗ .

We provide several key ingredients for proving Proposition 5.1 in the next two

sections. We provide the basic energy inequality for wave equations and transport

equations in Sec. 5.1.1. We prove a crucial elliptic div-curl estimate in Sec. 5.1.2.
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We give the proof of Proposition 5.1 in Sec. 5.1.3. We refer readers to [11, Secs. 4

and 5; 30, Sec. 2] for the energy estimates in the non-relativistic 3D compressible

Euler equations case and the quasilinear wave equations case, respectively.

5.1.1. The basic energy inequality for wave equations and transport equations

We provide the basic energy inequality for the wave equations in this section.

Definition 5.3 (Energy–momentum tensor, energy current and deforma-

tion tensor). We define the energy–momentum tensor Qμν [ϕ] associated to a

scalar function ϕ to be the following tensorfield:

Qμν [ϕ] := ∂μϕ∂νϕ − 1

2
gμν(g−1)³´∂³ϕ∂´ϕ. (5.2)

Given ϕ and any multiplier vectorfield X, we define the corresponding energy

current (X)J³[ϕ] vectorfield as follows:

(X)J³[ϕ] := Q³´[ϕ]X´ − ϕ2X³. (5.3)

We define the deformation tensor of X as follows:

(X)πππ³´ := D³X´ + D´X³, (5.4)

where D is the Levi-Civita connection with respect to g.

We have the following well-known divergence identity:

D³
(X)J³[ϕ] = �gϕ(Xϕ) +

1

2
Qμν [ϕ](X)πππμν − 2ϕXϕ − 1

2
ϕ2(g−1)μν (X)πππμν . (5.5)

We define the energy E[ϕ](t) as follows where T³ := −g³0 is the future-directed

g-timelike vectorfield defined in Definition 2.11:

E[ϕ](t) :=

∫

Σt

(T)J³[ϕ]T³d�g =

∫

Σt

(
Q00[ϕ] + ϕ2

)
d�g, (5.6)

where d�g is the volume form on Σt with respect to g induced by g.

Lemma 5.4 (Coerciveness of E). Under the bootstrap assumptions of Sec. 3.6,

the following estimate holds for t ∈ [0, T∗]:

E[ϕ](t) ≈ ‖ϕ‖2
H1(Σt)

+ ‖∂tϕ‖2
L2

x(Σt)
. (5.7)

Proof of Lemma 5.4. First recall that Ta = 0, so gab = gab. Note that since

0 < c(h, s) f 1 and (v0)2 g 1, by direct computation and the bootstrap assumption

(3.17a), we have

d�g =
√

det gdx1dx2dx3
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= {c2 − (c2 − 1)(v0)2}3{c−6 + c−4(c−2 − 1)[(v0)2 − 1]}

≈ 1.

(5.8)

Then we compute Q00[ϕ]. By (2.18b) and (2.20a), we have

Q00[ϕ] =
1

2
{(Tϕ)2 + (g−1)ab∂aϕ∂bϕ}

=
1

2

{
(Tϕ)2 +

c2δab
[
c2 − (c2 − 1)(v0)2

]
+ c2(c2 − 1)vavb

{c2 − (c2 − 1)(v0)2}2
∂aϕ∂bϕ

}
,

(5.9)

where δab is the Kronecker delta. Note that

T = ∂t +
(c2 − 1)vav0

c2 − (c2 − 1)(v0)2
∂a. (5.10)

Then since the speed of sound satisfies 0 < c f 1, it follows that (5.9) is coercive in

|∂ϕ|, since (v0)2 = 1 +
∑

i=1,2,3(v
i)2

{c2δab[c2 − (c2 − 1)(v0)2] + c2(c2 − 1)vavb}∂aϕ∂bϕ

= c4|∂ϕ|2 − c2(c2 − 1){δab(v0)2 − vavb}∂aϕ∂bϕ

g c4|∂ϕ|2. (5.11)

By bootstrap assumptions that |v³| are uniformly bounded and Young’s inequal-

ity, we derive that Q00[ϕ] � |∂∂∂ϕ|2. Combined with (5.11), the desired estimates (5.7)

follows.

Lemma 5.5 (Basic energy inequality for the wave equations). Let ϕ be

smooth on [0, T∗] × R3. Under the bootstrap assumptions of Sec. 3.6, the following

inequality holds for t ∈ [0, T∗]:

E[ϕ](t) � E[ϕ](0) +

∫ t

0

‖∂∂∂�Ψ‖L∞
x (Στ )E[ϕ](τ)dτ

+

∫ t

0

‖�gϕ‖L2
x(Στ )‖∂∂∂ϕ‖L2

x(Στ )dτ. (5.12)

Proof of Lemma 5.5. We apply the divergence theorem on the space-time region

[0, t] × R3 relative to the volume form d�g =
√

det gdx1dx2dx3dτ = d�gdτ . Note

that T is the future-directed g-unit normal to Σt. By (5.4)–(5.7), with X := T, we

have

E[ϕ](t) = E[ϕ](0) −
∫ t

0

∫

Στ

(
�gϕ(Tϕ) +

1

2
Qμν [ϕ](T)πππμν

−2ϕTϕ − 1

2
ϕ2(g−1)μν (T)πππμν

)
d�gdτ. (5.13)
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By bootstrap assumptions, we have |Tϕ| � |∂∂∂ϕ|, |Qμν [ϕ]| � |∂∂∂ϕ|2 and |(T)πππμν | �

|∂∂∂�Ψ|. Thus by Cauchy–Schwarz inequality along Στ , we get the desired estimate.

Lemma 5.6 (Basic energy inequality for the transport equations). Let ϕ

be smooth on [0, T∗]×R3. Under the bootstrap assumptions of Sec. 3.6, the following

inequality holds for t ∈ [0, T∗]:

‖ϕ‖2
L2

x(Σt)
� ‖ϕ‖2

L2
x(Σ0) +

∫ t

0

‖∂∂∂�Ψ‖L∞
x (Στ )‖ϕ‖2

L2
x(Στ )dτ

+

∫ t

0

‖ϕ‖L2
x(Στ )‖Bϕ‖L2

x(Στ )dτ. (5.14)

Proof of Lemma 5.6. Let J³ := ϕ2B³, then ∂³J³ = 2ϕBϕ + (∂³B³)ϕ2. We

apply the divergence theorem on the space-time region [0, t] × R3 relative to the

Cartesian coordinates. Note that J0 = ϕ2. By Cauchy–Schwarz inequality along

Στ , we obtain the desired estimates.

Remark 5.7. We remark that for our implementation of the geometric energy

method for wave equations, the timelike vectorfield T (defined in Definition 2.11)

plays the same role as B (Note that B = ∂t + va∂a in [11] is not the same as

B = vα

v0 ∂³ in this paper.) in [11, Sec. 4.1]. All the arguments for geometric energy

method for wave equations go through in the same fashion as in [11, Sec. 4.1].

5.1.2. Elliptic div-curl estimates in L2 space

This section is dedicated to the proof of Proposition 5.8, which is a key ingredient

in the proof of the energy estimates (5.1) for the �ω, �S, �C,D.

Proposition 5.8 (Elliptic div-curl estimates in L2 space). Under the boot-

strap assumptions in Sec. 3.6, the following estimates holds for ω and S:

‖(∂�ω, ∂�S)‖L2
x(Σt) � ‖�ω, �S, �C,D‖L2

x(Σt). (5.15)

Moreover, HN−k elliptic estimate also holds true for k = 1, 2, that is

‖(∂�ω, ∂�S)‖HN−k(Σt) � ‖�ω, �S, �C,D‖HN−k(Σt) for k = 1, 2. (5.16)

Since we have to derive energy estimates on constant-time hypersurfaces, and

the Hodge system (2.26) is a space-time div-curl system, we begin by deriving a

spatial div-curl system for ω and S.

Proposition 5.9 (The div-curl system on constant-time hypersurfaces).

Given the div-curl system (2.26), the following equations hold on Σt for vorticity ω
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and entropy gradient S:

(G−1)ab∂a(ω�)b = Fω , (G−1)ab∂aSb = FS , (5.17a)

∂a(ω�)b − ∂b(ω�)a = (ω)Hab, ∂aSb − ∂bSa = (S)Hab, (5.17b)

where

Fω = L (�Ψ, �ω, �S)[∂∂∂�Ψ], FS = L (�Ψ)D + L (�Ψ, �S)[∂∂∂�Ψ], (5.18a)

(ω)Hab = L (�Ψ)�C + L (�Ψ, �ω, �S)[∂∂∂�Ψ], (S)Hab = L (�Ψ, �S)[∂∂∂�Ψ], (5.18b)

(G−1)ab = δab − vavb

(v0)2
. (5.18c)

For convenience, we write the above two div-curl systems as follows where

(¸, F, Hab) whichk is either (ω�, Fω, (ω)Hab) or (S, FS , (S)Hab):

(G−1)ab∂a¸b = F, (5.19a)

∂a¸b − ∂b¸a = Hab. (5.19b)

Proof of Proposition 5.9. For the div part (5.19a), by Eqs. (2.12c) and (2.27a),

we write

¸0 = −¸bv
b

v0
. (5.20)

Also by using transport equations (2.25a) and (2.25b), we have

∂0(¸
	)b = −va∂a(¸	)b

v0
+ L (�Ψ, �ω, S)[∂∂∂�Ψ]. (5.21)

Using (2.26d) for ¸ = ω�, we write ∂0ω
0 + ∂aωa = L (�ω)[∂∂∂�Ψ]. By lowering the

index ∂0ω
0 = −∂0(ω�)0, Eqs. (5.20) and (5.21), we prove (5.17a) for ω. Similarly,

for ¸ = S, by definition of D (2.14), we write ∂0(S
	)0 + ∂a(S	)a = L (�Ψ)D +

L (�Ψ, �S)[∂∂∂�Ψ]. Using Eqs. (5.20) and (5.21), we obtain Eq. (5.17a) for S.

Now we consider the curl part, note that we have the facts (2.27d) and (2.27e)

∂γ¸· − ∂·¸γ = εγ·κλvκvortλ(¸) − (vκ∂κ¸·)(v�)γ + vκ(∂·¸κ)(v�)γ

+ (vκ∂κ¸γ)(v�)· − vκ(∂·¸κ)(v�)·. (5.22)

Recall that

C³ = vort³(ω�) + L (�Ψ, �S)[∂∂∂�Ψ]. (5.23)

Hence for ¸ = ω, the first term on the right-hand side of (5.22) for ω is manifestly in
(ω)Hab. Next, using vκ∂κ(ω�)· = v0B(ω�)· and (2.25a), as well as (2.27b), we have

that the right-hand side of (5.22) for ω is (ω)Hab. Similarly, by (2.26c), vκ∂κSγ =

v0BSγ , (2.25b) and (2.27c), we obtain Eq. (5.17b) for S.

kWe use the same notation throughout the remainder of the paper.
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Remark 5.10. In terms of elliptic estimates, there is a major difference in Propo-

sition 5.8 compared to the Hodge system of the non-relativistic 3D compressible

Euler equations. In the non-relativistic case, the analogous elliptic equations are

constant-coefficient div-curl equations along flat hypersurfaces of constant Carte-

sian time and, for example, the basic L2 theory can be derived with the simple

Hodge identity for Σt vectorfields V ∈ H1(R3; R3)

3∑

a,b=1

‖∂aV b‖2
L2

x(R3) = ‖divV ‖2
L2

x(R3) + ‖curlV ‖2
L2

x(R3). (5.24)

In contrast, the divergence equation (5.19a) has dynamic, solution-dependent coef-

ficients.

Proposition 5.11 (The top-order div-curl system on constant-time hyper-

surfaces). Using the same notation as in Proposition 5.19, we have

(G−1)ab∂a(∂¸)b = F∂η, (5.25a)

∂a(∂¸)b − ∂b(∂¸)a = (∂η)Hab, (5.25b)

where

F∂η = ∂Fη − ∂{(G−1)ab}∂a¸, (5.26a)

(∂η)Hab = ∂(η)Hab. (5.26b)

Moreover, we have

(G−1)ab∂a∂Pν¸b = F∂Pνη, (5.27a)

∂a∂Pν¸b − ∂b∂Pν¸a = (∂Pνη)Hab, (5.27b)

where

F∂Pνη = PνF∂η + [Pν, (G−1)ab]∂a∂¸b, (5.28a)

(∂Pνη)Hab = Pν((∂η)Hab). (5.28b)

For convenience, we write the above three div-curl systems (5.19), (5.25) and

(5.27) as follows, where (X, F, Hab) is (¸, Fη, (η)Hab) or (∂¸, F∂η, (∂η)Hab) or (∂Pν¸,

F∂Pνη, (∂Pνη)Hab):

(G−1)ab∂aXb = F, (5.29a)

∂aXb − ∂bXa = Hab. (5.29b)

In order to derive elliptic estimates and Schauder estimates from the div-curl system

(5.19), we need Lemma 5.12 provided below, which allows us to do estimates via

Littlewood–Paley theory. We provide a partition of unity before Lemma 5.12.

We want to apply the Fourier transform to a localized version of the div-curl

system in Proposition 5.8. We consider the lattice A := δ2Z3, where δ2 is assumed
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to be small and will be determined in future analysis. Note that {xl}l∈N := A ⊂ Σt

has points equally spread out, that is, for each xl, there are 6 points in A such that

the distance between xl and any of them is δ2. We define the family of functions

{ψl}l∈N as follows:

ψl(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪⎪¬

1 x ∈ B

(
xl,

1

8
δ2

)
,

exp

(
4

3δ2
2

)
exp

(
1

|x − xl|2 − (7
8δ2)2

)
x ∈ B

(
xl,

7

8
δ2

)
− B

(
xl,

1

8
δ2

)
,

0 x /∈ B

(
xl,

7

8
δ2

)
,

(5.30)

and set

φl(x) :=
ψl(x)∑
k ψk(x)

. (5.31)

We note that ‖φl‖L∞(Σt), ‖∂φl‖L∞(Σt) � 1.

We have constructed cut-off functions {φl}l∈N ⊂ C∞
0 (Σt) such that φl = 1 in

B(xl,
1
8δ2), supp(φl) ⊂ B(xl,

7
8δ2),

∑
l φl(x) = 1 and for any xa, xb ∈ A, φa(x) =

φb(x − xa + xb). We want to apply Fourier transform on a localized region, where

(G−1)ab(xl) is a constant and (G−1)ab(x) − (G−1)ab(xl) will be shown to be a

controllable error term in the future analysis.

Lemma 5.12. Given Propositions 5.9 and 5.11 with xl and φl, l ∈ N, defined as

above, let X be the solution of Eqs. (5.29). Then the following identity holds in

frequency space for i = 1, 2, 3:

(G−1)ab(xl)ξaξb(̂φlXi) = CξiF̂
l
+
∑

k �=i

C(G−1)ak(xl)ξaĤ
l

ki, (5.32)

where

F l = (G−1)ab(xl)∂a(φlXb) (5.33a)

= φlF + (G−1)ab(xl)(∂aφl)Xb − [(G−1)ab(x) − (G−1)ab(xl)]∂a(φlXb)

− [(G−1)ab(x) − (G−1)ab(xl)](∂aφl)Xb,

Hl
ab = ∂a(φlXb) − ∂b(φlXa) = (∂aφl)Xb − (∂bφl)Xa + φlHab. (5.33b)

Proof of Lemma 5.12. By multiplying the div-curl system (5.19a) and (5.19b)

by φl, we rewrite the system as follows:

{(G−1)ab(xl) + (G−1)ab(x) − (G−1)ab(xl)}{∂a(φlXb) − (∂aφl)Xb} = φlF,

(5.34a)

∂a(φlXb) − (∂aφl)Xb − ∂b(φlXa) + (∂bφl)Xa = φlHab.

(5.34b)
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Taking the Fourier transform of (5.34a) and multiplying by ξ1, we have

ξ1{(G−1)a1(xl)ξa (̂φlX1) + (G−1)a2(xl)ξa(̂φlX2) + (G−1)a3(xl)ξa (̂φlX3)}

= Cξ1F̂
l
, (5.35)

where C = 1
2πi is a constant from Fourier transform, and

F l = (G−1)ab(xl)∂a(φlXb)

= φlF + (G−1)ab(xl)(∂aφl)Xb − [(G−1)ab(x) − (G−1)ab(xl)]∂a(φlXb)

− [(G−1)ab(x) − (G−1)ab(xl)](∂aφl)Xb. (5.36)

Similarly, taking the Fourier transform of (5.34b) and multiplying by (G−1)a2(xl)ξa

and (G−1)a3(xl)ξa, we have

(G−1)a2(xl)ξa{ξ2(̂φlX1) − ξ1(̂φlX2)} = C(G−1)a2(xl)ξaĤ
l

21, (5.37a)

(G−1)a3(xl)ξa{ξ3(̂φlX1) − ξ1(̂φlX3)} = C(G−1)a3(xl)ξaĤ
l

31, (5.37b)

where C = 1
2πi is a constant from Fourier transform, and

H l
ab = ∂a(φlXb) − ∂b(φlXa) = (∂aφl)Xb − (∂bφl)Xa + φlHab. (5.38)

Adding (5.35), (5.37a) and (5.37b), we obtain

(G−1)ab(xl)ξaξb(̂φlX1) = Cξ1F̂
l
+ C(G−1)a2(xl)ξaĤ

l

21 + C(G−1)a3(xl)ξaĤ
l

31.

(5.39)

We use the same argument for X2 and X3. Hence for i = 1, 2, 3, we obtain

(G−1)ab(xl)ξaξb(̂φlXi) = CξiF̂
l
+
∑

k �=i

C(G−1)ak(xl)ξaĤ
l

ki. (5.40)

Lemma 5.13 (Positive definiteness of G−1). For any Σt-tangent one-form ξ,

that is, ξ0 = 0, we denote |ξ|2 :=
∑

i=1,2,3 ξ2
i . Then the following estimate holds for

any xl ∈ Σt, where G is defined in Proposition 5.9:

C|ξ|2 f (G−1)ab(xl)ξaξb f |ξ|2, (5.41)

where 0 < C < 1 is a constant depends only on ‖v‖L∞
x (Σt), which is in turn controlled

by the bootstrap assumption (3.17a).

Proof of Lemma 5.13. Using the definition of (G−1)ab, we have

(G−1)ab(xl)ξaξb =

(
δab − vavb

(v0)2

)
ξaξb = |ξ|2 −

(
viξi

v0

)2

. (5.42)

Hence by the normalization (v�)³v³ = −1 in Sec. 2.2.1, we have

C|ξ|2 f (G−1)ab(xl)ξaξb f |ξ|2, (5.43)

where 0 < C < 1 is a constant depends only on ‖v‖L∞
x (Σt).
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Lemma 5.14. For G defined in Proposition 5.9, the following inequality holds:

|(G−1)ab(x) − (G−1)ab(xl)| f C3‖v‖4

C
0,δ0
0 (Σt)

|x − xl|·0 f C4
2C3|x − xl|·0 , (5.44)

where C2, C3 are constants (independent of l, x, a, b, δ0).

Proof of Lemma 5.14. For Hölder continuous function f, g ∈ C0,·0

0 (Σt)

|f(x)g(x) − f(y)g(y)|
|x − y|·0

=
|f(x)g(x) − f(x)g(y)| + |f(x)g(y) − f(y)g(y)|

|x − y|·0

f ‖f‖L∞
x (Σt)‖g‖Ċ

0,δ0
0 (Σt)

+ ‖g‖L∞
x (Σt)‖f‖Ċ

0,δ0
0 (Σt)

f 2‖f‖
C

0,δ0
0 (Σt)

‖g‖
C

0,δ0
0 (Σt)

. (5.45)

Therefore, by definition of G−1 in (5.18c) and the fact that v0 g 1, substitute (f, g)

in (5.45) by (va, vb) and again by (vavb, 1
(v0)2 ), we have the estimate

|(G−1)ab(x) − (G−1)ab(xl)| f C3‖v‖4

C
0,δ0
0 (Σt)

|x − xl|·0 . (5.46)

By fundamental theorem of calculus, bootstrap assumptions (3.17) and (3.7), we

have

‖v‖
C

0,δ0
x (Σt)

f ‖∂∂∂�Ψ‖
L1

tC
0,δ0
x (Σt)

+ ‖v‖
C

0,δ0
x (Σ0)

� ‖∂∂∂�Ψ‖
L1

tC
0,δ0
x (Σt)

+ 1 f C2.

(5.47)

Combining (5.46) and (5.47), we have the desired result.

Lemma 5.15 (Commutator estimates). For scalar function F, G, δ1 defined

as in Sec. 3.4, Littlewood–Paley projection operator Pν defined in Sec. 3.2, we have

the following estimates :

‖[Pν, G]F‖L2(Σt) � ν−·1‖G‖
C

0,δ1
x (Σt)

‖F‖L2(Σt). (5.48)

Proof of Lemma 5.15. For ψ defined as in Sec. 3.2, we define M(x) as follows:

Mν(x) := F−1(ψ(ν−1ξ)) =

∫
eixξψ(ν−1ξ)dξ. (5.49)

Then we have

Pν, G]F =

∫
Mν(x − y) (G(y) − G(x)) F (y)dy

f ‖G‖
C

0,δ1
x (Σt)

∫
Mν(x − y)|x − y|·1F (y)dy. (5.50)

By Young’s inequality, we have

‖[Pν, G]F‖L2(Σt) � ‖G‖
C

0,δ1
x (Σt)

‖F‖L2(Σt)‖Mν(x)|x|·1‖L1(Σt). (5.51)

By definition of Fourier transform and ψ in Sec. 3.2, we have
∫

Mν(x)|x|·1dx =

∫
ν3ψ̂(−νx)|x|·1dx � ν−·1 . (5.52)

Combining the above equations, we obtain the desired result.
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Lemma 5.16 (Control of the inhomogeneous terms). For Fη, (η)H, G−1

defined as in Proposition 5.9, and F∂η, F∂Pνη, (∂η)H, (∂Pνη)H defined as in Proposi-

tion 5.11, we have the following estimates :

‖Fη‖L2(Σt), ‖(η)H‖L2(Σt) f C‖∂∂∂�Ψ, �C,D‖L2(Σt), (5.53)

‖F∂η‖L2(Σt), ‖(∂η)H‖L2(Σt)

f C‖∂∂∂2�Ψ, ∂ �C, ∂D‖L2(Σt) + Cα−1‖∂�Ψ‖2
H1(Σt)

‖∂¸‖L2(Σt) + Cα‖∂2¸‖L2(Σt),

(5.54)

‖νN−2F∂Pνη‖l2
ν

L2(Σt), ‖νN−2 · (∂Pνη)H‖l2
ν

L2(Σt)

� (‖∂2�Ψ‖L2(Σt) + 1)‖∂2¸‖L2(Σt) + ‖∂∂∂2�Ψ, ∂ �C, ∂D‖HN−2(Σt), (5.55)

where C, α are constants, C is independent of α, and α > 0 (small), which will be

determined later.

Proof of Lemma 5.16. (5.53) is the direct result of taking L2(Σt) for (5.18).

Taking L2(Σt) for (5.26), we have

‖∂Fη, ‖L2(Σt), ‖∂(η)H‖L2(Σt) f C‖∂∂∂2�Ψ, ∂ �C, ∂D‖L2(Σt), (5.56)

‖∂{(G−1)ab}∂a¸‖L2(Σt) f C‖∂�Ψ‖H1(Σt)‖∂¸‖
1
2

L2(Σt)
‖∂2¸‖

1
2

L2(Σt)

f Cα−1‖∂�Ψ‖2
H1(Σt)

‖∂¸‖L2(Σt) + Cα‖∂2¸‖L2(Σt),

(5.57)

where for the first inequality in (5.57), we used the fact that ‖F · G‖L2(Σt) f
C‖F‖

1
2

L2(Σt)
‖F‖

1
2

H1(Σt)
‖G‖H1(Σt) (see [11, (79b)]), for the second inequality in (5.57),

we used Young’s inequality.

Now we consider the proof of (5.55). Taking l2νL2(Σt) norm of (5.28), we have

‖νN−2PνF∂η, ‖l2
ν

L2(Σt), ‖νN−2Pν((∂η)H)‖l2
ν

L2(Σt)

f C‖∂∂∂2�Ψ, ∂ �C, ∂D‖HN−2(Σt) + ‖∂2�Ψ‖L2(Σt)‖∂2¸‖L2(Σt), (5.58)

where the second term on the right-hand side of (5.58) is from the fact that (see

[11, (81b)])

‖νN−2Pν(∂{(G−1)ab}∂a¸)‖l2
ν

L2(Σt) � ‖∂�Ψ‖
HN− 3

2 (Σt)
‖∂¸‖H1(Σt)

+ ‖∂¸‖
HN−3

2 (Σt)
‖∂�Ψ‖H1(Σt). (5.59)

What remains to be controlled is the commutator term [Pν, (G−1)ab]∂a∂¸b. By

Lemma 5.15, where G := (G−1)ab and F := ∂a∂¸b, and (5.47), we have

‖νN−2[Pν, (G−1)ab]∂a∂¸b‖l2
ν

L2(Σt) � ‖∂2¸‖L2(Σt). (5.60)

Combining the above three estimates, we obtain (5.55).
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Lemma 5.17. Let G−1 be defined as in (5.18c). F, H defined as in (5.29). For X

the solution of the div-curl system (5.29), we have the following estimate:

‖∂X‖L2
x(Σt) f C‖X, F, H‖L2

x(Σt), (5.61)

where C is a constant, which is independent of X, F, H.

Proof of Lemma 5.17. Throughout, X, F, G, H are the same as in (5.29), and

F , H are defined in Lemma 5.12. Since |ξ| � 2ν on support of ̂Pν(φl¸i), by

Littlewood–Paley estimate (3.6), (5.41) and (5.32), we remind ψ is defined in Sec. 3.2

‖∂{φlXi}‖2
L2

x(Σt)

f C1

∑

ν>1

‖νPν(φlXi)‖2
L2

x(Σt)

f C1

∑

ν>1

∥∥∥∥∥∥
F−1

⎛
¿ψ

( |ξ|
ν

)
|ν|−1

⎧
«
¬ξiF̂

l
+
∑

k �=i

(G−1)jk(xl)ξjĤ
l

ki

«
¬
­

À
⎠

∥∥∥∥∥∥

2

L2
x(Σt)

f C1(‖F l‖2
L2

x(Σt)
+ ‖Hl‖2

L2
x(Σt)

), (5.62)

where C1 is a constant and F−1 is the Fourier inverse transform. By (5.33a), we

have

‖F l‖2
L2

x(Σt)
f ‖φlF‖2

L2
x(Σt)

+ ‖(G−1)‖2
L∞

x (Σt)
‖(∂φl)X‖2

L2
x(Σt)

+ sup
x∈B(xl,·2)

|(G−1)ab(x) − (G−1)ab(xl)|2‖∂(φlX)‖2
L2

x(Σt)
. (5.63)

By (5.33b)

‖Hl‖2
L2

x(Σt)
f ‖φlH‖2

L2
x(Σt)

+ 2‖(∂φl)X‖2
L2

x(Σt)
. (5.64)

Let C′ := C1C
4
2C3, where C1, C2, C3 are constants from (5.62), (5.47), (5.44),

respectively, and let δ2 be small such that for all x ∈ B(xl, δ2)

C′|x − xl|·0 <
1

4
. (5.65)

Hence by (5.62)–(5.65), soaking the last term in the right-hand side of (5.63) to

the left of (5.62) (by Lemma 5.14), we have

‖∂{φlXi}‖2
L2

x(Σt)
f C4(‖φlF‖2

L2
x(Σt)

+ ‖φlH‖2
L2

x(Σt)
+ ‖(∂φl)X‖2

L2
x(Σt)

), (5.66)

where C4 is a constant.

Now we consider the ‖∂Xi‖2
L2

x(Σt)
. By (5.66), we have

‖∂Xi‖2
L2

x(Σt)
=

∥∥∥∥∥
∑

l

∂{φlXi}
∥∥∥∥∥

2

L2
x(Σt)
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f C5

∑

l

‖∂{φlXi}‖2
L2

x(Σt)

f C4C5

(
∑

l

‖φl(F, H)‖2
L2

x(Σt)
+ ‖(∂φl)X‖2

L2
x(Σt)

)
.

(5.67)

For the first term on the right-hand side of (5.67), by (5.53), we have

∑

l

‖φl(F, H)‖2
L2

x(Σt)
=
∑

l

∫

Σt

(φl)
2(F 2 + H2)dx

f
∑

l

‖φl‖2
L∞(Σt)

∫

Σt∩{∂φl �=0}

(F 2 + H2)dx

f C6‖F, H‖2
L2

x(Σt)
. (5.68)

For the second term on the right-hand side of (5.67), we have

∑

l

‖(∂φl)X‖2
L2

x(Σt)
=
∑

l

∫

Σt

(∂φl)
2X2dx

f C7

∑

l

‖∂φl‖2
L∞(Σt)

∫

Σt∩{∂φl �=0}

X2dx

f C8‖X‖2
L2

x(Σt)
, (5.69)

where the last inequality holds for both (5.68) and (5.69) since for each x ∈ Σt,

there are finite many (at most 8) φl such that φl(x) �= 0.

Combining (5.67)–(5.69) and letting C := C4C5(C6 + C8), we conclude the

desired estimate.

Proof of Proposition 5.8. (5.15) is a direct result by substituting (X, F, H) in

(5.61) by (¸, Fη, (η)H) and using the schematic definition ¸ = ∂�Ψ, estimate (5.53).

Using (3.6), (5.16) can be proved in a similar fashion by using the following

interpolation estimate:

‖∂¸i‖2
HN−1(Σt)

f ‖∂2¸i‖2
L2

x(Σt)
+ C1

∑

ν

‖νN−2Pν(∂2¸i)‖2
L2

x(Σt)
, (5.70)

where we bound the first term on the right-hand side of (5.70) as follows:

‖∂2¸i‖L2
x(Σt) � ‖∂∂∂∂�Ψ, ∂C, ∂D‖L2

x(Σt) + ‖∂∂∂�Ψ‖3
H1(Σt)

. (5.71)

(5.71) is obtained by exactly the same method as in the proof of (5.15). That is,

substituting (X, F, H, C,D) in (5.61) by (∂¸, F∂η
, (∂η)H, ∂C, ∂D) and using (5.54),

we have

‖∂2¸i‖L2
x(Σt) f C‖∂∂∂2�Ψ, ∂ �C, ∂D‖L2(Σt) + Cα−1‖∂�Ψ‖2

H1(Σt)
‖∂¸‖L2(Σt)

+ Cα‖∂2¸‖L2(Σt). (5.72)
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We pick α small (Cα f 1
2 ) such that Cα‖∂2¸‖L2(Σt) can be soaked into the left-hand

side of (5.72).

Now we consider the second term on the right-hand side of (5.70).

Substituting (X, F, H) in (5.61) by (∂Pν¸, F∂Pνη, (∂Pνη)H), we have

‖∂2Pν¸i‖L2
x(Σt) � ‖∂Pν¸, F∂Pνη, (∂Pνη)H‖L2

x(Σt). (5.73)

Multiplying (5.73) by νN−2 and taking the l2ν norm, we have

‖νN−2Pν(∂2¸i)‖l2
ν

L2
x(Σt) � ‖νN−2(∂Pν¸, F∂Pνη, (∂Pνη)H)‖l2

ν
L2

x(Σt). (5.74)

By (5.74) and (5.55), we have

‖νN−2Pν(∂2¸i)‖l2
ν

L2
x(Σt) � (‖∂2�Ψ‖L2(Σt) + 1)‖∂2¸‖L2(Σt)

+ ‖∂∂∂2�Ψ, ∂ �C, ∂D‖HN−2(Σt). (5.75)

By (5.70), (5.71) and (5.75), we have proved (5.16).

5.1.3. Proof of Proposition 5.1

Proof. For N defined as in Sec. 3.4, we let

PN (t) :=
2∑

k=0

‖∂∂∂k(�Ψ, �ω, �S)‖2
HN−k(Σt)

+
1∑

k=0

‖∂∂∂k(�C,D)‖2
HN−k−1(Σt)

. (5.76)

In this proof, we derive integral inequalities for
∑2

k=0‖∂∂∂k�Ψ‖2
HN−k(Σt)

and
∑1

k=0‖∂∂∂k(�C,D)‖2
HN−k−1(Σt)

in PN (t), namely, (5.78), (5.82), (5.84), (5.85). We then

use elliptic estimates (5.15) and apply Grönwall’s inequality to all the terms in PN (t)

collectively.

The proof of Proposition 5.1 for �Ψ combines the vectorfield multiplier method

and Littlewood–Paley theory. That is, to derive the energy estimates at the top

order, one integrate (5.5) and applies the divergence theorem using the energy

current (T)J³[∂∂∂�Ψ] := Q³´[∂∂∂�Ψ]T´ −T³(∂∂∂�Ψ)2 and (T)J³[Pν∂∂∂�Ψ] := Q³´ [Pν∂∂∂�Ψ]T´ −
T³(Pν∂∂∂�Ψ)2 on the space-time region bounded by Σ0 and Σt. Then by Lemma 5.5

with ∂∂∂�Ψ and Pν∂∂∂�Ψ in a role of ϕ, we have, respectively

E[∂∂∂�Ψ](t) � E[∂∂∂�Ψ](0) +

∫ t

0

‖∂∂∂�Ψ‖L∞
x (Στ )E[∂∂∂�Ψ](τ)dτ

+

∫ t

0

‖�g∂∂∂�Ψ‖L2
x(Στ )[E[∂∂∂�Ψ](τ)]1/2dτ, (5.77a)
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E[Pν∂∂∂�Ψ](t) � E[Pν∂∂∂�Ψ](0) +

∫ t

0

‖∂∂∂�Ψ‖L∞
x (Στ )E[Pν∂∂∂�Ψ](τ)dτ

+

∫ t

0

‖�gPν∂∂∂�Ψ‖L2
x(Στ )[E[Pν∂∂∂�Ψ](τ)]1/2dτ. (5.77b)

Then we use Eq. (3.8a) to substitute for �g∂∂∂�Ψ, and we use Eq. (3.9a) �gPν∂∂∂�Ψ

to substitute for the right-hand side of (5.77b). Multiplying (5.77b) by ν2(N−2),

summing over ν and using (3.6), estimates (3.11) and Hölder’s inequality, we have

‖∂∂∂2�Ψ‖2
HN−2(Σt)

� ‖∂∂∂2�Ψ‖2
HN−2(Σ0) +

∫ t

0

‖∂∂∂�Ψ‖L∞
x (Στ )‖∂∂∂2�Ψ‖2

HN−2(Στ )dτ

+

∫ t

0

{‖∂(�C,D)‖HN−2(Στ )‖∂∂∂2�Ψ‖HN−2(Στ )

+ (‖∂∂∂(�Ψ, �ω, �S)‖L∞
x (Στ ) + 1)(‖∂∂∂(�Ψ, �ω, �S)‖HN−1(Στ ) + 1)

×‖∂∂∂2�Ψ‖HN−2(Στ )}dτ

� PN (0) +

∫ t

0

‖∂∂∂(�Ψ, �ω, �S)‖L∞
x (Στ )dτ

+

∫ t

0

(‖∂∂∂(�Ψ, �ω, �S)‖L∞
x (Στ ) + 1)PN (τ)dτ. (5.78)

For ‖∂∂∂�Ψ‖HN−1(Σt), we first have

‖∂∂∂�Ψ‖2
HN−1(Σt)

� ‖∂∂∂�Ψ‖2
L2

x(Σt)
+ ‖∂∂∂2�Ψ‖2

HN−2(Σt)
. (5.79)

Then by the fundamental theorem of calculus in time, Minkowski integral inequality

and smallness of T∗, we have

‖∂∂∂�Ψ‖2
L2

x(Σt)
=

∫

Σt

{
∂∂∂�Ψ(0, x) +

∫ t

0

∂t∂∂∂�Ψ(τ, x)dτ

}2

dx

� PN (0) + ‖∂∂∂2�Ψ‖2
HN−2(Σt)

. (5.80)

Similarly, we have

‖�Ψ‖HN (Σt) � PN (0) + ‖∂∂∂2�Ψ‖2
HN−2(Σt)

. (5.81)

Therefore, by adding (5.78)–(5.80), we have

2∑

k=0

‖∂∂∂k�Ψ‖2
HN−k(Σt)

� PN (0) +

∫ t

0

‖∂∂∂(�Ψ, �ω, �S)‖L∞
x (Στ )dτ

+

∫ t

0

(‖∂∂∂(�Ψ, �ω, �S)‖L∞
x (Στ ) + 1)PN (τ)dτ. (5.82)
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Now we derive top-order estimates for �C and D. We apply the energy estimates

(5.14) with ∂∂∂(�C,D) and Pν∂∂∂(�C,D) in a role of ϕ, respectively, to obtain

‖∂∂∂(�C,D)‖2
L2

x(Σt)
� ‖∂∂∂(�C,D)‖2

L2
x(Σ0) +

∫ t

0

‖∂∂∂�Ψ‖L∞
x (Στ )‖∂∂∂(�C,D)‖2

L2
x(Στ )dτ

+

∫ t

0

‖∂∂∂(�C,D)‖L2
x(Στ )‖B∂∂∂(�C,D)‖L2

x(Στ )dτ, (5.83a)

‖Pν∂∂∂(�C,D)‖2
L2

x(Σt)
� ‖Pν∂∂∂(�C,D)‖2

L2
x(Σ0) +

∫ t

0

‖∂∂∂�Ψ‖L∞
x (Στ )‖Pν∂∂∂(�C,D)‖2

L2
x(Στ )dτ

+

∫ t

0

‖Pν∂∂∂(�C,D)‖L2
x(Στ )‖BPν∂∂∂(�C,D)‖L2

x(Στ )dτ. (5.83b)

We use Eqs. (3.8b) and (3.8c) to substitute for B∂∂∂(�C,D), and we use Eqs. (3.9b)

and (3.9c) for BPν∂∂∂(�C,D) to substitute for the right-hand side of (5.83b). Multi-

plying (5.83b) by ν2(N−2), summing over ν and using (3.6), using estimates (3.11)

and elliptic estimates (5.15) and (5.16), we have

‖∂∂∂(�C,D)‖2
HN−2(Σt)

� ‖∂∂∂(�C,D)‖2
HN−2(Σ0) +

∫ t

0

‖∂∂∂�Ψ‖L∞
x (Στ )‖∂∂∂(�C,D)‖2

HN−2(Στ )dτ

+

∫ t

0

{‖∂(�C,D)‖HN−2(Στ )‖∂∂∂(�C,D)‖HN−2(Στ )

+ (‖∂∂∂(�Ψ, �ω, �S)‖L∞
x (Στ ) + 1)(‖∂∂∂(�Ψ, �ω, �S)‖HN−1(Στ ) + 1)

×‖∂∂∂(�C,D)‖HN−2(Στ )dτ}

� PN (0) +

∫ t

0

‖∂∂∂(�Ψ, �ω, �S)‖L∞
x (Στ )dτ

+

∫ t

0

(‖∂∂∂(�Ψ, �ω, �S)‖L∞
x (Στ ) + 1)PN (τ)dτ. (5.84)

For ‖�C,D‖HN−1(Σt), using the same method as in (5.79)–(5.82), by (5.84), we have

‖�C,D‖2
HN−1(Σt)

� PN (0) +

∫ t

0

‖∂∂∂(�Ψ, �ω, �S)‖L∞
x (Στ )dτ

+

∫ t

0

(‖∂∂∂(�Ψ, �ω, �S)‖L∞
x (Στ ) + 1)PN (τ)dτ. (5.85)

Combining (5.78), (5.82), (5.84), (5.85) and elliptic estimates (5.15) and (5.16), we

have

PN (t) � PN (0) +

∫ t

0

‖∂∂∂(�Ψ, �ω, �S)‖L∞
x (Στ )dτ

+

∫ t

0

(‖∂∂∂(�Ψ, �ω, �S)‖L∞
x (Στ ) + 1)PN (τ)dτ. (5.86)
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By bootstrap assumptions (3.17b) and (3.17c), Hölder inequality in time and

Grönwall’s inequality, we obtain the desired result.

5.2. Schauder estimates

In this section, we bound the Hölder norms of the modified fluid variables C,D and

the derivatives of vorticity and entropy gradient. Moreover, in Proposition 5.18, we

reduce the proof of the improvement of bootstrap assumption (3.17c) to the proof

of the improvement of bootstrap assumption (3.17b).

Theorem 5.18 (Improvements of the bootstrap assumptions for the vor-

ticity and entropy gradient). Let δ and δ1 be as in Sec. 3.4. Under the initial

data and bootstrap assumptions of Sec. 3, assuming the improved estimates in The-

orem 6.1 holds for ∂∂∂�Ψ, that is

‖∂∂∂�Ψ‖2
L2

tL∞
x ([0,T∗]×R3) +

∑

ν≥2

ν2·1‖Pν∂∂∂�Ψ‖2
L2

t L∞
x ([0,T∗]×R3) � T 2·

∗ , (5.87)

then the following estimates hold :
∑

ν≥2

ν·1‖Pν(∂�ω, ∂�S)‖2
L2

t L∞
x ([0,T∗]×R3) � T 2·

∗ . (5.88)

Remark 5.19. We emphasize that the proof of the Strichartz estimates

(6.1)/(5.87) is independent of (5.88). The additional frequency weights in the

Strichartz estimates in (5.87) are crucial in the Schauder estimates for the

“transport-part”. In particular, by (3.7) and (5.87), we have the following Strichartz

estimates in Hölder spaces:

‖∂∂∂�Ψ‖2

L2
tC

0,δ1
x ([0,T∗]×R3)

� T 2·
∗ . (5.89)

We will prove Theorem 5.18 in Sec. 5.3. In this section, we derive a Schauder-

type estimate in the following lemma.

Lemma 5.20. Let δ1 be as in Sec. 3.4. Under the initial data and bootstrap assump-

tions of Sec. 3, the following estimates hold :

‖∂∂∂�ω,∂∂∂�S‖
C

0,δ1
x (Σt)

� ‖∂∂∂�Ψ, �C,D‖
C

0,δ1
x (Σt)

+ 1. (5.90)

Proof of Lemma 5.20. We define the smooth function ψ1 = ψ1(|ξ|) : R3 → [0, 1]

such that ψ1(ξ) = 0 for 0 f |ξ| < 1
2 and ψ1(ξ) = 1 for |ξ| g 1.

By Littlewood–Paley theory (3.7) and (5.32) where ¸, F, G, H are the same as

in Proposition 5.9 and F , H are defined in Lemma 5.12 with X = ¸

‖∂s(φl¸i)‖Ċ
0,δ1
x (Σt)

≈ sup
ν≥2

‖ν·1Pν(∂sφl¸i)‖L∞
x

= sup
ν≥2

∥∥∥∥∥∥
C1ν

·1F−1

⎧
«

¬ψ(ν−1ξ)
ξs

(G−1)ab(xl)ξaξb
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×

⎛
¿ξiF̂

l
+
∑

k �=i

(G−1)jk(xl)ξjĤ
l

ki

À
⎠

«
¬

­

∥∥∥∥∥∥
L∞

x

f C1

∥∥∥∥F
−1

{
ψ1(ξ)

ξs

(G−1)ab(xl)ξaξb
ξiF̂

l
}∥∥∥∥

C
0,δ1
x (Σt)

+ C1

∑

k �=i

∥∥∥∥F
−1

{
ψ1(ξ)

ξs

(G−1)ab(xl)ξaξb
(G−1)jk(xl)ξjĤ

l

ki

}∥∥∥∥
C

0,δ1
x (Σt)

,

(5.91)

where C1 is a constant, F−1 is the inverse Fourier transform operator and ψ is

defined in Sec. 3.2.

Now let’s consider the first term in the right-hand side of last line of (5.91). For

each fixed s, i = 1, 2, 3, we define function ps,i(ξ) as follows:

ps,i(ξ) := ψ1(ξ)
ξsξi

(G−1)ab(xl)ξaξb
. (5.92)

The associated pseudodifferential operator p(Dξ; s, i) is defined by using Fourier

integral representation as follows:

ps,i(Dξ)f(x) :=

∫
ps,i(ξ)f̂(ξ)eixξdξ. (5.93)

By direct computation and positive definiteness of G which is showed in

Lemma 5.13, we have

|D³
ξ ps,i(ξ)| f C³´(1 + |ξ|2)

−|α|
2 . (5.94)

So ps,i(ξ) is in the Hörmander class S0
1,0 and ps,i(D) belongs to OPS0

1,0. By the

theory of pseudodifferential operators, we have ps,i(Dξ) : C0,·1
x → C0,·1

x . We refer

reader to [13, Chap. 18] for explicit definition of Hörmander class and [28, Propo-

sition 2.1.D] for the bounds of the operator ps,i(Dξ). Therefore

∥∥∥∥F
−1

{
ψ1(ξ)

ξs

(G−1)ab(xl)ξaξb
ξiF̂

l
}∥∥∥∥

C
0,δ1
x (Σt)

f C4(‖F l‖
C

0,δ1
x (Σt)

+ ‖F l‖L2
x(Σt)),

(5.95)

where C4 is a constant (independent of s, i, j, k, l). Similarly, we have

∑

k �=i

∥∥∥∥F
−1

{
ψ1(ξ)

ξs

(G−1)ab(xl)ξaξb
(G−1)jk(xl)ξjĤ

l

ki

}∥∥∥∥
C

0,δ1
x (Σt)

f C4

∑

k �=i

(‖H l
ki‖C

0,δ1
x (Σt)

+ ‖Hl
ki‖L2

x(Σt)). (5.96)
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Combining (5.91), (5.95) and (5.96), for any l, s, i, we have

‖∂s(φl¸i)‖Ċ
0,δ1
x (Σt)

f C1C4

⎛
¿‖F l‖

C
0,δ1
x (Σt)

+ ‖F l‖L2
x(Σt)

+
∑

k �=i

‖H l
ki‖C

0,δ1
x (Σt)

+ ‖Hl
ki‖L2

x(Σt)

À

⎠, (5.97)

where the constant C1, C4 is independent of l, s, i. By (5.33a)

‖F l‖
C

0,δ1
x (Σt)

f ‖φlF‖
C

0,δ1
x (Σt)

+ ‖G−1‖
C

0,δ1
x (Σt)

‖∂φl‖C
0,δ1
x (Σt)

‖¸‖
C

0,δ1
x (Σt)

+ sup
x∈B(xl,·2)

|(G−1)ab(x) − (G−1)ab(xl)|‖∂(φl¸)‖
C

0,δ1
x (Σt)

. (5.98)

By (5.33b)

‖Hl‖
C

0,δ1
x (Σt)

f ‖φlH‖
C

0,δ1
x (Σt)

+ 2‖∂φl‖C
0,δ1
x (Σt)

‖¸‖
C

0,δ1
x (Σt)

. (5.99)

For C2C3 as in (5.44), C1C4 as in (5.97), by Lemma 5.14, we let δ2 be small such

that for all x ∈ B(xl, δ2)

C1C4 sup
x∈B(xl,·2)

|(G−1)ab(x) − (G−1)ab(xl)| <
1

4
. (5.100)

Combining (5.97)–(5.100), absorbing last term in the right-hand side of (5.98) by

the left, using energy estimates (5.1), we have

‖∂(φl¸i)‖Ċ
0,δ1
x (Σt)

� ‖φlF‖
C

0,δ1
x (Σt)

+ ‖G−1‖
C

0,δ1
x (Σt)

‖∂φl‖C
0,δ1
x (Σt)

‖¸‖
C

0,δ1
x (Σt)

+ ‖φlH‖
C

0,δ1
x (Σt)

+ ‖∂φl‖C
0,δ1
x (Σt)

‖¸‖
C

0,δ1
x (Σt)

+ 1. (5.101)

Now note that

‖∂¸‖
Ċ

0,δ1
x (Σt)

= sup
x,y∈Σt

|∂¸(x) − ∂¸(y)|
|x − y|·1

= sup
x,y∈Σt

|∂ (
∑

l φl¸) (x) − ∂ (
∑

l φl¸) (y)|
|x − y|·1

f sup
x,y∈Σt

∑

φl(x) �=0 or φl(y) �=0

‖∂(φl¸)‖
Ċ

0,δ1
x (Σt)

. (5.102)

Note that for each x ∈ Σt, there are at most finitely many l’s (at most 16) such that

either φl(x) or φl(y) is nonzero. Hence by definition of G−1, F, H in (5.18), (5.101)

and (5.102)

‖∂¸‖
Ċ

0,δ1
x (Σt)

� ‖F‖
C

0,δ1
x (Σt)

+ ‖G−1‖
C

0,δ1
x (Σt)

‖¸‖
C

0,δ1
x (Σt)

+ ‖H‖
C

0,δ1
x (Σt)

+ ‖¸‖
C

0,δ1
x (Σt)

+ 1

� ‖∂∂∂�Ψ, �C,D‖
C

0,δ1
x (Σt)

+ 1. (5.103)
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We now bound ‖∂¸‖L∞
x (Σt). For any point z ∈ Σt, there is a y ∈ B(z, 1) such that

|∂¸(y)| f ‖∂¸‖L2
x(Σt), thus

|∂¸(z)| f |∂¸(y)| + 2‖∂¸‖
Ċ

0,δ1
x (Σt)

� ‖∂¸‖L2
x(Σt) + ‖∂¸‖

Ċ
0,δ1
x (Σt)

, (5.104)

that is

‖∂¸‖L∞
x (Σt) � ‖∂¸‖L2

x(Σt) + ‖∂¸‖
Ċ

0,δ1
x (Σt)

. (5.105)

Combining with Proposition 5.1, we have

‖∂¸‖
C

0,δ1
x (Σt)

� 1 + ‖∂∂∂�Ψ, �C,D‖
C

0,δ1
x (Σt)

. (5.106)

5.3. Estimates for ‖C, D‖
C

0,δ1
x (Σt)

via transport equations

and the Proof of Theorem 5.18

In this section, we first estimate the Hölder norm of the modified fluid variables.

We then prove Theorem 5.18. We will use the following lemma, which is a standard

estimate for transport equations with Hölder data and Hölder inhomogeneities.

Lemma 5.21. Let φ be a scalar function. If F ∈ C0,³
x (Στ ) with τ ∈ [0, t] and

Bφ = F, (5.107)

then

‖φ‖C0,α
x (Σt)

� ‖φ‖C0,α
x (Σ0) +

∫ t

0

‖F‖C0,α
x (Στ )dτ. (5.108)

Proof. Note that B0 = 1. Let γ be the integral curve of B such that

γi(0, x) = xi, (5.109)

γ0(t, x) = t, (5.110)

and

∂tγ
i(t, x) = Bi(t, γ). (5.111)

Then

|γi(t, x) − γi(t, y)| f |xi − yi| +
∫ t

0

Bi(τ, γ(τ, x)) − Bi(τ, γ(τ, y))dτ

f |xi − yi| +
∫ t

0

‖∂Bi‖L∞
x (Στ )|γ(τ, x) − γ(τ, y)|dτ. (5.112)

By Grönwall’s inequality, we have

|γ(t, x) − γ(t, y)|
|x − y| � exp

(∫ t

0

‖∂B‖L∞
x (Στ )dτ

)
. (5.113)
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Note that ‖∂B‖L∞
x (Στ ) ≈ ‖∂�Ψ‖L∞

x (Στ ). Similarly, considering γ̄(τ) := γ(t− τ) from

Σt to Σ0, we have

|x − y|
|γ(t, x) − γ(t, y)| � exp

(∫ t

0

‖∂B‖L∞
x (Στ )dτ

)
. (5.114)

Now we consider φ

∂t(φ ◦ γ) = F ◦ γ, (5.115)

then

φ ◦ γ(t, x) − φ ◦ γ(t, y)

= φ ◦ γ(0, x) − φ ◦ γ(0, y) +

∫ t

0

F (τ, γ(τ, x)) − F (τ, γ(τ, y))dτ. (5.116)

By (5.113), (5.114) and bootstrap assumption in Sec. 3.6, we have

|F (τ, γ(τ, x)) − F (τ, γ(τ, y))|
|γ(t, x) − γ(t, y)|³

=
|F (τ, γ(τ, x)) − F (τ, γ(τ, y))|

|γ(τ, x) − γ(τ, y)|³
|γ(τ, x) − γ(τ, y)|³
|γ(t, x) − γ(t, y)|³

� ‖F‖C0,α
x (Στ ). (5.117)

Proof of Theorem 5.18. Now we consider Eqs. (2.26a) and (2.26b)

BC³ = Q(�Ψ)[∂∂∂�Ψ, (∂∂∂ω,∂∂∂�S,∂∂∂�Ψ)] + Q(�S)[∂∂∂�Ψ,∂∂∂�Ψ] + L (�Ψ, �ω, �S)[∂∂∂�Ψ,∂∂∂�S],

(5.118a)

BD = L (�Ψ, �S)[∂∂∂ω] + Q(�Ψ)[∂∂∂�Ψ, (∂∂∂�S,∂∂∂�Ψ)] + Q(�S)[∂∂∂�Ψ,∂∂∂�Ψ] + L (�Ψ, �ω, �S)[∂∂∂�Ψ].

(5.118b)

By Lemma 5.21, we have

‖�C,D‖
C

0,δ1
x (Σt)

� 1 +

∫ t

0

(‖∂∂∂�Ψ‖
C

0,δ1
x (Στ )

+ 1)‖∂∂∂�Ψ,∂∂∂�ω,∂∂∂�S‖
C

0,δ1
x (Στ )

dτ.

(5.119)

By (5.90), bootstrap assumptions and Grönwall’s inequality, we have

‖�C,D‖
C

0,δ1
x (Σt)

� 1. (5.120)

Integrating (5.90) in time, we have
∫ t

0

‖∂∂∂�ω,∂∂∂�S‖2

C
0,δ1
x (Σt)

dt �

∫ t

0

1 + ‖∂∂∂�Ψ, �C,D‖2

C
0,δ1
x (Σt)

dt. (5.121)
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If (5.87) holds, using (5.120), the bootstrap assumption (3.17b) and the standard

results in Littlewood–Paley (3.7), (5.88) is obtained by following estimate:
∫ t

0

‖∂∂∂�ω,∂∂∂�S‖2

C
0,δ1
x (Σt)

dt �

∫ t

0

1 + ‖∂∂∂�Ψ, �C,D‖2

C
0,δ1
x (Σt)

dt

f T 2·
∗ + T∗ � T 2·

∗ . (5.122)

6. Reduction of Strichartz Estimates and the Rescaled Solution

In this section, we state our main estimates as Theorem 6.1, which are the improve-

ment of the bootstrap assumption (3.17b). We then provide a series of analytic

reductions from the Strichartz estimates of Theorem 6.1 to the decay estimates of

Theorem 6.9. We are quite terse in this section since the full proofs of these reduc-

tions are lengthy and difficult, yet standard. We refer readers to [11, 30, 16] for the

detailed proofs.

Theorem 6.1 (Improvement of the Strichartz-type bootstrap assumptions

for the wave variables). If δ > 0 is sufficiently small as in Sec. 3.4, then under

the initial data and bootstrap assumptions of Sec. 3, the following estimates holds

with a number 8δ0 < δ1 < N − 2:

‖∂∂∂�Ψ‖2
L2

t L∞
x ([0,T∗]×R3) +

∑

ν≥2

ν2·1‖Pν∂∂∂�Ψ‖2
L2

t L∞
x ([0,T∗]×R3) � T 2·

∗ . (6.1)

We first reduce the proof of Theorem 6.1 to the proof of Strichartz estimates on

small time intervals.

6.1. Partitioning of the bootstrap time interval

Let λ be a fixed large number and let 0 < ε0 < N−2
5 be a fixed number as mentioned

in Sec. 3.4. By the bootstrap assumptions, we canl partition [0, T∗] into disjoint

union of sub-intervals Ik := [tk−1, tk] of total number � λ8¸0 with the properties

that |Ik| f λ−8¸0T∗ and

‖∂∂∂�Ψ‖2
L2

tL∞
x (Ik×R3) +

∑

ν≥2

ν2·0‖Pν∂∂∂�Ψ‖2
L2

t L∞
x (Ik×R3) � λ−8¸0 , (6.2a)

‖∂�ω, ∂�S‖2
L2

tL∞
x (Ik×R3) +

∑

ν≥2

ν2·0‖Pν(∂�ω, ∂�S)‖2
L2

t L∞
x (Ik×R3) � λ−8¸0 . (6.2b)

Now we reduce Theorem 6.1 to a frequency-localized estimate.

Theorem 6.2 (Frequency-localized Strichartz estimate). Let ϕ be a solu-

tion of

�gϕ = 0, (6.3)

lThe existence of such partition easily follows from the bootstrap assumptions, see [16, Remark 1.3].
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on the time interval Ik. Then for any q > 2 sufficiently close to 2 and any

τ ∈ [tk, tk+1], under the bootstrap assumptions, we have the following estimate:

‖Pλ∂∂∂ϕ‖Lq
t L∞

x ([τ,tk+1]×R3) � λ
3
2−

1
q ‖∂∂∂ϕ‖L2

x(Στ ). (6.4)

6.1.1. Discussion of the reduction to Theorem 6.2 from Theorem 6.1

The proof reducing Theorem 6.1 to Theorem 6.2 is exactly the same as the proof

of [11, Theorem 7.2]. The reason is that the proof relies only on: (1) Duhamel’s

principle; (2) top-order energy estimates (5.1) which is the same as in [11] and (3)

Littlewood–Paley estimates for the inhomogeneous terms in a frequency-projected

version of the wave equations, and the wave equations in this paper have an identical

schematic form to the ones in [11].

6.2. Rescaled quantities and rescaled relativistic Euler equations

In this section, in order to do further reductions, we consider the following coordi-

nate change (t, x) �→ (λ(t − tk), λx). Let

T∗;(λ) := λ(tk+1 − tk). (6.5)

Note that by construction

0 f T∗;(λ) f λ1−8¸0T∗. (6.6)

Definition 6.3 (Rescaled quantities). First we define the following variables:

�Ψ(λ)(t, x) := �Ψ(tk + λ−1t, λ−1x), (6.7a)

�ω(λ)(t, x) := �ω(tk + λ−1t, λ−1x), (6.7b)

�Sκ
(λ)(t, x) := �Sκ(tk + λ−1t, λ−1x), (6.7c)

θ(λ) := θ(tk + λ−1t, λ−1x), (6.7d)

c(λ) := c(tk + λ−1t, λ−1x), (6.7e)

C³
(λ) := vort³((ω�)(λ)) + c−2

(λ)ε
³´γ·((v�)(λ))´(∂γh(λ))(ω�)(λ)· + (θ(λ) − (θ;h)(λ))

× (S	)³
(λ)(∂κ(v�)

κ
(λ)) + (θ(λ) − (θ;h)(λ))(v�)

³
(λ)((S

	)κ
(λ)∂κh(λ)) − (θ(λ)

− (θ;h)(λ))(S
	)κ

(λ)((M
−1)³λ∂λ(v�)(λ)κ), (6.7f)

D(λ) :=
1

n
(∂κ(S	)κ

(λ)) +
1

n
((S	)κ

(λ)∂κh(λ)) −
1

n
c−2((S	)κ

(λ)∂κh(λ)). (6.7g)

Then we define the following rescaled tensorfields:

(g(λ))³´(t, x) := g³´(�Ψ(λ)(t, x)), (6.8a)

(g(λ))³´(t, x) := g³´(�Ψ(λ)(t, x)), (6.8b)

B³
(λ)(t, x) := B³(�Ψ(λ)(t, x)). (6.8c)
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Remark 6.4. We note that after rescaling, the new initial constant-time hyper-

surface Σ0 corresponds to the constant-time hypersurface that was denoted by Σtk

for some k in Secs. 1–5.

The following proposition provides the equations satisfied by the rescaled quan-

tities. We omit the straightforward proof.

Proposition 6.5 (The rescaled geometric wave–transport formulation of

the relativistic Euler equations). For Ψ ∈ {v0, v1, v2, v3, h, s}, after rescaling,

we have the following equations inherited from Proposition 2.17:

Wave equations:

�g(λ)
Ψ(λ) = λ−1

L (�Ψ(λ))[�C(λ),D(λ)] + Q(�Ψ(λ))[∂∂∂�Ψ(λ),∂∂∂�Ψ(λ)]. (6.9)

Transport equations:

B(λ)ω
³
(λ) = L (�Ψ(λ), �ω(λ), �S(λ))[∂∂∂�Ψ(λ)], (6.10a)

B(λ)(S
	)³

(λ) = L (�Ψ(λ), �S(λ))[∂∂∂�Ψ(λ)]. (6.10b)

Transport-Div-Curl system:

B(λ)C³
(λ) = Q(�Ψ(λ))[∂∂∂�Ψ(λ), (∂∂∂ω(λ),∂∂∂�S(λ),∂∂∂�Ψ(λ))]

+ L (�Ψ(λ), �ω(λ), �S(λ))[∂∂∂�Ψ(λ),∂∂∂�S(λ)], (6.11a)

B(λ)D(λ) = L (�S(λ), �Ψ(λ))[∂∂∂ω(λ)] + Q(�Ψ(λ))[∂∂∂�Ψ(λ), (∂∂∂ �S(λ),∂∂∂�Ψ(λ))]

+ L (�Ψ(λ), �ω(λ), �S(λ))[∂∂∂�Ψ(λ),∂∂∂�S(λ)], (6.11b)

vort³(S	
(λ)) = 0, (6.11c)

∂³ω³
(λ) = L (ω(λ))[∂∂∂�Ψ(λ)]. (6.11d)

Remark 6.6. For notation convenience, in the remainder of the paper, we drop

the sub and super scripts (λ) except for the rescaled time T∗;(λ).

6.2.1. Consequences of the bootstrap assumptions

After rescaling in Sec. 6.2, assuming bootstrap assumptions (3.17b) and (3.17c), as

in [11, Sec. 10.2.1], by standard computation based on Littlewood–Paley calculus,

we have the following consequences of the bootstrap assumptions:

Estimates by using bootstrap assumptions of variables:

‖∂∂∂�Ψ,∂∂∂�ω,∂∂∂�S, �C,D‖L2
t L∞

x (M)

+ λ·0

√∑

ν>2

ν2·0‖Pν(f(�Ψ, �ω, �S)(∂∂∂�Ψ,∂∂∂�ω,∂∂∂�S, �C,D))‖2
L2

t L∞
x (M)

� λ−1/2−4¸0 . (6.12)
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6.3. Further reduction of the Strichartz estimates

By the rescaling in Sec. 6.2 and direct computation, to prove Theorem 6.2, it is

equivalent to show the following Strichartz estimate on [0, T∗;(λ)] with respect to

LP projection on the frequency domain {1/2 f |ξ| f 2}.

Theorem 6.7. Under the bootstrap assumptions. For any solution ϕ of �gϕ = 0

on the slab [0, T∗;(λ)] × R3, the following estimates holds:

‖P1∂∂∂ϕ‖Lq
t L∞

x ([0,T∗;(λ)]×R3) � ‖∂∂∂ϕ‖L2
x(Σ0), 1, (6.13)

where q > 2 is sufficiently close to 2 and g is the rescaled metric g(λ) defined in

(6.8a).

The proof of Theorem 6.7 crucially relies on the following decay estimate.

Theorem 6.8 (Decay estimate). There exists a large number Λ such that for

any λ g Λ and any solution ϕ of the equation �gϕ = 0 on [0, T∗;(λ)] × R3, there is

a function d(t) satisfying

‖d‖
L

q
2
t ([0,T∗;(λ)])

� 1, (6.14)

for q > 2 sufficiently close to 2 such that for any t ∈ [0, T∗;(λ)], the following decay

estimate holdsm:

‖P1Tϕ‖L∞
x (Σt) �

(
1

(1 + t)
2
q

+ d(t)

)(
3∑

m=0

‖∂mϕ‖L1
x(Σ0) +

2∑

m=0

‖∂m∂tϕ‖L1
x(Σ0)

)
.

(6.15)

The proof of Theorem 6.7 using Theorem 6.8 is based on a T T ∗ argumentn (see

[16, Sec. 8.6; 17, Sec. 8.30]).

Theorem 6.8 can be further reduced to the following spatially localized version.

Theorem 6.9 (Spatially localized version of decay estimate). There exists a

large number Λ such that for any λ g Λ and any solution ϕ of the equation �gϕ = 0

on [0, T∗;(λ)] × R3 with ϕ(1, x) supported in the Euclidean ball BR, where radius R

is a fixed radiuso such that

BR(p) ⊂ B 1
2
(p, g(λ)), ∀ p ∈ Σt, 0 f t f T∗;(λ), (6.16)

where Bρ(p, g(λ)) is the geodesic ballp centered at p with radius ρ and g(λ) is the

rescaled induced metric of g on Σt (defined in (6.8b)), there is a function d(t)

m
T� = −dt, see Definition 2.11 for the definition of T.

nThis argument comes from functional analysis, which does not require the structure of the rela-
tivistic Euler equations.
oThe radius R will be used in the following sections as well with the same definition. The existence
of such an R is guaranteed by properties of g, namely, (2.20b), that ensures g is comparable to
the Euclidean metric on Σt under the bootstrap assumptions.
pThe notation Bρ(p, g(λ)) will be used in the remainder of the paper. This is consistent with the
notation that is used in [11, 30].
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satisfying

‖d‖
L

q
2
t ([0,T∗;(λ)])

� 1, (6.17)

for q > 2 sufficiently close to 2 such that for any t ∈ [0, T∗;(λ)], there holds

‖P1Tϕ‖L∞
x (Σt) �

(
1

(1 + |t − 1|) 2
q

+ d(t)

)
(
‖∂∂∂ϕ‖L2

x(Σ1) + ‖ϕ‖L2
x(Σ1)

)
. (6.18)

The proof of Theorem 6.8 using Theorem 6.9 can be done via an approach

involving the Bernstein inequalities of LP projection, partition of unityq of ϕ and

Sobolev embedding W 2,1 ↪→ L2. We refer readers to [16, Sec. 8.5] for detailed proof.

To summarize, in this section we have reduced Theorem 6.1 to Theorem 6.9.

To further reduce the estimates, we need to introduce the geometric setup. We will

discuss the proof of Theorem 6.9 in Sec. 7.3.

7. Geometric Setup and Conformal Energy

In this section, we first construct acoustic geometry. It is deeply coupled with the

relativistic Euler equations (via acoustic metric g) and is crucial in our analysis.

Then we provide the conformal energy and its estimates in Sec. 7.3.

Definition 7.1 (Christoffel symbols). We define the Christoffel symbols ΓΓΓ³κλ

and ΓΓΓ´
κλ with the rescaled metric g to be as follows:

ΓΓΓ³κλ :=
1

2
(∂κg³λ + ∂λg³κ − ∂³gκλ), (7.1)

ΓΓΓ´
κλ := g³´ΓΓΓ³κλ. (7.2)

7.1. Construction of the acoustical function

The goal of this section is to construct the geometry based on a solution u to the

acoustical eikonal equationr

g³´∂³u∂´u = 0. (7.3)

7.1.1. Point z and integral curve γz(t)

Let z ∈ Σ0 be an arbitrarily fixed points in the rescaled space-time [0, T∗;(λ)]× R3,

where T∗;(λ) is defined in (6.5). We let γz(t) denote the integral curve of the future-

directed vectorfield T emanating from the point z. We say γz(t) is the cone-tip axis.

Specifically, the point z depends on the partition of unity of Σ1 used in the proof

of Theorem 6.8 using Theorem 6.9. More specifically, z is going to be the tip of the

qWe take a sequence of Euclidean balls {BI} of radius R such that their union covers R
3. For each

ball BR, it is centered at γz(1) (defined in Sec. 7.1.2) for some z.
rFor more details of the geometric construction of u, we refer reader to [8, Chaps. 9 and 14].
sNote that in the original space-time [0, T∗] × R

3, z is a point at Σtk for some k.
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cone (constructed in Sec. 7.1.2) such that γz(1) is the center of the Euclidean ball

BR (as in Theorem 6.9). We note that the estimates, constants and parameters in

Secs. 7 and 8 are independent of z.

7.1.2. The interior and exterior solution u

The interior solution u. We let {Lω|z}ω∈S2 be the family of null vectors

(parametrized by S2, where the parametrization will be uniquely determined in the

paragraph of the exterior solution u) in the tangent space TzM and 〈Lω|z,T〉 = −1.

To propagate Lω along the cone-tip axis γz(t), for any p ∈ γz(t) (as defined in

Sec. 7.1.1) and ω ∈ S2, we define Lω|p by solving the parallel transport equa-

tion DTLω = 0. We note that for any p ∈ γz(t), 〈Lω|p,T〉 = −1 since T is

geodesic. Then for each u ∈ [0, T∗;(λ)] and ω ∈ S2, there exists a unique null geodesic

Υu,ω(t), where t ∈ [u, T∗;(λ)], emanating from p = γz(u) with d
dtΥu,ω|t=u = Lω and

Υ0
u,ω(t) = t. Specifically, Υu,ω(t) is constructed by solving the following “geodesic”

ODE systemt:

Ϋ³
u,ω(t) = −ΓΓΓ³

κλ|Υu,ω(t)Υ̇
κ
u,ω(t)Υ̇λ

u,ω(t) +
1

2
[LTg]κλ|Υu,ω(t)(Υ̇

κ
u,ω(t)

−Tκ|Υu,ω(t))(Υ̇
λ
u,ω(t) − Tλ|Υu,ω(t))Υ̇

³
u,ω(t), (7.4a)

Υ³
u,ω(u) = γ³

z (u), Υ̇³
u,ω(u) = L³

ω, (7.4b)

where Ϋ³
u,ω := d2

dt2 Υ³
u,ω, Υ̇³

u,ω := d
dtΥ

³
u,ω, ΓΓΓ is the Christoffel symbol of g and LTg

is the Lie derivative of g with respect to T. The curve t → Υu,ω(t) is a non-affinely

parametrized null geodesic such that the vectorfield L³
u,ω := d

dtΥ
³
u,ω is null and

normalized by L0
u,ω = 1. In fact, this vectorfield coincides (in the interior region)

with the vectorfield L defined in (7.12). We define the truncated null cone Cu to

be Cu :=
⋃

ω∈S2,t∈[u,T∗;(λ)]
Υu,ω(t). We define the acoustical function u by asserting

that its level sets {u = u′} are Cu′ . For u ∈ [0, T∗;(λ)] and t ∈ [u, T∗;(λ)], we let

St,u := Cu ∩ Σt. For u �= t, St,u is a smooth surface diffeomorphic to S2. We define

M(Int) :=
⋃

t∈[0,T∗;(λ)],0≤u≤t St,u. For each ω ∈ S2 and u ∈ [0, T∗;(λ)], we define

the angular coordinate functions {ωA}A=1,2 to be constant along each fixed null

geodesics Υu,ω(t) and to coincide with standard angular coordinates on S2 at the

tip p, which corresponds to t = u.

The exterior solution u. Now we extend the foliation of space-time by null

hypersurfaces to a neighborhood of
⋃

t∈[0,T∗;(λ)],0≤u≤t St,u in [0, T∗;(λ)] × R3. Let

w∗ = 4
5T∗;(λ). Using the arguments in [25], we can guaranteeu that there is a

tSee [11, Sec. 9.4.1] for detailed explanation of this ODE system where T coincide with B.
uThe existence of w-foliation for w ∈ [0, ε] with a small ε > 0 can be proven by Nash–Moser
implicit function theorem and such foliation can be extended to w∗ by an argument of continuity
(see [25]).
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neighborhood O ∈ Σ0 contained in the geodesic ball BT∗;(λ)
(z, g(λ)), where g(λ)

is the frequency rescaled induced metric of g on Σ0 defined in (6.8b), such that O

can be foliated by the level sets S0,−w of a positive function w taking all values in

[0, w∗] with w(z) = 0 and each S0,−w for positive w is diffeomorphic to S2. Fix a

diffeomorphism ω → Φω(w∗) from S2 to S0,−w∗ . Then for each point p = Φω(w∗),

denoting the lapse a := ((g−1)cd∂cw∂dw)−
1
2 with a(z) = 1 and a ≈ 1; see Proposi-

tion 8.8 (we note that the proof of Proposition 8.8 is independent of the construction

of u), there is a unique integral curvev w → Φω(w) of the vectorfield a2(g−1)ic∂cw

in Σ0 with Φω(w∗) = p and such that this integral curve can be extended to z, i.e.

Φω(0) = z (the extendibility of Φω to z follows by estimates (8.27h) and the funda-

mental theorem of calculus). Denoting Φ̇ω := d
dwΦω, we then define Nω|z := Φ̇ω(0)

and Lω|z := Nω|z + T|z. Note that the diffeomorphism ω → Lω|z is uniquely

determined by the vectorfield a2(g−1)ic∂cw, and it is precisely this diffeomorphism

that appears in our construction of the interior solution described above, since

〈Nω|z + T|z,T|z〉 = −1 and 〈Nω|z + T|z, Nω|z + T|z〉 = 0 (because of a(z) = 1).

By such construction, for each w ∈ (0, w∗] and any p ∈ S0,−w, there exists a ω ∈ S2

such that p = Φω(w) and such that the outward unit normal (in Σ0) to S0,−w at p

is Nw,ω := Φ̇ω(w). We set Lw,ω := Nw,ω+T|Φω(w), which is a null vector in TpM.

Then with u = −w, there is a unique (non-affinely parametrized) null geodesic Υu,ω

emanating from p and solving (7.4a) with the initial condition d
dtΥu,ω|t=0 = L−u,ω

and Υu,ω(0) = p. We define the null cone Cu to be Cu :=
⋃

ω∈S2,t∈[0,T∗;(λ)]
Υu,ω(t).

We define the acoustical function u by asserting that its level sets {u = u′} are Cu′ .

Let St,u := Cu ∩ Σt. We note that Cu’s are the outgoing truncated null cones, that

is, Cu :=
⋃

t∈[0,T∗;(λ)]
St,u. We define M(Ext) :=

⋃
t∈[0,T∗;(λ)],u∈[−w∗,0) St,u. For each

ω ∈ S2 and u ∈ [−w∗, 0), we define the angular coordinate functions {ωA}A=1,2 to

be constant along null geodesics Υu,ω(t) and to coincide with the angular coordi-

nates {ωA}A=1,2 on Σ0 provided by the above construction; note that on Σ0\{z},
by construction, the angular coordinate functions {ωA}A=1,2 are constant along

the integral curves of the vectorfield a2(g−1)ic∂cw.

We define the space-time region M as follows:

M = M(Int) ∪M(Ext). (7.5)

By the constructions above, we have constructed the geometric coordinates

(t, u, ωA) in M.

See Fig. 1 for the figure of the geometry.

7.2. Geometric quantities

Definition 7.2 (The radial variable). Recall that

0 f T∗;(λ) f λ1−8¸0T∗. (7.6)

vThe existence and uniqueness of such integral curve are ensured by the estimates on Σ0 in
Proposition 8.8. We refer readers to [11, Sec. 9.4.2] for details.
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Fig. 1. The geometric construction out of acoustical function.

We define the geometric radial variable r̃ as follows:

r̃ := t − u. (7.7)

Since we have that t ∈ [0, T∗;(λ)] and u ∈ [−w∗, t] in M, where w∗ := 4
5T∗;(λ),

we have

0 f r̃ < 2T∗;(λ) = 2λ1−8¸0T∗, −4

5
λ1−8¸0T∗ f u f λ1−8¸0T∗. (7.8)

We will silently use estimates (7.8) throughout the paper.

Definition 7.3 (Acoustic vectorfields and scalar functions). We define the

null vectorfield

L(Geo) := −g³´∂´u∂³. (7.9)

Note that by (7.3), we have DL(Geo)
L(Geo) = 0.

We define the null lapse b as follows:

b := (
√

gij∂iu∂ju)−1. (7.10)

We define the vectorfield N as follows:

N := −bgij∂iu∂j. (7.11)

Note that N |Σ0 = Nω, where Nω is define in Sec. 7.1.

We define the principal null vectorfields L and L as follows:

L := T + N, L := T − N. (7.12)
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Note that by Definition 2.12 and (7.3), we have identity Tu = |∇u|g = 1
b . Then

we have

L = bL(Geo). (7.13)

We have following basic properties:

〈T,T〉 = −1, 〈N, N〉 = 1, (7.14a)

〈T, N〉 = 0, 〈L, L〉 = 0, (7.14b)

〈L, L〉 = −2, 〈L, L〉 = 0. (7.14c)

We define g/ to be as follows:

(g/−1)³´ := g³´ +
1

2
L³L´ +

1

2
L³L´. (7.15)

It is easy to check that g/ is an induced metric of g on St,u. We denote a pair of

unit orthogonal spherical vectorfieldsw on St,u by {eA}A=1,2 such that (g/−1)³´ =
∑

A=1,2 e³
Ae´

A. We call L, L, e1, e2 a null frame for the geometry.

We denote the Levi-Civita connection on St,u with respect to g/ by ∇/ .

As we discussed in Sec. 7.1, the angular coordinate functions {ωA}A=1,2 satisfy

the equation L(ωA) = 0 along null cones. By this construction of angular coordi-

nates, with respect to geometric coordinates (t, u, ωA), we have

L =
∂

∂t
, N = −b−1 ∂

∂u
+ Y A ∂

∂ωA
. (7.16)

By construction in Sec. 7.1.2, Y A = 0 on Σ0.

Definition 7.4 (St,u-tangent tensorfields). We define the g-orthogonal projec-

tion Π/ onto St,u, where δ³
´ is the Kronecker delta, as follows:

Π/ ³
´ := δ³

´ +
1

2
L³L´ +

1

2
L³L´ . (7.17)

We use the notation |ξ|g/ to denote the norm of the St,u-tangent tensorfield ξ

with respect to g/, that is

|ξ|2g/ := g/(ξ, ξ). (7.18)

We use trg/ξ to denote the trace of a
(
0
2

)
St,u-tangent tensorfield ξ with respect

to g/

trg/ξ := g/ABξAB. (7.19)

We define ξ̂ to be the trace-free part of the
(
0
2

)
St,u-tangent tensorfield ξ

ξ̂ := ξ − 1

2
(trg/ξ)g/. (7.20)

wIn the rest of the paper, we automatically sum over A if there are two A’s in the expression.
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7.3. Conformal energy

We setup the conformal energy method that was introduced by Wang in [30]. In

order to give the definition of our conformal energy, we define two smooth cut-off

functions 
 and 
 that depend only on t and u as follows:


 =

⎧
«
¬

1 on 0 f u f t,

0 on u f − t

4
,


 =

⎧
⎪⎪«
⎪⎪¬

1 on 0 f u f 1

2
t,

0 if u g 3

4
t or u f − t

4
.

Definition 7.5 ([30, Sec. 4, Conformal energy]). For any scalar ϕ vanishing

outside M(Int), we define the conformal energy C[ϕ]as follows:

C[ϕ](t) = C(i)[ϕ](t) + C(e)[ϕ](t), (7.21)

where

C(i)[ϕ](t) =

∫

Σt

(
 − 
)t2(|Dϕ|2 + |r̃−1ϕ|2)d�g, (7.22a)

C(e)[ϕ](t) =

∫

Σt


(r̃2|DLϕ|2 + r̃2|∇/ ϕ|2 + |ϕ|2)d�g. (7.22b)

The main result of C[ϕ](t) is the following.

Theorem 7.6 (Boundedness theorem). Let ϕ be any solution of �gϕ = 0 on

[0, T∗;(λ)] × R3 with ϕ(1) supported in BR ⊂ M(Int) ∩ Σ1. Then under bootstrap

assumptions, for t ∈ [1, T∗;(λ)], the conformal energy of ϕ satisfies the estimate

C[ϕ](t) � (1 + t)2¸(‖∂∂∂ϕ‖2
L2

x(Σ1) + ‖ϕ‖2
L2

x(Σ1)), (7.23)

where ε > 0 is an arbitrary small number.

7.3.1. Reduction of Theorem 6.9

The proof of Theorem 6.9 by using Theorem 7.6 is done via product estimates and

the Bernstein inequality of Littlewood–Paley theory. We refer reader to [16, Sec. 8;

30, Sec. 4] for the detailed proof.

7.3.2. Discussion of the proof of Theorem 7.6

Logically speaking, the proof of Theorem 7.6 relies on the control of the acoustic

geometry derived in Proposition 8.10. However, Proposition 8.10 is logically inde-

pendent of Theorem 7.6, so here we discuss the proof of Theorem 7.6, assuming that

we have already controlled the acoustic geometry. In order to obtain an estimate

for the conformal energy, we choose Θ to be as follows:

Θ := r̃−1f := r̃−1

(
β − β

(1 + r̃)³

)
, (7.24)
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where βα = 2 and r̃ is as in (7.7). We introduce the modified weighted energy

Q̃[ϕ](t) =

∫

Σt

(X )̃Jμ[ϕ]Tμdx, (7.25)

where (X )̃Jμ[ϕ] is the modified energy current

(X )̃Jμ[ϕ] = Qμν [ϕ]Xμ +
1

2
Θ∂μ(ϕ2) − 1

2
ϕ2∂μΘ. (7.26)

By choosing X = fN and using the divergence theorem for the modified current

on an appropriate region, one can derive a Morawetz-type energy estimate. This

provides the uniform bounds for the standard energy of ϕ along a union of a portion

of the constant-time hypersurfaces and null cones.

Then we consider the conformal wave equation �g̃(e−σϕ) = · · · , where ϕ

satisfies �gϕ = 0, σ and g̃ are defined in Definition 8.5. We use the multiplier

approach with r̃pL-type vectorfields in the region {τ1 f u f τ2} ∩ {r̃ g R} where

1 f τ1 < τ2 < T∗;(λ) to control the conformal energy in the exterior region and

to provide energy decay along null slices. Finally we control the conformal energy

in the interior region with the help of the argument in [10], where energy decay is

obtained in each spatial-null slice.

The proof of Theorem 7.6 closes the reduction of the Strichartz estimate. One

could follow the steps listed in [11, Sec. 11] to obtain the estimates of conformal

energy with the control of Ricci coefficients given in Sec. 8. One could go through

the details of the argument in [30, Sec. 7]. Also reader could look into [15, Sec. 3]

for initial ideas.

8. Energy along Acoustic Null Hypersurfaces and Control

of the Acoustic Geometry

In this section, we prove the energy estimates along acoustic null hypersurfaces,

which is necessary for obtaining the mixed-norm estimates in Proposition 8.10.

Then we introduce the notation for many geometric quantities, followed by their

bootstrap assumptions. Their improved estimates are in Sec. 8.4. The proof of

estimates for geometric quantities is obtained by transport equation and div-curl

estimates for the acoustic quantities, decomposition of Ricci curvature components,

trace and Sobolev inequalities. We omit the proof of these estimates since they are

the same as in [11, Sec. 10].

8.1. Energy estimates along acoustic null hypersurfaces

In this section, we define acoustic null fluxes and derive energy estimates along

acoustic null hypersurfaces. These estimates are necessary for deriving the mixed-

norm estimates for the acoustical function quantities in Proposition 8.10.
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Definition 8.1 (Acoustic null fluxes). For functions ϕ defined on Cu, we define

the acoustic null fluxes F(wave)[ϕ; Cu] and F(transport)[ϕ; Cu] as follows:

F(wave)[ϕ; Cu] :=

∫

Cu

((Lϕ)2 + |∇/ ϕ|2g/)d�g/dt, (8.1)

F(transport)[ϕ; Cu] :=

∫

Cu

ϕ2d�g/dt, (8.2)

where d�g/ is the volume form of reduced metric g/ on the St,u-sphere from g.

Proposition 8.2 (Energy estimates along acoustic null hypersurfaces).

Under the initial data, bootstrap assumptions and the standard energy estimates

Proposition 5.1, we have the following estimates along null hypersurfaces Cu for

u ∈ [−w∗, T∗;(λ)]:

F(wave)[∂∂∂�Ψ; Cu] +
∑

ν>1

ν2(N−2)F(wave)[Pν∂∂∂�Ψ; Cu] � λ−1, (8.3)

F(transport)[∂∂∂(�C,D); Cu] +
∑

ν>1

ν2(N−2)F(transport)[Pν∂∂∂(�C,D); Cu] � λ−1. (8.4)

Proof of Proposition 8.2. We first prove (8.3). We apply the divergence theo-

rem to the energy current (T)P³[ϕ] := Q³´[ϕ]T´ , where Q³´ is the energy momen-

tum tensor defined in (5.3), over the region bounded by Cu, Σt0 and Σt where

t0 := max{0, u} (see Fig. 2 for the region that divergence theorem applied). Note

that D³
(T)J³[ϕ] = �gϕ(Tϕ) + 1

2Qμν [ϕ](T)πππμν where (T)πππμν is define in (5.4). The

same proof of Lemma 5.4 reveals the coercivity (T)P³[ϕ] = Q00 ≈ |∂∂∂ϕ|2. It is

straightforward to check that (T)P³[ϕ]L³ = ((Lϕ)2 + |∇/ ϕ|2g/). Thus we have

F(wave)[ϕ; Cu] =

∫

Σt

|∂∂∂ϕ|2d�g −
∫

Σt0

|∂∂∂ϕ|2d�g

+

∫
⋃

u′≥u Cu′

(
�gϕ(Tϕ) +

1

2
Qμν [ϕ](T)πππμν

)
d�g. (8.5)

(a) When t0 > 0. (b) When t0 = 0.

Fig. 2. The regions that the divergence theorem is applied on.
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Note that �Ψ are rescaled quantities defined in Definition 6.3. By bootstrap

assumptions (3.17b), we have |Tϕ| � |∂∂∂ϕ|, |Qμν [ϕ]| � |∂∂∂ϕ|2 and |(T)πππμν | �

|∂∂∂�Ψ| + 1. Next we substitute ∂∂∂�Ψ and Pν∂∂∂�Ψ for ϕ, and use Eqs. (3.8a) and

(3.9a) to substitute �g∂∂∂�Ψ and �gPν∂∂∂�Ψ. By Cauchy–Schwarz inequality, estimate
∫
⋃

u′≥u Cu′
�gϕ(Tϕ)d�g f

∫ T∗;(λ)

0

∫
Στ

|�gϕ||Tϕ|d�gdτ , and energy estimates in

Proposition 5.1, we obtain the desired estimates.

To prove (8.4), for each β = 0, 1, 2, 3, we apply divergence theorem for energy

fluxes (B)J³ := |∂∂∂C´|2B³ over the region bounded by Cu, Σt0 and Σt as follows:

−
∫

Cu

|∂∂∂C´|2B³L³d�g/dt =

∫

Σt0

|∂∂∂C´|2B³T³d�g −
∫

Σt

|∂∂∂C´|2B³T³d�g

−
∫
⋃

u′≥u Cu′

D³(|∂∂∂C´|2B³)d�g. (8.6)

By the fact that B³ = T³ + f(�Ψ) and B is timelike, we have B³L³ ≈ −1 and

B³T³ ≈ −1. By commuted equation (3.8b), we have

D³(|∂∂∂C´ |2B³) = 2|∂∂∂C´|B(∂∂∂C´) + |∂∂∂C´|2(∂³B³ −ΓΓΓ´B´)

� |∂∂∂C´|B(∂∂∂C´) + |∂∂∂C´|2‖∂∂∂�Ψ‖L∞
x (Στ )

� |∂∂∂C´|∂∂∂2�Ψ(∂∂∂ω,∂∂∂S) + |∂∂∂C´|∂∂∂�Ψ · (∂∂∂2�Ψ,∂∂∂2ω,∂∂∂2S)

+ (|∂∂∂C´ |2 + |∂∂∂�Ψ|2)‖∂∂∂�Ψ‖L∞
x (Στ ), (8.7)

where ΓΓΓ is the contracted Christoffel symbols of g defined as ΓΓΓ³ := gκλΓ³κλ =

gκλg³´Γ´
κλ. Using the rescaled bootstrap assumptions (6.12), energy estimates in

Proposition 5.1, note that C,D are rescaled quantities defined in Definition 6.3, we

have

F(transport)[∂∂∂ �C; Cu] � λ−1. (8.8)

The proofs for ∂∂∂D and Pν∂∂∂(�C,D) are of the same fashion.

Remark 8.3. We refer readers to [11, Proposition 6.1] for the energy estimate

along null cones for 3D non-relativistic compressible Euler case where B coincides

with T. We note that in [11, 30], authors derive energy estimate along null cones

before rescaling (with respect to λ). However, the results coincide with ours when

energy estimates along null cones are rescaled. That is, our estimate is sufficient

to obtain the mix-norm estimates for fluid variables, which serves the same as in

[11, 30].

8.2. Connection coefficients

In this section, we define connection coefficients. We will derive estimates for them

in Proposition 8.10 as a part of controlling the acoustic geometry.
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8.2.1. Levi-Civita connections, angular operators and curvatures

If ξ is a space-time tensor, then Π/ ξ denotes its g-orthogonal projection onto St,u.

Then we define D/ V ξ := Π/DV ξ where V is a vector and DV ξ is the covariant

derivative of ξ in the V direction. Note that D/ V ξ = ∇/ V ξ when both V and ξ are

St,u-tangent. Also we define ∆/ := ∇/ · ∇/
We let Riem³´γ· denote the Riemann curvature tensor of g and Ric³´ :=

gγ·Riemγ³·´ . We use the notation that 〈DXDY W −DY DXW, Z〉 = RiemZWXY

+〈D[X,Y ]W, Z〉 where X, Y, W, Z are vectorfields, [·, ·] is the Lie bracket and 〈·, ·〉 :=

g(·, ·).

Definition 8.4 (Connection coefficients). We define the second fundamental

form k of Σt to be the
(
0
2

)
Σt-tangent tensor such that the following relation holds

for all Σt-tangent vectorfields X and Y :

k(X, Y ) := −g(DXT, Y ). (8.9)

Let {eA}A=1,2 be the pair of unit orthogonal spherical vectorfields on St,u from

Definition 7.3 . We define the second fundamental form θ of St,u, the null second

fundamental form χ of St,u, and χ to be the following type
(
0
2

)
St,u-tangent tensors:

θAB := g(DAN, eB), (8.10a)

χAB := g(DAL, eB), χ
AB

:= g(DAL, eB). (8.10b)

We define the torsion · and · to be the following St,u-tangent one-forms:

·A :=
1

2
g(DLL, eA), ·

A
:=

1

2
g(DLL, eA). (8.11)

8.3. Conformal metric, initial conditions on Σ0

and on the cone-tip axis for the acoustical function u

Definition 8.5 (Conformal factor and the modified null second fundamen-

tal form and acoustical quantities). In interior region M(Int), we define σ to

be the solution to the following transport initial value problem:

Lσ(t, u, ω) =
1

2
[ΓΓΓL](t, u, ω), u ∈ [0, T∗;(λ)], t ∈ [u, T∗;(λ)], ω ∈ S

2, (8.12a)

σ(u, u, ω) = 0, u ∈ [0, T∗;(λ)], ω ∈ S
2, (8.12b)

where ΓΓΓL := ΓΓΓ³L³ and ΓΓΓ³ := (g−1)κλΓΓΓ³κλ = (g−1)κλg³´ΓΓΓ´
κλ.
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We define the conformal space-time metric and the Riemannian metric that

induces on St,u as follows:

g̃ := e2σg, g̃/ := e2σg/. (8.13)

We define the null second fundamental forms of the metric to be the following

symmetric St,u-tangent tensors:

χ̃ :=
1

2
L/Lg̃/, χ̃ :=

1

2
L/Lg̃/. (8.14)

Using (8.13) and (8.14), it follows that χ, χ and χ̃, χ̃ are related by

χ̃ = e2σ(χ + (Lσ)g/), χ̃ = e2σ(χ + (Lσ)g/), (8.15a)

trg̃/χ̃ = trg/χ + 2Lσ = trg/χ + ΓΓΓL, trg̃/χ̃ = trg/χ + 2Lσ, (8.15b)

χ =
1

2

(
trg̃/χ̃ −ΓΓΓL

)
g/ + χ̂, χ =

1

2
(trg̃/χ̃ − 2Lσ)g/ + χ̂. (8.15c)

We define the following:

trg̃/χ̃
(Small) := trg/χ + ΓΓΓL − 2

r̃
= trg̃/χ̃ − 2

r̃
. (8.16)

We note that the first equality in (8.16) holds in the whole region M, while the

second equality holds only in the interior region M(Int).

In the following definition, we define mass aspect function μ and its modified

version μ̌, as well as modified torsion ·̃. These objects are defined to avoid loss of

regularity of the acoustical eikonal function.

Definition 8.6 (Mass aspect function). We define the mass aspect function μ

to be the following scalar function:

μ := Ltrg/χ +
1

2
trg/χtrg/χ. (8.17)

We now define the modified mass aspect function μ̌ to be the following scalar

function:

μ̌ := 2∆/σ + Ltrg/χ +
1

2
trg/χtrg/χ − trg/χkNN +

1

2
trg/χΓΓΓL. (8.18)

In M(Int), we define μ/ to be the St,u-tangent one-form that satisfies the following

Hodge system on St,u:

div/μ/ =
1

2
(μ̌ − ¯̌μ), curl/μ/ = 0. (8.19)

In M(Int), we define the modified torsion ·̃ to be the following St,u-tangent

one-form:

·̃ := · + ∇/ σ. (8.20)

Definition 8.7 (Norms of St,u-tangent tensorfields). Let e/ = e/(ω) be the

canonical metric on S2 and {ωA}A=1,2 are local angular coordinates on S2. We can
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also view {ωA}A=1,2 on St,u as the image of the canonical isomorphism from S2

to St,u. For p ∈ [1,∞), We define the Lebesgue norms Lp
ω and Lp

g/ for St,u-tangent

tensorfields ξ as follows:

‖ξ‖Lp
ω

(St,u) :=

(∫

ω∈S2

|ξ|pg/d�e/

)1/p

, ‖ξ‖Lp
g/
(St,u) :=

(∫

ω∈S2

|ξ|pg/d�g/

)1/p

.

(8.21)

Since we can have a parallel transport along S2 that preserves the tensor prod-

ucts and contractions, that is, Φm
n (ω(2); ω(1)) is the parallel transport with respect

to e/ from the vector space of type
(
m
n

)
tensors at ω(2) ∈ S2 to the vector space of

type
(
m
n

)
tensors at ω(1) ∈ S2, for ξ = ξ(ω) a type

(
m
n

)
tensorfield on S2, we define

the L∞ norm L∞
ω and Hölder norm C0,³

ω of ξ as follows:

‖ξ‖L∞
ω

(St,u) := ess sup
ω∈S2

|ξ|g/, (8.22)

‖ξ‖C0,α
ω

(St,u) := ‖ξ‖L∞
ω

(St,u) + sup
0<de/(ω(1),ω(2))<

π
2

×
|ξ(t, u, ω(1)) − Φm

n (ω(2); ω(1)) ◦ ξ(t, u, ω(2))|g/(t,u,ω(1))

d³
e/ (ω(1), ω(2))

.

(8.23)

In the following two propositions, we list the estimates of the initial foliation.

These estimates are crucial for the well-defined geometric setup in Sec. 7.1 and

controlling the acoustic geometry.

Proposition 8.8 ([11, Proposition 9.8; 30, Proposition 4.3, Existence and

properties of the initial foliation]). On Σ0, there exists a function w = w(x)

on the domain 0 f w f w∗ := 4
5T∗;(λ), such that w(z) = 0 and each level set S0,w

is diffeomorphic to S2 and

trg/θ + kNN =
2

aw
+ trgk −ΓΓΓL, a(z) = 1. (8.24)

By (8.16), r̃(0,−u) = w, and the fact that χAB = θAB −kAB, (8.24) is equivalent to

trg̃/χ̃
(Small)|Σ0 =

2(1 − a)

aw
for 0 f w f w∗, (8.25)

where we define the lapse a as follows:

a = (
√

gcd∂cw∂dw)−1. (8.26)
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Note that ∂
∂w = aN |Σ0 . Then on Σ

w(λ)
0 :=

⋃
0≤w≤w∗

S0,w, for 0 < 1 − 2
q∗

< N − 2,

there hold

|a − 1| � λ−4¸0 f 1

4
, ‖w−1/2(a − 1)‖

L∞
w C

0,1− 2
q∗

ω
(Σ

w(λ)
0 )

� λ−1/2,

υ :=

√
det g/√
det e/

≈ w2.

(8.27a)

‖w 1
2−

2
q∗ (θ̂,∇/ ln a)‖

L∞
w Lq∗

g/
(Σ

w(λ)
0 )

, ‖∇/ ln a‖
L2

wL∞
ω

(Σ
w(λ)
0 )

, ‖χ̂‖
L2

wL∞
ω

(Σ
w(λ)
0 )

� λ−1/2.

(8.27b)

max
A,B=1,2

∥∥∥∥w
−2g/

(
∂

∂ωA
,

∂

∂ωB

)
− e/

(
∂

∂ωA
,

∂

∂ωB

)∥∥∥∥
L∞

x (Σ
w(λ)
0 )

� λ−4¸0 , (8.27c)

max
A,B,C=1,2

∥∥∥∥
∂

∂ωC

(
w−2g/

(
∂

∂ωA
,

∂

∂ωB

)
− e/

(
∂

∂ωA
,

∂

∂ωB

))∥∥∥∥
Lq∗

ω
(S0,w)

� λ−4¸0 ,

(8.27d)

‖w 1
2−

2
q∗ ∇/ ln

(
r̃−2v

)
‖Lq∗

g/
(S0,w) � λ−1/2. (8.27e)

In addition

‖wtrg̃/χ̃
(Small)‖

L∞
x (Σ

w(λ)
0 )

� λ−4¸0 ,

(8.27f)

‖w3/2∇/ trg̃/χ̃
(Small)‖

L∞
w Lp

ω(Σ
w(λ)
0 )

+ ‖w1/2trg̃/χ̃
(Small)‖

L∞
w C

0,1− 2
p

ω
(Σ

w(λ)
0 )

� λ1/2.

(8.27g)

Finally

∑

i,j=1,2,3

|wΠ/ a
j ∂aN i − Π/ i

j | = O(w) as w ↓ 0. (8.27h)

Proposition 8.9 ([11, Lemma 9.9, Initial conditions on the cone-tip axis

tied to the acoustical function]). On any null cone Cu initiating from a point

on the time axis 0 f t = u f T∗;(λ) there hold

trg/χ − 2

r̃
, r̃trg̃/χ̃

(Small), |χ̂|g/, |r̃Π/ a
j ∂aLi − Π/ i

j |, b − 1, |·|g/, σ,

r̃|∇/ trg/χ|g/, r̃2|∇/ trg̃/χ̃
(Small)|g/, r̃|∇/ χ̂|g/, r̃|∇/ b|g/, r̃|∇/ ·|g/, r̃|∇/ σ|g/, (8.28a)

r̃2∆/ b, r̃2∆/σ, r̃2μ, r̃2μ̌ = O(r̃) as t ↓ u,

lim
t↓u

‖·, k‖L∞(St,u) < ∞. (8.28b)
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Moreover

lim
t↓u

r̃−2g/

(
∂

∂ωA
,

∂

∂ωB

)
= e/

(
∂

∂ωA
,

∂

∂ωB

)
, (8.28c)

lim
t↓u

r̃−2 ∂

∂ωC
g/

(
∂

∂ωA
,

∂

∂ωB

)
=

∂

∂ωC
e/

(
∂

∂ωA
,

∂

∂ωB

)
. (8.28d)

Discussion of the proof of Propositions 8.8 and 8.9. The existence of such

initial foliation can be proved by Nash–Moser implicit function theorem (see [25]).

The proof of the estimates in Proposition 8.8 relies on the energy estimates (5.1).

The reason is that Proposition 8.8 yields a foliation and estimates on the hypersur-

face Σ0 with respect to the rescaled coordinates, and this hypersurface corresponds

to the hyperfaces Σtk
for each k with respect to original space-time (see Remark 6.4

and Sec. 7.1.2 for the description of Σ0 in rescaled space-time). The point is that we

need the energy estimates of (5.1) to control the fluid along the “old” Σtk
. We refer

the reader to [30, Appendix C] for the proof of the estimates in Propositions 8.8

and 8.9.

8.4. Restatement of bootstrap assumptions and estimates for

quantities constructed out of the acoustical Eikonal equation

In this section, we restate the consequence of bootstrap assumptions of fluid vari-

ables, vorticity and entropy gradient that we obtained in (6.12), followed by the

bootstrap assumptions for acoustic geometry. Then we state the main estimates for

the acoustical function quantities in Proposition 8.10. The estimates in Proposi-

tion 8.10 are required by the conformal energy method to close the whole bootstrap

argument in this paper. We provide a discussion of the proof of Proposition 8.10 in

Sec. 8.4.4 via a bootstrap argument where the bootstrap assumptions are listed in

Sec. 8.4.2. For the details of the proof, we refer readers to [11, Sec. 10; 30, Secs. 5

and 6].

8.4.1. The fixed number p

In the rest of the paper, p denotes a fixed number with

0 < δ0 < 1 − 2

p
< N − 2, (8.29)

where δ0 is defined in Sec. 3.4.

8.4.2. Bootstrap assumptions for geometric quantities

After rescaling in Sec. 6.2, we make several bootstrap assumptions for the quan-

tities in acoustic geometry. These assumptions will be recovered and improved by

estimates in Proposition 8.10.

First we recall (6.12) as follows.



Rough solutions of the relativistic Euler equations 493

Estimates by using bootstrap assumptions of variables:

‖∂∂∂�Ψ,∂∂∂�ω,∂∂∂�S, �C,D‖L2
t L∞

x (M)

+ λ·0

√∑

ν>2

ν2·0‖Pν(f(�Ψ, �ω, �S)(∂∂∂�Ψ,∂∂∂�ω,∂∂∂�S, �C,D))‖2
L2

t L∞
x (M)

� λ−1/2−4¸0 . (8.30)

Then we make few more assumptions for the quantities of acoustical geometry

as follows.

Bootstrap assumptions for the acoustical function quantities:

max
A,B=1,2

∥∥∥∥r̃
−2g/

(
∂

∂ωA
,

∂

∂ωB

)
− e/

(
∂

∂ωA
,

∂

∂ωB

)∥∥∥∥
L∞

x (M)

� λ−¸0 ,

(8.31a)

max
A,B,C=1,2

∥∥∥∥
∂

∂ωC

(
r̃−2g/

(
∂

∂ωA
,

∂

∂ωB

)
− e/

(
∂

∂ωA
,

∂

∂ωB

))∥∥∥∥
L∞

t Lp
ω(Cu)

� λ−¸0 .

(8.31b)

Also

‖trg̃/χ̃
(Small), χ̂, ·‖

L2
tC

0,δ0
ω

(Cu)
� λ−1/2+2¸0 . (8.32)

Moreover

‖r̃(trg̃/χ̃
(Small), χ̂, ·)‖Lp

ω(St,u) f 1, (8.33a)

‖b − 1‖L∞
ω

(St,u) f
1

2
. (8.33b)

Finally, we assume that the following estimates hold in the interior region:

‖trg̃/χ̃
(Small), χ̂‖

L2
t L∞

u C
0,δ0
ω

(M(Int))
f λ−1/2, ‖·‖L2

tL∞
x (M(Int)) f λ−1/2, (8.34a)

‖∇/ σ‖L2
uL2

t L∞
ω

(M(Int)) f 1. (8.34b)

8.4.3. Main estimates for the acoustical function quantities

In the following proposition, we derive the estimates for the various acoustical func-

tion quantities. These estimates are sufficient to derive the boundness theorem of

the conformal energy in Theorem 7.6 and to recover and improve the bootstrap

assumptions in Sec. 8.4.2.

Proposition 8.10 ([11, Sec. 10; 30, Secs. 5 and 6. The main estimates for

the acoustical function quantities]). Under the bootstrap assumptions we have

the following estimates where 2 < q f 4:



494 S. Yu

Estimates for connection coefficients :

‖trg̃/χ̃
(Small), χ̂, ·‖L2

tLp
ω

(Cu), ‖r̃D/ L(trg̃/χ̃
(Small), χ̂, ·)‖L2

tLp
ω

(Cu) � λ−1/2, (8.35a)

‖r̃1/2(trg̃/χ̃
(Small), χ̂, ·)‖L∞

t Lp
ω(Cu) � λ−1/2, (8.35b)

‖r̃(trg̃/χ̃
(Small), χ̂, ·)‖L∞

t Lp
ω

(Cu) � λ−4¸0 , (8.35c)

r̃trg̃/χ̃ ≈ 1, (8.36a)

‖r̃1/2trg̃/χ̃
(Small)‖L∞(M) � λ−1/2, (8.36b)

‖r̃3/2∇/ trg̃/χ̃
(Small)‖L∞

t L∞
u Lp

ω(M) � λ−1/2, (8.36c)

‖r̃(∇/ trg̃/χ̃
(Small),∇/ χ̂)‖L2

tLp
ω

(Cu) � λ−1/2, (8.36d)

‖trg̃/χ̃
(Small), χ̂, ·‖

L2
tC

0,δ0
ω (Cu)

� λ−1/2. (8.36e)

In addition, the null lapse b verifies the following:
∥∥∥∥

b−1 − 1

r̃

∥∥∥∥
L2

t L∞
x (M)

,

∥∥∥∥
b−1 − 1

r̃1/2

∥∥∥∥
L∞

t L∞
u L2p

ω (M)

,

∥∥∥∥r̃(D/ L,∇/ )

(
b−1 − 1

r̃

)∥∥∥∥
L2

t Lp
ω(Cu)

� λ−1/2.

(8.37)

Moreover, we have

‖f(
L)‖L∞
t L∞

u C
0,δ0
ω

(M)
� 1. (8.38)

Furthermore
∥∥∥∥trg̃/χ̃

(Small), χ̂, trg/χ − 2

r̃

∥∥∥∥
L

q
2
t L∞

u C
0,δ0
ω (M)

� λ
2
q −1−4¸0( 4

q −1), (8.39)

‖·‖L2
tL∞

x (M) � λ−1/2−3¸0 , (8.40)

‖·‖
L

q
2
t L∞

x (M)
� λ

2
q −1−4¸0( 4

q −1).

Improved estimates in the interior region:
∥∥∥∥

b−1 − 1

r̃

∥∥∥∥
L2

t L∞
x (M(Int))

� λ−1/2−4¸0 , (8.41)

‖r̃1/2(trg̃/χ̃
(Small), χ̂, ·)‖L2p

ω L∞
t (Cu) � λ−1/2 if Cu ⊂ M(Int), (8.42)

∥∥∥∥trg̃/χ̃
(Small), χ̂, trg/χ − 2

r̃

∥∥∥∥
L2

t L∞
u C

0,δ0
ω

(M(Int))

� λ−1/2−3¸0 , (8.43)

‖·‖L2
tL∞

x (M(Int)) � λ−1/2−3¸0 . (8.44)
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Estimates for the geometric angular coordinate components of g/:

max
A,B=1,2

∥∥∥∥r̃
−2g/

(
∂

∂ωA
,

∂

∂ωB

)
− e/

(
∂

∂ωA
,

∂

∂ωB

)∥∥∥∥
L∞(M)

� λ−4¸0 ,

(8.45a)

max
A,B,C=1,2

∥∥∥∥
∂

∂ωC

(
r̃−2g/

(
∂

∂ωA
,

∂

∂ωB

)
− e/

(
∂

∂ωA
,

∂

∂ωB

))∥∥∥∥
L∞

t Lp
ω

(Cu)

� λ−4¸0 .

(8.45b)

Estimates for υ and b:

υ :=

√
detg/√
dete/

≈ r̃2, (8.46a)

‖b − 1‖L∞(M) � λ−4¸0 <
1

4
. (8.46b)

Furthermore

‖r̃1/2∇/ ln
(
r̃−2v

)
‖L∞

t L∞
u Lp

ω(M), ‖∇/ ln
(
r̃−2v

)
‖L2

tLp
ω(Cu),

‖r̃L∇/ ln
(
r̃−2v

)
‖L2

t Lp
ω(Cu) � λ−1/2.

(8.47)

Estimates for μ and ∇/ ·:

‖r̃μ, r̃∇/ ·‖L2
tLp

ω
(Cu) � λ−1/2. (8.48)

Interior region estimates for σ (Cu ⊂ M(Int)):

‖r̃1/2Lσ‖L∞
t L2p

ω
(Cu) � λ−1/2−2¸0 , ‖r̃1/2∇/ σ‖Lp

ω
L∞

t (Cu), ‖∇/σ‖L2
t Lp

ω
(Cu) � λ−1/2,

(8.49a)

‖σ‖L∞(M(Int)) � λ−8¸0 , (8.49b)

‖r̃−1/2σ‖L∞(M(Int)) � λ−1/2−4¸0 . (8.49c)

Interior region estimates for σ, μ, ·̃ and μ/ :

‖∇/σ‖
L2

uL2
t C

0,δ0
ω

(M(Int))
, ‖r̃μ̌, r̃∇/ ·̃‖L2

uL2
t Lp

ω(M(Int)) � λ−4¸0 , (8.50a)

‖r̃ 3
2 μ̌‖L2

uL∞
t Lp

ω(M(Int)) � λ−4¸0 . (8.50b)

In addition

‖r̃∇/ μ/ , μ/ ‖L2
t L2

uLp
ω(M(Int)), ‖μ/ ‖L2

t L2
uC

0,δ0
ω

(M(Int))
� λ−4¸0 . (8.51)

Decomposition of ∇/ σ and corresponding estimates in the interior region: In M(Int),

we can decompose ∇/ σ as follows :

∇/ σ = −· + (·̃ − μ/ ) + μ/ (1) + μ/ (2), (8.52)

where the following asymptotic conditions near the cone-tip axis are satisfied :

r̃μ/ (1)(t, u, ω), r̃μ/ (2)(t, u, ω) = O(r̃) as t ↓ u. (8.53)



496 S. Yu

Moreover

‖·̃ − μ/ ‖L2
t L∞

x (M(Int)), ‖μ/ (1)‖L2
tL∞

x (M(Int)) � λ−1/2−3¸0 , (8.54a)

‖μ/ (2)‖L2
uL∞

t L∞
ω

(M(Int)) � λ−1/2−4¸0 . (8.54b)

8.4.4. Discussion of the proof of Proposition 8.10

In this section, we discuss the proof of Proposition 8.10. For the details of the proof,

we refer readers to [11, Sec. 10; 30, Secs. 5 and 6].

The structure of the proof consists of three major steps:

(1) First of all, we derive the transport equations along null hypersurfaces and div-

curl systemsx on St,u verified by the geometric quantities. These equations are

derived using basic differential geometry and, at the appropriate spots, using

the relativistic Euler equations for substitution for reasons further described in

Step (2). The key point is that all of the equations we obtain have the exact

same schematic structure as the equations in [11]. We refer readers to [16, Sec. 2]

for the PDEs satisfied by connection coefficients and mass aspect function μ.

We refer readers to [30, Sec. 6] for the PDEs of conformal factor σ, modified

torsion ·̃ and modified mass aspect function μ̌, μ/ .

(2) Second, certain Ricci and Riemann curvature tensor components, which appear

as source terms in the PDEs that we just obtained in the previous step, are

rewritten by using Bianchi identities and the decomposition of the following

Ricci curvature [16, Lemma 2.1]:

Ric³´ = −1

2
�gg³´(�Ψ) +

1

2
(D³ΓΓΓ´ + D´ΓΓΓ³) + Q(�Ψ)[∂∂∂�Ψ,∂∂∂�Ψ]. (8.55)

It is at this step that the wave equation (2.29) of the geometric formulation of

the relativistic Euler equations is used to substitute for the term �gg³´(�Ψ),

as we alluded to in the previous step. We again emphasize that following this

substitution, one obtains equations of the exact same schematic form as in [11].

After the substitution, one is faced with controlling the source terms in

the geometric equations in mixed space-time norms. The source terms depend

on ∂∂∂�Ψ, �ω, �S, �C,D and have the same schematic structure as in [11]. This step

requires trace inequalities and Sobolev inequalities, which are provided by [11,

Proposition 10.2; 30, (5.34)–(5.39)]; the proofs of these inequalities are the same

as in [11], and rely on bootstrap assumptions (3.17b) and (3.17c), energy esti-

mates on constant-time hypersurfaces (5.1) and energy estimates on null hyper-

surfaces (8.3) and (8.4).

(3) After one has controlled the source terms in the geometric PDEs for the acoustic

geometry from Step (1), one uses a transport lemma and div-curl estimates

xThese div-curl systems depend on the acoustic geometry and are independent of the structure of
the relativistic Euler equations. Therefore, these div-curl systems are completely unrelated to the
ones that we derived for the vorticity and entropy gradient in Sec. 5.
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to obtain various mixed space-time norms estimates for r̃p weighted acoustic

quantities in Proposition 8.10. We refer readers to [11, Sec. 10.9; 30, Secs. 5

and 6] for the detailed proof. We emphasize that the proof is the same as

in [11] because it relies only on bootstrap assumptions (3.17b) and (3.17c) and

source term bounds that one obtained in Step (2), ingredients which are already

available to us at this step in the proof.

We now point out some differences between the non-relativistic 3D compress-

ible Euler equations and the relativistic Euler equations in terms of the control of

acoustic geometry. Besides the different acoustic metric g in this paper compared

to [11], the g-Σt-normal vectorfield is T (see (2.17)) in this paper, while in the

non-relativistic case [11], it is B = ∂t +va∂a. Although these differences have neces-

sitated changes to some of the proofs earlier in the paper (such as the proof of the

energy estimates on constant-time hypersurfaces and the acoustic null hypersur-

faces), these changes do not have any effect on the proofs of the estimate for the

acoustic geometry; it is for this reason that we refer to [11, Sec. 10] for the details

behind the proof of Proposition 8.10.
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Appendix A. Notations

In this appendix, we gather the notations that we use throughout the paper.

Symbol Ref.

M, M−1, εγ·κλ, Σt, ∂,∂∂∂ Sec. 2.1

v, p, n, s, θ, H Sec. 2.2.1

vort³(·) Definition 2.2

ω Definition 2.3

h Definition 2.4

q Definition 2.5

S Definition 2.6

c Sec. 2.2.4

C,D Definition 2.8

gAcou,g
−1
Acou Definition 2.9

g,g−1 Definition 2.10

T Definition 2.11
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Symbol Ref.

g, g−1 Definition 2.12

D, �g Definition 2.14

�v, �ω, �S, �C, �Ψ,B Definition 2.15

L , Q Sec. 2.4.1

F(Cα), F(D) Proposition 2.17

F(Ψ) Proposition 2.20

ν, Pν, PI , P≤ν Sec. 3.2

R(∂∂∂Ψ);ν, R(∂Cα);ν, R(∂D);ν Lemma 3.3

q, ε0, δ0, δ, δ1 Sec. 3.4

R, R̆ Sec. 3.5

T∗ Sec. 3.6

Q,(X)J, (X)πππ, E, d�g Definition 5.3

λ Sec. 6.1

T∗;(λ) Sec. 6.2

u, Cu, St,u,M(Int),M(Ext),M Sec. 7.1

r̃, w∗ Definition 7.2

L(Geo), b, N, L, L, g/, eA, ωA Definition 7.3

Π/ , |ξ|g/, trg/ξ, ξ̂ Definition 7.4

F(wave),F(transport), d�g/ Definition 8.1

C, C(i), C(e) Definition 7.5

D/ ,∇/ , ∆/ ,Ric,Riem Sec. 8.2.1

k, θ, χ, χ, ·, ·,L,L/ Definition 8.4

σ,ΓΓΓL, g̃, χ̃, χ̃, trg̃/, χ̃
(Small) Definition 8.5

μ Definition 8.6

e/ Definition 8.7

a, w, ∂
∂w , ∂

∂ωA , υ Proposition 8.8

μ̌, μ/ , ·̃ Definition 8.6

p Sec. 8.4.1
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