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From high-dimensional committors to reactive insights
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Transition path theory (TPT) offers a powerful formalism for extracting the rate and mechanism
of rare dynamical transitions between metastable states. Most applications of TPT either focus
on systems with modestly sized state spaces or use collective variables to try to tame the curse
of dimensionality. Increasingly, expressive function approximators like neural networks and tensor
networks have shown promise in computing the central object of TPT, the committor function, even
in very high-dimensional systems. That progress prompts our consideration of how one could use
such a high-dimensional function to extract mechanistic insight. Here, we present and illustrate a
straightforward but powerful way to track how individual dynamical coordinates evolve during a
reactive event. The strategy, which involves marginalizing the reactive ensemble, naturally captures
the evolution of the dynamical coordinate’s distribution, not just its mean reactive behavior.

I. INTRODUCTION

Biophysical systems frequently involve dynamics that
is both high-dimensional and stochastic [1-7]. When
those dynamical processes relax into an equilibrium, it
is possible to study the stable states in terms of thermo-
dynamics without reference to the dynamics. However,
many biophysical processes operate away from equilib-
rium, and in that regime, it is especially crucial to un-
derstand the kinetics. Studying Markovian models is a
well-developed route to analyzing those high-dimensional
stochastic kinetics, a route common to the chemical mas-
ter equation [8], Langevin dynamics [9], and Markov
State Models (MSMs) [10, 11]. Tt is often the case that
these Markovian models exhibit slow-time-scale transi-
tions between different regions of a configuration space,
transitions one would associate with barrier crossing in
an equilibrium setting. Owing to the chemical physics
history, we generically refer to changes from one set of
metastable configurations A to another B as a reaction
or a reactive event. Examples of such reactions are tran-
sitions between metastable states in gene regulatory net-
works and chemical reaction networks [12-14]. Because
the configuration space can become astronomically vast,
one often seeks a coarse-grained description of the ki-
netics: What are the long-lived metastable regions of the
configuration space, what are the timescales for reactions,
and what is the mechanism of the reaction? That mech-
anism is particularly desirable, as it is easier to design
ways to modify the reaction rate if one knows how the
reaction typically proceeds.

The most straightforward approach to learning the
mechanism involves generating and watching ensem-
bles of representative reactive trajectories [15, 16] to
form impressions of how those representative trajectories
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progress from A to 5. Due to a separation of timescales
between the typical residence time in metastable states
and the transition time [17], it can be impractical to di-
rectly simulate and watch the large number of required
trajectories. Enhanced sampling methods such as transi-
tion path sampling (TPS) [18-21] and forward flux sam-
pling (FFS) [6, 22, 23] can offer more efficient ways to
generate the ensemble of reactive trajectories, but even
when the ensemble can be sampled, the results are still
high-dimensional, making them nontrivial to interpret.
What is needed is a low-dimensional representation of
the resulting mechanism from the high-dimensional reac-
tive trajectories.

To avoid these challenges, one can parameterize the
progress not by time but by a one-dimensional reaction
coordinate. The reaction coordinate can be thought of as
a many-to-one mapping from microstate x onto a single
variable measuring progress along the reaction, and the
best choice for such a progress coordinate is known to be
the so-called committor function, ¢(x) [24, 25]. Transi-
tion path theory (TPT) [24, 26-28] provides explicit ex-
pressions to compute ¢(x) in terms of a generator of dy-
namics, but the cost of directly performing such compu-
tations rapidly increases with the number of microstates.
Due to the curse of dimensionality, it is common for prob-
lems of interest to have astronomically many microstates.
In these cases, the most common way that committor
functions have been used for complex systems is to avoid
q(x) and instead compute a committor function defined
over a low-dimensional (often one-dimensional) collective
variable y, which is a function of x. This committor ¢(y)
is practically computed by sampling. For example, many
trajectories can be initialized with a particular value of
y and then propagated until they reach either A or B,
with ¢(y) being the probability of first reaching B. Ap-
proaches built around committors of one or more col-
lective variables have been productive [29-40], but the
approaches typically require the choice of good collective
variables upfront. A significant body of research has de-
veloped strategies to identify and optimize those “good”
collective variables, ideally finding a y that resembles
the committor itself [19, 41-50]. More recently, basis ex-
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pansions [51-54], neural networks [32, 55-61] and tensor
networks [62] have been used to estimate ¢(y) from sam-
pled trajectories even when y is quite high dimensional.
Those advances pair nicely with strategies to extract the
mechanism of reactive events in the collective variable
space from ¢(y) [63-65]. In particular, Ref. [54] has used
that ¢(y) to inspect how the steady-state distribution of
certain collective variables varies as a function of reaction
progress.

Suppose, by contrast, that one could discard the col-
lective variables altogether and it were practical to solve
for the full-dimensional committor ¢(x). Here, we in-
troduce and illustrate that for discrete systems such as
well-mixed chemical reaction networks, it is indeed nu-
merically practical to compute ¢(x) and extract mecha-
nistic insight. For these problems, the strategy does not
even require trajectory sampling. The key idea of this
paper is that access to the full-dimensional committor
q(x) allows one to inspect how each dynamical coordi-
nate x; € x evolves as a function of reaction progress.
Crucially, this approach retains a distribution over x;,
not just the mean behavior, allowing the approach to di-
rectly reveal the presence of multiple reactive pathways.

The methodology is built upon the reactive ensemble
of TPT, which gives the density p“8(x) of occupying
a microstate x given that the system is in the midst of
transitioning from A4 to B. For each degree of freedom z;,
1 < ¢ < D, we compute a two-dimensional distribution
formed from the reactive ensemble by marginalizing over
all other degrees of freedom:

pB (24, q)

= /dxl“'dxi—ldxwl - dwpp?P(x)6(q(x) — q),
(1)

with the § function serving to pick out how far the reac-
tion had progressed toward B. The marginal p5(z;, q)
highlights the single coordinate x;, but it retains the in-
fluence of the other coordinates only in so far as they
impact the progress coordinate ¢g. In this way, one can
view how the distribution for each x; evolves during the
reaction process, parameterized by ¢. The approach has
the flavor of the so-called violin plots of Ref. [54], but it
computes the ¢ dependence of the reactive, rather than
steady-state, ensemble. The reactive ensemble might be
a preferred choice if the steady state has overwhelm-
ing probability within the regions A and B, making the
steady-state probabilities between the two metastable
basins difficult to visualize.

We illustrate the idea with two example problems, both
of which admit a direct computation of ¢ over a dis-
crete state space. First, we demonstrate the approach
for a discretized two-dimensional (2D) diffusion prob-
lem where the explicit calculation of the committor has
previously been studied [28, 66, 67]. Though only two-
dimensional, this problem illustrates the approach and
emphasizes that it can naturally highlight when multi-
ple distinct pathways meaningfully contribute to reac-

tive events. Second, we move to a situation with too
many degrees of freedom to straightforwardly plot ¢(x),
a gene toggle switch (GTS) model [6] with two metastable
states emerging from stochastic chemical kinetics of seven
chemical species. Calculating the committor for the GTS
model is more complicated than most literature toy prob-
lems since we consider a GTS model with several million
microstates, many more than the coarse-grained models
typically used for transition path analysis [63, 68-73].
Using sparse linear algebra methods, we compute ¢ and
show how it can be used to extract the reaction mecha-
nism one species at a time.

II. TRANSITION PATH THEORY
A. Standard formulation

Our work builds upon TPT, so we start by review-
ing its main results for discrete-state continuous-time
Markov dynamics [24]. One can choose a canonical order-
ing of microstates so a many-body microstate x is labeled
by the single index i. Let W;; denote the rate or prob-
ability per unit time of transitions from the j* into the
" microstate. Conservation of probability is enforced
because the diagonal elements Wj;; are chosen such that
> Wi = 0. Without loss of generality, we assume that
it is possible to reach any microstate from any other mi-
crostate in a finite number of transitions; that is, W is
irreducible. In the long-time limit, the microstate i is vis-
ited with steady-state probability ;. That distribution
follows simply from the matrix W as the solution to

Wr =0, (2)

where 7 is the vector of steady-state probabilities for
each microstate.

TPT partitions the space of microstates S into three
regions: A, B, and (AUB)°, where the superscript c is the
complement of the set. The aim is to describe proper-
ties of the Markov dynamics within (AU B)¢ conditioned
upon starting in .4 and ending in B, without having first
returned to A. This conditioned process is of special
physical interest when A and B are metastable states
and trajectories pass through (A U B)¢ rarely. The rare
transitions are then viewed as reactions. A motivating
goal for TPT was to compute the reaction rate k45 from
the Markov rate operator W. It has been shown that
this reaction rate is expressed compactly in terms of the
committor function, specifically the forward committor
function, which we distinguish with a superscript +. For
the discrete state space, we define the vector q* whose
element qj is the probability that a trajectory initiated
in state ¢ will reach B before A. The forward committor
solves the Dirichlet boundary value problem

Yies T Wi =0, Vie (AUB)®
g =0, Vie A : (3)
g =1, VieB
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Practically, it is convenient to cast that problem as the
linear equation

Uqt =v, (4)

where U is a square matrix with elements U;; = Wyj,
for all 4,7 ¢ AU B, and v is a vector with elements
vj = — > e Wij, for all j € (AU B)¢, and zero other-
wise. In words, U is the transpose of the submatrix of W
corresponding to the reactive region, that is, the sites not
in A or B. Multiplying the forward committor vector q*
from the left by U results in v, a vector whose element
i ¢ AU B is minus the sum of the rates leaving ¢ and
entering B.

TPT defines the backward committor q~ in a manner
analogous to q; ¢; is the probability of being in 4 given
that the system last occupied A before B. The backward
committor relies on the time-reversed process, character-
ized by a rate matrix W. The off-diagonal elements of
this matrix are given by W;; = Wj;m;/7;, and the diago-
nal elements are Wj; = — Y it Wj; [28]. The boundary
value problem for the backward committor,

Zjesqj_WjiZO, Vie (.AUB)C
g =1, Vx e A NG
q; =0, VxeB

leads to the linear equation

Uq™ =v, (6)

where Uij = Wji7 for all Z,] ¢ A U B and 1~}1 =
— D keA Wi, for all i € (AU B)°. For reversible sys-
tems, W = W, and forward and backward committors
are trivially related as ¢; = 1 — qj' . The calculations
in this paper involve Markov dynamics with a W that
breaks detailed balance, requiring Eqgs. (4) and (6) to
be solved independently. By additionally solving for the
steady-state distribution 7, one can then construct the
reactive probability

PP =migfq; . (7)

This PP is the probability that a reactive trajectory
occupies discrete microstate ¢ [28]. If these microstates
come from a discretization of a continuous problem, then
the reactive density is pAB(x) = PAB/V | where i is the
index for microstate x and V is the volume element of
each discretized cell.

B. Re-expression for large-scale systems breaking
detailed balance

When detailed balance is not satisfied, as in our second
example problem, q~ does not follow directly from q7.
In those cases, q~ could in principle be found by solv-
ing Eq. (6), but that approach is impractical for large
systems. Elements of the time-reversed rate matrix can

suffer from numerical instability due to states with van-
ishingly small steady-state probabilities entering into the
denominator of W;; = Wj,m;/m;. Note, however, that
we can directly solve for the vector r whose elements
r; = m;q; appear in the expression for the reactive den-
sity, Eq. (7). In Appendix B, we demonstrate that solving
Eq. 6 is equivalent to solving the linear equation

UTr =s, (8)

where s; = — >, ., Wimy, for all i € (AU B)°. Notice
that unlike Eq. (6), Eq. (8) requires a transpose of the
operator U used to solve the forward committor, not the
numerically problematic time-reversal. The transforma-
tion does not give a free lunch in that the vector s cannot
be constructed as simply as v and v. Instead, s requires
knowledge of the steady state w. We therefore solve for r
in two stages. First, we find 7 by applying Arnoldi iter-
ation to the eigenvalue problem in Eq. (2). With that 7,
we construct s and use general minimum residual (GM-
RES) iterations to solve Egs. (4) and (8) for q* and r.
Combining the two, we obtain the reactive distribution
as PiAB = q;rri.

III. RESULTS

A. Two-dimensional diffusion on a metastable
landscape

Before breaking detailed balance or considering high-
dimensional systems, it is useful to discuss a simpler pro-
totypical minimal example, that of two-dimensional dif-
fusion on a metastable landscape [28]. For this example,
the microstates x are defined by two coordinates, z and
y. The system evolves on the three-well energy landscape

Vi) = e 0m3) g8’

_ e @12y _ go—(at1)?—y?

+ =+ — 9)
according to an overdamped Langevin dynamics with a
gradient force and a random force £ of thermal origin:

X =-VV(x)+£. (10)

With inverse temperature (3, the white noise satisfies
(&)&(t)) = 2B8716;;0(t — t'). The energy landscape
was constructed to have metastable basins (see Fig. la),
and the standard problem is to describe the rare dynam-
ical path that causes the system to transition from one
of those basins to the other. This particular toy prob-
lem is a useful starting point because the state space
can be discretized onto a 200 x 200 grid such that the
corresponding linear equation, Eq. (4), for the forward
committor can be solved [28]. The fineness of the grid
one uses depends on the relative size of the deterministic
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FIG. 1. Detail-balanced dynamics of a single thermal particles. Following Ref. [28], we study overdamped dynamics
on an energy landscape with two deep wells and seek information about the mechanism passing from reactants .4 to products
B. Upon discretizing the continuous state space on a grid, sparse linear algebra methods give 7, q7, and q~ = 1 —q* for that
discretized problem. The reactive density p*?(x) can be marginalized as in Eq. (1) to reveal the distribution of each coordinate
(z and y) as a function of reaction progress q*. Plots of p*3(z,¢") and p*5(y, ¢") reflect the distribution of outcomes for
coordinate x and y, respectively, where the state of the other coordinate is considered only to the extent that it impacts the
reaction progress q*. Retaining information about the statistical ensemble naturally reveals the presence of multiple reactive
pathways. For cleaner visualization, the reactive ensemble densities were smoothed with Gaussian kernels and bandwidths
obeying Silverman’s rule [74] and colored with a nonlinear hyperbolic tangent colorbar that enhances the resolution of the

low-probability regions.

forces and the stochastic white-noise forces that gener-
ate diffusion. At a minimum, a reasonable discretization
must be sufficiently fine that the rate operator has non-
negative off-diagonal elements [75]. With x being only
two-dimensional, the solution ¢*(x) can be plotted to
offer a clear visual for how the reactions proceed from
one basin to the other. The landscape has two distinct
pathways along which transitions can occur, and a plot
of g% (x) shows which pathway dominates [28].

The challenge we set out to address is how one can use
gt (x) to describe the typical reaction mechanism when
x is too high-dimensional to plot. Because of the curse
of dimensionality, we need to consider the components of
X one-by-one, inspecting how each one advances, and yet
the two-dimensional diffusion problem highlights the dif-
ficulty of decoupling those degrees of freedom. A plot of
q*(z,y) contains information about how the correlated
motion of z and y can conspire to advance the reaction.
If we simply neglected the information about y, we would
lose those correlations. Figure 1 shows how our proposal,
Eq. (1), can capture how each coordinate evolves one-by-
one, even resolving the multiple reaction pathways. To
highlight this capability, we solved for ¢*(x) at inverse
temperature § = 4, a value at which both pathways con-
tribute meaningfully to transitions. As a function of re-
action progress (¢*), we monitor how the distribution of
each coordinate evolves, revealing distinctly bimodal dis-
tributions that form two channels in Fig. 1. The plot in
Fig. 1c, for example, reflects that progress can emerge
either when y increases to a shallow intermediate basins
around (z,y) = (0,1.5) or by holding y ~ 0 and letting
x do all of the work by climbing up and over a single
saddle. Because the plots show a distribution, not just

a mean, at each value of ¢©, they contain rich informa-
tion about how important the coordinate’s motion is for
enabling reaction progress. The channels stretch along
the vertical direction when reaction progress is relatively
insensitive to the precise value of the coordinate, and
they narrow when the coordinate is strongly driving the
reaction. For a two-dimensional x we do not mean to
suggest that plotting p*2(z,¢") and p*B(y,qT) is sim-
pler to parse than a plot of ¢ (z,y). Rather, our point
is that rich insights about the reaction mechanism can
be extracted by these collections of plots, which remain
computable and interpretable even when the dimension-
ality grows. We emphasize this point with the second
example.

B. Bistable switching in a seven-species gene
toggle switch

1. The GTS Model

A paradigmatic example of bistable transitions in
higher dimensions is provided by the chemical master
equation (CME) for the stochastic dynamics of a gene
toggle switch (GTS) [6]. The GTS model that we studied
was constructed to describe the fluctuating copy numbers
of two proteins, A and B. A single piece of DNA, denoted
in the model by O, containing genes for A and B provides
routes to increase the copy numbers through protein syn-
thesis, but the copy numbers can also decrease via pro-
tein degradation. The two genes mutually suppress each
other, e.g., increasing the number of A decreases the pro-
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FIG. 2. Gene toggle switch (GTS) model. Left: Set of chemical reactions that make up the GTS model [6], a chemical
reaction network model with 7 species that perform 14 stochastic reactions with 7 distinct reaction rates, ki through k7. The
system involves a single piece of DNA (species O) that can synthesize protein A or protein B. Those proteins can dimerize
and the dimers can bind to DNA as a promoter that suppresses the production of the other protein. The result is a bistable
switch that toggles between an A-rich and B-rich state. Right: Which state the system occupies is well captured by the order
parameter A that counts how many more A proteins there are than B proteins (in monomer, dimer, or bound forms). A
brute-force stochastic simulation gives a Monte Carlo realization of a trajectory, illustrating the stochastic switching observed
for the numerical values of the reaction rates reported in the main text. Fig. 3 views this same process from the perspective of
a statistical ensemble by employing transition path theory (TPT).

duction rate of B. Consequently, typical microstates in-
volve either a high number of A or a high number of
B, with rare stochastic fluctuations toggling between the
metastable states.

The specific GTS model we study involves seven chem-
ical species and fourteen reactions (see Fig. 2). The
model allows for reversible dimerization of A and B to
produce As and B,. Each dimer can also reversibly bind
to the DNA to give OA; and OB;. The bound dimer
acts as a promoter, so OAs prompts the synthesis of
more copies of protein A without similarly prompting
the synthesis of B. In the absence of a bound promoter,
O is equally likely to synthesize A and B. Finally, both
proteins have an irreversible degradation process. Fig-
ure 2 labels the rates for each of the fourteen elemen-
tary reactions by k; through k7, assuming a symmetry
between the kinetics of A and B. We follow Ref. [6],
setting k1 = ko = ks = 5, ky = ks = k¢ = 1, and
k7 = 0.25. The symmetry between A and B is spon-
taneously broken by the fluctuating dynamics, and the
imbalance is monitored by the order parameter A =
na+2na, +2noa, —nB—2nB, —2n0B,, Where n, denotes
the number of species . A microstate for the GTS model
is then given by (na,na,,n0Ass M0O; NOB,, B, NB). The
representative stochastic trajectory of Fig. 2 shows that
one can define a metastable A region by A > 25 and
a metastable B region by A < —25. Although the vast
majority of the time is spent within either basin, we are
primarily interested in the behavior of trajectories leav-
ing A and entering B.

Like in the first example, the stochastic dynamics of
the GTS is described by a Markovian jump process from
one microstate to another. The two-dimensional diffu-

sion required discretization onto a grid, but the states
of the GTS naturally occupy a seven-dimensional lat-
tice, one dimension per chemical species (A, Ag, OAg,
0O, OB, B, and B). None of the reactions can make
or destroy the DNA, so there is a constant of motion:
noa, +no +nos, = 1. That constraint restricts species
OA,, O, and OB; to each be present with zero or one
copy. In contrast, the copy number of the A and B
monomers and dimers can in principle increase with-
out bound. In practice, the degradation rate k7 ensures
that there is some maximum copy number, M, above
which the dynamics is exceedingly unlikely to sample.
Appendix A shows that the truncation at M = 30 did
not appreciably influence the reactive trajectories. This
choice of M is somewhat larger than what one might
intuitively deduce from the positions of the distribution
peaks, as shown in Fig. 4, because the shape of the distri-
bution is non-trivially influenced by rare configurations in
the tails of the distribution. Since we restrict na,na,,ns,
and np, to each be between 0 and M, the state must be
one of 3(M + 1)* microstates which comes to nearly 2.8
million for M = 30. Although it is not entirely trivial to
converge such a large vector, it is possible because CMEs
naturally support a sparse representation of the Markov
operator W.

Provided that the number of microstates is sufficiently
modest that they can be practically enumerated, con-
structing the sparse matrix for W is straightforward. For
the 7" microstate, one loops over the reactions in Fig. 2
to identify the microstate index j that would result if that
reaction were to fire. To the sparse matrix W, one adds
an element Wj; = o, where the so-called propensity o is
the rate of reaction k, times a combinatorial factor count-
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ing how many distinct copies of the species could have
executed the reaction. For example, if the microstate
i had 5 A monomers and 7 Ay dimers, then the reac-

tion 2 A L. A, would have a rate 20k; of mapping
to the microstate with 3 A monomers and 8 A, dimers.
Here, we have 20 distinct ways that two of the five A’s
could have participated in the reaction. Any reaction
that would have increased the copy number to exceed
M would be ignored. Once all nonzero off-diagonal ele-
ments of W are identified, the diagonal elements are set
to Wi = =5 ot Wi; to enforce conservation of proba-
bility.

The above procedure is conceptually simple and hap-
pens to be computationally tractable for this system size,
but there is a more elegant way to build W that also
extends to CMEs with astronomically large numbers of
microstates. The alternative approach leverages the Doi-
Peliti (DP) formalism to represent W in terms of rais-
ing and lowering operators that act on each chemical
species [76-78]. For the GTS problem, one can arrive
at all of our results without the DP formalism, but we
envision extensions to larger state spaces such that vec-
tors like q* cannot be explicitly computed, but are rather
approximated by a tensor network. In those very large
state spaces, looping over microstates is not possible and
W must be built using the DP formalism. Anticipating
this necessity, we describe the DP representation of the
GTS model in Appendix C.

Having built W, Eq. (2), Eq. (4), and Eq. (8) are solved
by routine sparse linear algebra methods. For M = 30,
the convergence of 7 via about 5 x 10* Arnoldi itera-
tions is the most expensive step, requiring approximately
ten hours of serial runtime on a single processor. We
needed 105 GMRES iterations to converge q* and r in 3
hours and 2 hours, respectively. Because the model has
been a playground for advanced sampling algorithms, it
is tempting to compare the timings of the rate calcula-
tions. In Appendix A, we show agreement between the
M = 30 TPT rate calculation and a simple sampling rate
estimate that required approximately 1500 serial CPU
hours. FFS is known to accelerate similar calculations
by a factor of 40-90 [6], reflecting that the TPT calcula-
tion costs the same order of magnitude as an FFS rate
estimate. This comparison suggests that the TPT cal-
culation is in the same ballpark as enhanced sampling
algorithms, although we highlight that the TPT calcula-
tion yields not only the rate. At the same expense, the
TPT approach also gives the committor, which we now
use to analyze the mechanism.

2. Analyzing the committor

Since the GTS model breaks detailed balance, we com-
puted ¢t (x), and r(x) to obtain the reactive density
PAB of Eq. (7). Fig. 3 shows how the distribution for
the number of each species evolves as a function of re-
action progress qt. Those distributions, PAB (na,qt),
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FIG. 3. GTS reactive ensemble. For the GTS model, the
reaction coordinate ¢ is explicitly computed with sparse lin-
ear algebra methods, allowing the distribution for each chem-
ical species to be tracked as a function of reaction progress.
Some species undergo significant changes in their average
count, while others have more subtle changes in higher mo-
ments of their distribution. Counts of those chemical species
are naturally discretized, but ¢ is reported with bins of width
0.04 to aid in visualization. As marginals for the reactive en-
semble, these plots highlight typical reactive behavior moving
from the edge of region A to the edge of B. Configurations at
those boundaries are not representative of typical steady-state
behavior, which is dominated by A and B5.
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PAB(np,,qt), PAB(np,qt), and PAB(ng,,q"), follow
from the marginalizations of Eq. (1), computed by dis-
cretizing ¢+ with bins of width 0.04. The same procedure
could also produce the reactive density for three different
DNA states no,noa,, and nop,. Since DNA must be in
one and only one of these three states, it is more reveal-
ing to construct a new variable A that records which of
the three states the DNA is in. That distribution over A
states then follows from a corresponding PAB(\, ¢*).

The five plots in Fig. 3 collectively tell the story of
how the elementary reactions of Fig. 2 collude together
to allow the system to transit from A-rich to B-rich mi-
crostates. Perhaps the clearest feature of the plots is
the fact that the probability of finding the DNA in the
O state is very small and completely insensitive to ¢*.
The calculations therefore show that the DNA will typi-
cally be bound to a dimer and the reaction proceeds by
switching from a bound As to a bound Bs. However, the
reaction is not “halfway done” once the DNA flips from
OA, to OB,. The bottom plot shows that ¢™ ~ 0.35
when OAs and OBy are equally likely in the reactive en-
semble. To push ¢q© beyond 0.5, it is also important that
a sufficiently large population of Bs is built up, serv-
ing as a memory that prevents a rapid backsliding into
the OA, state. Plots of PAB(ng,qt) and PAB(ng,,q")
show that monomer and dimer play distinct roles. DNA
in the OBs state produces only B, allowing for a buildup
of monomer, but P48(ng, ¢") shows that the monomer
does not appreciably build up over the course of the re-
action. While the distribution over ng subtly shifts as a
function of ¢T, it is always rare to see much more than
4 B molecules. The relatively uniform fluctuations in ng
reflect that the number of B molecules is a poor proxy for
the progress along the reaction coordinate. P58 (ng,,q")
shows that it is instead the population of the dimer By
that drives the progress to make the OBs toward a stable
B-rich state, a conclusion that follows from the drift in
the peak of the np, distribution as ¢* grows.

IV. DISCUSSION

In this work, we have outlined and illustrated an ap-
proach to capture the mechanism of transitions between
two regions of very high-dimensional complex systems.
Our focus on rare events in noisy systems demands that
we try to capture mechanism in a probabilistic way, seek-
ing the evolution of the probability distribution for indi-
vidual (physically interpretable) coordinates. The first
example emphasizes that these distributions need not be
unimodal; there can be multiple dynamical pathways.
Advanced sampling methods like TPS can harvest the
reactive ensemble, but that reactive ensemble naturally
lets one track the evolution as a function of the time
since leaving A. The reactive ensemble therefore su-
perimposes transitions occurring at stochastically vari-
able times. TPT deconvolves this superposition, allowing
us to resolve how the probability distribution over mi-

crostates evolves as a function of reaction progress, ¢*.
Our proposed marginalization of the reactive ensemble
benefits from being straightforward and simple. Simple,
that is, provided the committor can be solved.

Here, we took the direct route to solve for that commit-
tor, explicitly representing the vector g and using sparse
linear algebra methods to optimize it. The sparse linear
algebra strategy becomes altogether untenable when the
state space grows so q1 cannot be practically stored in
memory. In that case, dimensionality reduction strate-
gies can nevertheless allow the committor to be robustly
estimated. Though the number of microstates is astro-
nomically large, the estimated committor might be pa-
rameterized by billions or trillions of parameters. For ex-
ample, tensor train and tensor network approaches can
extend sparse linear algebra methods to practically calcu-
late properties of CMEs [79-85], including rare events for
large (~ 105 microstates) reaction-diffusion models [78].
Other approaches using basis expansions [51-54], neural
networks [32, 55-61], or tensor networks [62] can even fit
high-dimensional committors for the case that x is con-
tinuous. In all of these dimensional reduction strategies,
the approximate committor’s parameters (weights in a
neural network or elements of a tensor network) are opti-
mized by iterative algorithms. Often, it will be advanta-
geous for those iterative algorithms to learn a committor
based from (enhanced) sampling. For example, using tra-
jectories sampled by TPS, one can learn parameters for
a deep neural net to estimate the committor [39].

As various strategies for approximating high-
dimensional committors develop, it becomes especially
important that one can use that committor function to
extract information beyond a reaction rate. We expect
marginalizations of the reactive ensemble like Eq. (1)
to play an important role, but there is a remaining
challenge. When the number of microstates becomes as-
tronomical, it is not obvious how one should practically
perform the marginalization. Since our vector q* was
small enough that we could enumerate it, our §(g(x) — q)
of Eq. (1) was implemented by binning each microstate
based on its value of the committor and our integral
was performed by looping over all microstates. Just
because a neural network can estimate the value of ¢ for
any given x, it does not mean that one can simply loop
over the microstates to perform the high-dimensional
integral. We expect one would approximate Eq. (1)
via a Monte Carlo estimate of the high-dimensional
integral.  Performing those integrals may be more
straightforward when committors are approximated by
tensor networks since the integration will correspond to
traces over physical indices, an operation that is very
natural for tensor networks. Even still, the ¢ function
would not be trivial to implement. A candidate is to
represent the § function in a Fourier basis. Though
some technical challenges will need to be considered, we
expect it will be ultimately be possible to construct the
marginals p“8(z;,q) for problems where the curse of
dimensionality precludes explicit calculations of q.
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Those marginalizations may also be performed over
transformed coordinates. For our examples, we chose to
work in a natural set of coordinates captured by (z,y)
and (na,nA,, MOA,, 0O, OBy, NBy, B ). Our assumption
is that these coordinates are simple to physically inter-
pret as positions or counts of particular species. We could
alternatively consider correlations between the commit-
tor and some transformed physical coordinates. For the
first example, one could, for example, perform a ro-
tation to study how distributions for the coordinates
(x + y,z — y) evolve with ¢. In principle, one would
not be limited to rotations or linear transformations, but
the more complex the transformation, the closer one gets
to building ¢ itself. With a sufficiently complex transfor-
mation, one loses the physical interpretability and lands
on the tautology “the reaction proceeds because the re-
action proceeds”. To preserve mechanistic insights like
“the reaction proceeds because the distance between x
and y shrinks”, it will be important to restrict ourselves
to easily interpretable coordinates (the number of species
A, the length of a bond, the number of solvent molecules
within a radius of a protein, etc.). Then Eq. (1) mixes
the benefits of the two types of coordinates, revealing
the correlations between simple-to-interpret physical co-
ordinates and the simple-to-interpret concept of reaction
progress.

V. ACKNOWLEDGMENTS

We appreciate very useful discussions with Geyao Gu,
Emanuele Penocchio, Aaron Dinner, Grant Rotskoff,
Spencer Guo, and John Strahan. The material presented
in this manuscript is based on work supported by the
National Science Foundation under Grant No. 2239867.

Appendix A: Finite truncation

Our ability to generate the marginal reactive ensem-
ble distributions required that we could directly compute
q™, something we did in both examples with sparse linear
algebra methods. Even with those sparse methods, it is
important that one can cap the state space to prevent q*
from growing too large. For the GTS model, our impo-
sition of a maximum occupancy, M on non-DNA species
served this goal. To test that our cap set at M = 30
does not influence the reactive trajectories transitioning
between A and B, we compared rates calculated by TPT
with M = 30 to rates computed via forward flux sam-
pling (FFS) [6], as well as the stochastic sampling algo-
rithm (SSA) with no maximum occupancy [15]. From
TPT [28],

kas= Y., 15 (A1)

JjEA ¢ AUB

[
-
1]

Py |

(fie]

FIG. 4. Finite truncation convergence. Switching rates
kap between the two GTS metastable states were computed
from Eq. (A1) for various choices of maximum molecule count
M. Provided M is sufficiently large, the committor-based rate
calculations agree with rates obtained by FFS [6], given by
lines with thickness matching the reported standard errors.
(Inset) The steady-state distribution for the order parameter
A also converges for the same sufficiently large M.

where the flux of probability from microstate j to ¢ within
the reactive ensemble is

FAB PASWy i, (A2)
t 0, otherwise -

A truncation at M = 30 was sufficient to yield kqp =
4.67 x 1077, a rate in excellent agreement with forward
flux sampling (FFS) calculations performed on the same
model [6] and a brute force rate calculation using 100
SSA trajectories, each of length 10® units of time. Fig. 4
shows the convergence of the truncated TPT rates to
kap = (4.68 & 0.05) x 10~7, the SSA rate without a
truncated maximal occupancy.

The inset of Fig. 4 emphasizes that M = 30 was suffi-
cient not only to converge the rate but also to converge
distributions. Specifically, we use 7 to plot the steady-
state distribution for A. This P(A), which reveals the bi-
modality for all M, shows that (for the parameters stud-
ied) the distribution is only weakly influenced when M
exceeds 25.

Appendix B: Avoiding an ill-conditioned backward
committor equation

Here, we derive Eq. (8), the linear equation that
solves for r instead of the backward committor q—. Ob-
serve from Eq. (7) that the reactive ensemble require a
Hadamard product of 7, q*, and q~. Eq. (6) is an ill-
conditioned equation that would solve for q—, but we can
convert it into a significantly better conditioned equation
for r, the Hadamard product of @ and q—. To see this
conversion, we restrict ourselves to i,j € (AU B)° then
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substitute f]ij jand U5 = =) 4 Wi, into Eq. (6):

i,
S Wiar == Wi (B1)
J

ke A

Rewriting this equation in terms of the time-forward ma-
trix W, we have

1 _ 1
; Z Wijﬂ'jqj = —; Z Wikﬂ'k- (BQ)
v ' keA

For Eq. (B2) hold for all 4, we therefore require

Z WijTj = - Z Wik (B3)
J

ke A

Finally, recalling that U and W are transposes of each
other within the (AUB)® region, the expression simplifies
to Eq. 8:

Ulr =s. (B4)

Appendix C: Doi-Peliti construction of W

A microstate of the GTS is given by
(nA,MA, MOA,, O, OB, MB,, B ). Recognizing that the
DNA exists in the OAs, O, or OBj state, we equivalently
define n = (na, na,, nx,nB,,ny), where ny = 0,1, and 2
correspond to the OAs, O, and OB; states, respectively.
The vector of probabilities of each microstate, p;, evolves
according to the master equation

at = Wps, (C1)
where W is a rate operator constructed from the 14 re-
actions of Fig. 2. Writing that W in matrix form can be
an accounting headache that requires one to enumerate
the microstates. Instead, it can be convenient to write
both p; and W in a tensor-product form that isolates the
action of each reaction on the occupation numbers of the
chemical species. Here, we sketch the framework for con-
structing W in terms of operators that raise and lower
NnA,NA,; M), NB,, and np. Readers interested in more al-
gebraic details are referred to the appendices of Ref. [78].
The aim is to write each reaction’s contribution to the
rate operator W in a tensor-product form:

Op ® Op, ® O\ ® Op, ® Op, (C2)

where each O, is an operator that acts on a local state
space spanned by the possible states of |n.). Since A, As,
B, and By have an occupancy number between 0 and M,
their local state spaces are spanned by orthonormal basis
vectors |0),[1)...|M), which means that the operators
acting on their local state spaces are merely (M + 1) X
(M + 1) matrices. Operators on the A\ space are even
smaller —they are simply 3 x 3 matrices. The states of
the many-body system are spanned by the tensor product

states |n) = [np) ®|na,) ® |ny) @ |np,) ® |np), which are
also orthonormal. We write a probability distribution
over microstates as a superposition of the many-body
states:

pe) =Y pe(n)|n). (C3)

Eq. (C3) is the tensor-product form of what we previously
called p;. Inspecting how each reaction impacts p:(n), we
are now in a position to build the tensor-product form of
w.

To gain an intuition about how a chemical reac-
tion converts into the set of local operators, it is use-
ful to explicitly consider the first reaction of Fig. 2,

2A al A,. The action of this reaction is to decrease
na by two and to increase na, by one, so it is useful to
define a raising operator Jr;iY and a corresponding lower-
ing operator x., that act on species gamma. Taking into
account that species v has a maximum occupancy of M.,
these operators are defined by

—1), 0< < M,
1"y|n'y> _ n’Y‘n"/ > n’Y.— v
0, otherwise,

t _ ) Iny +1), 0<n, <M,-1 c4
3l {07 otherwise. (C4)

In matrix form,

010 0 0 000 00
002 00 100 00
000 00 010 00

T = . | and 2t = ) .
000 - 0 M 000 00
000---00 000 10
(C5)

Therefore, one might guess that reaction 1 contributes
to W a term of the form z3 ® xLz R ®Ig, @I, a
guess that involves lowering A twice, raising As once,
and acting on the other species with the identity I to
leave them unchanged. That guess correctly anticipates
the off-diagonal components of W, but to conserve prob-
ability, there is an additional negative element along the
diagonal of W. That negative term is especially clear in
the gain-loss CME for the first reaction:

dp;(n)
dt

=ki| (na +2) (na +1)pe(na +2,na, — 1)
—na (na — 1) pe(na, na,) (C6)

By summing both sides of Eq. (C6) over microstates
(i.e., >, ---|n)) and by judiciously replacing terms like
na by their number operator representation a'a, the ac-



tion of reaction 1 can be expressed as

d
g;t> _kl(z%@)zlz ®H)\®HBQ R1p
2 2
—an:A2®yA2®H,\®]IB2®HB> pe)
(C7)
where
1--- 000
y=T—|M)(M|—|M—=1)(M—1]= (... 100
0--- 000
0--- 000
(C8)

adjusts the probability conserving diagonal element to
accommodate for the fact that na, = M +2 — M tran-
sitions have been removed by the truncation [78]. To
compress the notation, it is customary to suppress the
identity operators and the tensor product symbols, writ-
ing reaction 1’s contribution to W as simply

WA~y (afal, — eladua.) . (CY)

Similar procedures can be carried out for the other 13
reactions.

2A—A 2 2 2
s — (el oftahon,
As—2A 2
W2 = ko xL TA, — zAxLZxAQ)

IAZLL; — CCLZI'A2W)\)

WO*}O‘FA _ k’5

(

(

=t (
WOA2—O0+Az _ p (
(

(

(

Here, we have introduced this tensor-product form as
a convenient way to construct W for sparse matrix op-
erations, but we note that it is also the starting point

10

For compactness, it is useful to additionally define

0---0
1 0

o o

1
0
p=T—|M)(M|=|: 1 - & (C10)
0
0

S =

00 ---
00 ---

as well as a set of 3 x 3 operators acting on the \ space:

010 000
at=(000 =(oo0o0],
000 010
000 000
a=|100|,6=(001],
000 000
100 000
a=[000|,8=(000],
000 001

000
w=|[010 (C11)
000

The operators a' and a respectively create and destroy
OA, from O while bt and b respectively create and de-
stroy OBy. The final three operators, «, 8, and w detect
the occupancy of the OAy, OBy, and O states, respec-
tively. Having defined all the necessary local operators,
we finally write down the contribution to W from each
of the 14 reactions:

W2B=B2 _ yB2SE]T32Z%)

WB2=2B — 1 (2p xB JJBQZB)

0+4B,—O0OB
WwO+B2 2 =ks(byrp, —w,\szscB2)

Cx
X
(o
JOBamO+Bs _ (beB2 5»232)
(
(
(

WO%O%»B — k

ot

LU)\ZB — (.U)\ZB)
OB2;—0B2+B
w2 2B = kg 5,\963 5,\213)

VVBHg = ]f7 B — £L'B£L’B)

(

for employing tensor network methods. Those methods
promise to make these committor calculations practical
for even larger systems.
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