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Abstract. We prove that the time of classical existence of smooth solutions to the
relativistic Euler equations can be bounded from below in terms of norms that measure
the “(sound) wave-part” of the data in Sobolev space and “transport-part” in higher
regularity Sobolev space and Hoélder spaces. The solutions are allowed to have nontrivial
vorticity and entropy. We use the geometric framework from [M. M. Disconzi and J.
Speck, The relativistic Euler equations: Remarkable null structures and regularity prop-
erties, Ann. Henri Poincaré 20(7) (2019) 2173-2270], where the relativistic Euler flow
is decomposed into a “wave-part”, that is, geometric wave equations for the velocity
components, density and enthalpy, and a “transport-part”, that is, transport-div-curl
systems for the vorticity and entropy gradient. Our main result is that the Sobolev norm
H?2% of the variables in the “wave-part” and the Holder norm C9:9% of the variables
in the “transport-part” can be controlled in terms of initial data for short times. We
note that the Sobolev norm assumption H21 is the optimal result for the variables
in the “wave-part”. Compared to low-regularity results for quasilinear wave equations
and the three-dimensional (3D) non-relativistic compressible Euler equations, the main
new challenge of the paper is that when controlling the acoustic geometry and bound-
ing the wave equation energies, we must deal with the difficulty that the vorticity and
entropy gradient are four-dimensional space-time vectors satisfying a space-time div-
curl-transport system, where the space-time div-curl part is not elliptic. Due to lack
of ellipticity, one cannot immediately rely on the approach taken in [M. M. Disconzi
and J. Speck, The relativistic Euler equations: Remarkable null structures and regular-
ity properties, Ann. Henri Poincaré 20(7) (2019) 2173-2270] to control these terms.
To overcome this difficulty, we show that the space-time div-curl systems imply elliptic
div-curl-transport systems on constant-time hypersurfaces plus error terms that involve
favorable differentiations and contractions with respect to the four-velocity. By using
these structures, we are able to adequately control the vorticity and entropy gradient
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with the help of energy estimates for transport equations, elliptic estimates, Schauder
estimates and Littlewood—Paley theory.

Keywords: Local well-posedness; low regularity; acoustic geometry; Schauder estimates;
Strichartz estimates.
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1. Introduction

This paper is concerned with the special relativistic Euler equations on the
Minkowski background (R'*3, M), where M is the Minkowski metric. For use
throughout the paper, we fix a coordinate system {x}4,—0.1 2,3, relative® to which
M, = diag(—1, 1,1, 1), where the speed of light is set to be 1. For these equations,
there is considerable freedom in the choice of state-space variables, that is, the fun-
damental unknowns of the PDEs. In this work, we choose the logarithmic enthalpy
h, the entropy s and the four-velocity v, which is a future-directed M-timelike vec-
torfield normalized as M (v,v) = —1. We allow for nontrivial vorticity. All other
unknowns in the system can be considered as functions of the state-space variables.

We denote the pressure as p = p(h, s), the fluid density as o = o(h, s) and speed of
sound as ¢ := 4/ %g. In this coordinate system, the relativistic Euler equations can

be expressed asP

V" Och + 200" = 0, (1.1a)

00, (U)o + Oah + (1,) 00" Oxh — qdus = 0, (1.1b)

v"0,s =0, (1.1c)

where q := % is temperature over enthalpy, which can be expressed as q = q(h, s).

Also see Secs. 2.2 and 2.3 for the details.

Our work intimately depends on a new formulation of the equations derived by
Disconzi—Speck [12], where the authors found that the flow splits into a “sound-
wave-part” (“wave-part” for short) for (h,s,v) and a “transport-div-curl-part”
(“transport-part” for short) for the vorticity w and the entropy gradient S. Schemat-
ically, the geometric formulation takes the following form¢:

aThroughout this paper, we use the notation that Greek “space-time” indices take on the val-
ues 0,1, 2,3, while Latin “spatial indices” take on the values 1,2,3. We use Einstein summation
convention throughout the paper.

bFor Greek and Latin indices, for any vectorfield or one-form V', we lower and raise indices with the
Minkowski metric M, g := diag(—1,1,1,1) and its inverse by using the notation (V},)g := M,gV*
and (V)8 .= (M~1)*BV,.

“We denote schematic spatial partial derivatives and space-time partial derivatives by 0 and 8,
respectively. Also we use the following schematic notations throughout the paper where A, B,C
are arrays of variables:

e Z[A](B) denotes any scalar-valued function that is linear in the components of B with coeffi-
cients that are a function of the components of A.
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Wave equations:

Og¥ = 2(V)[C, D] + 2(T)[8T,87]. (1.2)

Transport equations:
Bw® = Z(¥,3, 5)[0V], (1.3a)
B(SH® = £(¥, §)[07]. (1.3b)

Transport-Div-Curl system:

=

BC® = §(cay == 2(T)[0T, (w,dS,07)] + 2(5)[9T, 7]

+.2(9,3,5)07,85), (1.4a)

BD = §(p) i= Z(¥,5)[0w] + 2(¥)[07, (35,07)]
+2(5)[0V,89] + Z(¥,3, 5)87], (1.4b)
vort®(S) = 0, (1.4c)
Dow® = £ (w)[0Y], (1.4d)

where U := (0, vl 0% 03 h,s), g = g(\f/) is a solution-dependent Lorentzian metric
which governs the geometry of sound waves, C ~ vort(w) and D ~ divS are special
modified fluid variables, and B is the material derivative, which is parallel to v®.
See Definition 2.3 for the definition of w, Definition 2.6 for the definition of S and
Sec. 2.4 for the precise definitions of g,C, D, B and more details of the geometric
formulation of the equations. This formulation reveals miraculous regularity and
geometric properties of the flow, which is used in a fundamental way in the present
work. These geometric properties are not visible in first-order equations (1.1). In
this paper, we show that under low-regularity assumptions on the “wave-part” (see
Sec. 3.5 for more details of “wave-part”) of the initial data, the regularity of solutions
of the relativistic Euler equations can be preserved for a short time. Specifically, we
assume that the “wave-part” of the data belongs to H?*, and that the “transport-
part” C and D are in Holder space C%9F. Our proof shows, in particular, that it is
possible to avoid instantaneous shock formation, which in [19] was shown to occur
in the irrotational case (i.e. for quasilinear wave equations) for initial data in H?.
In particular, our regularity assumptions are optimal with respect to the “sound-
wave-part” of the data. One cannot hope to avoid singularities globally in time: it is
known that, even in the irrotational and isentropic case, the compression of sound
waves can cause shocks to develop from regular initial data in finite time. Moreover,
in more than one space dimension and away from symmetry, these singularities are
known to be stable as in [7].

e 2[A]|(B,C) denotes any scalar-valued function that is quadratic in the components of B and C
with coefficients that are a function of the components of A.
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For the irrotational and isentropic case in [7], the relativistic Euler equations
reduce to a system of covariant quasilinear wave equations for the first derivatives
g 1= 0q@ of a potential function ¢ of the following form:

Og () (Ya) = 2(4)[04,8¢]. (1.5)

Classical local well-posedness in H/2)* for the quasilinear wave system (1.5) can
be obtained by applying energy estimates and Sobolev embedding, see Kato [14].
Starting in the late 90s, the regularity needed for local well-posedness for quasilinear
wave equations was improved in a series of works by Bahouri-Chemin, Smith—
Tataru and Klainerman—Rodnianski, see [4, 5, 16, 15, 26, 27]. The optimal result
for low regularity H?t of quasilinear wave equations was first achieved by Smith—
Tataru in [23]. In [30], Wang reached the same result as in [23] by using a geometric
approach. With the presence of vorticity, Disconzi-Luo-Mazzone—-Speck, Wang and
Zhang—Andersson proved low-regularity local well-posedness result for the three-
dimensional (3D) compressible Euler equations in [11, 31, 32], respectively. In all
three works, the regularity of “wave-part” is in the optimal level H?>t. We will
discuss the details of the assumptions for the data in [11, 31] in Sec. 1.1.

Compared to the non-relativistic case, the first fundamental form of ¥; :=
{t} x R? is no longer conformally flat in the relativistic case, leading to more com-
plicated geometry. One of the main challenges of this paper is that (1.2)—(1.4)
seemingly suffers from a loss of derivative. This is because at the level of regular-
ity, C,D ~ 32@, which is an issue since C and D show up as the source terms in
the right-hand side of the wave equation (1.2). In [11], this was solved by using
Hodge theory on the spacelike hypersurfaces ;. In our case, the transport-div-curl
system (1.4) is a space-time (non-elliptic Hodge) system, from which we have to
extract a quasilinear elliptic Hodge system on the spacelike hypersurfaces, that is,
we rewrite (see Proposition 5.9) the space-time div-curl system (1.4) into a spatial
elliptic div-curl system with source terms that can be controlled only due to the
special structure of the equations

G0u((ws), )y = F, (1.6)
aa((wb)as)bfab((wb);s)a — Ilgp- (17)
n (1.6), G™1 := G71(v) is the inverse of a Riemannian metric on constant-time

hypersurfaces (see Eq. (5.18c) for the definition of G™'). By using these struc-
tures, we are able to adequately control the vorticity and entropy gradient by using
energy estimates for transport equations, elliptic estimates, Schauder estimates and
Littlewood—Paley theory.

We now state the main results of this paper.

Theorem 1.1 (Main theorem). Consider a smooth? solution to the relativistic
Euler equations whose initial data on the initial Cauchy hypersurface Yo := {0} x R3

4By smooth we mean as smooth as necessary for the analysis arguments to go through. We note
that all of our quantitative estimates depend only on the Sobolev and Holder norms.
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satisfies following assumptions for some real number 2 < N < 5/2, 0 < a < 1,
c1 >0 and D:

(1) “Wave-part”: ||h,v|[ g~y < D,

(2) “Transport-part”: ||w|| g~ sy + I8[lav+1(sy) < D, In addition, modified fluid
variables C and D (C ~ vort(w) and D ~ divS, see Sec. 2.2.2 for the definition
of operator vort and w, Definition 2.6 for the definition of S and Sec. 2.8 for
the definition of C and D) satisfy the Hélder norm bound ||C,D||co.«(5,) < D,

(3) The image of data functions is contained in an interior of a compact subset R
(defined in Sec. 3.5) and the enthalpy H is positive, i.e. H > ¢; > 0.

Then the solution’s time of classical existence T := T(D,R) > 0 can be
controlled in terms of only D and R. Moreover, the Sobolev and some Hélder
reqularities of the data are propagated by the solution.

See Sec. 1.5 for the main ideas behind proving Theorem 1.1.

1.1. Overview of previous low-regularity results

There have been many developments on low-regularity problems for quasilinear
wave equations and the non-relativistic 3D compressible Euler equations in past
two decades. For quasilinear wave equations of the form (1.5), Bahouri-Chemin

[5] and Tataru [26] independently showed local well-posedness with H2+3)+ data.
The improvements rely on Strichartz estimates based on Fourier integral parametrix

representations. Bahouri-Chemin improved their earlier result to H@+5)* in [4].
Tataru pushed the results down to H®T&)* in [27] and Klainerman reached the

same level in [15]. Klainerman—Rodnianski achieved H @+255)+ iy [16]. The opti-
mal low-regularity result H?t for generic quasilinear wave equations was first
achieved by Smith-Tataru in [23] by using wave-packets and properties of the geom-
etry of characteristic light cones that were introduced in [16]. Besides the improve-
ments over Sobolev exponents, a commuting vectorfield approach for Strichartz esti-
mates was introduced by Klainerman in [15] and a fundamental decomposition of a
Ricci component of g was used for improving the regularity in the causal geometry
by Klainerman-Rodnianski in [16]. Recently, Wang gave a second proof of Smith—
Tataru [23] by using this geometric approach. The proof in Wang [30] relied on an
upgraded version of Klainerman—Rodnianski’s vectorfield method with the help of
conformal energy estimates. We again emphasize that, for the general quasilinear
wave equation of the form (1.5), it is impossible to prove any well-posedness result
with data in H?2. Specifically, Lindblad provided an example of ill-posedness for
a quasilinear wave equation with H? initial data in [19]; see also [1-3] for more
ill-posedness results for the compressible inviscid fluid. For the non-relativistic
compressible Euler flow with vorticity and entropy, under the H?* assumptions
on “wave-part” and ”transport-part” of the data, Disconzi-Luo-Mazzone—Speck
[11] and Wang [31] proved local well-posedness result for 3D compressible Euler
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equations. By assuming the Hélder regularity C%® for the data of the modified
fluid variables C and D (our analogue of C and D are defined in Definition 2.8), the
authors are able to prove a Schauder estimate in [11] for a transport-div-curl system
in order to propagate the vorticity and entropy gradient along the waves. A method
of decomposing the velocity is given in [31] for the isentropic compressible Euler
equations, which allowed Wang to remove the Holder assumption on vorticity. In
[32], Zhang—Andersson combined the methods in [23, 31] to give an alternate proof
of the same result as in Wang [31].

1.2. A brief overview of the strategy of the proof

Klainerman [15], Klainerman—Rodnianski [16] and Wang [30] developed a geomet-
ric approach for proving the low-regularity well-posedness for the quasilinear wave
equations. The new formulation (1.2)—(1.4) provided by Disconzi-Speck [12] makes
it possible to import the geometric techniques from [16, 15, 30] to the “sound-wave-
part” of compressible Euler flow. The main difference with the wave problem is the
addition of another characteristic speed into the problem, namely, the “transport-
part”. These two parts of the equations and solutions interact with each other,
which creates substantial difficulties for understanding the Euler flow. See Sec.
1.3 for further discussions of the geometric formulation. See also Luk—Speck [22]
for similar formulations for 3D isentropic compressible Euler equation and Speck
[24] for 3D compressible Euler equations with any equation of state. The main
tool for controlling the solution in the low-regularity setting, by using energy esti-
mate (see Christodoulou [7, Chap. 1] for the energy current and its properties) and
Littlewood—Paley theory, is the following estimates®:

t
[y 5, 0) L r24e (20 S 11(Ry 85 0) L r24e () + /0 ([8(h, s, 0)[ L (m,) +1)

XH(h,S,U)HH2+E(ZT)d7. (18)

In order to make (1.8) useful, one needs to control [|@(h,s,v)| 1. Since one
is not able to apply Sobolev embedding to recover the bound below H%/?t, we
instead use a geometric approach to show the following Strichartz estimates:
0(h, 5,0)[| L2 < T2, This is done by a bootstrap argument with bootstrap
assumptions [|(h, s,v)||p2e < 1, where T} is the bootstrap time. In order to
prove the Strichartz estimates, we apply a series of reductions. We reduce the
Strichartz estimates to decay estimates by using a 77 * argument, then to a confor-
mal energy estimate (see Definition 7.5 for the definition of conformal energy and
Theorem 7.6 for boundness theorem for conformal energy) by Littlewood—Paley
theory. See Sec. 1.5.4 for overview of the reduction, Sec. 4 for an extended overview
of a global structure and Secs. 6 and 7 for details.

®We denote the constant-time hypersurface at time ¢ by 3. Moreover, A < B means A < C'- B
for some universal constant C' depending on region R and data D.
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A crucial step in our geometric approach is the introduction of an acoustical
function u satisfying the acoustical eikonal equation (g=1)*?0,udzu = 0, where the
acoustical metric g = g(h,v,s) is a Lorentzian metric (see Definition 2.10 for the
definition of g) distinct from the Minkowski metric. With the help of u, we construct
a null frame and control the acoustic geometry along acoustic null cones, which are
the level sets of u (see the figure on p. 65). This allows us to derive suitable estimates
for conformal energy. Disconzi-Luo-Mazzone—-Speck [11] and Wang [31] showed that
given good control over the “transport-part”, we can run the machinery of Strichartz
estimates for the “wave-part” where we treat the “transport-part” as a favorable
source term. Thus, good control over the “transport-part” is a crucial component of
our analysis. Inspired by the analysis of the 3D non-relativistic compressible Euler
case in [11], we derive elliptic and Schauder estimates for the transport-div-curl
systems to bound the H'** and C%® norms of C, D when the wave-part is rough.

The main new difficulty that is not found in 3D non-relativistic compressible
Euler is: due to the space-time structure of the relativistic Euler flow, we encounter
space-time velocity, vorticity and the div-curl system where the ellipticity is not
immediately apparent. To overcome this difficulty, we exploit two crucial aspects.
We first note that the v-directional derivative of the vorticity and entropy gradient is
favorable due to the transport phenomena. To obtain control of v-orthogonal direc-
tional derivatives, we reduce the space-time div-curl system of vorticity and entropy
gradient to a dynamic div-curl system on the constant-time hypersurfaces. By com-
bining these special structures of relativistic Euler equations with Littlewood—Paley
decomposition and properties of pseudodifferential operators, we derive estimates
for vorticity and entropy.

We present the logical graph of this paper in Sec. 1.5.

1.3. Geometric formulation of the relativistic FEuler equations

Due to the coupling of sound waves with vorticity and entropy in Egs. (1.2)—(1.4),
when considering the relativistic Euler equations with an arbitrary equation of state,
one needs to precisely and carefully split the dynamics into a “wave-part”, which
describes the propagation of sound waves, and a “transport-part”, which describes
the evolution of vorticity and entropy. For the 3D non-relativistic compressible Euler
equations with any equation of state, Speck [24] derived a system consisting of geo-
metric wave equations and transport-div-curl equations. This geometric formulation
is used for the low-regularity problem in [11, 31]. See also Luk—Speck [21, 22] for
the geometric formulation of the compressible Euler in the barotropic case and its
application to the shock formation problem. Disconzi-Speck [12] derived the geo-
metric formulation of the relativistic Euler equations with vorticity and dynamic
entropy that we used in this paper. It allows us to describe the influence of trans-
port phenomena on the wave-part of the system and the acoustic geometry with
rough sound wave data given in the relativistic Euler flow. These geometric formula-
tions have origins in Christodoulou and Christodoulou-Miao’s proof of stable shock
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formation for the relativistic Euler equations and non-relativistic 3D compressible
Euler equations in the irrotational and isentropic case [7, 9]. Also see [6, 20] for more
results concerning shock formation problem of the compressible Euler equations.

The new geometric formulation from [12] (see (1.2)—(1.4) and Proposition 2.17
for the formulation) splits the dynamics into a “wave-part”, which consists of geo-
metric wave equations for the fluid variables h, v, s, and a “transport-div-curl-part”,
which governs the transport equations of special vorticity, entropy gradient and
modified fluid variables C, D (C, D are special combinations of variables whose essen-
tial terms are the vorticity of vorticity and divergence of entropy gradient that are
defined in Definition 2.8) and div-curl systems for the special vorticity and entropy
gradient. The advantage of the geometric formulation is that one can do analysis on
both “wave-part” and “transport-part”, which are highly coupled. Here, we briefly
summarize the new formulation and its connection to establishing the Strichartz
estimate as follows:

4

e The “wave-part” of the formulation involves wave equations with principal part
Og. Properties of this operator are intimately related to the acoustic geome-
try, which is constructed via an acoustical function u. Here, u is a solution to
the acoustical eikonal equation (g=1)*?d,udzu = 0, where the acoustical metric
g = g(h,v, s) is the Lorentzian metric defined in Definition 2.10. With the help
of u, we construct a null frame and derive some transport equations as well as
div-curl systems for some particular connection coefficients along acoustic null
cones, which are the level sets of u (see the figure on p. 65). We note that these
equations for the connection coefficients are derived from basic geometry con-
siderations and are independent of the relativistic Euler equations. By using a
delicate decomposition of certain curvature components, which are highly tied to
the geometric wave equations (2.29), we can control a large group of geometric
quantities that are fundamental for deriving the conformal energy estimates. We
emphasize already that achieving control of these geometric quantities is essential
for controlling certain conformal energy for solutions to the linear wave equation
corresponding to the acoustical metric g, i.e. solutions ¢ to the PDE Dg(‘f,)gp =0.

It is crucial to control the conformal energy in order to derive the decay estimates,
which we again emphasize are the main ingredient needed to obtain the desired
Strichartz estimate. We will describe conformal energy and decay estimates with
more details in Sec. 1.5.

e The “transport-div-curl-part” of the formulation allows one to control the vor-
ticity and entropy at one derivative level above standard estimates. The analysis
uses transport estimates as well as Hodge estimates at constant-time hypersur-
faces. This is highly nontrivial and more complicated compared to non-relativistic
3D compressible Euler because the Hodge system that we encounter is a space-
time div-curl system. In total, we are able to show that the transport terms are
“good” source terms in the wave equation estimates. We point out the vorticity
and entropy gradient also appear in PDEs that we use to control the acoustic
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geometry because of the geometric wave equations (1.2). This shows that there are
interactions between the vorticity, entropy, sound waves and acoustic geometry.

1.4. Comparison with low-regularity results for 3D non-relativistic
compressible Fuler equations

Recently, [11, 31] proved low-regularity results for the 3D non-relativistic compress-
ible Euler equations with the help of the geometric formulation in [24]. In [11],
Disconzi—Luo—Mazzone—Speck showed that if the “wave-part” of the data is ini-
tially in H2*, and the “transport-part” C,D are in C%®, then the regularity of
the solutions can be preserved for short times. For barotropic flow, Wang proved a
similar result by removing the Hélder assumption for C, D and assuming the H?2*
assumptions on the “transport-part” in [31]. For the relativistic Euler equations, we
prove a similar result as in [11] for the 3D compressible Euler equations. That is, we
allow any equation of state and we have the same level of regularity assumptions on
the initial data. Due to the geometric nature of the relativistic Euler flow, the vor-
ticity w® in this paper is a space-time v-orthogonal vectorfield (see Definition 2.3)
which solves a space-time transport-div-curl system. In the 3D non-relativistic com-
pressible Euler case, the geometry of vorticity is much simpler: it is a ¥;-tangent
vectorfield and solves a div-curl system with constant coefficients on constant-time
slices.

In the relativistic Euler equations, vorticity and entropy gradient satisfy trans-
port equations in the v-direction. To control generic v-orthogonal (with respect
to Minkowski metric) derivatives of vorticity and entropy gradient, we rely on a
space-time div-curl system. Moreover, using the transport equations satisfied by
the modified fluid variables C, D, we can control these quantities not only along
constant-time slices, but also along null cones, which is fundamental in our work.
To derive sufficient regularity for vorticity, entropy gradient and modified fluid vari-
ables along constant-time slices, we rewrite the space-time div-curl system into a
spatial div-curl system with source terms that can be controlled only due to the spe-
cial structure of the equations. A crucial ingredient in our analysis is that the spatial
divergence equation has the form (G=1)¥9;(wy); = - -+ where G=! := G~1(v) is the
inverse of a Riemannian metric on constant-time hypersurfaces (see Eq. (5.18¢) for
the definition of G=1). Because the coefficient metric G of the divergence equation
is Riemannian, by using the technique of freezing the spatial points, we are able
to derive a localized div-curl system with constant-coefficient principle terms, such
that the Fourier transform of vorticity and entropy gradient is bounded in the fre-
quency space by the source terms of the div-curl system. This allows us to control
appropriate Hélder norms of dw, 95 in terms of the same Holder norms of C, D, V.
The analysis relies on the Littlewood—Paley theory as well as the standard theorem
in pseudodifferential operators. We take a similar approach when deriving the ellip-
tic div-curl estimates in L? space, where we need to control derivatives of vorticity
and the entropy gradient by 6\17, the modified fluid variables C and D. Finally, we
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use the transport equations (1.4a) and (1.4b) and initial assumptions of C,D to
bound the Hélder norm of C, D by dw, dS to close the estimates for dw, dS.

1.5. Main idea of the proof of Theorem 1.1

Theorem 1.1 provides a priori estimates for smooth solutions, which is needed for a
full proof of local well-posedness. The remaining aspects of a full proof of local well-
posedness could be shown by deriving uniform estimates for sequences of smooth
solutions and their differences. We refer readers to [23, Secs. 2 and 3] for the proof
of local well-posedness based on a priori estimates.

In this section, we present the logic of proofs in this paper, that is, the bootstrap
argument. The colored steps involve new ingredients, where we need to do analysis
based on the special structure of the relativistic Euler equations (see Secs. 1.5.1
and 1.5.3 for a discussion of these steps). The uncolored steps are introduced in
the previous low-regularity problem works (see Secs. 1.5.4-1.5.7 for a discussion of
these steps). We emphasized that, with the estimates we derive in the colored steps,
the proofs of the uncolored steps are essentially the same as in [4, 5, 11, 16, 15, 23,
27, 30]. Hence in this work, we provide all of the details for the colored steps, and
give terse sketches for the uncolored steps with the appropriate citations.

Bootstrap assump-
tions on the “wave-
part” and the
“transport-part”

Controlling of the \
acoustic geometry \
Improvements Improvements
of bootstrap of bootstrap
Conformal assumptions on assumptions on the
energy estimates the “wave-part” “transport-part”
. Strichartz End of the boot-
Decay estimates )
estimates strap argument

1.5.1. Overview of elliptic and energy estimates

In this section, we provide an overview of how energy estimates work and are related
to the bootstrap assumptions (1.15a) and (1.15b). We provide representative energy
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estimates for wave variables, vorticity and entropy gradient by using the basic energy
estimates (see Sec. 5.1.1) and L? elliptic estimates (see Sec. 5.1.2). Then we leave
the discussion of the key assumptions to future sections and detailed estimates in
Sec. 5.1.

We first consider the energy estimates for the “wave-part”. Given any 2 < N <
5/2,0 < t < T, where 0 < T, < 1 denotes the bootstrap time. By the vectorfield
multiplier method and Littlewood—Paley calculus applied to Eq. (1.2), we derive
the following energy estimates for the

4

‘wave-part”:

t
1091781 (5, S 1O Frn 155 +/0 (189l Lee .y + DOV, C, D315, ydr,
(1.9)

which is an analogue of (1.8). We will provide a detailed expression and its proof
in Sec. 5.1.3.

To control C,D on the right-hand side of (1.9), we then consider the energy
estimates for the “transport-part”. We first need an important L? elliptic div-curl
estimate

105.08)|2(5,) < 10%,C. D2 s, (1.10)

We note that the proof of (1.10) requires a rewriting div-curl system (5.17a) and
(5.17b) for vorticity and entropy gradient, where one has to exploit the structure
of the relativistic Euler equations. By splitting the space-time div-curl systems into
time and spatial directions of derivatives, taking the advantage of the transport
equations (1.3a) and (1.3b) for w and S, we write time derivative of vorticity and
entropy gradient components as a combination of spatial derivatives of w and S.
We obtain a new spatial div-curl system of the form

(G™H%9, ((wy), S)y = F, (1.11a)

Da((w); ) — A((wy), S)a = Hab, (1.11b)
where G™1 = G71(v) is Riemannian, F = D + lo.t. and H = C + Lo.t. (1.11) is a
PDE system on constant-time slices. Note that Eq. (1.11a) is a quasilinear diver-
gence equation while the analogue in [11] is a constant-coefficient equation. Then
by Littlewood—Paley estimates and a partition of unity argument, we prove (1.10)
in Proposition 5.8.

As in Proposition 5.8, by (1.10) and Littlewood—Paley calculus, we also have,
for 2 < N <5/2

105,08 121z, < 10F,C. Dl grv-1 . (1.12)

By applying energy estimates and Littlewood—Paley calculus on evolution equa-
tions (1.4a) and (1.4b) for C, D, we have the following energy estimate for C, D:

t
1€, Dl v -1(x,) S NIC, Dlliv-1(s,) +/0 (10,805,805l (s,) +1)

x |00, 85,88, C, Dl[3x—1(x,dr. (1.13)



434 S. Yu

By elliptic estimates (1.12), (1.13) and (1.9), we have
185,85 13515,y S 1199, C. Dl -1 (s,

t
S 109,C. Dl + [ (109,05,05]1x(5.) + 1)
0

x |00,8,8S,C, D2y -1y, dr. (1.14)

The results of energy estimates are obtained in Sec. 5.1.3.

From (1.9), (1.13), (1.14) and Gronwall’s inequality, we see that if |8¥,da,
8§HL}L§(M) is bounded (note that ¢ ~ vort(w) + Lo.t.,D ~ divS + lo.t.), the
Sobolev regularity of the data can be propagated by the solution. This drives us to
setup a bootstrap argument with the bootstrap assumptions as introduced in the
next section.

1.5.2. Bootstrap assumptions

As we made it clear in the previous section, our argument crucially relies on the
boundness of the term [|OV, 8, 85|11 Lo (rr)- We prove the boundness of this via

a bootstrap argument that we now describe as follows.

Throughout the paper, 0 < T, < 1 denotes the bootstrap time. We assume that
\f/,dj', S is a smooth solution to the relativistic Euler equations. For §y > 0 defined
as in Sec. 3.4, we assume the following estimates hold:

1N Zs v 0,11y + D V2 IPYOUIZ e (0 1oy < 1, (1.152)
v>2

105, 0517 2 e (0.1 x5y + D VIO UPYOD, PyOS| T2 e 0,1y xmsy < 1o (1.15D)
v>2
where P, is the Littlewood-Paley projection (see Sec. 3.2 for definition). The
Littlewood—Paley terms in the assumptions are needed for establishing the dyadic
Strichartz estimate in order to improve the bootstrap assumptions.

In the classical local well-posedness problem of the relativistic Euler equa-
tions, the regularity assumptions are (h,v,s) € H®/?* (). This gives the
AV € HB/2% (). One can recover the boundness assumption HO\I_J'HL:o(Et) by
standard energy estimates and Sobolev embedding H?/?* < L at any constant-
time hypersurface ;. The lack of Sobolev embedding in the low-regularity level
forces one to find a new machinery to improve the reasonable bootstrap assump-
tions (see Sec. 1.1 for introduction of previous results). Recovering the bootstrap
assumptions occupies a large part of this paper.

1.5.3. Transport-schauder estimates for the transport-div-curl system

In this section, we explain how to improve the bootstrap assumption
(1.15b). In particular, by applying Holder’s inequality in time, this will show
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||3Q,3§||L%L$([O,T*]XR3) is small. This improvement is conditional on (1.19), which
we explain how to derive in Sec. 1.5.4.

Because of the lack of tools in Hodge estimates in L* space, we have assumed
a slight bit of extra regularity for the “transport-part”. That is, we propagate the
Holder boundness of “transport-part” with given initial data ||C, D|| coarsyy < D
where 0 < @ < 1 and D € R. Besides using the transport equations (1.3a) and
(1.3b) which exhibit source terms with surprisingly good structures, we also rely on
the following Schauder-type estimate:

103,05 | oo 5, S 189, C. Dll o s, (1.16)

(¢)

In order to control C,D on the right-hand side of (1.16), we use the transport
equations (1.4a) and (1.4b) of C and D, which are coupled to dw,dS (see Egs.
(1.4a) and (1.4b)). By combining the two, under bootstrap assumptions (1.15a), we
can apply Gronwall’s inequality to bound the vorticity and entropy gradient of the
relativistic Euler flow. We will discuss this approach in more details below.

To derive Schauder estimates, we split the derivative of the vorticity w and
entropy gradient S (see Definitions 2.3 and 2.6 for the definition of w and S) into v-
tangent direction and the ¥;-tangent directions (v is transversal to ¥; with respect
to Minkowski metric). Now we highlight the following two features in our analysis:

e The v-tangent direction derivatives of vorticity and entropy gradient are favorable
because of the transport phenomena. That is, by using transport equations (1.3a)
and (1.3b), we are able to obtain the Holder bound for v-tangent direction of
vorticity and entropy gradient by using bootstrap assumptions.

e To control the ¥;-tangent directional derivatives of vorticity and entropy gradient,
we rely on a space-time transport-div-curl system for w and S. We note that it
is qualitatively distinct from the case in [11] for 3D non-relativistic compressible
Euler equations where the div-curl equations are spatial with constant coefficients.

We now explain how we derive Schauder estimates (1.16). We use the same div-
curl system (1.11a) and (1.11b) as in the L? elliptic estimates. By partition of
unity, Fourier transform, Littlewood—Paley theory and properties of pseudodiffer-
ential operators, we are able to bound ||6Q_j,6§||cg,a(zt) by [|0F,C, Dl|co.as,) as in

(1.16), see Lemma 5.20 for the detailed proof. Then we bound |C, Dl ooz, by
applying transport equations (1.4a) and (1.4b) as follows:

t
G Dllgoor 5, S 1 +/O (10 o1 ., + DIOF, 05,05 o1 s dr. (117)
Finally, combining (1.16) and (1.17), we use Gronwall’s inequality and bootstrap
assumptions to close the transport-Schauder-type estimates

193,05 | o s,y S 19T (118)

(Z¢)
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We emphasize that later in the argument, we will integrate (1.18) in time and
combine it with the improved Strichartz estimate (1.19) (which is obtained indepen-
dently of (1.18)). These lead to a strict improvement of the bootstrap assumptions
(1.15b). We provide full details of the Schauder estimates in Sec. 5.

1.5.4. Reductions of the Strichartz-type estimates

Our argument above crucially relies on bounding HB\I7|| Lire(Mm)- In this section, we
explain how we derive strict improvements of bootstrap assumptions (1.15a), that
is, we describe how to derive Strichartz estimates (1.19). By taking the advantage
of the smallness of bootstrap time interval [0, 7], we will improve our bootstrap
assumptions to the following Strichartz estimates:

102 0.2 1xze) + 2 V" PO om0,y ST (1:19)

v>2

where § > 0 is sufficiently small as in Sec. 3.4 and 80y < 1 < N — 2, where g is
from the bootstrap assumptions (1.15a) and (1.15b). Note that if T is small, (1.19)
is a strict improvement of (1.15a). We reduce the proof of (1.19) to the proof of
estimates on the acoustic geometry by adopting the geometric approach of [30]. This
reduction is done through the following steps: Improvement of bootstrap assump-
tions «— Strichartz estimates «— Decay estimates «— Conformal energy estimates
«— Controlling of the acoustic geometry, where the left arrow indicates that the
latter estimate implies the former. We remind readers of the logic diagram at the
beginning of Sec. 1.5.

e Reduction to dyadic Strichartz estimates. The first step in the proof of (1.19) is
to reduce Strichartz estimates to a dyadic Strichartz estimate. Specifically, for a
fixed large frequency A, we partition [0, 7] into disjoint union of sub-intervals
Iy := [ti—1,tx] of total number < A0 with || < A7 (see Sec. 3.4 for the
definition of &¢). By Littlewood—Paley decomposition and Duhamel principle, the
proof of (1.19) can be reduced to a dyadic Strichartz estimate

3.1
1 Px00l Lo Lo ([t sa]xr3) S A2 7100 L2(s,), (1.20)

where ¢ is a solution of geometric equation
Ogyp = 0, (1.21)

on the time interval Ix. In (1.20), ¢ > 2 is any real number which is sufficiently
close to 2 and T € [tk, tr11]. Here, we focus on large frequencies since control of
small frequency is easier due to Bernstein inequalities.

e Reduction to decay estimates. For a large frequency A, by rescaling the coordinates
(see Sec. 6.2 for the rescaling) and using an abstract 77* argument, we can
reduce the dyadic Strichartz estimates (1.20) to L? — L® decay estimates at any



Rough solutions of the relativistic Fuler equations 437

t € [0,T;n)] where T,y is the rescaled bootstrap time (see Sec. 6.2 for the
definition of T,,(y))

1

[Tl pesy S | ————=
FEIE a1

+ d(ﬂ) (0ellL2(=y + llellzen),  (1.22)

where the timelike vectorfield T is g-unit normal to X (that is defined in Def-
inition 2.11) and ¢ is an arbitrary solution to the equation Oge = 0 on the
time interval [0, Ty, (n)] X R? with ¢(1, ) supported in the Euclidean ball By (see
Theorem 6.9 for detailed definition of R). Moreover, the function d(t) satisfies

ldll 4

1.
L2 ([0,Ty;0)]) ( 23)

for ¢ > 2 sufficiently close to 2.

e Reduction to conformal energy estimates. By product estimates and Littlewood—
Paley theory, we reduce the proof of (1.22) to a proof of the following estimates
for the conformal energy €[p](t) (see Sec. 7.5 for the definition of the conformal
energy €[p](t)) at time ¢ € [1,T,;(x)]

el(t) Se A+ )*(0¢lZ2 (s, + llelZ2(s,)): (1.24)

where ¢ is an arbitrary solution to the equation gy = 0 on [0, Ty, (x)] x R? with
©(1) supported in Bg € M) 0%, (see Sec. 7.1 for the definition of M)
where € > 0 is an arbitrary small number.

We emphasize that both the reduction of (1.22)—(1.24) and the very definition
of €lp] require the acoustic geometry, where its sharp control is needed for deriving
(1.24). We describe how to obtain such control in Secs. 1.5.5-1.5.7. We provide an
overview of the structure over the reductions in Sec. 4 and more detailed discussions
in Sec. 6.

1.5.5. Structures for the causal geometry of the acoustic space-time

In order to reduce the decay estimates to conformal energy estimates (see Secs. 1.5.6
and 4.4 for introduction and Sec. 7.3 for details), one needs sharp information about
the acoustic geometry. In this section, we discuss the geometric framework that is
crucial for our analysis. This part of the result is well known and standard (see
Sec. 1.1 for the introduction of the previous results). The central object of our
geometric framework is the acoustical function w, which is defined as a solution of
the acoustical eikonal equation (g=)*?0,udsu = 0, where g~ is the inverse of the
normalized acoustical metric. We denote the level sets of u by C,, which are forward
truncated null cones (defined in Sec. 7.1).

We construct a null frame, which consists of a null pair L, L and two spherical
vectorfields {ea}a—12 (see Sec. 7.2 for detailed definitions). We derive transport
and Hodge-type equations for the Ricci coefficients. An important example is the
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Raychaudhuri equation (see Sec. 8 for definitions of connection coefficients and
PDEs verified by geometric quantities)

1 N .
Ltrgx + §(tr¢x)2 = 7|X|; - kNNtrgx — Ricyy. (125)
With the help of a remarkable decomposition of the Ricci curvature tensor
1 - 1 o o
Ric,g = —§Dggaﬁ(\lf) + §(DQP5 + Dgra) + ,@(\I/)[B\II,B\I!], (1.26)

-

and the Bianchi identities, where we can substitute Oggas(¥) in (1.26) by using
relativistic Euler equations (1.2), we are able to obtain some estimates for the Ricci
coefficients, which we will utilize in the following sections. We emphasize that it
is important to have exactly C, D on the right-hand side of (1.2). C, D satisfies the
transport equations (1.4a) and (1.4b), which allows us to derive estimates along
constant-time slices and null hypersurfaces (in Sec. 1.5.1) and control the acoustic
geometry.

The advantage of using the acoustic geometry in this low-regularity setting is
that it reveals the dispersive properties of solutions to the wave equations. That is,
for a solution ¢ of wave equation [lg¢ = 0, the derivatives which are tangent to
the characteristic null cones C, have better decay than the transversal derivatives
parallel to the L direction. We have to control some geometric quantities for several
reasons:

e The acoustic geometry that we setup must be well defined. In particular, we have
to rule out short-time shock formation due to the intersection of distinct null
cones.

e To bound a suitably constructed weighted energy in order to derive decay esti-
mates, a multiplier vectorfield method needs to be introduced. The multipliers
we use are related to L and ¥;-tangent sphere normal vector N. Since L and
N depend on the wave variables (h, s,v), the acoustical eikonal function u and
their first derivatives, to control the weighted energy, one needs to control relative
derivatives of the above quantities.

1.5.6. Control of the conformal energy

A crucial part in the reduction of Strichartz estimates is to derive the decay esti-
mates. As we discussed in Sec. 1.5.4, we use the conformal energy method that was
introduced by Wang in [30]. We need to consider both of equation Og¢ = 0 and
%p) = --- (see Definition 8.5 for the definition
of 0 and g) to control various terms via the energy method. We are interested in

the conformal wave equation Cg(e™

such equations because we have reduced the Strichartz estimates for solution ¢ of
geometric equation Ogp = 0 (see Sec. 1.5.4 for the reduction).

Since the metric g is only smoother along null hypersurfaces, we have to first use
the original wave equation and choose X = fN (see Sec. 7.6 for the definition of f
and Sec. 7.2 for sphere normal vector N) as the multiplier. By using the divergence
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theorem for a modified current on an appropriate region, we get a Morawetz-type
energy estimate where we obtain a uniform bound for the standard energy of ¢
along a union of a portion of the constant-time hypersurfaces and null cones.

Then we consider the conformal wave equation. We use the multiplier approach
with 77 L-type vectorfields in the region {7 < u <} N{F > R} where 1 <7, <
T2 < Ti;(n) to control the conformal energy in the exterior region and to provide
energy decay for each null slice. Finally, we control the conformal energy in the
interior region with the help of the argument in [10] by obtaining energy decay in
each spatial-null slice.

The very definition of the conformal energy, as well as its analysis, requires del-
icate and precise control of the acoustic geometry. We state the boundness theorem
of conformal energy in Theorem 7.6. By using our estimates on the Ricci coeffi-
cients, one could follow the steps listed in [11, Sec. 11] to prove Theorem 7.6. One
could go through the details of the argument in [30, Sec. 7]. Also readers could
look into [15, Sec. 3] for initial ideas. We omit these details because the exact same
arguments hold in our case.

1.5.7. Control of the acoustic geometry

To control the conformal energy, we need to control the acoustic geometry.
Klainerman-Rodnianski [16] and Wang [30] developed an approach of controlling
the geometric quantities in the low-regularity setting. In this paper, we control the
acoustic geometry by following the approach in Wang [30].

First, we provide the PDEs verified by the geometric quantities in [16, Sec. 2].
We write down the geometric transport equations and div-curl system for the con-
nection coefficients. These equations depend on our geometric formalism and are
independent of the relativistic Euler equations. Second, we use the estimates for cer-
tain Ricci and Riemann curvature tensor components by using the decomposition
of the Ricci curvature (1.26) in [16, Lemma 2.1] and the Bianchi identities. It is at
this step that the structure of the relativistic Euler equations is used. Specifically,
we can substitute ggas(¥) in (1.26) by using relativistic Euler equations (1.2).
C,D on the right-hand side of (1.2) satisfies the transport-div-curl system, which
allows us to derive elliptic estimates and control the acoustic geometry.

Then by combining the geometric transport equations and the aforementioned
Ricci and Riemann curvature tensor components estimates, one can derive and
analyze the equations for many acoustic variables. These include the important mass
aspect function p and the conformal factor o, which introduce the rough geometry.
Finally, we derive mixed space-time norm estimates for all the quantities, which
are needed in the conformal energy estimates. We omit the details of the proof of
controlling the geometry since the argument follows the same as in [11, Sec. 10].

In the following few paragraphs, we show why the standard Morawetz energy
Kg .= Lxg is present in the
standard Morawetz-type energy estimates, where K := % (u?L + (2t — u)?L) and

estimates are insufficient. The deformation tensor (
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L is the Lie derivative. ")m can be expressed by the connection coefficients of the
null frame. We need to control them with the help of the transport and Hodge-type
equations for geometric quantities.

After integrating by parts to obtain the Morawetz-type energy identity, one
needs to control various derivatives of ). In particular, Ytryx, which is the
angular derivative of the expansion scalar, as well as the mass aspect function
po= Ltryx + %trgxtrgx (see Definition 8.4 for the definition of these geometric
quantities). In order to control ¥tr,x, we rely on the Raychaudhuri equation (1.25)
commuted with ¥. To control the Ricci term in (1.25), we use (1.26) contracted
with L¥LA. After commuting with Y, we have to control the error term L(YT'z).
It Wtrgx and YI';, separately. Therefore, standard Morawetz energy estimates are
insufficient in our case.

Therefore, to control all terms at a consistent level of regularity, we use the
approach of Wang [30], which relies on renormalized quantities and a metric that
is conformal to the acoustical metric, where the conformal factor is carefully con-
structed so that the null expansion scalar associated to the conformal metric tryx
is precisely tryx +I'r. We are able to obtain the regularity theory of tryx + I'z,
while it seems impossible to treat them independently.

The conformal wave equation attempts to resolve the issues described above,
but introduces the difficult conformal factor o. Thus, in order to obtain sufficient
regularity for the conformal factor o, we must in fact control the modified mass
aspect function [t

1
fL:=2A0+u— trgkaN + §tr¢xI‘£, (1.27)

as well as the modified torsion Yo + ¢. These quantities satisfy favorable transport
and div-curl systems, i.e. the source terms have sufficient regularity, moreover, they
have good decay properties. We stress that this analysis relies on obtaining care-
ful control over the top derivatives of the specific vorticity and entropy gradient,
since the modified fluid variables C,D enter as source terms in various geometric
equations, such as the Raychaudhuri equation.

1.6. Paper Outline

The structure of this paper will follow the non-relativistic 3D compressible Euler in
[11]. The logical graph of this paper is in Sec. 1.5.

e In Sec. 2, we first state the notations that we are going to use throughout the
paper. Then we define the fluid variables and tensorfields, including the acousti-
cal metric. We also introduce the geometric formulation of the relativistic Euler
equations.

e In Sec. 3, we define the Littlewood—Paley projections, which are frequently used
in our analysis. We provide the frequency-projected versions of the evolution
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equations (i.e. the relativistic Euler equations) in Lemma 3.3. We state the main
theorem and the bootstrap assumptions in Theorem 3.4 and Sec. 3.6.

e In Sec. 4, we discuss the structure of the proofs which we will follow in the rest
of the paper.

e In Sec. 5, we use the bootstrap assumptions to derive the energy, L? elliptic and
Schauder estimates for the fluid variables along constant-time hypersurfaces. Note
that Schauder estimates will improve the bootstrap assumption (3.17¢) in Sec. 3.6
after the bootstrap assumption (3.17b) is improved by Strichartz estimates.

e In Sec. 6, following the approach of Tataru [27] and Wang [30], we rescale the
fluid solution and reduce the proof of the Strichartz estimates to the proof of a
spatially localized decay estimate. The reduction is essentially the same as one
used by Wang [30], which we refer to for various details.

e In Sec. 7, we implement nonlinear geometric optics by constructing an acoustical
function v and setting up its geometry, including constructing an appropriate null
frame. Finally, we define the conformal energy and state the boundness theorem
of the conformal energy in Theorem 7.6, which plays a crucial role in deriving the
decay estimates that were stated in Theorem 6.9.

e In Sec. 8, we prove the energy estimates for the fluid variables along the acous-
tical null hypersurfaces in Sec. 8.1. We define additional geometric quantities,
including the connection coefficients of the null frame, conformal factors, mass
aspect functions and curvature tensor components. Then we restate the estimates
from [30] that yield control over geometry along the initial data hypersurface. We
state the bootstrap assumptions satisfied by the rescaled fluid variables as well as
the bootstrap assumptions for geometric quantities in Sec. 8.4.2. Then we state
the main estimates for the geometric quantities in Proposition 8.10, followed by
a discussion of its proof in Sec. 8.4.4.

2. The Relativistic Euler Equations and Its Geometric
Formulation

In this section, we provide the standard first-order relativistic Euler equations and
its geometric formulation. The latter will be used throughout our analysis.

2.1. Notations

Greek “space-time” indices take on the values 0, 1,2, 3, while Latin “spatial” indices
take on the values 1,2,3. In this paper, for Greek and Latin indices, for any
vectorfield or one-form V', we lower and raise indices with the Minkowski metric
Mg = diag(—1,1,1,1) and its inverse by using the notation (V,)g := M,zV*
and (V#)? .= (M~1)*PV,. Similar notations apply to all tensorfields. Moreover,
€apys denotes the fully antisymmetric symbol normalized by €gi123 = 1. Note that

(€#)0123 = —1. We use Einstein summation throughout the paper.
We denote Xy = {(¢/, 2%, 2%, 23) € R3[|t/ =t} as the standard constant-time
slice.
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We denote the spatial partial derivatives by 0 and the space-time partial deriva-
tives by 8.

Remark 2.1. Since M,g := diag(—1,1, 1,1), for any vectorfield or one-form V', we
have the identities 8(V}), = @(V*#)® and 8(V,)o = —0(V*#)°.

2.2. Definitions of the fluid variables and related quantities
2.2.1. The basic fluid variables

The fluid velocity v* is a future-directed four-vector and normalized by (v,)a,v* =
—1. p denotes the pressure, ¢ denotes the proper energy density, n denotes the proper
number density, s denotes the entropy per particle, 6 denotes the temperature and

H=(0+p)/n, (2.1)
is the enthalpy per particle. Thermodynamics supplies the following laws:
do 1 0o dp
H=2£ - - Z° dH = < +6d 2.2
on|,’ nds|,’ n +ods, (2:2)

where 6%|S denotes partial differentiation with respect to n at fixed s and %|n
denotes partial differentiation with respect to s at fixed n.

2.2.2. v-orthogonal vorticity

Definition 2.2 (The v-orthogonal vorticity of a one-form). Given a space-
time one-form V, we define the corresponding wv-orthogonal (with respect to
Minkowski metric) vorticity vectorfield as follows:

vort® (V) := —(!)*#79 (v,) 30, V. (2.3)

Definition 2.3 (The v-orthogonal vorticity vectorfield). We define the vor-
ticity vectorfield w® as follows:

w® = vort®(Hov) = — (") (v,) 50, (H (vy)5). (2.4)

2.2.3. Auziliary fluid variables

Definition 2.4 (Logarithmic enthalpy). Let H > 0 be a fixed constant value
of the background enthalpy. We define the logarithmic enthalpy h as follows:

h:=In(H/H). (2.5)

Definition 2.5 (Temperature over enthalpy). We define the quantity q as
follows:

q:=—. (2.6)

Definition 2.6 (Entropy gradient one-form). We define the entropy gradient
one-form S, as follows:

Sa 1= 045. (2.7)
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2.2.4. Equation of state and speed of sound

Definition 2.7 (Partial derivatives with respect to h and s). If Q) is a
quantity that can be expressed as a function of (h, s), then

Q;h = Q;h(h,s) = g—g 5 (2.8)
Qis = Q;s(h,s) = %_? . : (2.9)

We assume an equation of state of the form p = p(o, s). The speed of sound ¢ is

defined as follows:
p
= = . 2.10
c= 5l (2:10)

In the rest of the paper, we view the speed of sound be a function of A and s:
¢ =c(h,s).

We restrict to the physically relevant regime where the speed of sound does not
exceed the speed of light

0<c<l. (2.11)

2.3. Standard first-order equations

Considering s, h and {v®}a=0,1,2,3 to be the fundamental unknowns, as in [12,
Sec. 3], the relativistic Euler equations take the form of a quasilinear hyperbolic

system
V0. h + 290" = 0, (2.12a)
00, (V) o + Oah + (V)00 Oxh — q0ys = 0, (2.12Db)
0,8 = 0. (2.12¢)

2.4. Modified fluid variables and the geometric wave—transport
formulation

In this section we define several variables followed by the new formulation of rela-
tivistic Euler equations.

Definition 2.8 ([12, Definition 2.8, Modified fluid variables]). We define
the modified fluid variables as follows:

C* := vort®(w,) + cfzeo‘ﬁ'y‘s(vb)g(avh)(wb)g + (6 — O;h)(Sﬂ)o‘(B,gv“)
+(0 = 0.)0"{(SH)"0ch} — (0 — 0)(SH{ (M) 0r(v5)n}, (2.13)

D= Laushy + Lushrom - Lesrany. (2.14)
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Definition 2.9 (Acoustical metric and its inverse). Let M be the Minkowski
as defined in Sec. 2.1, we define the acoustical metric gacou,, and its inverse
(gre. )™ as follows':

gAcouQﬁ = CiQMaﬁ + (072 — 1)(vb)a(vb)ﬁ7 (215&)
(Bacon) ™ = (M1 4 (2 = 1o, (2.15b)

Definition 2.10 (Adjusted acoustical metric and its inverse). We define the
adjusted acoustical metric go5 = gas(¥) and its inverse (g7 1) = (g7 1) (V) as
follows®:

ap = gAcoua,g(*gOAOcou)
= {7 Mag + (¢ = D(w)alvy)sHc® = (2 = 1)(°)%},  (2.16a)

Bhoon _ M+ (2~ 1)o0”

(g—l)aﬁ _ 7gOA%0u == EESCE (2.16b)

We emphasize that (g=1)° = —1. This helps us to simplify some of our formulas.
Our bootstrap assumption will be so that 0 < ¢ <1, so (ggclou)00 < 0.

We lower and raise indices with the acoustic metric g and its inverse by using
the notation Vs = gV and V# = (g71)*V,,. Note the difference between with
raising and lowering indices with g versus M, see Sec. 2.1.

Definition 2.11. We define the future-directed g-timelike vectorfield
T := —g. (2.17)

We note that g(T,T) = —1. We note that T, = —2 where §° is the Kronecker
delta.

Definition 2.12. In Cartesian coordinates, the induced metric g and its inverse
on constant-time hypersurface ¥; from g are as follows:

Jab = 8ab + Ta'Ty, (2.18a)
(61" =g +ToT. (2.18b)

By (2.16) and (2.17), one can compute that g.,(g71)% = §5. We note that g can be
also viewed as a space-time tensor, that is

9op = 8ap + TaTp, (2.19a)
(g HP = gf 4 ToTh, (2.19b)
Note that by (2.17) and (g=1)%° = —1, I1° := g7%g,5 can be viewed as g-orthogonal

projection operator from whole space-time onto ;.

fFor convenience, we write gifou instead of (ggclou)aﬁ in this paper.

gFor convenience, we write g*? instead of (gfl)aﬁ in this paper.
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Proposition 2.13. The metric g and its inverse g~ have the following spatial
components relative to rectangular coordinates:

(57 = ¢ = ( = DO} HESHE — (¢~ DO + A - Doa?),
(2.20a)
Gab = {€ 20ap + (72 = 1)(vy)a(vp)p }H{c? — (2 = 1)(v")? ). (2.20b)

Using (2.16b), (2.17) and (2.18b), (2.20a) is obtained by direct computation. (2.20b)
is obtained by the fact that T, =0 fora=1,2,3.

Definition 2.14 (Differential operators defined by g). D denotes the Levi-
Civita connection of g and Oy := gO‘BDaDg denotes the corresponding covari-
ant wave operator. In Cartesian coordinates, for scalar function ¢, Ogp =

,/ﬁg\a“( lg|g*?d5¢), where |g| is the determinant of g.

Definition 2.15 (Arrays of variables). For convenience in presenting the for-
mulations and analysis, we define the following arrays of solution variables:

7= (0%, 0!, 0%,0%), &= (W0 Wl w? Wwd), (2.21a)
§= ((5)°.(89)'. (5%, (%)), €= (c".ch.c?.c?). (2:21b)

We also define the array T of wave variables, as follows:

U= (W2, vt 0% 03 by s). (2.22)
Definition 2.16 (Material derivative). We define the material derivative® B =
B(¥) as follows:

v

B = —50a. (2.23)

2.4.1. The geometric wave—transport formulation of the relativistic Euler
equations

We use the following schematic notations throughout the paper where A, B, C are
arrays of variables:

e Z[A](B) denotes any scalar-valued function that is linear in the components of
B with coefficients that are a function of the components of A.

o 2[A](B,C) denotes any scalar-valued function that is quadratic in the compo-
nents of B and C' with coefficients that are a function of the components of A.

Proposition 2.17 ([12, (3.1)—(3.12b), The geometric wave—transport for-
mulation of the relativistic Euler equations]). If ¥ € {v° v v% v3 h,s}
solves the relativistic Euler equations (2.12), then VU, w,S,C,D also satisfy the

hWe note that in [11], B = 9; + v'9;.
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following:
Wave equations:
Ogr.., ¥ = 2(0)[C, D] + 2(0)[87,87]. (2.24)
Transport equations:
Bw® = 2(V,3,5)8Y], (2.25a)
B(SH® = 2(¥, §)[o0]. (2.25D)

Transport-Div-Curl system:
BC® = s(ca) = 2(1)[dT, (dw,dS, V)]
U, 00 + £ (¥, 3, 5)0v,05)], (2.26a)

+2(5)0V,d0)] + .2 (¥,3, 5)8Y], (2.26D)
vort®(S) =0, (2.26¢)
Dow® = Z(&)[07]. (2.26d)

Remark 2.18. The div-curl system (2.26) in the geometric formulation of the
relativistic Euler equations is a space-time div-curl system. This feature causes dif-
ficulties as we want to derive estimates for vorticity and entropy gradient along
the constant-time hypersurface ¥;. To solve this issue, we rewrite the div-curl sys-
tem into a dynamic spatial system along constant-time slices and apply theory in
Littlewood—Paley decomposition as well as pseudodifferential operators in Sec. 5.
These difficulties are not present in the non-relativistic 3D compressible Euler equa-
tions because the analogue of (2.26¢) and (2.26d) is already a spatial div-curl system.

We now provide some useful identities, which we are going to use throughout
the rest of the paper.

Lemma 2.19 (Identities involving vorticity and entropy gradient). We list
some useful identities in [12, Sec. 4] as follows:

w™(vy)r = 0, (2.27a)
V00 (Wh) s = =W 0a (V) s, (2.27Db)
05008 = —(5%) D0 (), (2.27¢)

0, (635 — () = €xamat™vort* (@) — (19, (3)5) (15 + 0% (5 (w3 (5)s
(070 (@)y) (05)5 — 0" (D5 (w)) (13)s (2.27d)
0485 — 055y = €y52v " vort (S) (V70kS5)(y)~
0 (055,) (1) + (050,5,) (03)5 — v (D5S,) ()5 (2:27¢)
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Discussion of the proof. (2.27a) follows from Definition 2.3. (2.27b) follows from
taking d, derivative of (2.27a). (2.27¢c) follows from taking 9, derivative of (2.12c).

To prove (2.27d) and (2.27e), we use Definition 2.3 to express vort*(V) for
V =w, and V = S, respectively. Then using the fact that

SO0k 0 sk A 0 cA Sk A SO ok A sk 50 K SA 0 REVEWN
— Capns€®?N = 80555% — 605057 + 520065 — 520564 + 656284 — 8587573, (2.28)

we rearrange the terms and obtain (2.27d) and (2.27e).
We refer readers to [12, Lemma 4.1] for detailed proofs. m|

In the following proposition, we provide the geometric wave equation with
respect to the rescaled acoustical metric g, which is more convenient for us to
derive energy estimates and construct geometry. We will use this equation in the
rest of the paper.

Proposition 2.20 (Wave equations after rescaling the acoustical metric).
Let g be as defined in Definition 2.10. If ¥ € {09 v!,v2 v3, h,s} solves the rela-
tivistic Euler equations (2.12), we have the following equation holds:

O = ) = Z(0)[C,D] + 2(T)[0F, 7). (2.29)
Proof of Proposition 2.20 using Proposition 2.17 given.

1
Og¥ = ——0,
Vel

1

1

(VIglg™’ 95 %)

| (_gvocou)_26(¥( V |gAC0u|<_gOA%ou)gX§ouaﬁ\I/)
(

|

B \V |gAcou
= T _gvocou)_laa( V |gAC0u|gz€ouaﬁ\D)
\V |gAcou

+(7g0A0cou)_2gZ§ouaa (gvocou)aﬁ\I/
= (—8htow) ' Tgacn ¥ + 2(7)[07,09]. (2.30)

00
Acou

Note that gaﬁ is smooth function of ¥ and g # 0. Therefore by combining

Acou

(2.24) and (2.30), we obtain the desired equation. |

3. Norms, Littlewood—Paley Projections, Statement of Main
Results and Bootstrap Assumptions

In this section, we define the norms, define the standard Littlewood—Paley projec-
tions that we use in the analysis, state our main results of the paper and bootstrap
assumptions.
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3.1. Norms

In this paper, for functions f, g on a normed space (X, ||| X) we use the notation
£, 9llx == I fllx + llgllx. Similarly, for an array of functions U = (U, U?,...,U¥),

we have ||U]|x := ZZ:1HUQHX- In particular, we use |U] := Zizl(Ui)z. For
functions f and arrays g, we also use || f, gllx = || fllx + |7l x-

Since the volume form on the constant-time hypersurface ¥; induced by
Minkowski metric M is dz'dz?da®, and by identifying (¢,2!, 22, 23) € X, with

(z',2?,2%) € R, we define the standard Sobolev norm on 3 for s € R: || f|| g=(s,) :=

146)* F(©)llz2(z.y, where (€) := (1+[¢[*)"/.
We denote the standard Hélder seminorm C%# and Hélder norm C%7, where

0 < B < 1, of a function F with respect to flat metric on constant-time hypersurface
Et by

F (@)~ F(y)
1Pl = sup DLW (3.)
CO (E) TAYED: |x_y|5
F(x)— F(y
Fllegngs,y = sup [P+ sup =20 (32)
TE2¢

TAYED, |x - y|ﬁ

We also use the following mixed norms for function F : R? — R, where 1 < ¢; <
00, 1 < ¢ < oo and [ is an interval of time:

1/Q1
Pl ses = { [IF 1207} 3.:3)

HF”L;?OL?(Ixzt) = eSSSléII)”FHLZQ(ET)a (3.3b)
1/Q1

HF||L;;102,B(IX&) = {‘/I|F||‘gg,q2(&)d7} , (3.3¢)

HF”L?‘JCQ"’?(IX&) = esssTléII)HFHCg,qz(ET). (3.3d)

If {F)\} ean is a dyadic-indexed sequence of functions on 3, we define

1/2

15V iz L2 (s,) = ZHF«vHQLg(&) . (3.4)
v>1

3.2. Littlewood—Paley projections

We fix a smooth function 1) = v(|¢|) : R® — [0, 1] supported on the frequency space
annulus {¢ € R31/2 < |¢] < 2} such that for £ # 0, we have Y, _, ¥(2F¢) = 1.
For dyadic frequencies v = 2% with k € Z, we define the standard LittlewoodPaley
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projection Py, which acts on scalar functions F': R — C, as follows:

PoF@) = [ e O PO (35

where () := = [gs € 2" ¢F(z)dx is the Fourier transform of F. If I C 2% is an
ver PvEF and P<y F:= P_ ) F. For

functions f, g, we use the schematic notation that P, (f, g) as the linear combination
of Py f and Pyg, namely, P, f + Pyg.

interval of dyadlc frequencies, then PrF := 5"

Proposition 3.1. For a function F, standard results in Littlewood—Paley theory
give the following:

1/2
[EN a0 = IF 2z + (ZV%HPVFILz(zt)) ; (3.6)
v>1
[Fllcos(ss,y = 1F s (s0) +SupV [Py E | Lo (s,)s (3.7)

where H® is the standard Sobolev norm and C°° is the standard Hélder norm. One
can refer [18, Sec. 1; 28, A.1] for the above results.

The following two Lemmas consist of a commuted version of the equations.
Lemma 3.2 commutes g and B with 8 and is needed for below-top-order estimates.
Lemma 3.3 commutes g and B with P, 0 and is needed for the top-order estimates.

Lemma 3.2 (Commuted equations satisfied by one derivative of the solu-
tion variables). We consider the solutions to the equations of Proposition 2.17,
that is, if ¥ € {v° vl 0% 03 h,s} solves the relativistic Euler equations (2.12), the
following equations hold:

0,00 = .Z(0)[C,8D] + 2(T)[8>T,8T] + £(1)[(0F)], (3.8a)
BAC™ = 2(V)[0V, (8w,d%S,8%T)] + 2(1)[(8°V,03,0V,85), (05,05,0V)]
+ 2(0)[(8T)? - (87,85, 05)], (3.8b)
BOD = z(@ ,9)[0%w,8%T,8°5] + 2(1)[(8*V,d5,0¥,85), (8S,07)]
Z(0)[(0¥)* - (87,89)). (3.8¢)

Sketch of the proof of Lemma 3.2. By commuting (2.29), (2.26a) and (2.26b)
with 8, using relations (by Definition 2.8) C = £ (¥, &, §)[83, 9] and D = .Z[DS]+
Z(9)[87], (3.8a)(3.8¢) are derived by straightforward computations. |
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The following Lemma provides the commuted equations with the Littlewood—
Paley projections.

Lemma 3.3 ([11, Lemmas 5.2, 5.4, Equations satisfied by the frequency-
projected solution variables]). For solutions to the equations of Proposi-
tion 2.17, the following equations hold:

Hg POV = R o0 (3.9a)
BPOC" = Race)v, (3.9b)
BPOD = Rop)v, (3.9¢)
where
Ripiyy = POSw)— Y. Py [0g70,050] —T°Py0,00
(c.8)7(0.0)
+ 3 [8% — Pevg®™] Py0.0500
(0.8 7(0,0)
+ Y P8P Py0a050V — Py[g* 0,050V}, (3.10a)
(@8 7(0,0)

Rioceyy = PudF oy — P [a (2—0) aaca] + {z—o .y (Z—O)} P,d,8C"

+ P, ( ) P,0,8C — [ B aca] (3.10D)

Ropyw = PuOF(p) — Py [a (Z—O) aaD] + [Z—O - P, (Z—O)] P,0,0D

L p., (—0) P,0,0D - P, {”—Oaaap} . (3.10¢)
- v v

Moreover, the following estimates hold for the remainders where 12 -seminorm is
taken over dyadic frequencies:

||VN72(9%(6\17);\/79{(3C")W’%(3D)W)HZ%L§(Z,5)
SNOC D)llv -2z, + (18T, 3, ) L (2) + 1)
X (Ha(\i}vﬁvg)||HN*1(Et) +1) (311)

Discussion of the proof of Lemma 3.3. We omit the proof of Eqs. (3.10a)-

(3.10c) since it follows from straightforward computations. We use bootstrap

assumptions, product and commutator estimates for Littlewood—Paley calculus to

prove estimates (3.11). We refer readers to [11, Lemma 5.4] for the detailed proofs

where the structure of the equations are the same as in this paper. We note that
v

we have B? = v—‘; compared to B* = v® in [11], which doesn’t change the proof or
result in the estimates (3.11). m|
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3.3. Statement of main theorem

Using the notations introduced in the previous sections, we precisely provide our
assumptions on the data and the statement of the main theorem.

Theorem 3.4 (Main theorem). Consider a solution to the relativistic Euler
equations whose initial data satisfies following assumptions for some real number
2<N<5/2,0<a<1,¢, >0 and D:

(1) [, v,wllgn sy + lIsllav+isy) < D,

(2) IC, Dcoacsy) < D,

(3) The data functions are contained in the interior of R (See Definition 3.5 for
definition of R) and the enthalpy H is strictly positive, i.e. H > ¢ > 0.

Then the solution’s time of classical existence T > 0 can be bounded from below
in terms of D and R. Moreover, the Sobolev and some Holder reqularity’ of the data
are propagated by the solution on the slab of classical existence.

3.4. Choice of parameters

In this section, we introduce several parameters that each of them either measures
the regularity or plays a role in our analysis. We denote the assumed Sobolev reg-
ularity of the “wave-part” of the data and the Holder regularity of the “transport-
part” of the data by, respectively, 2 < N < 5/2 and 0 < « < 1. For the purpose
of analysis, we choose positive numbers ¢, g, dp,d and d; that satisfy the following

conditions:
2 < g < oo, (3.12a)
N -2 1
=< = .12b
LTI Tk (3.12b)
a
8o = mi { 2,—}, 3.12
0 1= min &, 75 (3.12¢)
1 1
0 §:==—— 3.12d
< 5 g < (3.12d)
01 ;= min{N — 2 — 4eg — §(1 — 8ep), a} > 8dp > 0. (3.12e)

More precisely, we consider N, «a, g9 and dp to be fixed throughout the paper,
while ¢, 0 and §; will be treated as parameters. In particular, (3.12e) is related to a
slightly (but enough) improvement of Strichartz estimates (4.1) over the bootstrap
assumptions (3.17).

"'We note that not entire Holder regularity is propagated in the way that only ||\I7,C,D\\Cg,51 =)
(see Sec. 3.4 for the definition of §;) is bounded by data.
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3.5. Assumptions on the initial data

In this section, we provide the bootstrap assumptions that will be used in the proof
of Theorem 3.4.

Definition 3.5 (Regime of hyperbolicity). We define R as follows:
R :={(h,s,7,,5) e R*| 0 < c<1}. (3.13)
With N and « as in Sec. 3.4, we assume that
“Wave — part” ||h, ¥]| g~ (5, < 00,  (3.14)
“Transport — part” ||s]| v -1 (sy) + 18] v (s + G, Dllcow(sy) < 00.  (3.15)

Assumptions (3.14) and (3.15) correspond to regularity assumptions on the “wave-
part” and “transport-part” of the data, respectively.

Let int U denote the interior of the set U. We assume that there is a compact
subset R such that

(,3,5)(%0) C intR C R C intR, (3.16)
where R is defined in (3.13).

3.6. Bootstrap assumptions

Throughout the paper, 0 < T, < 1 denotes a bootstrap time that depends only on
initial data. We assume that W is a smooth! solution to the equation in Sec. 2.3 and
the following estimates hold:

(0,3,9)([0,T.] xR*) c R,  (3.17a)

10912 e o1 1xms) + D2V NPT o o1 sy S 10 (3:17D)

v>2
108, 0S|172 oo (0.1 cms) + D VIO NPYOD, PyOS| T2 o, mpumsy < 1 (3.17¢)
v>2

In Theorem 5.18, we derive an improvement of (3.17¢). In Theorem 6.1, we derive
an improvement of (3.17b). By fundamental theorem of calculus, Egs. (2.25a) and
(2.25b), (3.17a) is a direct result of (3.17b) and (3.17¢).

4. Structure of the Proofs in the Rest of the Paper

In this section, we provide the structure of the proofs in the paper. Our proofs
rely on a bootstrap argument where the bootstrap assumptions are in Sec. 3.6. See
Sec. 1.5 for the logic of the bootstrap argument. The main goal for us is to improve

JBy smooth we mean as smooth as necessary for the analysis arguments to go through. Meanwhile,
all of our quantitative estimates depend only on the Sobolev and Holder norms.
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the bootstrap assumptions to the following Strichartz-type estimates:

1091152 (0,1, xm5) + DV HIPORI L o o sy ST, (412)

v>2

185, 8517 2 e (0.1 x5y + D VYOS, PyBS| T2 e 0.1y S T2+ (4.1b)
v>2
We prove the (4.1a) through the following series of reductions, see Sec. 1.5.4
for an overview of the logic: Strichartz estimates < Decay estimates <« Conformal
energy estimates < Controlling of the acoustic null geometry.
To prove (4.1b), we prove a transport-Schauder-type estimate in Sec. 5, which is
independent of the proof of (4.1a). In Theorem 5.18, we obtain (4.1b) by combining
the transport-Schauder estimate and (4.1a).

4.1. Simalarities and differences compared to the 3D compressible
FEuler equations

Broadly speaking, we use the same machinery as in [11] to reduce the proof of
the Strichartz estimates to geometric quantities that have to be controlled in order
to derive a conformal energy estimate. This reduction was first introduced and
developed in the context of low-regularity problems for quasilinear wave equations,
as we discussed in Sec. 1.1. Disconzi-Luo-Mazzone—Speck [11] and Wang [31] have
exploited the remarkable structure of the non-relativistic 3D compressible Euler
equations to derive similar low-regularity well-posedness results in the presence of
vorticity and entropy. The main purpose of this paper is to derive similar results
for the relativistic Euler flow by using the remarkable structure of the equations
derived by Disconzi-Speck in [12].

Two main differences in the present paper compared to the non-relativistic case
are (1) the first fundamental form of 3, is no longer conformally flat in the relativis-
tic case, leading to more complicated geometry and (2) the L? elliptic and Schauder
estimates that we need to handle the vorticity and entropy are more complicated
because unlike in the non-relativistic case, the Hodge systems that we study are
quasilinear (instead of constant coefficient).

4.2. Energy, L? elliptic and Schauder estimates in Sec. 5

In Sec. 5, first we prove the energy estimates for wave variables h, s, v and transport
variables w, S, C, D in Proposition 5.1. These estimates are essential to the local well-
posedness Theorem 3.4. We also need these estimates for controlling the acoustic
geometry. We control the H%+¢ norm of wave variables under the bootstrap assump-
tions by using the geometric energy method in Sec. 5.1.1 and commuted equations
in Lemmas 3.2 and 3.3. We refer readers to [29, Sec. 6] for the commutator estimates
involving LP projections in fractional Sobolev spaces. We note that the L? elliptic
estimates for transport variables w, S,C, D in Proposition 5.8 is proven based on a
rewritten dynamic div-curl system in Proposition 5.9.
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We then prove the transport-Schauder estimates in the Holder space C%% for
the transport variables w,S,C,D in Theorem 5.18, which recovers the bootstrap
assumptions (3.17¢) in condition of (4.1a). To prove these estimates, we use the
div-curl system (5.19) and the transport equations (2.25a) and (2.26b). We prove
Schauder estimates by some standard results in pseudodifferential operators as well
as the Littlewood—Paley decomposition with the help of the equivalence between
Hélder spaces and frequency spaces (3.7).

4.3. Reduction of Strichartz estimates to decay
estimates in Sec. 6

We state the Strichartz estimates for wave variables in Theorem 6.1, which improves
the bootstrap assumptions (3.17b). Our reductions of the Strichartz estimates to
the bounded conformal energy consists of several steps. In Sec. 6, we list several
reductions from Strichartz estimates to a spatially localized decay estimate in The-
orem 6.9. We first use Duhamel’s principle to reduce Theorem 6.1 to a frequency-
localized version of Strichartz estimates in Theorem 6.2. Then after rescaling all
the quantities with respect to the frequency in Sec. 6.2, we run a 77 * argument
to reduce Theorem 6.2 to a decay estimate in Theorem 6.8. Finally, by Bernstein
inequalities, partition of unity and Sobolev embedding, we obtain the spatially
localized version of decay estimates in Theorem 6.9. The reductions are by now
standard, therefore we only state the reductions without proof. We refer to Wang
[30, Sec. 3] for the details. It is crucial to derive the decay estimates (6.18). To fur-
ther reduce the decay estimates to conformal energy estimates, we need a geometric
setup, which is in Sec. 7, as we will discuss in the next section.

4.4. Geometric setup and conformal energy in Sec. 7

To control the conformal energy, we use Wang’s approach from [30], which relies on
analysis on a conformal changed acoustic geometry. We reduce the decay estimates
to the conformal energy estimates in Theorem 7.6 in Sec. 7.3 via product estimates
and Bernstein inequality of Littlewood—Paley theory.

In order to define conformal energy and do analysis based on the geometric
structure of the relativistic Euler equations, in Secs. 7.1 and 7.2, we construct the
geometric null frame based on a solution u to the acoustical eikonal equation

(g )P 0qudsu = 0. (4.2)

Then we control the acoustic geometry based on the null frame that we just con-
structed. Note that given the control over the acoustic geometry, we have favorable
estimates for the conformal energy as we discuss in Sec. 7.3.2. We will discuss the
control of the acoustic geometry in the next two sections.
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4.5. Energy along acoustic null hypersurfaces and control
of the acoustic geometry in Sec. 8

In Sec. 8, We prove the energy estimates for fluid variables along the acoustic null
cones in Sec. 8.1. This is important since we need to control fluid variables along
the null cones.

Then we control the acoustic geometry. To start with, we list the connection
coefficients in Definition 8.4. We define conformal factor for the metric in Defi-
nition 8.5. We provide initial conditions for geometric cones in Propositions 8.8
and 8.9.

We setup the bootstrap assumptions for geometric quantities in Sec. 8.4.2 and
list the main estimates for the geometric quantities in Proposition 8.10. We give
a discussion of the proof of Proposition 8.10 in Sec. 8.4.4, which improves the
assumptions in Sec. 8.4.2. Proposition 8.10 is proven via doing analysis on the
transport equations and the div-curl systems of the geometric quantities. We only
give a brief discussion of the proof since it follows the same in [11, Sec. 10].

5. Energy, L? Elliptic and Schauder Estimates

In this section, we first derive the energy and L? elliptic estimates along constant-
time hypersurfaces. Note that we obtain the same results as in [11, Secs. 4 and 5],
where g in [11] plays the same role as h in this paper. Then we derive transport-
Schauder-type estimates for the vorticity and entropy gradient.

5.1. Energy and L? elliptic estimates
The following Proposition is the main result of the energy estimates.

Proposition 5.1 (Energy and elliptic estimates). Under the initial data and
bootstrap assumptions of Sec. 3, smooth solutions to the relativistic Euler equations
satisfy the following estimates for 2<N<5/2andte [0 T.]:

ZHB’“ U, G| v k(zt>+Z|I6 sllanei-res,) +ZH5 C D)l v -1-k(s,)
k=0 k=0

S 0, )~ sy + sl aver(sg) + 1. (5.1)

Remark 5.2. We note that 1 on the right-hand side of (5.1) is due to techni-
cal reasons. Specifically, as shown in Sec. 5.1.3, 1 can be replaced by fg HB(@,J
§)||L$(ZT)dT. By bootstrap assumptions (3.17b) and (3.17¢) and Hélder’s inequal-

ity, we could actually bound this term by T} 2,
We provide several key ingredients for proving Proposition 5.1 in the next two

sections. We provide the basic energy inequality for wave equations and transport
equations in Sec. 5.1.1. We prove a crucial elliptic div-curl estimate in Sec. 5.1.2.
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We give the proof of Proposition 5.1 in Sec. 5.1.3. We refer readers to [11, Secs. 4
and 5; 30, Sec. 2] for the energy estimates in the non-relativistic 3D compressible
Euler equations case and the quasilinear wave equations case, respectively.

5.1.1. The basic energy inequality for wave equations and transport equations

We provide the basic energy inequality for the wave equations in this section.

Definition 5.3 (Energy—momentum tensor, energy current and deforma-
tion tensor). We define the energy-momentum tensor Q. [p| associated to a
scalar function ¢ to be the following tensorfield:

1 —1\a
Qule] = 0D — S (87") Dl (5.2)

Given ¢ and any multiplier vectorfield X, we define the corresponding energy
current X)J[p] vectorfield as follows:

T[] := QP[] X5 — p* X (5.3)
We define the deformation tensor of X as follows:
105 = DaXp + DX, (5.4)

where D is the Levi-Civita connection with respect to g.
We have the following well-known divergence identity:

« 1 v 1 - v
Do ] = Dgp(Xep) + 5Q" 6], = 20X = 527" Omu. (55)

We define the energy E[¢](t) as follows where T® := —g®? is the future-directed
g-timelike vectorfield defined in Definition 2.11:

E[](t) := / (V)30 (] T ooy = / (@[] + &) dooy, (5.6)

where dw, is the volume form on ¥; with respect to g induced by g.

Lemma 5.4 (Coerciveness of E). Under the bootstrap assumptions of Sec. 3.6,
the following estimate holds for t € [0, T.]:

Elpl(t) ~ el (s, + 10illiz s, (5.7)

Proof of Lemma 5.4. First recall that T, = 0, so gu» = ap- Note that since
0 < c(h,s) <1and (v°)? > 1, by direct computation and the bootstrap assumption
(3.17a), we have

dw, = v/det gdz*dz?ds?
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={? = (@ =D {c P + e = D) - 1]}

~ 1.

(5.8)
Then we compute Q[¢]. By (2.18b) and (2.20a), we have
1 —1\a
Q%] = 5{(T90)2 + (971" a0}
1 C25¢1b [62 o (62 o 1)(,00)2] + 02(02 o 1)1)a’Ub
= Z{ (Tp)? o
2 {( o @@ DR Qe
(5.9)
where 6% is the Kronecker delta. Note that
2 1)v® 0
Tog 4D, (5.10)

c? — (2 —1)(v°)2
Then since the speed of sound satisfies 0 < ¢ < 1, it follows that (5.9) is coercive in
0], since (v9)* =14 37, , 4(v")?
{269 — (2 — 1)(v")?] + A(* — 1) "0’} Da Dy
= Mopl? — A — D{6™(0")? — v} DD
> c*0y|?. (5.11)

By bootstrap assumptions that |v®| are uniformly bounded and Young’s inequal-
ity, we derive that Q"[¢] < |8¢|?. Combined with (5.11), the desired estimates (5.7)
follows. O

Lemma 5.5 (Basic energy inequality for the wave equations). Let ¢ be
smooth on [0,T,] x R3. Under the bootstrap assumptions of Sec. 3.6, the following
inequality holds fort € [0, T.]:

E[¢](t) < Elg)(0) + / 10F |1 (5 El] (r)dlr

t
+/0 1Ogellzz (2 190l L2 (5, )dT (5.12)

Proof of Lemma 5.5. We apply the divergence theorem on the space-time region
[0,¢] x R? relative to the volume form dwg = \/det gdz'dz?dz3dr = dw,dr. Note
that T is the future-directed g-unit normal to ;. By (5.4)—(5.7), with X := T, we
have

Blel) = B0 - [ [ (DeeTo) + 5010 P

1
—2¢Tp — §<p2(g_1)“”(T)ﬂ'W) dewgdr. (5.13)
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By bootstrap assumptions, we have | T¢| < 8¢, |Q"[¢]| < 10¢|? and |, | <
|0¥]. Thus by Cauchy—Schwarz inequality along 3, we get the desired estimate.
O

Lemma 5.6 (Basic energy inequality for the transport equations). Let ¢
be smooth on [0, T,] x R3. Under the bootstrap assumptions of Sec. 3.6, the following
inequality holds for t € [0,T]:

t
19122 0y S I9l2 (50 + / 18|10 s 91122 5.yl
t
+/0 ez, Bl Lz (s, )dr. (5.14)

Proof of Lemma 5.6. Let J* := ¢?B?, then 0,J% = 2¢By + (0,B%)p?. We
apply the divergence theorem on the space-time region [0,¢] x R3 relative to the
Cartesian coordinates. Note that J° = 2. By Cauchy-Schwarz inequality along
Y., we obtain the desired estimates. O

Remark 5.7. We remark that for our implementation of the geometric energy
method for wave equations, the timelike vectorfield T (defined in Definition 2.11)
plays the same role as B (Note that B = 9; + v*9, in [11] is not the same as
B = g—;‘aa in this paper.) in [11, Sec. 4.1]. All the arguments for geometric energy

method for wave equations go through in the same fashion as in [11, Sec. 4.1].

5.1.2. Elliptic div-curl estimates in L? space

This section is dedicated to the proof of Proposition 5.8, which is a key ingredient
in the proof of the energy estimates (5.1) for the &, S,C, D.

Proposition 5.8 (Elliptic div-curl estimates in L? space). Under the boot-
strap assumptions in Sec. 3.6, the following estimates holds for w and S:

Moreover, HN=F elliptic estimate also holds true for k = 1,2, that is
105,09 1550 S 15.5.C. s ws,y Jork=12.  (5.16)

Since we have to derive energy estimates on constant-time hypersurfaces, and
the Hodge system (2.26) is a space-time div-curl system, we begin by deriving a
spatial div-curl system for w and S.

Proposition 5.9 (The div-curl system on constant-time hypersurfaces).
Given the div-curl system (2.26), the following equations hold on Xy for vorticity w
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and entropy gradient S:

(G 0u(ws)p = Fu,  (G71)*0,8), = Fs, (5.17a)
Oa(ws)o — Op(wy)a = “Hap,  0aSy — 0pSa = FHap, (5.17b)
where
F, = 2(¥,3,5)0¥], Fs=.2(%)D+.2(V,5)d¥], (5.18a)
WH = L(0)C+ L(0,3,9)[09], ©H., =2(¥,5)0V], (5.18b)
(G =06 — (U:OU)Z; (5.18¢)

For convenience, we write the above two div-curl systems as follows where
(M, F, Hyy) which® is either (w,, F.,, “)Hab) or (S, Fs, S)Hab):

(G )0y = T, (5.19a)
aaT]b - abna = ab- (519b)

Proof of Proposition 5.9. For the div part (5.19a), by Egs. (2.12¢) and (2.27a),
we write

b
Nyv
Also by using transport equations (2.25a) and (2.25b), we have
a f\b
o Y 9a(n*) T~ 7
do(*)’ = 0 + 2V, d,5)0v]. (5.21)

Using (2.26d) for 1 = w,, we write dow® + d,w = Z(3)[@F]. By lowering the
index dyw® = —dy(wy)o, Egs. (5.20) and (5.21), we prove (5.17a) for w. Similarly,
for 1 = S, by definition of D (2.14), we write do(S¥)° + 0,(S%)* = Z(V)D +
Z(0,5)[@¥]. Using Egs. (5.20) and (5.21), we obtain Eq. (5.17a) for S.

Now we consider the curl part, note that we have the facts (2.27d) and (2.27e)

OMs =I5y = eqseav”vort’ (n) — (v°8,ms) (v, ) + 0" (D5n) (v4)
+ (V" 0kn) (V)5 — V"™ (OsMk) (0y)5- (5.22)
Recall that
C = vort®(w,) + Z(¥, 5)[8¥]. (5.23)

Hence for n = w, the first term on the right-hand side of (5.22) for w is manifestly in
(@ Hab. Next, using v*0,(wy)s = v"B(w,)s and (2.25a), as well as (2.27b), we have
that the right-hand side of (5.22) for w is (“"Hab. Similarly, by (2.26c), v*0,S, =
v'BS,, (2.25b) and (2.27¢), we obtain Eq. (5.17b) for S. O

kKWe use the same notation throughout the remainder of the paper.
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Remark 5.10. In terms of elliptic estimates, there is a major difference in Propo-
sition 5.8 compared to the Hodge system of the non-relativistic 3D compressible
Euler equations. In the non-relativistic case, the analogous elliptic equations are
constant-coeflicient div-curl equations along flat hypersurfaces of constant Carte-
sian time and, for example, the basic L? theory can be derived with the simple
Hodge identity for 3, vectorfields V € H(R3;R3)

3
Z H(?aVbHii(Rs) = HleVHig(Rs) + ||C11T1VH%§(]R3) (524)

a,b=1

In contrast, the divergence equation (5.19a) has dynamic, solution-dependent coef-
ficients.

Proposition 5.11 (The top-order div-curl system on constant-time hyper-
surfaces). Using the same notation as in Proposition 5.19, we have

(G~ 0u(OM)y = Fon, (5.25a)
0a(OM)p — Op(OM)a = PV H o, (5.25b)

where
Fony = 0F, — 0{(G"1)**}0,m, (5.26a)
O, = 0WH . (5.26D)

Moreover, we have

(G™1)*0,0Pyy = Fop,n, (5.27a)
e 0Py — OyOPyMa = OPVH (5.27b)

where
Fap,n = PyFay + [Py, (G~1)®)0,0ms, (5.28a)
OPvME = Py (OVH ). (5.28Db)

For convenience, we write the above three div-curl systems (5.19), (5.25) and
(5.27) as follows, where (X, F, Hyp) is (1, Fyy, WH 4) or (90, Fon, ©VH ) or (9P,
EFop,n, OPH )

(G0, X,, = F, (5.29a)
0aXp — O Xo = Hap. (5.29b)

In order to derive elliptic estimates and Schauder estimates from the div-curl system
(5.19), we need Lemma 5.12 provided below, which allows us to do estimates via
Littlewood—Paley theory. We provide a partition of unity before Lemma 5.12.

We want to apply the Fourier transform to a localized version of the div-curl
system in Proposition 5.8. We consider the lattice A := 9,73, where J, is assumed
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to be small and will be determined in future analysis. Note that {z;},en :== A C 4
has points equally spread out, that is, for each x;, there are 6 points in A such that
the distance between x; and any of them is 5. We define the family of functions
{1 }1en as follows:

1 $€B<$l7%52)7
4 1 7 1
S A S )
0 :cgéB(xl,gég),
(5.30)
and set
oi(x) = % (5.31)

We note that [|¢i]| Lo~ (s,), 1001 L=(z,) S 1-

We have constructed cut-off functions {¢;}ieny € C§°(2;) such that ¢; = 1 in
B(ay, %52), supp(¢;) C B(xy, L6 £02), >, di(x) = 1 and for any z,,7, € A, da(x) =
op(x — x4 + xp). We want to apply Fourier transform on a localized region, where
(G=H%(z;) is a constant and (G~1)%(z) — (G71)®*(x;) will be shown to be a
controllable error term in the future analysis.

Lemma 5.12. Given Propositions 5.9 and 5.11 with x; and ¢;, | € N, defined as
above, let X be the solution of Egs. (5.29). Then the following identity holds in
frequency space for i =1,2,3:

(G (@) (01X0) = CEE + el N ()L, (5.32)
where -
F' = (G (21)0a (41 Xs) (5.33a)
= O F + (G (@) (0adt) Xo — (G (2) = (G71)* (21)]0a(01.X)
— (G (2) = (G71)* (1)) (Datht) X,
Hiy, = 0a(61X0) = 0b(61Xa) = (0adt) Xp — (06t1) Xa + ¢1Hap- (5.33b)

Proof of Lemma 5.12. By multiplying the div-curl system (5.19a) and (5.19Db)
by ¢;, we rewrite the system as follows:
{(@ (@) + (G (@) = (G (@) HOu(01Xs) — (Duth) Xo} = BiF,
(5.34a)
9 (01 Xp) — (0adt) Xy — Op(d1:Xa) + (Op¢1) Xa = d1Hap.
(5.34b)
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Taking the Fourier transform of (5.34a) and multiplying by &;, we have
S{GT)  (@0)E(0X0) + (G (1)1 X2) + (G (21)6a (1 X3)}
_ ook, (5.35)
where C' = 5~ is a constant from Fourier transform, and
Ff = (G (1) 0a(¢1X0)
= O F + (G () (0adt) Xp — [(G™1)* (x) = (G (21)]0a (1. Xs)

— (G (@) = (G (20))(Dar) Xb- (5.36)
Similarly, taking the Fourier transform of (5.34b) and multiplying by (G~1)*%(z;)&,
and (G71)®3(z;)&,, we have

(G2 (2))€u {E2(01 X1) — &1 (1 X2)} = C(G1)2(w)Ea . (5.37a)
(G ()€l Es(01X1) — €1(31 X5)} = C(G™ )a3(f€l)€aH31» (5.37b)

where C' = % is a constant from Fourier transform, and

Hey = 0u(1X0) = 0p(d1Xa) = (0ad) Xo — (Op01) Xa + S Hap- (5.38)
Adding (5.35), (5.37a) and (5.37b), we obtain

(G ()€1 X1) = CELE' + C(G™1)92 (2)) €0 oy + C(G1) (1) Eu Bl

(5.39)
We use the same argument for X and X3. Hence for i = 1,2, 3, we obtain
(G (@1)€a&(61X0) = CGE + 37 C(G)* (1) Hyr. (5.40)
k#i
O

Lemma 5.13 (Positive definiteness of G™1). For any X;-tangent one-form &,
that is, &g = 0, we denote || = Dim1.23 £2. Then the following estimate holds for
any x; € ¥, where G is defined in Proposition 5.9:

Clel* < (GTN™ (w1)€ats < I8P, (5.41)

where 0 < C' < 1 is a constant depends only on ||v|| L (x,), which is in turn controlled
by the bootstrap assumption (3.17a).

Proof of Lemma 5.13. Using the definition of (G~1), we have

a,,b
(G (2))€aly = (6‘“’ - (1’001;2) Eabs = I€]? — <v @) . (5.42)
Hence by the normalization (v,),v* = —1 in Sec. 2.2.1, we have
Clel* < (G (@) < €%, (5.43)

where 0 < C' < 1 is a constant depends only on |[v[|pe(x,)- m|
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Lemma 5.14. For G defined in Proposition 5.9, the following inequality holds:

|(G_1)ab(:17) - (G—l)ab(xl” < C3||1)Hé3,50(2t)|x — ;pl|50 < C§103|$ — Il|50, (5.44)

where Co, C3 are constants (independent of 1, x,a,b,dp).

Proof of Lemma 5.14. For Hoélder continuous function f,g € 08’50 (2)

[f(2)g(=) = FWg()| _ |f(=)g(x) = Fl=)g()| + |/ (x)g(y) — f(y)9(y)|

|z — y|% B |z — y|%

< ||f||Lg°(Et)||g|‘cg'50(2t) + H9||Lg°(2t)HfHC'gv%(gt)

< 2||f||c§"‘°(zt)”chg"‘“(zt)' (5'45)
Therefore, by definition of G~! in (5.18¢c) and the fact that v° > 1, substitute (f, g)
in (5.45) by (v%, ) and again by (v*v?, ﬁ), we have the estimate

(G (@) = (G (a)] < Callvllgo.s0 5, |7 = @], (5.46)

(Et)|
By fundamental theorem of calculus, bootstrap assumptions (3.17) and (3.7), we
have

HUHCO B0 (5, S ||3‘IJHL100 50 (53,) + HUHCO 50 (539) HB\IJHL 0:30 (33, +1<(Cs.
(5.47)
Combining (5.46) and (5.47), we have the desired result. |
Lemma 5.15 (Commutator estimates). For scalar function F, G, 61 defined

as in Sec. 3.4, Littlewood—Paley projection operator P, defined in Sec. 3.2, we have
the following estimates:

I[Py, GF zasy SV G oo 5, I Fl 22, (5.48)
Proof of Lemma 5.15. For ¢ defined as in Sec. 3.2, we define M (z) as follows:

My () = F (v 1)) = / e (vIE)E (5.49)
Then we have

F / My (z — ) (G(y) — G(x)) F(y)dy

<@g s, [ M=o o Fo)y. (550)
By Young’s inequality, we have
I[Py, GlFll 25y S NGl o 5o, IF 2 I (@)l sy (5:51)

By definition of Fourier transform and v in Sec. 3.2, we have

/Mv(:c)|x|51dw _ /v3¢<—vx)|x|51dx <y (5.52)

Combining the above equations, we obtain the desired result. O
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Lemma 5.16 (Control of the inhomogeneous terms). For F,, WH G~!

defined as in Proposition 5.9, and Fay, Fop, v, OH O defined as in Proposi-
tion 5.11, we have the following estimates:

1l 2220y, 1V H |20y < COF,C, D2 s, (5.53)
[ Fonllz2 s, 1OVH L2,
< C0*W,0C, 0D s,y + Ca 10U G (s 00 L2z, + CallO®nl Lacs,),
(5.54)
VY2 Fopnlliz 12, VY72 OV g L2,

S (1092 () + D10 L2(s,) + 07T, 0C, 0D || 2 (ss,), (5.55)
where C,a are constants, C is independent of a, and o > 0 (small), which will be
determined later.

Proof of Lemma 5.16. (5.53) is the direct result of taking L?(%;) for (5.18).
Taking L?(3;) for (5.26), we have
10F, | 2(2): 10VH | 125,y < C0°F,0C, 0D 12 (s,), (5.56)
||a{(G_1)ab}aan”L2(Et) < C”a\f’HHl(Zt)||aﬂ||iz(gt)”a2ﬂ”§2(gt)
< Ca H|0F|3 (s, 10mll 220, + Cal|0™n]|2(5,),
(5.57)
where for the first inequality in (5.57), we used the fact that ||F' - Gl|[12(xn,) <

C||F|‘%2(Zt)”F||1%ql(2t)HG||H1(Et) (see [11, (79b)]), for the second inequality in (5.57),

we used Young’s inequality.
Now we consider the proof of (5.55). Taking (2 L?(%;) norm of (5.28), we have

IWNTEPy Fon, iz pacs,)s VY 2Py (OVH) |12 L2 s,
< C|8%¥,0C, 0D yr-2(x,) + [10°¥ | 22, 10| 25, ) (5.58)

where the second term on the right-hand side of (5.58) is from the fact that (see
[11, (81b)])

VPG Yol 2y S 10F ] v 100 2

_3
2(%y)
llomll

What remains to be controlled is the commutator term [Py, (G~1)%]9,0n,. By
Lemma 5.15, where G := (G71)? and F := 9,0ny, and (5.47), we have

VY2 [Py, (G )0a0ms iz 2220y S 110%0 225, (5.60)
Combining the above three estimates, we obtain (5.55). O

3 108l (- (5:59)
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Lemma 5.17. Let G—1 be defined as in (5.18¢c). F, H defined as in (5.29). For X
the solution of the div-curl system (5.29), we have the following estimate:

10X L2z, < CIX, F H 22(3,), (5.61)

where C' is a constant, which is independent of X, F, H.

Proof of Lemma 5.17. Throughout, X, F, G, H are the same as in (5.29), and

—

F,H are defined in Lemma 5.12. Since |{| ~ 2v on support of P, (¢m;), by
Littlewood—Paley estimate (3.6), (5.41) and (5.32), we remind 1) is defined in Sec. 3.2
[0{A1 X} |72 (52

<Ci Z VP (01 Xi) [ 22 55,

v>1
2
— _ ~ 1 R ~ 1
< 012 F{v (lf/—|) V[P GE +Z(G N ()€ Hy,
v>1 k#i L2(5)
< CUIE By + 1H o), (5.62)

where C] is a constant and F~! is the Fourier inverse transform. By (5.33a), we
have

IE 2250 < NOF 7250 + G F o0 (2 1(000) X (172 5,

+ sup  [(GTNP(x) = (G (@) PG X)) T2 s, (5.63)
z€B(z,62) )

By (5.33Db)
HﬂlH%g(zt) < H¢1H||%g(zt) + 2||(a¢l)XH%g(zt)- (5.64)
Let C' := C1C5C5, where C1,C2,C3 are constants from (5.62), (5.47), (5.44),
respectively, and let do be small such that for all z € B(x;, d2)

1

e — x| < 1

Hence by (5.62)—(5.65), soaking the last term in the right-hand side of (5.63) to
the left of (5.62) (by Lemma 5.14), we have

||3{¢1Xi}|\%g(zt) < C’4(|\¢1F|\%g(2t) + H¢1H||%2I(2t) + ||(3¢1)X|\%§(21))7 (5.66)

where ()} is a constant.
Now we consider the ||(’“)Xi|\%2(zt). By (5.66), we have

(5.65)

2
10X (x,) = ‘

Za{QSin}
]

L2 (%)
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< Cs ) _llo{én X7z s,
l

< C4Cs (ZH@(F, H)[|72(x,) + ||(8¢1)X||2L§(Et)>'
l

(5.67)
For the first term on the right-hand side of (5.67), by (5.53), we have
> llu(F, H)|2s = Z/z (p)*(F? + H*)dx
l 1 t
< SNl | (F? + H?)da
zz: F Jsinioo20)
< C6||F»H||2L§(zt)- (5.68)
For the second term on the right-hand side of (5.67), we have
S8 X smy = X [ (06X
l 1 t
< Cr 3003w, [ X2dz
zz: ®0 Js.n(o020)
< Cs)| X1 72(5,), (5.69)

where the last inequality holds for both (5.68) and (5.69) since for each z € X,
there are finite many (at most 8) ¢; such that ¢;(z) # 0.

Combining (5.67)—(5.69) and letting C' := C4,C5(Cs + Cs), we conclude the
desired estimate. O

Proof of Proposition 5.8. (5.15) is a direct result by substituting (X, F, H) in
(5.61) by (1, Fiy, WH) and using the schematic definition 1 = dU, estimate (5.53).

Using (3.6), (5.16) can be proved in a similar fashion by using the following
interpolation estimate:

[omillFn-1(sy < 10" illZ2(x,) + Cr Z||VN_2Pv(32ﬂi)||%g(zt), (5.70)

where we bound the first term on the right-hand side of (5.70) as follows:
10%ni]| L2 (s) S 100, 0C, 0D 25,y + 10V 15, - (5.71)

(5.71) is obtained by exactly the same method as in the proof of (5.15). That is,
substituting (X, F, H,C,D) in (5.61) by (dn, Fy, , 9VH,0C,dD) and using (5.54),

we have
10%Nill L2 (x,) < ClI8*W,0C, 0D 2(x,) + Ca |0V 7 5,y [N L2(2,)

+Cal|0®n]|2(z,)- (5.72)
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We pick a small (Ca < 1) such that Car|| 9?1 12(s,) can be soaked into the left-hand
side of (5.72).
Now we consider the second term on the right-hand side of (5.70).

Substituting (X, F, H) in (5.61) by (9Pyn, Fop,n, @*WH), we have
10° Punill 2 2 S 10PN, Foryn, @ VH|| 2 (5, (5.73)
Multiplying (5.73) by v~ =2 and taking the 2 norm, we have
VN2 (0% liz L2 s S VY T2, Fopyns PPV H) 12 1205, (5.74)
By (5.74) and (5.55), we have

|‘VN72PV(82111')HZ%L§(Z,5) S (||82\I_}||L2(Et) + 1)||32ﬂ||L2(2t)

+18%F, 0C, D || grv 25, (5.75)

By (5.70), (5.71) and (5.75), we have proved (5.16). |

5.1.3. Proof of Proposition 5.1

Proof. For N defined as in Sec. 3.4, we let

Zl\ak S)Fn- k(zﬁleak (CD)fgv-r-riz,)-  (5:76)

k=0

In this proof, we derive integral inequalities for Z§:0||ak\17|\§w,k(zt) and
Zk OH(')’“(C D) |3 n k-1 () in Py (t), namely, (5.78), (5.82), (5.84), (5.85). We then
use elliptic estimates (5.15) and apply Gronwall’s inequality to all the terms in Py (¢)
collectively.

The proof of Proposition 5.1 for U combines the vectorfield multiplier method
and Littlewood—Paley theory. That is, to derive the energy estimates at the top
order, one integrate (5.5) and applies the divergence theorem using the energy
current (TJ*[@¥] := Q*F[@U]T5 — T*(@¥)? and (TI*[P,dT] := Q*[P,8U|T5 —
TO‘(PVB\f/)2 on the space-time region bounded by ¥y and ;. Then by Lemma 5.5
with 8% and P,dV in a role of ©, we have, respectively

EOFI0) < KOTI0) + [ 19%] 125, DT (1)

+ / 108112 ) [EOF](r)]2dr, (5.77a)
0
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E[P,8¥](t) S E[Py0¥](0 / 109 Lo (s, B[P O] (7)d7

t
+ / |Og PyAF|| 12 (5. [E[P, O] (7)]/2dr. (5.77h)
0

Then we use Eq. (3.8a) to substitute for Jgd¥, and we use Eq. (3.9a) (g P, 0¥

to substitute for the right-hand side of (5.77b). Multiplying (5.77b) by v2(N=2),
summing over v and using (3.6), estimates (3.11) and Hoélder’s inequality, we have

t
0% Fm s,y S H32‘PH§{N—2(ZO)+/O 109 Lge (2. 102 W75 25 ydT

t
-, {10C. D)z~ -2 10* T || x -2,

+ (180, &, )| o= () + DB, &, )| w1,y + 1)

X ||32\IJ||HN*2(ET)}dT

t
< Py (0) + / 1008, 3, 8)]| 1= (5., d7
0

/ (18(5.5.8) | 1= 5. + 1) Py (7)dr. (5.78)
For ||6\f]HHN—1(Et), we first have

Ha‘I’H?{Nﬂ(zt) S ||3‘I’H%§(zt) + H82\IIH§{N72(&). (5.79)

Then by the fundamental theorem of calculus in time, Minkowski integral inequality
and smallness of T, we have

t 2
109132 s,,) :/Z {a\ﬁ(o,x)Jr/O ata\ff(T,x)dT} dz

< Pu(0) + 07T 3x—2(x, - (5.80)
Similarly, we have
H‘WHN(&) S Py(0) + Ha2‘f’|\§{N72(zt)- (5.81)

Therefore, by adding (5.78)—(5.80), we have

S 0" sy S PO)+ [ 10055, Sz o

k=0

t
4 / (88,5, 8)| () + DPx(r)dr.  (5.82)
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Now we derive top-order estimates for C and D. We apply the energy estimates
(5.14) with 9(C, D) and P,0(C, D) in a role of ¢, respectively, to obtain

t
18(C, D)|I72(5,) S 18(C, D)7 5, +/0 09| Lee (2,) 1O(C, D) 17255, ydT
t — —
+ [ 10 D135 IBOC. D) 125, (5.83a)
0
t
[PyA(C, D) 25,y S IPVO(C, D)l|72 (5, +/o 18] Lo (2,) | PvO(C, D) |72 (5, A7

t
+ [ IPAC D)1z IBRAC. D) uaspdr. (5:530)
0
We use Eqs. (3.8b) and (3.8¢) to substitute for BO(C, D), and we use Egs. (3.9b)
and (3.9¢) for BP,O(C, D) to substitute for the right-hand side of (5.83b). Multi-
plying (5.83b) by v2(N=2) summing over v and using (3.6), using estimates (3.11)
and elliptic estimates (5.15) and (5.16), we have

t
18(C. D) Fin-2(5,) S 1OC. D) Frv-2(s) +/O 10| o= (52, [0(C, D) 25, ydT

T RS P A

+(10(9,3, )| 125, + DUBT, &, 8) [ x5,y + 1)
X [8(C, D)l -2 (s, dr}

t
SPy0)+ [ 0(Y,0,5)| L (s, )dr
0
t - N
4 / (18(F.5. 8)|| 1= 5. + 1) Px(r)dr. (5.84)
0
For ||C, D| g~ -1(x,), using the same method as in (5.79)-(5.82), by (5.84), we have
t
1Dl x5y S Par(0) + / 10(F.3,8) | s, dr

/ (18(7,5.9)] 125, + )Py (r)dr.  (5.85)

Combining (5.78), (5.82), (5.84), (5.85) and elliptic estimates (5.15) and (5.16), we
have

Py(t) S Py (0)+ [ [18(9,&, 9)l|z(s
0

t
4 / (18(F.5. 9)]| 1= 5. + 1) Px(7)dr. (5.86)
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By bootstrap assumptions (3.17b) and (3.17¢), Holder inequality in time and
Gronwall’s inequality, we obtain the desired result. O

5.2. Schauder estimates

In this section, we bound the Hélder norms of the modified fluid variables C, D and
the derivatives of vorticity and entropy gradient. Moreover, in Proposition 5.18, we
reduce the proof of the improvement of bootstrap assumption (3.17¢) to the proof
of the improvement of bootstrap assumption (3.17b).

Theorem 5.18 (Improvements of the bootstrap assumptions for the vor-
ticity and entropy gradient). Let § and 61 be as in Sec. 3.4. Under the initial
data and bootstrap assumptions of Sec. 3, assuming the improved estimates in The-
orem 6.1 holds for OV, that is
|\3‘I’||2L$Lw([o T xRs) T ZV251 [ Py a‘I’||L2Loo([o T.]xR3) ~ ST, (5.87)
v>2

then the following estimates hold:

> Py (05, OSN3 2 L (to1 xme) S T2°- (5.88)

v>2

Remark 5.19. We emphasize that the proof of the Strichartz estimates
(6.1)/(5.87) is independent of (5.88). The additional frequency weights in the
Strichartz estimates in (5.87) are crucial in the Schauder estimates for the
“transport-part”. In particular, by (3.7) and (5.87), we have the following Strichartz
estimates in Holder spaces:

6
1OF(17 o051 10,1y S T2 (5.89)

We will prove Theorem 5.18 in Sec. 5.3. In this section, we derive a Schauder-
type estimate in the following lemma.

Lemma 5.20. Let 01 be as in Sec. 3.4. Under the initial data and bootstrap assump-
tions of Sec. 3, the following estimates hold:

105,88 0.5 5,,) < [10F,C. D] o, + 1. (5.90)

Proof of Lemma 5.20. We define the smooth function 1; = 11 (|¢]) : R® — [0, 1]
such that ¥1(£) =0 for 0 < [¢] < 3 and ¥ (§) =1 for [¢] > 1.

By Littlewood—Paley theory (3.7) and (5.32) where 1, F, G, H are the same as
in Proposition 5.9 and F, H are defined in Lemma 5.12 with X =1

HaS(leT]i)Hc'«g’él(Zt)

= sup||\/51P«/ (3s¢mi)||L;°
v>2

S 01 ——1 —1 gs
=S |OVEFTN YT ) e mas
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X é.zF +Z ]k J?l fijz
ki L

—1 gs ) Al
F {1/)1 (6) (G_l)ab<$l)§a€b ng }

+C1 Y &

2 G (et

<Cy

()

F {1/)1(5)

<G1>j’“<xz>§jﬁ;}

CYoL(Sy) 7
(5.91)

where O] is a constant, ! is the inverse Fourier transform operator and 1 is
defined in Sec. 3.2.

Now let’s consider the first term in the right-hand side of last line of (5.91). For
each fixed s,7 = 1,2, 3, we define function p, ;(£) as follows:

gsgi
(G=1)(@1)Eabe

The associated pseudodifferential operator p(Dg;s,i) is defined by using Fourier
integral representation as follows:

Ps,i(§) == 1(8) (5.92)

pes(De)f(z) = / pes () (€)eEde. (5.93)

By direct computation and positive definiteness of G which is showed in
Lemma 5.13, we have

1D2pei(€)] < Cap(1+[¢[%) 2" (5.94)

So ps,i(€) is in the Hormander class S?, and ps (D) belongs to OPS? ;. By the
theory of pseudodifferential operators, we have ps;(Dg) : C9%1 — C991. We refer

reader to [13, Chap. 18] for explicit definition of Hérmander class and [28, Propo-
sition 2.1.D] for the bounds of the operator ps ;(Dg¢). Therefore

O st )

< C4(||El||cg’5l(gt) I p2(s0),

Y (se)
(5.95)
where C} is a constant (independent of s, i, j, k, ). Similarly, we have
Z F {¢1(5)+(G_1)jk($l)§jﬁia}
& RN s
< Cry (Il oo s, + I1Hkill2(0)- (5.96)

ki



472 S. Yu

Combining (5.91), (5.95) and (5.96), for any I, s, 4, we have

10s(@mi)ll goon (s, < C1C [ IE I coon s,y + I1E N 22509

+Z”ﬂ§€i”c€*51(gt) | Hpillzs | (5.97)
kit

where the constant C, Cy is independent of [, s,i. By (5.33a)
”El”cg"‘l(gt) < ||¢ZFHC;”51(21) + ”G_l”cg"‘l(Et)Had’l”cg"‘l(Et)Hn”cg"‘l(gt)

+ sup  |(GTH®(2) = (GTHP(@)l|o(em)l| o g,y (5.98)
xGB(Il,Jz) )

By (5.33b)

||ﬂl||cg«51 (S0) < ||¢1HH02,61 (S4) + 2Ha¢l||cgv‘51(Zt)Hn”Cgvél(zt)' (5'99)
For C5C3 as in (5.44), C1C4 as in (5.97), by Lemma 5.14, we let d2 be small such
that for all z € B(x, d2)

1
CiCy  sup  |(GTHeb(z) — (G7H%(xy)] < =. (5.100)
z€B(z,02) 4

Combining (5.97)—(5.100), absorbing last term in the right-hand side of (5.98) by
the left, using energy estimates (5.1), we have

”a((bmi)”c'vgvél(gt) S ||¢ZFHCgv51(Et) + ”G_l”cgvél(Et)H‘?@”cgvél(Et)HT]”cgvél(gt)

+ H(blHHcgv‘sl (20) + H‘?@”cgvél(Et)HT]”cgvél(gt) +1. (5'101)
Now note that

n(z) —on
|‘611|‘ng61 (Et) - msyué%t W
= sup 12S0m) (@) — 0 (5 ém) W)
z,yEX; |='E - y|51
< sup > [0l 001 53,5 (5.102)

TYEXE 4 ()20 or ¢ (y)#£0

Note that for each = € 3, there are at most finitely many {’s (at most 16) such that
either ¢;(z) or ¢;(y) is nonzero. Hence by definition of G™1, F, H in (5.18), (5.101)
and (5.102)

”arl”c'vgvél(gt) S ”FHCgv‘sl(gt) + HG_IHCgvh@)||n|\cgv61(gt)
+ HHHCgv‘sl(gt) + ”nHCgv‘sl(gt) +1

<189, C. D]l o s, + 1. (5.103)
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We now bound [[0n|| e (s,). For any point 2 € X, there is a y € B(z, 1) such that
lon(y)l < lonllr2(s,), thus

On(2)] < [on(w)] + 20l eor s, ) S 1MLz + Ol poss g, e (5.104)

that is
Jonlscsn S 12, + 10l gos s (5.105)
Combining with Proposition 5.1, we have
||an”cﬁ"51(2t) <1+ ||3\IJ,C,DHC£,51 (=0 (5.1O6D)

5.3. Estimates for ||C,D|| 0.5, (s,) Vi@ transport equations
and the Proof of Theorem 5.18

In this section, we first estimate the Holder norm of the modified fluid variables.
We then prove Theorem 5.18. We will use the following lemma, which is a standard
estimate for transport equations with Holder data and Holder inhomogeneities.

Lemma 5.21. Let ¢ be a scalar function. If F € C%%(X,) with 7 € [0,t] and
Bo—F, (5.107)

then

t
Il s,y S I8llcoe sy + / 1Pl s, A7 (5.108)

Proof. Note that B® = 1. Let « be the integral curve of B such that

70, 2) = 2, (5.109)
V(tz) =t (5.110)
and
Oy (t,x) = BY(t, ). (5.111)
Then

Yt @) = ()l < Ja' =y +/O B(r,y(r,x)) — B'(r,y(,y))dr

t
<l =yl + [ 0B lusmohine) -2yl (112
0

By Gronwall’s inequality, we have

t,z) — ~(t, t
Wge@ (/0 ||8B|L§(ZT)dT). (5.113)
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Note that [|0B||p(s,) ~ ||8\I_J'||L;o(ZT). Similarly, considering 5(7) := (¢t — 7) from
¢ to X, we have

3 ([ )
——— S eX OB|| = dr | . 5.114
A ] Py 1Bl oA

Now we consider ¢
Oe(poy)=Fon, (5.115)
then
¢ o 7(t7 :E) - ¢ o 7(t7 y)
t
— 07(0,2) — o(0,y) + / F(ry(r2) — F(riy(ry))dr.  (5.116)

By (5.113), (5.114) and bootstrap assumption in Sec. 3.6, we have

|[F(1,7(7,2)) = F(7,7(1,9))|
Iyt z) —(t,y)l~
_ |F(7—77(7—7 x)) B F(Ta’Y(Ta y))| |’Y(Ta I) B V(Tvy”a
[y(m,2) —( ¢
S IFl e s,y (5.117)

I
&
)
>
—~
\.W
&
\
-2
—~
<
-
Q

Proof of Theorem 5.18. Now we consider Eqgs. (2.26a) and (2.26b)

—.

BC® = 2(0)[AV, (dw,dS,00)] + 2(5)[0V,8Y] + .2(¥,3, 5)0V,dS

)

(5.118a)
BD = Z(V, 5)[dw] + 2(9)[0V, (85,0%)] + 2(5)[0V,8V] + 2 (¥, 3, 5)[00].
(5.118b)

By Lemma 5.21, we have

t
”C’DHCQ’SI(EQ <1 Jr/o (||3\IJH02,51(ZT) + 1)||3\I/,8&,3S||CS,51(ZT)dT.
(5.119)
By (5.90), bootstrap assumptions and Gronwall’s inequality, we have
HC’D”CS"”(&) <1. (5.120)

Integrating (5.90) in time, we have

t t
/0||6u7,65||202,51(2t)dt§/0 1+|\8W,C,D||202,51(Et)dt. (5.121)
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If (5.87) holds, using (5.120), the bootstrap assumption (3.17b) and the standard
results in Littlewood—Paley (3.7), (5.88) is obtained by following estimate:

+ t
10508020 5,00 5 [ 1+108.C Dl

<TX 4T, <T%. (5.122)

6. Reduction of Strichartz Estimates and the Rescaled Solution

In this section, we state our main estimates as Theorem 6.1, which are the improve-
ment of the bootstrap assumption (3.17b). We then provide a series of analytic
reductions from the Strichartz estimates of Theorem 6.1 to the decay estimates of
Theorem 6.9. We are quite terse in this section since the full proofs of these reduc-
tions are lengthy and difficult, yet standard. We refer readers to [11, 30, 16] for the
detailed proofs.

Theorem 6.1 (Improvement of the Strichartz-type bootstrap assumptions
for the wave variables). If § > 0 is sufficiently small as in Sec. 3.4, then under
the initial data and bootstrap assumptions of Sec. 3, the following estimates holds
with a number 85y < 61 < N — 2:

10D 12 1 (0,7.1xm0) + D VI PO e o 1y ST (61)
v>2
We first reduce the proof of Theorem 6.1 to the proof of Strichartz estimates on
small time intervals.

6.1. Partitioning of the bootstrap time interval

Let A be a fixed large number and let 0 < g9 < % be a fixed number as mentioned
in Sec. 3.4. By the bootstrap assumptions, we can' partition [0,7}] into disjoint
union of sub-intervals Ij, := [tx_1, k] of total number < %0 with the properties
that [I,| < A~%°T, and

Ha\IJ”%?Lg@(Ik ><R3) + Z ’\/260 ||PV3\IJH%/§L20([)€ ><R3) S, )\7880, (62&)
v>2
105, 0812 10 sy + S VNP5, 0822 e 1y ey S A0 (6.2b)
v>2
Now we reduce Theorem 6.1 to a frequency-localized estimate.

Theorem 6.2 (Frequency-localized Strichartz estimate). Let ¢ be a solu-
tion of

Ogp =0, (6.3)

IThe existence of such partition easily follows from the bootstrap assumptions, see [16, Remark 1.3].
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on the time interval I,. Then for any q > 2 sufficiently close to 2 and any
T € [tk, tk+1], under the bootstrap assumptions, we have the following estimate:

[PAOPI| L Lo (17 th 1] xR S AT H&PHLg(zT)- (6.4)

6.1.1. Discussion of the reduction to Theorem 6.2 from Theorem 6.1

The proof reducing Theorem 6.1 to Theorem 6.2 is exactly the same as the proof
of [11, Theorem 7.2]. The reason is that the proof relies only on: (1) Duhamel’s
principle; (2) top-order energy estimates (5.1) which is the same as in [11] and (3)
Littlewood—Paley estimates for the inhomogeneous terms in a frequency-projected
version of the wave equations, and the wave equations in this paper have an identical
schematic form to the ones in [11].

6.2. Rescaled quantities and rescaled relativistic Euler equations

In this section, in order to do further reductions, we consider the following coordi-
nate change (¢,2) — (A(t — tx), A\x). Let

T*;(A) = /\(tk+1 — tk). (6.5)
Note that by construction
0 < Thyn) S A TP (6.6)
Definition 6.3 (Rescaled quantities). First we define the following variables:
Ut 2) == Uty + A7, A ), (6.72)
Gyt @) =&t + A7 A ), (6.7b)
Sty (t ) = S*(tg + A1, A1), (6.7¢)
O =0t + A"t A ), (6.7d)
con = ety + AT AT ), (6.7¢)
Ciy = vort® ((wy) o) + ¢ €7 (1) ()8 (B hony ) (wh) (s + (Bny — (Bin) )
X (SM) ) O (1)) + (000) = (0:) () (05) B (SH)FayDhin)) — (B
— (0:0) () (SH) (M) 00 (05) 3 0) (6.7f)
1 PR 1 3
Dy = E(an(sﬂ)(x)) + E((Sﬁ)(x)&{h(x)) —c 2((S)(n) Onhiny)- (6.7g)
Then we define the following rescaled tensorfields:
(80))as(t, ) = gag(T(r) (t, 2)), (6.8)
(90)as(t:2) = gap(T () (t,2)), (6.8b)

BY, (t,7) := B*(¥(y (£, 7). (6.8¢)
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Remark 6.4. We note that after rescaling, the new initial constant-time hyper-
surface ¥ corresponds to the constant-time hypersurface that was denoted by 3,
for some k in Secs. 1-5.

The following proposition provides the equations satisfied by the rescaled quan-
tities. We omit the straightforward proof.

Proposition 6.5 (The rescaled geometric wave—transport formulation of
the relativistic Euler equations). For ¥ € {v° v',v? v3 h,s}, after rescaling,
we have the following equations inherited from Proposition 2.17:

Wave equations:

Oy Ty = A L(T(0)[Cony, D] + 2(8(3)[0F (), 8T - (6.9)
Transport equations:

B()\)w&) = g(\f/(k),u_}'(k), §(A))[a‘ﬁ(A)], (6.10&)

By (59t = L (T a), S3)0F (n))- (6.10b)

Transport-Div-Curl system:

B()Ch,) = 2(03)[0F (), (Bw(r), 8S(x), 0T x))]
+$(\f1(>\),u_}'(>\),§(A))[a\f‘/(k),3§(A)], (6.11&)

B\ Doy = LSy Ta)[Bwin] + 208 (2)) 0T r), (8S(r), 0T ()]

+L(T(n), ), 53) 09 (1), DS (), (6.11b)
vort?(Sf)) =0, (6.11c)
Doty = Z (@)L (x))- (6.11d)

Remark 6.6. For notation convenience, in the remainder of the paper, we drop
the sub and super scripts (A) except for the rescaled time T';(y).

6.2.1. Consequences of the bootstrap assumptions

After rescaling in Sec. 6.2, assuming bootstrap assumptions (3.17b) and (3.17¢), as
in [11, Sec. 10.2.1], by standard computation based on Littlewood—Paley calculus,
we have the following consequences of the bootstrap assumptions:

Estimates by using bootstrap assumptions of variables:

Ha\I_}vaﬁv aga C_: DHL%L;"(M)

T[S | Py (18, 3, 5)(9F.85.85.C. D)2, 1

v>2

S AT/, (6.12)
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6.3. Further reduction of the Strichartz estimates

By the rescaling in Sec. 6.2 and direct computation, to prove Theorem 6.2, it is
equivalent to show the following Strichartz estimate on [0, T},)] with respect to
LP projection on the frequency domain {1/2 < |§| < 2}.

Theorem 6.7. Under the bootstrap assumptions. For any solution ¢ of Ugp = 0
on the slab [0, Ty (x)] % R3, the following estimates holds:

[P0l L1 12w (0,1, ] xR2) S 109012 (50), 1, (6.13)

where q > 2 is sufficiently close to 2 and g is the rescaled metric gy defined in
(6.8a).

The proof of Theorem 6.7 crucially relies on the following decay estimate.

Theorem 6.8 (Decay estimate). There exists a large number A such that for
any A > A and any solution ¢ of the equation Ogp = 0 on [0, Ty;(x)] X R3, there is
a function d(t) satisfying

1] SRR (6.14)

) ~Y
L ([0,T;(n)])

for q > 2 sufficiently close to 2 such that for any t € [0,Ty,\)], the following decay
estimate holds™:

3 2
1 Y o
[PATo oo (s, S (7)2 +d(t)> (ZW ollri (o) + ZHB 6t<P|L;(2o)>-
q

(1 +1 m=0 m=0
(6.15)

The proof of Theorem 6.7 using Theorem 6.8 is based on a 77 * argument” (see
[16, Sec. 8.6; 17, Sec. 8.30]).
Theorem 6.8 can be further reduced to the following spatially localized version.

Theorem 6.9 (Spatially localized version of decay estimate). There exists a
large number A such that for any X > A and any solution ¢ of the equation Ogp = 0
on [0, Ty, (n)] x R® with (1, x) supported in the Buclidean ball B, where radius R
is a fized radius® such that

Br(p) C Bi(p,g(n), Yp€Di, 0<t< T, (6.16)

where B,(p, g(n)) 15 the geodesic ball’ centered at p with radius p and g(yy is the
rescaled induced metric of g on Xy (defined in (6.8b)), there is a function d(t)

mT, = —dt, see Definition 2.11 for the definition of T.
"This argument comes from functional analysis, which does not require the structure of the rela-

tivistic Euler equations.

°The radius R will be used in the following sections as well with the same definition. The existence
of such an R is guaranteed by properties of g, namely, (2.20b), that ensures g is comparable to
the Euclidean metric on Y under the bootstrap assumptions.

PThe notation B, (p, g(x)) will be used in the remainder of the paper. This is consistent with the
notation that is used in [11, 30].
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satisfying

eIl 4

<1, (6.17)
LZ([0,T;n]) ™

for q > 2 sufficiently close to 2 such that for any t € [0,T,\)], there holds

1
[PATol (s S ( )% +d(f)> (19¢ll 2z + lellLz(zy))-  (6.18)

(T+1]t—1|
The proof of Theorem 6.8 using Theorem 6.9 can be done via an approach
involving the Bernstein inequalities of LP projection, partition of unity? of ¢ and
Sobolev embedding W21 — L2, We refer readers to [16, Sec. 8.5] for detailed proof.
To summarize, in this section we have reduced Theorem 6.1 to Theorem 6.9.
To further reduce the estimates, we need to introduce the geometric setup. We will
discuss the proof of Theorem 6.9 in Sec. 7.3.

7. Geometric Setup and Conformal Energy

In this section, we first construct acoustic geometry. It is deeply coupled with the
relativistic Euler equations (via acoustic metric g) and is crucial in our analysis.
Then we provide the conformal energy and its estimates in Sec. 7.3.

Definition 7.1 (Christoffel symbols). We define the Christoffel symbols I
and I‘fA with the rescaled metric g to be as follows:

1
PomA = §<ango¢)\ + akgan - aagn)\)a (71)
7 = g% 4. (7.2)

7.1. Construction of the acoustical function

The goal of this section is to construct the geometry based on a solution u to the
acoustical eikonal equation®

g% 9, udsu = 0. (7.3)

7.1.1. Point z and integral curve y,(t)

Let z € ¥y be an arbitrarily fixed point® in the rescaled space-time [0, T%;y)] x R3,
where T,y is defined in (6.5). We let v,(t) denote the integral curve of the future-
directed vectorfield T emanating from the point z. We say y,(t) is the cone-tip axis.
Specifically, the point z depends on the partition of unity of ¥; used in the proof
of Theorem 6.8 using Theorem 6.9. More specifically, z is going to be the tip of the

dWe take a sequence of Euclidean balls { B;} of radius R such that their union covers R3. For each
ball Bp, it is centered at y5(1) (defined in Sec. 7.1.2) for some z.

'For more details of the geometric construction of u, we refer reader to [8, Chaps. 9 and 14].
SNote that in the original space-time [0, T%] x R3, z is a point at 3¢, for some k.



480 S. Yu

cone (constructed in Sec. 7.1.2) such that y,(1) is the center of the Euclidean ball
Bpr (as in Theorem 6.9). We note that the estimates, constants and parameters in
Secs. 7 and 8 are independent of z.

7.1.2. The interior and exterior solution u

The interior solution u. We let {Ly|z}wes: be the family of null vectors
(parametrized by S?, where the parametrization will be uniquely determined in the
paragraph of the exterior solution u) in the tangent space T, M and (L |,, T) = —1.
To propagate L, along the cone-tip axis y,(t), for any p € v,(¢t) (as defined in
Sec. 7.1.1) and w € S?, we define Ly, by solving the parallel transport equa-
tion DL, = 0. We note that for any p € v.(t), (Lwlp, T) = —1 since T is
geodesic. Then for each u € [0, Ty,(y)] and w € S2, there exists a unique null geodesic
Ty,w(t), wheret € [u, T,)], emanating from p = v, (u) with %Tuwh:u = L and
19, (t) = t. Specifically, Ty, () is constructed by solving the following “geodesic”
ODE system*:

o o e . 1 e
TS o) = Tohlr, o Tao®Th L) + 5[5Tg]m|n,w<t)(Tu,w(f)

—Tr, ) Tow(®) = Tr, W0) T o (), (7.4a)
Yo o) =vg(u), T4o(u) =LY, (7.4b)
where Y2 , == &5ve Yo = dye T s the Christoffel symbol of g and Lrg

is the Lie derivative of g with respect to T. The curve t — Y, «(t) is a non-affinely

parametrized null geodesic such that the vectorfield Ly ,, = %Tgw is null and
normalized by Lg,w = 1. In fact, this vectorfield coincides (in the interior region)
with the vectorfield L defined in (7.12). We define the truncated null cone C, to
be C,, := UweSz,te[u,T*;(A)] T, w(t). We define the acoustical function u by asserting
that its level sets {u = u'} are Cy. For u € [0,T,.(\)] and t € [u, Ty x)], we let
St = Cy NEy. For u # ¢, S¢, is a smooth surface diffeomorphic to S2. We define
M) . — Ute[O,T*;()\)],OgugtSta“' For each w € §? and u € [0,T,,\)], we define
the angular coordinate functions {wA} A=1,2 to be constant along each fixed null
geodesics T, o (t) and to coincide with standard angular coordinates on S? at the
tip p, which corresponds to t = u.

The exterior solution u. Now we extend the foliation of space-time by null
hypersurfaces to a neighborhood of Ute[O,T*.(A)],OSugtStvu in [0, 7] x R3. Let

w, = 3T\ Using the arguments in [25], we can guarantee" that there is a

tSee [11, Sec. 9.4.1] for detailed explanation of this ODE system where T coincide with B.

UThe existence of w-foliation for w € [0,¢] with a small € > 0 can be proven by Nash—Moser
implicit function theorem and such foliation can be extended to w4 by an argument of continuity
(see [25]).
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neighborhood O € ¥ contained in the geodesic ball B, (z,g(x)), where g
is the frequency rescaled induced metric of g on 3¢ defined in (6.8b), such that O
can be foliated by the level sets Sy _,, of a positive function w taking all values in
[0, w,] with w(z) = 0 and each Sp _,, for positive w is diffeomorphic to S?. Fix a
diffeomorphism w — @, (w,) from S? to Sy, _, . Then for each point p = ®, (w.),
denoting the lapse a := ((g~)*d.wdyw) 2 with a(z) = 1 and a = 1; see Proposi-
tion 8.8 (we note that the proof of Proposition 8.8 is independent of the construction
of u), there is a unique integral curve’ w — @, (w) of the vectorfield a?(g~1)*d.w
in ¥ with ® (w,) = p and such that this integral curve can be extended to z, i.e.
D, (0) = z (the extendibility of @, to z follows by estimates (8.27h) and the funda-
mental theorem of calculus). Denoting b, = %fbw, we then define Ny |, := <i>w(0)
and Lyl|z := Ny|z + T|z. Note that the diffecomorphism w — L |, is uniquely
determined by the vectorfield a?(g~1)*d.w, and it is precisely this diffeomorphism
that appears in our construction of the interior solution described above, since
(Nwlz + Tz, T|z) = —1 and (Nw|z + Tz, Nwl|z + T|z) = 0 (because of a(z) = 1).
By such construction, for each w € (0, w,] and any p € Sy _,, there exists a w € S?
such that p = &, (w) and such that the outward unit normal (in 3g) to Sp,_,, at p
is Ny, = fI)w(w) We set Ly, w = Nuw,w +T|o, (), Which is a null vector in T, M.
Then with u = —w, there is a unique (non-affinely parametrized) null geodesic T,
emanating from p and solving (7.4a) with the initial condition %Tu,w lt=0 = L_u,w
and T, o (0) = p. We define the null cone C, to be C,, := UweS%te[O,T*;()\)] T w(t).
We define the acoustical function u by asserting that its level sets {u = u'} are C,, .

Let S;, := C, N ;. We note that C,’s are the outgoing truncated null cones, that
is, Cy = Ute[O,T*;(A)] St.u. We define M(Ext) UtG[O,T*:(A)],uG[fw*,O) Si.. For each
w € S? and u € [~wy, 0), we define the angular coordinate functions {w*} 4—1 2 to
be constant along null geodesics T, (t) and to coincide with the angular coordi-
nates {w?}4—12 on %g provided by the above construction; note that on $o\{z},
by construction, the angular coordinate functions {w?*} A=1,2 are constant along
the integral curves of the vectorfield a?(g—1)*d.w.

We define the space-time region M as follows:

M = MID Y pEx), (7.5)

By the constructions above, we have constructed the geometric coordinates
(t,u, wA) in M.
See Fig. 1 for the figure of the geometry.

7.2. Geometric quantities
Definition 7.2 (The radial variable). Recall that
0< Ty S AT50T. (7.6)

VThe existence and uniqueness of such integral curve are ensured by the estimates on ¥ in
Proposition 8.8. We refer readers to [11, Sec. 9.4.2] for details.
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Fig. 1. The geometric construction out of acoustical function.

We define the geometric radial variable 7 as follows:
Ti=1—u. (7.7)

3

Since we have that t € [0,7},(\)] and u € [~ws,t] in M, where w, := %T* ()
we have

4
0§F<ﬂh»:2¥*“ﬂ,AEM*WﬂgugAP&W; (7.8)
We will silently use estimates (7.8) throughout the paper.

Definition 7.3 (Acoustic vectorfields and scalar functions). We define the
null vectorfield

L(Gco) = —g“ﬁaﬁuaa. (7.9)

Note that by (7.3), we have D, L(geo) = 0.
We define the null lapse b as follows:

b= (1/g¥0;udju) . (7.10)
We define the vectorfield N as follows:
N = —bgij(?iuaj. (7.11)

Note that N|s, = N, where N, is define in Sec. 7.1.
We define the principal null vectorfields L and L as follows:

L:=T+N, L:=T-N. (7.12)
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Note that by Definition 2.12 and (7.3), we have identity Tu = |Vu|, = +. Then
we have

L = bL(Geo)- (7.13)

We have following basic properties:

(T,T) = -1, (N,N)=1, (7.14a)
(T,N)=0, (L,L)=0, (7.14b)
(L,L) = -2, (L,L)=0. (7.14c¢)

We define ¢ to be as follows:
1 1
(§71)"7 ="+ GLOLY 4 SLOLY. (7.15)

It is easy to check that ¢ is an induced metric of g on S;,. We denote a pair of
unit orthogonal spherical vectorfields" on Sy, by {ea}a—12 such that (§=1)* =
ZA:1,2 ejei. We call L, L, e1, e5 a null frame for the geometry.

We denote the Levi-Civita connection on S, with respect to ¢ by ¥.

As we discussed in Sec. 7.1, the angular coordinate functions {w?} A=1,2 satisfy
the equation L(w#) = 0 along null cones. By this construction of angular coordi-
nates, with respect to geometric coordinates (¢, u, w?), we have

P P P
L=—, N=-b'l_gyvi—.
o 0 A

By construction in Sec. 7.1.2, Y4 =0 on %.

(7.16)

Definition 7.4 (St .-tangent tensorfields). We define the g-orthogonal projec-
tion JI onto Sy ,, where 55 is the Kronecker delta, as follows:

1 1

We use the notation |&| 4 to denote the norm of the S; ,-tangent tensorfield
with respect to ¢, that is

|E]% == 4(E, &) (7.18)

We use try& to denote the trace of a (g) St u-tangent tensorfield & with respect

to ¢
trgf == ¢ PEup. (7.19)

We define é to be the trace-free part of the (g) Stu-tangent tensorfield &
N 1
& =& — §(tr¢£)¢. (7.20)

WIn the rest of the paper, we automatically sum over A if there are two A’s in the expression.
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7.3. Conformal energy

We setup the conformal energy method that was introduced by Wang in [30]. In
order to give the definition of our conformal energy, we define two smooth cut-off
functions @ and @ that depend only on ¢ and u as follows:

—_

1 on0<u<t, 1 onOSuS?7
= " ® = 5
-7 t
0 onu< 4’ 0 ifuzztorug—z.

Definition 7.5 ([30, Sec. 4, Conformal energy]). For any scalar ¢ vanishing
outside M) we define the conformal energy €[g]as follows:

elgl(t) = €D [g](1) + €] ), (7.21)

where
cOfg)(t) = / (@ — @)2(IDgl? + [ pf*)de,, (7.22a)
(1) = : (DLl + 72|Vl + || de,. (7.22b)

The main result of €[p](t) is the following.

Theorem 7.6 (Boundedness theorem). Let ¢ be any solution of Oge = 0 on
[0, T.(n)] x R with o(1) supported in B C MU NX. Then under bootstrap
assumptions, for t € [1,T,(n)], the conformal energy of ¢ satisfies the estimate

Celt) £ A+ 1)* (10l 72, + lelZz(s,): (7.23)

where € > 0 is an arbitrary small number.

7.3.1. Reduction of Theorem 6.9

The proof of Theorem 6.9 by using Theorem 7.6 is done via product estimates and
the Bernstein inequality of Littlewood—Paley theory. We refer reader to [16, Sec. 8;
30, Sec. 4] for the detailed proof.

7.3.2. Discussion of the proof of Theorem 7.6

Logically speaking, the proof of Theorem 7.6 relies on the control of the acoustic
geometry derived in Proposition 8.10. However, Proposition 8.10 is logically inde-
pendent of Theorem 7.6, so here we discuss the proof of Theorem 7.6, assuming that
we have already controlled the acoustic geometry. In order to obtain an estimate
for the conformal energy, we choose © to be as follows:

Q=7 lf =51 (ﬁ — ﬁ) (7.24)
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where fa = 2 and 7 is as in (7.7). We introduce the modified weighted energy

Aol = [ XD, fpITrs, (7.25)
pop
where (X )j# [¢] is the modified energy current

= 1 1
T[] = Quu [Pl X" + 500,(¢%) = 56°0,6. (7:26)

By choosing X = fN and using the divergence theorem for the modified current
on an appropriate region, one can derive a Morawetz-type energy estimate. This
provides the uniform bounds for the standard energy of ¢ along a union of a portion
of the constant-time hypersurfaces and null cones.

Then we consider the conformal wave equation Og(e™%¢) = ---, where ¢
satisfies Og = 0, 0 and g are defined in Definition 8.5. We use the multiplier
approach with 7 L-type vectorfields in the region {r; < u < 7} N {F > R} where
1< <m <Tyo to control the conformal energy in the exterior region and
to provide energy decay along null slices. Finally we control the conformal energy
in the interior region with the help of the argument in [10], where energy decay is
obtained in each spatial-null slice.

The proof of Theorem 7.6 closes the reduction of the Strichartz estimate. One
could follow the steps listed in [11, Sec. 11] to obtain the estimates of conformal
energy with the control of Ricci coefficients given in Sec. 8. One could go through
the details of the argument in [30, Sec. 7]. Also reader could look into [15, Sec. 3]
for initial ideas.

8. Energy along Acoustic Null Hypersurfaces and Control
of the Acoustic Geometry

In this section, we prove the energy estimates along acoustic null hypersurfaces,
which is necessary for obtaining the mixed-norm estimates in Proposition 8.10.
Then we introduce the notation for many geometric quantities, followed by their
bootstrap assumptions. Their improved estimates are in Sec. 8.4. The proof of
estimates for geometric quantities is obtained by transport equation and div-curl
estimates for the acoustic quantities, decomposition of Ricci curvature components,
trace and Sobolev inequalities. We omit the proof of these estimates since they are
the same as in [11, Sec. 10].

8.1. FEnergy estimates along acoustic null hypersurfaces

In this section, we define acoustic null fluxes and derive energy estimates along
acoustic null hypersurfaces. These estimates are necessary for deriving the mixed-
norm estimates for the acoustical function quantities in Proposition 8.10.
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Definition 8.1 (Acoustic null fluxes). For functions ¢ defined on C,,, we define
the acoustic null fluxes F(wave)[; Cu] and Firansport)[; Cu] as follows:

FramoloiCul = /c (Lg)? + |Vipl2)degdt, (8.1)

u

f(transport) [QD,Cu] :/ 902dw¢dt7 (82)

u

where dwy is the volume form of reduced metric ¢ on the S ,-sphere from g.

Proposition 8.2 (Energy estimates along acoustic null hypersurfaces).
Under the initial data, bootstrap assumptions and the standard energy estimates
Proposition 5.1, we have the following estimates along null hypersurfaces C, for
u € [—wy, Tyyn)):

Frwave) BT Cu] + > VN D F o [POTC] S ATE, (8.3)

v>1

-F(transport) [a(c_: D),Cu] + Z ’\/2(N72)]:(transport) [Pva(c_'v D); Cu] /S >‘71~ (84)

v>1

Proof of Proposition 8.2. We first prove (8.3). We apply the divergence theo-
rem to the energy current (TP[¢] := QP[] Ty, where Qup is the energy momen-
tum tensor defined in (5.3), over the region bounded by C,, X, and X; where
to := max{0,u} (see Fig. 2 for the region that divergence theorem applied). Note
that D, (TJ[p] = Ogp(Typ) + 2Q* [¢] P, where (P, is define in (5.4). The
same proof of Lemma 5.4 reveals the coercivity (T'P?[p] = Q% ~ |9yp|?. Tt is
straightforward to check that (TP®[¢]L, = ((Ly)? + |X7g0|;) Thus we have

Fromel9:Cul = / 9P dam, — / 9 dw,
Xt tg

g

Et Zt

<Dg90(Ts0) + %Q“" [@](T)ww) dwg.  (8.5)

w' >u Cu’

Cu

Zto 20

(a) When to > 0. (b) When tg = 0.

Fig. 2. The regions that the divergence theorem is applied on.
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Note that ¥ are rescaled quantities defined in Definition 6.3. By bootstrap
assumptions (3.17b), we have |T¢| < |09, |Q*[¢]] < 10¢|* and |Dr,,| <
|0¥| + 1. Next we substitute oV and P,@Y for ¢, and use Egs. (3.8a) and
(3.9a) to substitute Ogd¥ and g P,0V. By Cauchy-Schwarz inequality, estimate
fUu/>u c,, Oep(To)dwg < fOT*;(” Js. |8g¢pllTo|dwydr, and energy estimates in
Prop;osition 5.1, we obtain the desired estimates.

To prove (8.4), for each 8 = 0,1,2,3, we apply divergence theorem for energy
fluxes (B)J* := |8CP|?B® over the region bounded by C,, ¥;, and ¥; as follows:

—/ |BCB|2B“Ladw¢dt:/ |0C?*B*T\dw, — [ |0C°|*B°T,dw,
Cu Zto Et

- D, (|0C°*B*)dwg. (8.6)
Uu/ >u Cu/
By the fact that B® = T* + f(¥) and B is timelike, we have B*L, ~ —1 and
B*T, =~ —1. By commuted equation (3.8b), we have
D, (|0C?*B%) = 2|aC”|B(dC”) + 10C°|*(0.,B* —T'3B”)
< 0c?B(0C”) +[0C” |0V || px (5,
< 10CP19%T (8w, dS) + |0C° 1DV - (8T, 8%w, d*S)
+(10C71? + 9T *) 10| 2= 53, (8.7)
where T is the contracted Christoffel symbols of g defined as 'y 1= g™ [arr =
g’{)‘gagfg/\. Using the rescaled bootstrap assumptions (6.12), energy estimates in

Proposition 5.1, note that C, D are rescaled quantities defined in Definition 6.3, we
have

f(transport)[ac_'; Cu] S/ >‘_1' (88)
The proofs for @D and P,d(C, D) are of the same fashion. |

Remark 8.3. We refer readers to [11, Proposition 6.1] for the energy estimate
along null cones for 3D non-relativistic compressible Euler case where B coincides
with T. We note that in [11, 30], authors derive energy estimate along null cones
before rescaling (with respect to A). However, the results coincide with ours when
energy estimates along null cones are rescaled. That is, our estimate is sufficient
to obtain the mix-norm estimates for fluid variables, which serves the same as in
[11, 30].

8.2. Connection coefficients

In this section, we define connection coefficients. We will derive estimates for them
in Proposition 8.10 as a part of controlling the acoustic geometry.
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8.2.1. Levi-Civita connections, angular operators and curvatures

If & is a space-time tensor, then JI denotes its g-orthogonal projection onto S; ..
Then we define D & = JIDyE where V is a vector and Dy¢ is the covariant
derivative of & in the V' direction. Note that Dy & = ¥, & when both V' and & are
S u-tangent. Also we define A :=Y¥- ¥

We let Riem,gs,; denote the Riemann curvature tensor of g and Ric,g :=
g'V‘SRiemw(;g. We use the notation that (DxDyW —DyDx W, Z) = Riemzw xy
+(Dix,y1W, Z) where X, Y, W, Z are vectorfields, [-, -] is the Lie bracket and (-, ) :=
g('a )
Definition 8.4 (Connection coefficients). We define the second fundamental

form k of ¥; to be the (g) Y;-tangent tensor such that the following relation holds
for all ¥;-tangent vectorfields X and Y:

E(X,Y):=—-g(DxT,Y). (8.9)
Let {€a}a=1,2 be the pair of unit orthogonal spherical vectorfields on Sy ,, from

Definition 7.3 . We define the second fundamental form 6 of S ,,, the null second
fundamental form x of S .., and X to be the following type (g) St,u-tangent tensors:

BAB = g(DAN,eB), (8.10&)

xa = g(DaL,ep), Xx,, :=8[DaL ep). (8.10b)

We define the torsion ¢ and ¢ to be the following S; ,-tangent one-forms:

1 1
CA = ig(DéLveA% CA = ig(DLév eA)' (811)
8.3. Conformal metric, initial conditions on g
and on the cone-tip axis for the acoustical function u
Definition 8.5 (Conformal factor and the modified null second fundamen-

tal form and acoustical quantities). In interior region M) e define o to
be the solution to the following transport initial value problem:

1
L()'(t,u, w) = i[FL](t,U7 (U), u e [O,T*;()\)], te [’UJ,T*;(/\)], w € SQ, (812&)

o(u,u,w) =0, u€ 0T weS? (8.12b)

where T, := T L and Ty, := (271)" Taur = (g1 gasl'?,.
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We define the conformal space-time metric and the Riemannian metric that
induces on St ,, as follows:

g :=e%g, §:=e%. (8.13)

We define the null second fundamental forms of the metric to be the following
symmetric Sy ,-tangent tensors:
- 1 . 1
X = §¢L§7 X = §¢Lﬁ (8.14)

Using (8.13) and (8.14), it follows that x,Xx and X, x are related by

X =e*(x+(Lo)g), x=e*(x+ (Lo)d), (8.15a)
trgf( = tryx + 2Lo = tryx + Ty, trgz =tryx + 2L0, (8.15b)
1 . . 1 - .
x =5 (trgX ~Tr)d+% x=5(trgk —2Lo)d +X. (8.15¢)
We define the following:
2 2

trgxSmel) = ¢ Ty — = =trgx — = 1

rgX ryx + I - =trgk — — (8.16)

We note that the first equality in (8.16) holds in the whole region M, while the
second equality holds only in the interior region M),

In the following definition, we define mass aspect function p and its modified
version {1, as well as modified torsion (. These objects are defined to avoid loss of
regularity of the acoustical eikonal function.

Definition 8.6 (Mass aspect function). We define the mass aspect function p
to be the following scalar function:

1
W= Ltryx + Etrgxtrﬂx. (8.17)

We now define the modified mass aspect function i to be the following scalar
function:

1 1
ft:=2A0 + Ltryx + §tr¢xtrﬂx —tryxknn + §tr¢)<I‘L. (8.18)

In M) we define # to be the St u-tangent one-form that satisfies the following
Hodge system on S; ,:

digh = S (3~ ), cuply =0. (8.19)

In M%) we define the modified torsion ¢ to be the following St u-tangent
one-form:

(:=(+ Yo. (8.20)

Definition 8.7 (Norms of S;,-tangent tensorfields). Let ¢ = ¢(w) be the
canonical metric on S? and {wA} A=1,2 are local angular coordinates on S2. We can
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also view {wA} A=1,2 on St, as the image of the canonical isomorphism from S?
to St 4. For p € [1,00), We define the Lebesgue norms L, and L; for Sy ,-tangent
tensorfields ¢ as follows:

1/p 1/p
lelincso = [ lBawe) o el = ([ lehawy)
wes? weSs?

(8.21)

Since we can have a parallel transport along S? that preserves the tensor prod-
ucts and contractions, that is, ®}'(wg); w(1)) is the parallel transport with respect
to ¢ from the vector space of type (:’Z) tensors at w(g) € S? to the vector space of
type (') tensors at w(p) € S2, for £ = {(w) a type (') tensorfield on S?, we define

the L norm L% and Holder norm C3* of ¢ as follows:

1€l Las (s..) = ess sup [€ly, (8.22)
wes?
HéHcga(sm) = HfHLfU"(St,u) + sup

0<d¢(w(1),w(2))<§

y [E(t, u, 1)) — PP (W (2y; (1)) © E(t, Uy W)l g(tu,wia))
d?(w(l), w(2))

(8.23)

In the following two propositions, we list the estimates of the initial foliation.
These estimates are crucial for the well-defined geometric setup in Sec. 7.1 and
controlling the acoustic geometry.

Proposition 8.8 ([11, Proposition 9.8; 30, Proposition 4.3, Existence and
properties of the initial foliation]). On X, there exists a function w = w(x)
on the domain 0 < w < w, = %T*;(A), such that w(z) = 0 and each level set Sp .
is diffeomorphic to S* and

2
try® + kyy = — +trgk =T, a(z) = 1. (8.24)
aw
By (8.16), 7(0, —u) = w, and the fact that xap = 0ap —kap, (8.24) is equivalent to

2(1 -
trgi(sma“)bg — % for 0 < w < wy, (8.25)

where we define the lapse a as follows:

a = (v g0, wogw) ™ . (8.26)
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Note that 5~ = aN|s,. Then on by WA U0<w<w Sows for 0 <1— = <N-2
there hold
1
la—1SA* <o Jw Pla-1)| iz SATVE
4 LC\y ax (2(1;10\))

(8.27a)

_ \/det ¢ o 2
V/det ¢ .

||U)§7‘1_*(9 Whl a’)HLooLq* (Ew(*))v ||W1DCL||L2 Loo(zw()‘))7 ||XHL2 Loo(zw()‘)) < AT 1/2

(8.27b)
0 0 7]

-2 _ ~ < Ao, 8.27

ABEY 2 J ( w4’ 8(1)3) ¢ (8(»‘4’ 8w3) Leo (5O (8.27¢)
) , ) o 9

— _ - = < —480

486212 || 0wC ( J ( dwA’ 8w3) ¢ (8wA’ owhB )) LI (So) AT
(8.27d)
o3~ W0 (520) g sp.0) S A2 (8.27¢)

In addition

Hwtrwz(Small |‘Lm(2w(>\)) <\~ 460

(8.27f)
o2l o, + XS S A
. (8.27g)
Finally
Z |w17[‘;8aNi - 17[;| =0(w) asw]O. (8.27h)

i,j=1,2,3

Proposition 8.9 ([11, Lemma 9.9, Initial conditions on the cone-tip axis
tied to the acoustical function]). On any null cone C, initiating from a point
on the time azis 0 <t =u < JARGN there hold

2 _(Small) 1o |smran 7i i
trgX* ;»Ttrﬁx(s 11)7|X|547|TM]'8¢1L 717[j|7b7 17|C|¢70—7

FIVr x| g, 72 [ Wergx S| 4, 71 0% g, 71 X0 g, 7V CL g, 7I VO] g, (8.28a)
FAb, P A0, PP, PP = OF) ast | u,
gifgllé,kl\mowt,u) < 00. (8.28b)
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Moreover
0 0 0 0
e A < N O <
ltlfBT J (8(1)1“’ 8(1)3) / (8(1)1“’ 8(1)3)’ (8:28¢)

0 0 0 0 0 0
R | -
1151&”’ chg <(’)wA’ 8w3> N (’)ouc¢ (6(1)"" BwB)' (8.284)

Discussion of the proof of Propositions 8.8 and 8.9. The existence of such

initial foliation can be proved by Nash-Moser implicit function theorem (see [25]).
The proof of the estimates in Proposition 8.8 relies on the energy estimates (5.1).
The reason is that Proposition 8.8 yields a foliation and estimates on the hypersur-
face ¥ with respect to the rescaled coordinates, and this hypersurface corresponds
to the hyperfaces X, for each k with respect to original space-time (see Remark 6.4
and Sec. 7.1.2 for the description of ¥y in rescaled space-time). The point is that we
need the energy estimates of (5.1) to control the fluid along the “old” X, . We refer
the reader to [30, Appendix C] for the proof of the estimates in Propositions 8.8
and 8.9. |

8.4. Restatement of bootstrap assumptions and estimates for
quantities constructed out of the acoustical Eikonal equation

In this section, we restate the consequence of bootstrap assumptions of fluid vari-
ables, vorticity and entropy gradient that we obtained in (6.12), followed by the
bootstrap assumptions for acoustic geometry. Then we state the main estimates for
the acoustical function quantities in Proposition 8.10. The estimates in Proposi-
tion 8.10 are required by the conformal energy method to close the whole bootstrap
argument in this paper. We provide a discussion of the proof of Proposition 8.10 in
Sec. 8.4.4 via a bootstrap argument where the bootstrap assumptions are listed in
Sec. 8.4.2. For the details of the proof, we refer readers to [11, Sec. 10; 30, Secs. 5
and 6].

8.4.1. The fixed number p

In the rest of the paper, p denotes a fixed number with
2
0<50<1f}—7<N—2, (8.29)

where g is defined in Sec. 3.4.

8.4.2. Bootstrap assumptions for geometric quantities

After rescaling in Sec. 6.2, we make several bootstrap assumptions for the quan-
tities in acoustic geometry. These assumptions will be recovered and improved by
estimates in Proposition 8.10.

First we recall (6.12) as follows.
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Estimates by using bootstrap assumptions of variables:

Ha\fl?a(“_ja ag? (i DHL?L?(M)

A [y V20| Py (T, &, 5)(09,85,05,C, D)) |22, 01y

v>2
< ATL/274e0, (8.30)

Then we make few more assumptions for the quantities of acoustical geometry
as follows.

Bootstrap assumptions for the acoustical function quantities:

2¢< _ aB)¢<LA,LB> < xo,
AB 12 owAd’ dw owA’ dw Lee (M)
(8.31a)
o 9 o0 0 0 _
ac - AR < T,
A B G2 ||8wC ( g ( w4’ 5(03) ¢<5wA’ 5“)3)) LELLC)
(8.31b)
Also
HU@'X Small)’x? CHL2CO 50(e,) S < ' 1/2+260 (832)
Moreover
Hf(trﬁi(sman)?fo C)HL{'\)(St,u) = 17 (833&)
1
1= rzs.0) < 5 (8.33b)

Finally, we assume that the following estimates hold in the interior region:

(Small)

Htrﬁx ’X||L2L°°CO ;%0 (M(In)) <A 1/2’ HC”Lfo(M(I"‘)) < /\71/2’ (8343‘)

Vol 22 L2 Lo (panvy < 1. (8.34b)

8.4.3. Main estimates for the acoustical function quantities

In the following proposition, we derive the estimates for the various acoustical func-
tion quantities. These estimates are sufficient to derive the boundness theorem of
the conformal energy in Theorem 7.6 and to recover and improve the bootstrap
assumptions in Sec. 8.4.2.

Proposition 8.10 ([11, Sec. 10; 30, Secs. 5 and 6. The main estimates for
the acoustical function quantities]). Under the bootstrap assumptions we have
the following estimates where 2 < q < 4:
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Estimates for connection coefficients:

[trgx S %, Clpzrn ey 17D, (trgg S %, Ollpzrn e S A2,

”7;1/2(trgj)z(Srnall),)A(7 C)”L;’OL’ZD(CH) < )\71/2’
17 (tegx S, %, Ol ) S AT
ftrgf( ~ 1,
HT1/2trgX(Small)” < A~ 1/2

|\F3/2X7tr i(smau)”LwLwﬂ M) S A2

(|7 (Wtrgx (Small WX)HHL” c) SA 1z,

Htr?ﬂ((sma“) 5 /\—1/2_

X Cllsenoc,
In addition, the null lapse b verifies the following:

|
7l/2

r

Hb11

)
L2L (M) H

w0 ()

L L LI (M)

< A71/2.

" L2L%, (Cu)

Moreover, we have

Hf(lj)”L;?oLffcgj‘so(M) 5 1.

Furthermore

2
trg)?(sma“),)i,trgxf il < il deo(4-1)

q
L2 Lo’ (M)

lCllz2roe iy S A 1/2=3¢0,

el a < Ai-1-deo(5-1)

Lirem) ™

Improved estimates in the interior region:

S /\—1/2—4507
LR (At

r

Hb—l—l

1772 (g S %, Oll 2o,y S AP i Cu € MO,

< /\—1/2—350
)
L2LooC0 180 (Mnt))

m 2
trgX(S all) X trgX _ ;

||CHL?L;°(M(Int)) < A~ 1/2-320

(8.37)

(8.38)

(8.39)

(8.40)

(8.41)
(8.42)
(8.43)

(8.44)



Rough solutions of the relativistic Fuler equations 495

Estimates for the geometric angular coordinate components of ¢:

,2¢ (6 A7683>¢<ai14’(’~)i3) 5)\74507
ABET 2 w4’ dw w4’ dw Loo (M)
(8.45a)
o [, [ 9 0 a  a »
v A I < \~deo
ABCZ1 2 || dwC (T J (8wA’ 8(1)3) ¢ (8(»‘4’ 8w3)) Lo LB (Ca)
(8.45Db)

Estimates for v and b:

_ Vdetd (8.46a)

v =T,
\/deté
1
[6 =1Ly S AT*0 < T (8.46b)

Furthermore

Hr1/2X71n ( )HL?L;OL{’U(M)v [ ¥1n (7:_2“) HL%L{L(C“),

(8.47)
[FLY I (7 20) || p2rn, ey S A2
Estimates for w and Y:
P 7Vl zen, ey S A2 (8.48)
Interior region estimates for o (C, C M)
71/2 Lol peepzric,y) S A V2220 1F2Y60 ) b e eays WOl 22, 00) S AT
(8.49a)
o]l oo (pany < AR, (8.49b)
771260 poo (pqamy S ATHETA0, (8.49¢)
Interior region estimates for o, W, ¢ and w:
HWO-”L%L%Cz;“O(M(Im))v ”’Fﬁv 'FWz”LiLfLP (MInt)y S < AT 450 (850&)
172 fill 12 o= 12, (pqanery S AT490. (8.50b)
In addition
1PV Wl 2222 22 ooy DK 2 o gy S A0 (5.51)

Decomposition of ¥o and corresponding estimates in the interior region: In Mnt)
we can decompose Yo as follows:

Vo=—C+(C— i)+ Ra) + hey (8.52)
where the following asymptotic conditions near the cone-tip axis are satisfied:

i ) (t 0, @), i o) (1w, ) = O(F)  as t | u. (8.53)
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Moreover

18— Wl 22 Lo (vaamrys T oyl 2 Lo (paamoy S ATH275%0, (8.54a)

[ 2|22 Lo oo (Mmanoy S AT1/2—d=0, (8.54b)

8.4.4. Discussion of the proof of Proposition 8.10

In this section, we discuss the proof of Proposition 8.10. For the details of the proof,
we refer readers to [11, Sec. 10; 30, Secs. 5 and 6].

(1)

(3)

The structure of the proof consists of three major steps:

First of all, we derive the transport equations along null hypersurfaces and div-
curl systems™ on Sy ,, verified by the geometric quantities. These equations are
derived using basic differential geometry and, at the appropriate spots, using
the relativistic Euler equations for substitution for reasons further described in
Step (2). The key point is that all of the equations we obtain have the exact
same schematic structure as the equations in [11]. We refer readers to [16, Sec. 2]
for the PDEs satisfied by connection coefficients and mass aspect function .
We refer readers to [30, Sec. 6] for the PDEs of conformal factor o, modified
torsion ¢ and modified mass aspect function i, f.

Second, certain Ricci and Riemann curvature tensor components, which appear
as source terms in the PDEs that we just obtained in the previous step, are
rewritten by using Bianchi identities and the decomposition of the following
Ricci curvature [16, Lemma 2.1]:

1 - 1 - -
Ricag = —§|:|gga5(‘lf) + 5 (Dal—‘ﬁ + Dgl-‘a) + Q(\I/)[a‘lf,a\lf] (8.55)

It is at this step that the wave equation (2.29) of the geometric formulation of
the relativistic Euler equations is used to substitute for the term Dggag(\ff),
as we alluded to in the previous step. We again emphasize that following this
substitution, one obtains equations of the exact same schematic form as in [11].
After the substitution, one is faced with controlling the source terms in
the geometric equations in mixed space-time norms. The source terms depend
on B\ff,@', S ,dD and have the same schematic structure as in [11]. This step
requires trace inequalities and Sobolev inequalities, which are provided by [11,
Proposition 10.2; 30, (5.34)—(5.39)]; the proofs of these inequalities are the same
as in [11], and rely on bootstrap assumptions (3.17b) and (3.17c), energy esti-
mates on constant-time hypersurfaces (5.1) and energy estimates on null hyper-
surfaces (8.3) and (8.4).
After one has controlled the source terms in the geometric PDEs for the acoustic
geometry from Step (1), one uses a transport lemma and div-curl estimates

*These div-curl systems depend on the acoustic geometry and are independent of the structure of

the relativistic Euler equations. Therefore, these div-curl systems are completely unrelated to the
ones that we derived for the vorticity and entropy gradient in Sec. 5.
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to obtain various mixed space-time norms estimates for 77 weighted acoustic
quantities in Proposition 8.10. We refer readers to [11, Sec. 10.9; 30, Secs. 5
and 6] for the detailed proof. We emphasize that the proof is the same as
in [11] because it relies only on bootstrap assumptions (3.17b) and (3.17¢) and
source term bounds that one obtained in Step (2), ingredients which are already
available to us at this step in the proof.

We now point out some differences between the non-relativistic 3D compress-
ible Euler equations and the relativistic Euler equations in terms of the control of
acoustic geometry. Besides the different acoustic metric g in this paper compared

o [11], the g-Y;normal vectorfield is T (see (2.17)) in this paper, while in the
non-relativistic case [11], it is B = 9 +v%d,. Although these differences have neces-
sitated changes to some of the proofs earlier in the paper (such as the proof of the
energy estimates on constant-time hypersurfaces and the acoustic null hypersur-
faces), these changes do not have any effect on the proofs of the estimate for the
acoustic geometry; it is for this reason that we refer to [11, Sec. 10] for the details
behind the proof of Proposition 8.10.
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Appendix A. Notations

In this appendix, we gather the notations that we use throughout the paper.

Symbol Ref.
M,M71,675KA,Et,6,6 Sec. 2.1

v,p,n,s, 0, H Sec. 2.2.1
vort®(-) Definition 2.2
w Definition 2.3
h Definition 2.4
q Definition 2.5
S Definition 2.6

c Sec. 2.2.4
C,D Definition 2.8
Acou; gKiOu Definition 2.9
g.g ! Definition 2.10

T Definition 2.11




498 S. Yu

Symbol Ref.
g.9°" Definition 2.12
D, Definition 2.14
7,3,5,C,0,B Definition 2.15
£, 2 Sec. 2.4.1
S(ce), S(D) Proposition 2.17
S(w) Proposition 2.20
v, Py, Pr, P<y Sec. 3.2
Row)vs Raco)v, Rop)v Lemma, 3.3
q,€0, 00, 9,01 Sec. 3.4
R,?é Sec. 3.5
T, Sec. 3.6
QX3 Xr E, dw, Definition 5.3
A Sec. 6.1
T*;(A) Sec. 6.2
uaCUaSt,u’M(Int),M(EXt),M Sec. 7.1
T, W Definition 7.2
L(Geo), b, N, L, L, §,e4, 0™ Definition 7.3
WL |E|g, trg&, & Definition 7.4
f(wave)v f(transport), dwg Definition 8.1
¢, ¢ ¢l Definition 7.5
D, ¥, A, Ric, Riem Sec. 8.2.1

Definition 8.4
Definition 8.5

kv 97X7 X Q é» ‘Cv ‘¢
o, FL? gv )~(7 Xa trﬁv )Z(Small)

i Definition 8.6
¢ Definition 8.7
a,w, a%, %—, v Proposition 8.8
i, i, C Definition 8.6
p Sec. 8.4.1
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