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Abstract. The eIDAS 2.0 regulation aims to develop interoperable dig-
ital identities for European citizens, and it has recently become law. One 
of its requirements is that credentials be unlinkable. Anonymous creden-
tials (AC) allow holders to prove statements about their identity in a 
way that does not require to reveal their identity and does not enable 
linking different usages of the same credential. As a result, they are likely 
to become the technology that provides digital identity for Europeans. 

Any digital credential system, including anonymous credentials, needs 
to be secured against identity theft and fraud. In this work, we introduce 
the notion of a multi-holder anonymous credential scheme that allows 
issuing shares of credentials to different authentication factors (or “hold-
ers”). To present the credential, the user’s authentication factors jointly 
run a threshold presentation protocol. Our definition of security requires 
that the scheme provide unforgeability: the adversary cannot succeed in 
presenting a credential with identity attributes that do not correspond to 
an identity for which the adversary controls at least . t shares; this is true 
even if the adversary can obtain credentials of its choice and cause con-
current executions of the presentation protocol. Further, our definition 
requires that the presentation protocol provide security with identifiable 
abort. Finally, presentations generated by all honest holders must be 
unlinkable and must not reveal the user’s secret identity attributes even 
to an adversary that controls some of the user’s authentication factors. 

We design and prove the (concurrent) security of a multi-holder ver-
sion of the .BBS anonymous credential scheme. In our construction, each 
holder is issued a secret share of a .BBS credential. Using these shares, the 
holders jointly compute a credential presentation that is identical to (and 
therefore compatible with) the traditional, single-holder variant (due to 
Tessaro and Zhu, Eurocrypt’23) of a .BBS credential presentation. 
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1 Introduction 

According to W3C Verifiable Credential Data Model 1, “a verifiable credential is 
a tamper-evident credential that has authorship that can be cryptographically 
verified”. Verifiable credentials are issued by issuers to holders, and the holders 
can use them to create presentations used to prove claims about their identity 
to verifiers. 

Anonymous credentials are a special kind of verifiable credentials and allow 
a holder to obtain and prove possession of a credential to a verifier in a way 
that does not require the holder to reveal its identity or the credential itself. 
This technology is particularly useful to protect the privacy of the holders by 
preventing the issuers and the verifiers to track the holder’s activity. 

Anonymous credentials recently attracted renewed interest due to the publi-
cation of the eIDAS 2.0 regulation 2, which aims to facilitate secure cross-border 
transactions by establishing a framework for digital identity and authentication 
for digital services in the EU. The cryptographic community was invited to pro-
vide feedback on this regulation, and the resulting feedback document [BBC+24] 
recommends the creation of the EUDI wallet (the digital wallet that Euro-
pean citizens will use to store their credential) which might support the use of 
anonymous credentials; it specifically encourages the EU to use the BBS-based 
family [BBS04,CL04,ASM06,BL10,CDL16,TZ23,LKWL22] of constructions of 
anonymous credentials. 

At a minimum, anonymous credentials satisfy two main properties, namely 
unforgeability and privacy. Unforgeability guarantees that a user cannot gen-
erate a verifying presentation without the consent of the issuer, and privacy 
guarantees that verifiers cannot correlate presentations of the same credential or 
learn anything about its attributes not explicitly revealed in the presentation. A 
useful additional property we consider is selective disclosure, which allows the 
credential holder to choose a subset of signed attributes to reveal to the verifier 
during the credential presentation phase [FSS+24]. 

A natural framework for constructing anonymous credentials, the so-called 
CL framework proposed by Camenisch and Lysyanskaya [CL03], is instantiated 
in several anonymous credentials systems such as [CL01,CL04,CDL16,PS16, 
TZ23]. In the CL framework, a credential is a signature on a set of attributes, and 
to prove possession of the credential, the holder proves in zero-knowledge that 
they hold a signature on a set of attributes that verifies under the credential 
issuer’s public key. 
.BBS Signatures as Anonymous Credentials. Boneh, Boyen and Shacham [BBS04] 
gave a group signature scheme that Camenisch and Lysyanskaya [CL04] sug-
gested could be adapted to anonymous credentials. The resulting schemes, . BBS
and a variant called .BBS+, were subsequently analyzed, improved, and adapted, 
in a provably secure fashion, for use in direct anonymous attestation (DAA) and 
anonymous credential schemes [ASM06,BL10,CDL16].

1 https://www.w3.org/TR/vc-data-model-2.0/. 
2 https://digital-strategy.ec.europa.eu/en/policies/eidas-regulation. 
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The state-of-the-art security proof for this use of .BBS and a zero-knowledge 
protocol for proving knowledge of a .BBS signature were given by Tessaro and 
Zhu [TZ23]. The .BBS signature as described in [TZ23] is the most efficient of the 
known candidate signatures in the CL framework [CL03,CL04,PS16,CDL16] 3
and is also the object of a standardization effort of W3C [LKWL22] 4. 

Motivation. Digital credentials require that the users protect the cryptographic 
material representing the credentials. Corruption, loss, or theft of the device 
where this material is stored can result in identity theft and fraud, defeating the 
purpose of a digital credential system. For anonymous credentials, the threat is 
all the more serious here, as it is impossible to trace how the adversary used a 
stolen credential (unlike in linkable verifiable credentials [AAM23]). Addition-
ally, an adversary who compromises a single-factor credential learns sensitive 
information about this user, which is a threat to privacy. 

Multi-factor authentication is a popular way to enhance the security of digital 
authentication. For anonymous credentials, it would amount to storing shares 
of credentials on multiple devices and proving possession of the credential in 
a distributed fashion. This is similar to how shares of secret keys are used in 
threshold signature schemes. In particular, if an adversary corrupts at most . t−1
devices (and therefore learns the value of .t − 1 shares of a credential), it should 
not be able to generate a valid credential presentation. On the other hand, if a 
threshold . t of the devices agree to present the credential, they can generate a 
valid presentation executing a multiparty protocol, while keeping their share of 
the credential private. 

1.1 Our Contribution 

In this work, we introduce multi-holder anonymous credential (MHAC) schemes. 
In a MHAC scheme, the credential attributes and the credential itself are not 
stored on a single device of a single user, but instead are distributed among 
multiple devices and/or holders. An adversary that gains control of fewer than . t
devices will be unable to demonstrate possession of the credential or even learn 
anything about the private attributes. In order to present a credential, devices 
must jointly convince a verifier that a valid credential is distributed among the 
parties. 

An MHAC scheme addresses the same security goals as a single-holder anony-
mous credential system: unforgeability, which roughly means that the adversary 
cannot present credential attributes that it was not issued, and privacy, which  
means that a credential presentation reveals nothing other than the intended 
attribute set and cannot be linked to another presentation of the same creden-
tial.
3 A comparison between [CL03,PS16,CDL16,TZ23] is performed in [FSS+24]. 
4 The authors of the specification have updated the credential format from BBS+ to 
BBS signatures after the publication of [TZ23], however they have decided to adopt 
an alternative protocol for the creation of the presentation of BBS credentials, which 
has recently been included in an update of the paper of [TZ23, Appendix B]. 
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Let us go over unforgeability for MHAC in more depth. Suppose an adversary 
controls fewer than . t holders of a credential with attributes . a issued by an 
honest issuer. Further, suppose that the adversary can query the issuer for new 
credentials with attributes; let .ai correspond to credentials from query . i. It  
can participate in computing several concurrent presentations of a credential 
where it controls a subset of the holders, and arbitrarily schedule messages in 
these presentations. Suppose some attribute .aj (or, more generally, a subset of 
attributes .(aj1 , . . . , aj!)) does not appear any of . ai. Then the adversary cannot 
create a valid presentation of . aj , even if it appears in . a. 

Moreover, we require that, when the adversary controls fewer than . t holders, 
its participation in a credential presentation results either in a correct output 
for the honest participants, or in the identification (and, as a result, removal) of 
at least one of the adversarial holders. 

As far as privacy is concerned, we consider two different notions based on 
what information the adversary already knows. Specifically, we require unlink-
ability (Definition 7) that applies in the case when the adversary controls the 
credential verifier but none of the credential holders; here, a simulator creates 
the adversary’s view on input just the attributes revealed as part of creden-
tial presentation, and this simulated view is indistinguishable from the real one. 
Additionally, we require attribute hiding (Definition 8) that applies in the case 
when the adversary controls fewer than . t credential holders involved in present-
ing the credential. Here, the adversary already knows the identity of the holder 
devices that computed the credential presentation, so the best we can hope for 
is that the adversary does not learn anything it does not already know about 
the credential attributes from participating in credential presentation. 

Once we put forth these definitions, we satisfy them with a construction of an 
efficient MHAC scheme compatible with the .BBS anonymous credential scheme 
described by Tessaro and Zhu in [TZ23]. By “compatible” we mean that the setup 
and verification are identical, and the MHAC credential shares can be derived 
from the credential issued in the underlying single-party scheme (here, .BBS). 
We prove that our MHAC scheme satisfies our security definition. Our scheme 
also allows the holders to selectively disclose some of the attributes included in 
the credential. 

1.2 Our Techniques 

First, let us recall .BBS anonymous credentials. They require a bilinear pairing 
. e over groups .G1, .G2 of order . q with generators .g1 and . g2, and additional 
generators .h1, . . . , hm for the group .G1. The secret key . x for the .BBS signature 
scheme is a random element of . Zq, while the public key is .pk = gx2 . 

A .BBS signature on the message vector .a = (a1, . . . , am) is of the form .(A, e), 
where .A = C(a)

1
e+x and .C(a) is a way to encode . a: .C(a) = g1

∏m
i=1 h

ai
i . The . BBS

verification algorithm verifies that . A was computed correctly by checking that 
.e(A, (pk)ge2) = e(C(a), g2), or, equivalently, that .e(A, pk) = e(B, g2), where  
.B = C(a)A−e.
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Note that if this equality holds for a given pair . A and . B, then for any .r ∈ Zq, 
it will also hold for .A = Ar and .B = Br = C(a)rA−re = C(a)rA−e. Moreover,  
given .A and .B for which this equality holds, and the values . (α,β1, . . . ,βm, γ)
such that .B = gα

1 (
∏m

i=1 h
βi
i )Aγ , the message vector . a and the .BBS signature on 

this vector can be recovered as follows: set .r = α, let  .ai = βi/α, and  let  .e = −γ. 
As a result, a zero-knowledge proof of knowledge of the message vector . a and 

a signature .(A, e) boils down to (1) picking a random . r and computing .A = Ar, 
a “blinded” version of the value . A; (2) computing the corresponding .B = Br; 
and (3) proving knowledge of the representation of . B in bases . g1, .h1, . . . , hm and 
. A. A series of papers [CL04,BL10,CDL16] culminating in the work of Tessaro 
and Zhu [TZ23] showed that indeed the resulting protocol is a zero-knowledge 
proof of knowledge of a .BBS signature. 

Credential Secret Sharing. How do we secret-share a .BBS anonymous cre-
dential in such a way that the protocol used to create a presentation is efficient? 
Is it always possible for a holder to perform a secret sharing of its credential 
irrespective of the type of .BBS credential it is issued? 

The more naive approach to distributing a .BBS credential .((A, e),a) would 
be to include in the credential an extra attribute that is never revealed and dis-
tributed among the holders, basically leading to the distribution of a . BBS+
anonymous credential [CDL16]. However, this approach would not take full 
advantage of the use of the more compact .BBS anonymous credentials as 
described in [TZ23], and restricts the distribution of the anonymous credential 
to credentials including a random attribute which is never disclosed. 

Instead, we describe how to distribute any .BBS credential by providing each 
holder with all the attributes signed in that credential, as this is likely to be 
the most common application, and does not tie the distribution process to the 
kind of .BBS credential issued. This is done by secret-sharing the value . e of the 
.BBS signature and providing every holder with the value .A−e. Proving that this 
distribution of the .BBS signature is secure is an unexpectedly tricky task that we 
address in the security proof of the unforgeability of presentations (in Sect. 7.5 
and more in detail in the full version of this paper [FLL24, Appendix F.2, Case 
A] 

Given our basic construction, we enhance it by adding an optional feature: 
the support of distribution of some private attributes .{aj}j∈Prv in . a that are 
especially sensitive and that we might not want to store in the clear on any 
device. The remaining attributes in . a (.{aj}j∈Pub) and the value . A will be known 
to each credential holder, i.e. they are part of the joint input to all participants. 
Since we aim to be very flexible about the way the attributes are distributed, we 
plug this feature onto the basic protocol where the value . e is .t-out-of-. n secret-
shared. However, in some circumstances, in particular when a private attribute 
is never revealed, the distribution of . e becomes unnecessary. 

Given its shares .e(i), {a(i)j }j∈Prv of . e and .{aj}j∈Prv as well as the joint input, 
each holder participates in a joint computation of the proof of knowledge of . a, 
. A and . e, while possibly revealing some of the attributes in .{aj}j∈Pub.
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Our protocol for computing this proof is efficient because the value . D =( ∏
j∈Prv h

aj

j

)
A−e is (implicitly) provided to all the holders. To be more precise, 

we give to each holder .{Di}i∈[n], with  .Di =
( ∏

j∈Prv h
a(i)
j

j

)
A−e(i) , from which  

.D can be recovered. While hiding the values of .{aj}j∈Prv and . e, .D allows them 
to compute the value . B as .(C(a)A−e)r, which is necessary to build the proof of 
knowledge of a .BBS signature. The proof of knowledge can be computed by the 
holders in a distributed fashion by having each participant prove knowledge of 
a different factor of .B depending on its secret shares of . e and .{aj}j∈Prv. 

Proving that distributing . e and revealing to every holder .D is safe is done 
via a reduction to discrete logarithm. This reduction receives as input from the 
.DL challenger .(g, h), and from the unforgeability adversary a set of attributes . a, 
from which it can compute .C(a) = g1

∏m
i=1 h

ai
i . The challenging part in design-

ing the reduction resides in the generation of the values .A, Ã(= Ae) satisfying 
the conditions: (1) .logA Ã = logg h, as well as (2)  .A = C(a)

1
x+logg h . Thus, if  

the adversary succeeds in forging a proof of knowledge of this credential, our 
reduction solves the discrete logarithm problem. 

Access to .{Di}i∈[n] is also helpful in achieving the identifiable abort property, 
which allows identifying a malicious participant who would cause the protocol to 
generate an invalid presentation. When the holders cooperate in the generation 
of the proof of knowledge of a representation of . B, each participant . Pi, i ∈ S
proves knowledge of a representation of a factor .B̃i of .B =

∏
i∈S B̃i which can 

be computed by every other party. Therefore if they generate an invalid proof, 
their misbehaviour can be detected by verifying each participant proof. 

We can also optimize the size of the credential shares, which otherwise would 
be linear in the number of holders (due to the need to store .{Di}i∈[n]). Instead, 
at issue time, each .Di will be signed under a public key used just for this purpose 
and each holder stores only its own signed .Di. Each holder can then send its 
signed .Di to others as part of the presentation protocol. 

Presentation Protocol Overview. The presentation protocol executed by the 
parties .Pi, i ∈ S, |S| = t instructs a protocol participant, the primary party . Pj , 
to sample a random .r

$←− Zp and broadcast it to the other parties in . S. Next, each 
participating holder derives .A = Ar and .B = Br as defined in the presentation 
protocol described in [TZ23] that we recall at the beginning of this section. 

The simplest case for our protocol is when the presentation discloses all 
the attributes .{ai}i∈Pub, i.e. the set of revealed indices is .Rev = Pub. Then  
the presentation is simply a proof of knowledge of a discrete logarithm rep-
resentation of .B with respect to .C(a′) = g1

∏
i∈Rev h

ai
i , {hi}i∈Prv and . A, i.e. 

. B = C(a′)r
∏

i∈Prv h
rai
i A

−e
.

Note that the credential shares contain the values .Di, i ∈ S, therefore it is 
possible for every participant to compute 

– .B̃j = C(a′)rDrλS,j(0)
j , corresponding to the primary party . Pj ; 

– .B̃i = D
rλS,i(0)
i ,∀i ∈ S \ {j}, corresponding to each other party;
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where .λS,i(0) is the .i-th Lagrange coefficient w.r.t. participating parties . S. 
Moreover each party .Pi, i ∈ S \ {j} knows a representation of .B̃i w.r.t 

.{hi}i∈Prv, A, and  .Pj knows a representation of .B̃j w.r.t. .C(a′), {hi}i∈Prv, A. 
Therefore, since .B =

∏
i∈S B̃i, we instruct each party .Pi, i ∈ S to prove 

knowledge of the corresponding .B̃i with respect to the aforementioned basis in a 
coordinated way so that the proof of knowledge can be aggregated. More specif-
ically the parties execute a variant of the threshold Schnorr signature Sparkle 
[CKM23a] producing in output a proof of knowledge of a representation of . B
w.r.t. .C(a′), {hi}i∈Prv, A. We show that this results in a concurrently secure pro-
tocol. 

1.3 Outline 

The rest of the paper is organized as follows. We briefly review related works in 
Sect. 2 and preliminaries in Sect. 3. In Sect. 4, we define the notion of multi-holder 
anonymous credentials, and in Sect. 5 we give the security notions a multi-holder 
anonymous credential must satisfy. In Sect. 6, we give the construction of a BBS-
based multi-holder anonymous credential, and in Sect. 7 we prove this scheme 
secure. 

2 Related Works 

Distributed Computation of Zero-knowledge Proofs. In [KMR12], the authors 
describe a framework for distributing the prover side of sigma protocols over 
multiple parties and provide a general characterization of such protocols defining 
three different flavors of zero-knowledge. The authors apply their framework to 
user-centric protocols, for example, the sigma protocol used to prove knowledge 
of a CL anonymous credential [CL04]. 

The problem of turning the threshold version of a sigma protocol (similar 
to [KMR12]) to a non-interactive protocol with respect to the verifier has been 
studied in [BF24], where the authors determine the properties that the threshold 
sigma protocol must satisfy to obtain an unforgeable threshold signature against 
static and active adversaries. In their work the prover side does not require the 
existence of the combiner since they assume a broadcast channel between the 
provers. 

Our work follows the setting adopted in [BF24], and more generally by thresh-
old digital signatures [CKM23a,DKL+23], since we design a protocol that does 
not require the interaction between the provers and the verifier. 

Therefore, in our security analysis, we do not need to consider the case in 
which the verifier is malicious and we only focus on specific security notions for 
the application to anonymous credential systems which are: 

– the unforgeability of the presentations, meaning that an adversary who cor-
rupts at most .t − 1 holders (i.e. knows .t − 1 shares of credentials) can not 
forge a presentation;
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– the unlinkability of presentation, meaning that if the participants to the pro-
tocol are honest, the presentation is indistinguishable from a simulated pre-
sentation. 

– the unlinkability of private attributes, meaning that an adversary who corrupts 
at most .t − 1 holders and passively corrupts the issuer can not distinguish if 
a credential includes a specific private attribute. 

– the identifiable abort, meaning that the honest parties can identify a misbe-
having participant when a presentation creation fails. 

Distributed Anonymous Credentials. There is a line of works which describes 
solutions to distribute anonymous credentials on two distinct devices which have 
distinct computational power or corruption models; for instance [HSS23,HS21] 
distributing an anonymous credential between a digital wallet on a smart phone 
and a computationally constrained object such as a smart card. In both cases 
the involvement of the constrained object in the creation of the presentation is 
essential, but the amount of operations it must perform does not depend on the 
size of the credential and of the attributes to disclose, and the authors try to 
keep it as small as possible. Protocols in which the credential is shared between a 
device (e.g. smartphone) and a server or a blockchain have also been considered 
in [LHAT20,MY24]. 

In our work, we describe a protocol which allows the storage and the pre-
sentation of credentials over an arbitrary number of devices, with an arbitrary 
threshold of them needed to present the credentials. Each party is assumed to 
have enough computational power to carry out the protocol, and we only require 
that the adversary can corrupt a number of devices below the specified threshold 
needed to present the credential. 

3 Preliminaries 

Notation. Let .[n] denote the set .{1, 2, . . . , n}, and  let .x
$←− S denote sampling an 

element . x from a set . S uniformly randomly. Let .x $←− A(i1, . . . , in) denote that . x
is the output of the probabilistic algorithm . A which takes in input .(i1, . . . , in). 
Alternatively, we may make explicit the randomness used by . A by writing . x ←
A(i1, . . . , in;R). A deterministic protocol .V taking in input .(j1, . . . , jm) and 
outputting . y is represented as .y ← V (j1, . . . , jm). 

Security and Communication Model. We work in the synchronous model against 
a static adversary that can actively corrupt up to .t−1 holders in the presentation 
protocol. We assume point-to-point private communication between the issuer 
and each holder. For the credential presentation protocol, we assume parties 
have access to a private, authenticated broadcast channel between the set of 
parties involved in the credential presentation protocol. Moreover, we assume 
that each session is identified by a unique session identifier .ssid agreed upon by 
the parties involved in the protocol execution, which is included in each message 
sent between parties and in broadcasts.
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Private broadcast and synchrony are simplifying assumptions to describe a 
simple .t-of-. n three-round protocol achieving presentation unlinkability and iden-
tifiable abort, but it is possible to loosen these requirements. The private channel 
is needed to achieve the unlinkability of presentations, and we can remove the 
broadcast channel using techniques similar to those used in [BLT+24] and  in  
[CKM23b] while preserving the unforgeability of presentations. Removing syn-
chrony is more tricky. Without either synchrony or an honest majority, we cannot 
achieve identifiable abort or guarantee termination (see [CLOS02,CL17]). How-
ever, in the asynchronous setting we can still achieve selective abort, meaning 
that the adversary can choose which executions produce output. The adversary 
is not able to produce dishonest presentations in either of these settings. 

Bilinear Groups. A bilinear group (or pairing group) is a trio of groups 
.(G1,G2,GT) with an efficient map (or pairing) operation .e : G1×G2 → GT, such  
that (1) for any .x,∈ Zp and .y ∈ Zp, .e(gx1 , g

y
2 ) = e(g1, g2)

x·y and (2) .e(g1, g2) '= 1. 
There are three types of pairings [GPS08]: type-1, in which .G1 = G2; type-2, 
in which .G1 '= G2 and there exists an efficient isomorphism .ψ : G2 → G1; and  
type-3, in which .G1 '= G2 and there does not exist an efficient isomorphism . ψ. 

Secret Sharing. A classic technique to create  a  .t-of-. n secret sharing of a value 
. v is Shamir’s secret sharing [Sha79]: a dealer samples a random .(t − 1)-degree 
polynomial .p(·) such that .p(0) = v and gives each party .Pi their own point 
on the polynomial .p(i). Given at least . t points, Lagrange interpolation can 
be used to reconstruct . p and retrieve . v. We use  .Share(t, n, v) to denote the 
dealer’s algorithm for generating a .t-of-. n Shamir secret sharing of . v. That is,  
.{p(i)}i∈[n]

$←− Share(t, n, v), where .p(0) = v. We also make use of verifiable secret 
sharing (VSS), a variant of secret sharing which considers a possibly corrupt 
dealer who may distribute shares that do not correspond to a valid sharing of 
a value. VSS allows parties to verify that their received shares correspond to a 
valid sharing of some value . v. 

Hardness Assumptions. We recall hardness assumptions .BBS and our construc-
tion rely on: the discrete logarithm (.DL) assumption and the .q-strong Diffie-
Hellman (.qSDH) assumption. 

Definition 1 (Discrete logarithm assumption). Let .pp ← (G, p, g) where 
.G is a cyclic groups of prime order . p with generator . g. The discrete logarithm 
(.DL) assumption holds in .G if for any PPT adversary . A

. Pr[A(pp, g, gx) = x)] ≤ negl(λ)

where .x $←− Zp, (g, gx) ∈ G2 and . κ is the security parameter. 

Definition 2 (.q-Strong Diffie-Hellman assumption [BB08]). Let .G1 and 
.G2 be two cyclic groups of prime order . p with generators .g1 and . g2, respectively.
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The .q-Strong Diffie-Hellman (.qSDH) assumption holds in .(G1,G2) if for any 
PPT adversary . A

. Pr[A(G1,G2, g1, {g(x
i)

1 }i∈[q], g2, g
x
2 ) = (c, g

1
x+c

1 )] ≤ negl(λ)

where .(g1, {g(x
i)

1 }i∈[q], g2, g
x
2 ) ∈ Gq+1

1 × G2
2 and . λ is the security parameter. 

3.1 .BBS Signatures 

The .BBS anonymous credential scheme presented by Tessaro and Zhu [TZ23] is  
one of the pillars of our work. The authors revisit the security analysis of the 
.BBS signature [BBS04] and provide a novel protocol to prove possession of a 
credential. 

The idea of using .BBS signatures [BBS04] to generate anonymous credentials 
was initially proposed by Camenisch and Lysyanskaya in [CL04, Section 5], and 
a slightly modified version known as .BBS+ was studied and proven unforgeable 
by [ASM06,CDL16]. [TZ23] later showed the modification is not needed for 
unforgeability and propose a protocol for proof of possession (which could be 
applied also to .BBS+ signatures) which produces proofs smaller in size. 

Definition 3 (.BBS signature scheme [BBS04,CL04]). The algorithms defin-
ing the .BBS digital signature are the following: 

– .PgenBBS(κ). Let  .G1 = 〈g1〉,G2 = 〈g2〉 and .GT be groups of prime order . p, 
and .e : G1×G2 → GT be the pairing operation. Sample .h1, . . . , hm

$←− G1 and 
set the set of public parameters .pp ← (p,G1,G2,GT , e, g1, g2, h1, . . . , hm). 

– .KGenBBS(pp). Sample a random .x
$←− Zp. Compute .X2 = gx2 , and  set .sk ← x, 

and .pk ← X2. 
– .SignBBS(pp, sk, (a1, . . . , am)). Compute .C(a) = g1

∏m
i=1 h

ai
i . Randomly gen-

erate .e $←− Zp and compute .A = C(a)
1

e+x . Output the pair .(A, e) ∈ G1 × Zp. 
– .VerifyBBS(pp, pk, (A, e),a). Set  .C(a) = g1

∏m
i=1 h

ai
i and check that 

.e(A,X2ge2) = e(C(a), g2), or equivalently 

.e(A,X2) = e(C(a)A−e, g2). (1) 

Lemma 1 ([TZ23, Theorem 1]). The .BBS signature scheme is strongly 
unforgeable against chosen messages under the .qSDH assumption. 

Zero-Knowledge Proofs of Knowledge for .BBS Signatures. A few efficient 
zero-knowledge proofs of knowledge for .BBS signatures are given by [TZ23]. 
We recall for convenience the protocol for Partial Disclosure given in [TZ23, 
Section 5.2] in the full version of this paper [FLL24, Appendix B, Protocol 4]. 

If we assume that the issuer only issues credentials containing .BBS signatures 
generated according to Definition 3, this protocol is a proof of knowledge of a 
.BBS signature and allows the prover to reveal some of the attributes signed in
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it. We refer to the set of revealed attributes of the signature with the symbol 
.Rev ⊆ [m], and to the hidden attribute with the symbol .Hid = [m] \ Rev. 

At a high level, the prover first randomizes the signature material and then 
executes a sigma protocol for linear relations. The verifier then checks that the 
randomized signature material is consistent with the public key of the signer . pk, 
the sigma protocol for linear relations produced a valid response, and that the 
.BBS verification algorithm verifies for the randomized signature material (i.e., 
.e(A,X2) = e(B, g2)). 

Non-interactive and Fresh Proofs of Knowledge. To present in a non-interactive 
way a .BBS credential, a sigma protocol to prove knowledge of the credential (see 
the full version [FLL24, Figure 2]) is made non-interactive by applying the Fiat-
Shamir transform. Moreover, in order to be sure that the proof of knowledge of 
the credential is fresh (i.e. has been created after the session with the verifier has 
been opened), the verifier sends a random nonce .nonce that the prover incorpo-
rates into the proof. For completeness, we explicitly describe the presentation 
algorithm and the verification in the full version [FLL24, Appendix B, Fig. 3] 

4 Multi-holder Anonymous Credentials 

In this section we introduce the concept of a Multi-Holder Anonymous Credential 
(MHAC) scheme. At high level, a MHAC scheme allows an issuer to issue shares 
.credi of a credential to multiple holders .Pi, i ∈ [n]. Then, if at least a threshold 
. t of the holders agree to present the credential, they can execute a multi-party 
protocol which returns a valid presentation .pres of the credential. However, with-
out the participation of at least . t holders, they are unable to produce a valid 
presentation. 

Definition 4 (Multi-holder anonymous credential scheme) A MHAC  
scheme consists of the following algorithms: 

– Issuer setup algorithm: 

. IssSetup(κ) $−→ (pp, (pk, sk)).

This algorithm generates public parameters .pp (e.g. the number of attributes 
. m) and the issuer key pair .(pk, sk); 

– Multi-holder credential issuing protocol: 

. CredIss(pp, sk, t, n, {Pi}i∈[n], {ai}i∈[m],Prv)
$−→ {credi}i∈[n].

This protocol is executed by the issuer (possibly interacting with the holders 
.Pi, i ∈ [n]) to generate shares .{credi}i∈[n] of a credential with threshold . t for 
attributes .{aj}j∈[m], where the attributes .{aj}j∈Prv,Prv ⊆ [m] are “private” 
and not necessarily known in the clear to all holders.
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– Multi-holder presentation protocol: 

. CredPres(pp, pk, t, {(Pi, credi)}i∈S , {ai}i∈Rev, nonce)
$−→ pres.

This protocol is executed by a set .{Pi}i∈S of . t holders who jointly create a 
presentation .pres for .nonce and public attributes .{ai}i∈Rev. 

– Multi-holder presentation verification algorithm: 

. VfPres(pp, pk, nonce, {ai}i∈Rev, pres) → 0/1.

This algorithm is executed by the verifier who checks if .pres is a valid presen-
tation (for .nonce and .{ai}i∈Rev) of a credential .cred issued by .pk such that, if 
.{a′

j}j∈[m] are the attributes included in .cred, then .∀j ∈ Rev, aj = a′
j. 

Now we introduce a special class of MHAC scheme which is of practical 
interest: a MHAC scheme compatible with secure anonymous credential schemes. 
We say that a MHAC scheme is compatible with an anonymous credential scheme 
if the MHAC is built on top of an existing anonymous credential scheme in a 
way that: 

– an anonymous credential can be reconstructed from . t credential shares. There-
fore, it is worth defining an algorithm . ReconstructCred({credi}i∈S), |S| ≥ t
that returns the reconstructed credential .cred of the underlying anonymous 
credential scheme, if the shares .{credi}i∈S are consistent and valid shares. 

– the presentation .pres produced by .CredPres has the same structure and is 
verified in the same way as in the underlying anonymous credential scheme. 
Moreover, as long as all the holders participating to the presentation pro-
tocol are honest, the distribution of the output .pres is the same as for the 
distribution of the presentations of the anonymous credential scheme. 

Note that it is straightforward to convert between classic anonymous creden-
tials and their compatible multi-holder variants. 

1. To convert a multi-holder version into the single holder, the issuer can sim-
ply send . t shares to a single party execute the algorithm .ReconstructCred to 
generate the associated credential and generate the presentation on its own. 

2. To convert from a single holder credential to a multi-holder credential, the 
party holding the full credential acts as the issuer and uses the issuing algo-
rithm to split the credential into shares. It distributes the shares to the other 
holders and keeps only the share it generated for itself (i.e., it deletes the full 
credential). In this case, it is desirable that the secret-sharing specified by the 
MHAC scheme does not rely on specific restrictions on the structure of the 
underlying single holder credential that, in some cases, might not be satisfied. 
For example, if the secret sharing is performed by distributing an attribute 
. s that is always kept hidden, then it will not be possible for a holder to 
distribute over multiple devices a credential that is not provided of this extra 
attribute.
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Remark 1. In the above definition, we describe an issue algorithm that outputs 
credential shares based on credential attributes it takes as input. However, an 
issuer may be adversarial and the user might want to ensure that the adversary 
does not learn anything about the private attributes being certified (even while 
ensuring that these attributes satisfy a particular policy). Thus, as part of our 
construction, we give a protocol that securely implements the issue algorithm in 
a way that ensures the security of the private attributes. 

5 Security Definitions 

In this section we define the security notions associated to MHAC schemes, 
namely correctness (Sect. 5.1), unlinkability (Sect. 5.2), presentation with identi-
fiable abort (Sect. 5.3), and concurrent unforgeability of presentations (Sect. 5.4). 

Definition 5 (Secure MHAC scheme). We say that a MHAC scheme is 
secure if it satisfies the notions of correctness (Definition 6), unlinkability (Defi-
nitions 7 and 8), identifiable abort (Definition 10), and concurrent unforgeability 
of presentations (Definition 11). 

5.1 Correctness 

Intuitively, correctness states that running credential presentation with an hon-
estly generated credential will always verify. 

Definition 6 (Correctness). A MHAC scheme is correct if for values 
.nonce, {ai}i∈[m],Rev ⊆ [m] \ Prv, S ⊆ [n], |S| = t, t ≤ n, it holds that 

. 1 ← VfPres(pp, pk, nonce, {ai}i∈Rev, pres)

where 

. (pp, (pk, sk)) $←− IssSetup(κ)

{credi}i∈[n]
$←− CredIss(pp, sk, t, n, {ai}i∈[m],Prv)

pres
$←− CredPres(pp, pk, t, {(Pi, credi)}i∈S , {ai}i∈Rev, nonce)

5.2 Unlinkability 

When defining unlinkability, there are two general notions: (1) an adversary 
cannot “link” usage of the same credential across different presentations and (2) if 
a credential contains private attributes (i.e., attributes not known to all holders), 
an adversary cannot learn any information about these private attributes from 
presentations.
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Unlinkability of Presentations. This first notion of unlinkability across cre-
dential presentations we can only hope to capture in the setting where the cre-
dential presentation is generated by all honest parties. Intuitively, unlinkability 
of a credential across different presentations cannot be realized if an adversary 
participates in the presentation because it inherently must know the credential 
in order to participate in the protocol. Moreover, to convince another party that 
a presentation the adversary took part in corresponds to a particular credential, 
the adversary can reveal the credential and the randomness it used to produce 
the transcript. 

Experiment 1 (.Expunlink A (κ) —MHAC Presentation Unlinkability). 

1. The adversary .A generates a set of public parameters . pp, an issuer public 
key . pk, and a multi-holder credential .{credi}i∈[n] on attributes .{ai}i∈[m] of 
its choosing issued under . pk. The adversary sends this information to the 
challenger . C together with the information related to the presentation that . C
must produce, namely .nonce, {ai}i∈Rev ⊆ {ai}i∈[m]. 

2. . C runs .pres ← CredPres(pp, pk, t, {(Pi, credi)i∈S , {ai}i∈Rev, nonce}) with a set 
.S ⊆ [n], .|S| = t and records the transcript of the protocol execution as . T . 
. C then checks that .VfPres(pp, pk, nonce, {ai}i∈Rev, pres) → 1 . If the presen-
tation does not verify, . C aborts and the experiment outputs a random bit 
. b5. Otherwise, . C samples uniformly at random a bit . b. If  .b = 1, . C over-
writes .(pres, T ) with the output from a simulated presentation as . (pres, T ) ←
SimCredPres(pp, pk, t, τ, {ai}i∈Rev, nonce). Otherwise, . C keeps .(pres, T ) as is. 

3. . C sends .(pres, T ) to the adversary . A. 
4. If .b = b′, the experiments outputs . 1. Otherwise the experiment outputs . 0. 

Definition 7 (Unlinkability of MHAC presentations). We say that 
the presentations of a MHAC scheme are unlinkable if there exist an algo-
rithm .SimCredPres(pp, pk, t, {ai}i∈Rev, nonce) such that an adversary .A can win 
.Expunlink A (κ) with at most negligible advantage. That is, 
.

∣∣∣Pr
[
Expunlink A (κ) = 1

]
− 1 2

∣∣∣ ≤ ν(κ), where  .ν(κ) is negligible in . κ. 

Unlinkability of Private Attributes. For settings in which some attributes 
are not known to all holders, we introduce another notion of unlinkability to 
capture that an adversary does not learn anything about these secret attributes 
when less than . t holders are corrupt. Note that these private attributes are 
determined when the credential is issued and are always a subset of the attributes 
that are hidden from the verifier. 

Experiment 2. (.Expunlink-attr A (κ) —MHAC Unlinkability of Private 
Attributes).
5 When the MHAC scheme is compatible with an anonymous credential scheme 
(which is our main case of study), this step can be replaced by an instruction 
to the challenger to verify the validity of the shares it is provided by executing 
.ReconstructCred({credi}i∈[n]) → cred and verifying the validity of .cred. 
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1. The challenger . C runs .(pp, (pk, sk)) $←− IssSetup(κ) and sends .(pp, (pk, sk)) to 
the adversary . A. 

2. .A chooses and sends to . C: 
– a set of attributes .a1, . . . , am−2; 
– two challenge private attributes .a(0)m−1, a

(1)
m−1; 

– A subset  .cor ⊆ [n] of parties to corrupt, with .|cor| < t. 
3. . C flips a coin .b $←− {0, 1} and runs .CredIss with .A honestly with private 
attribute .a(b)m−1 and public attributes . a1, . . . , am−2

6. . C plays the role of the 
issuer and of the honest parties, and . C sends to .A its shares of credential 
.{credi}i∈cor. 

4. The adversary may choose to run .CredPres a polynomial number of times 
with sets .S ⊆ [n] of size . t, distinct values .nonce, and  sets  .Rev of its choosing 
(which do not contain the private attribute), with . C playing the role of the 
honest parties. 

5. At the end, .A sends . C its guess . b′. If  .b = b′, the experiment outputs . 1, 
otherwise the experiment outputs . 0. 

Definition 8 (Unlinkability of Private Attributes). We say that the 
private attributes of a MHAC scheme are unlinkable if any PPT adver-
sary .A can win .Expunlink-attr A (κ) with at most negligible advantage. That is, 
.

∣∣∣Pr
[
Expunlink-attr A (κ) = 1

]
− 1 2

∣∣∣ ≤ ν(κ), where  .ν(κ) is negligible in . κ. 
Remark 2. Note that Experiment 1 and 2 could be modified to allow the chal-
lenger to generate the public parameters using a trapdoor and send them, with 
the trapdoor, to the adversary. However, our definition, which instructs the chal-
lenger to generate the parameters honestly (Experiment 2), or allows the adver-
sary to choose them (Experiment 1), is stronger and encompasses its variant 
that involves using trapdoors in the parameter generation. 
Remark 3. One might ask what the motivation is behind having private 
attributes not known to holders. The private attributes might be attributes 
that are sometimes revealed, but only in extremely rare circumstances. In these 
circumstances, the holders reconstruct the private attribute, reveal it, prove its 
correctness, and then erase it. For private attributes that are never revealed, we 
can consider a multi-authority scenario in which issuers use a private attribute 
to ensure that multiple credentials are issued to the same entity. For example, 
one issuer may be responsible for physically making sure that a user’s holder 
devices meet an appropriate measure of hardware security; a private attribute 
can be created by these devices at the time this “device binding” credential is 
issued. Another issuer can incorporate the secret device binding attribute into 
the credential it issues to take advantage of the hardware security guarantees 
that comes with it: the holders can only successfully prove knowledge of this 
attribute if they are using the appropriate hardware. In this case, the value of 
the attribute can never be reconstructed. This use is specific to multi-authority 
case which we do not formally address in this paper, however.
6 Note that the challenger . C, which in this experiment acts as an issuer, knows the 
value of the private attribute. This is not always true in general, in fact a private 
attribute might be unknown both to the holders and to the issuer. 
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5.3 Presentation with Identifiable Abort 

We adapt the notion of identifiable abort [IOZ14] to credential presentations. 
Intuitively, in our setting, we wish to capture that a protocol satisfying iden-
tifiable abort allows the protocol participants to detect malicious behavior by 
other participants which would prevent the creation of a valid presentation. Our 
definition is weaker than what is typically used in general multiparty computa-
tion [IOZ14, Appendix B] because we do not aim to realize any functionality. We 
only want to be assured that the protocol does not abort if all the participant 
are honest, and that when the protocol aborts, at least a corrupted participant 
is detected. 

We do that by defining the notion of an identifiable abort detector algorithm 
which is an algorithm run by each participant .Pi of a multi-party protocol . Π
and allows to determine if one of the other participants .Pj has misbehaved. 

Definition 9 (Identifiable Abort Detector Algorithm). Let .Π be the 
multi-party protocol and let .{Pi}i∈S be the set of participants to a protocol execu-
tion. An identifiable abort detector .W is an algorithm which can be executed by 
any party .Pi, i ∈ S and is a “wrapper” interactive algorithm that relays messages 
between .Π algorithm run by .Pi and the other participants in . S. Essentially, 
instead of executing protocol . Π, party .Pi executes .W ◦ Π which is defined as 
follows: 
– .W is initialized by the public inputs to the protocol, and it keeps state (on 
a special state tape) after processing each message exchanged between .Π and 
. Pi. 

– Each time .Π sends a message .m to . Pi, .m is forwarded to . W ’s input tape 
before reaching . Pi. . W ’s processing of .m results in either: 
1. forwarding .m to . Pi: more precisely,  .W clears its input tape, updates its 

state tape, and outputs .(message,m) on its output tape, resulting in the 
message going through. In this case .Pi keeps executing . Π; 

2. aborting the protocol and identifying another participant, . Pj, that deviated 
from the prescribed protocol: more precisely, .W writes .(abort, j) for some 
.j ∈ S on its output tape. In this case .Pi aborts the protocol and a message 
.(abort, j) is broadcast to . Π7. 

Put another way, .W observes the incoming communication of a party . Pi

and has the option to either let the communication through, or to abort the 
protocol; each time it chooses to abort, it also accuses another participant, . j, 
of maliciously deviating from the protocol. Whenever .W outputs .(abort, j) for 
some .j ∈ S, it causes  .Pi to abort the protocol as well. 

Definition 10 (Presentation with identifiable abort). Let .CredPres′ be a 
multi-holder credential presentation algorithm. If there exists an efficient identi-
fiable abort detector algorithm .W for .CredPres′ such that the following properties 
hold for the composed algorithm .CredPres = W ◦ CredPres′:
7 This instance covers the case where another participant has output a message 
.(abort, k). 
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– Correctness: Whenever .CredPres never instructs a party to abort, the output 
.pres of .CredPres verifies, i.e. .VfPres(pp, pk, nonce, {ai}i∈Rev, pres) = 1. 

– Identifiability: Whenever .CredPres outputs a message is .(abort, j) for some 
.j ∈ S, .Pj did not follow the protocol instructions and is therefore corrupt. 

We say that .CredPres satisfies identifiable abort. 

Remark 4. Note that this property is not concerned with assuring that only a 
legitimate holder can carry out the presentation protocol without being detected. 
Legitimacy of the credential being presented is addressed in the unforgeability 
of presentations property described in Sect. 5.4. For identifiable abort, we only 
want to be assured that if a holder would cause the protocol to output an invalid 
presentation, the honest parties can identify the this holder. Conversely, if the 
algorithm does not abort, the presentation will be valid. 

5.4 Concurrent Unforgeability of Presentations 

We describe an experiment defining the unforgeability of a multi-holder anony-
mous credential presentation algorithm .CredPres. The experiment resembles the 
security experiment for threshold signature schemes. We can think of the shares 
of the .t-of-. n multi-holder credential as shares of the signing key in a threshold 
signature scheme. The message that gets signed is the nonce .nonce provided by 
the verifier before the presentation is created. 

If the adversary has . t or more shares of a .t-of-. n multi-holder anonymous 
credential, we will write that the adversary is given a “full credential”, since with 
. t shares the adversary can produce presentations on its own. 

The experiment is divided in three phases: a Setup phase, a  Training phase 
and a Forgery phase. In the Setup phase, the challenger generates the parameters 
and credential issuing keys. During the Training phase, the forger is allowed 
polynomially many queries to an issuing oracle and a credential presentation 
oracle. There are two types of issuing queries: (1) a query for a full credential 
where the adversary gets all the shares of the credential and can present it 
on its own from now on; and (2) a query for a “target” credential for which the 
adversary is only provided a subset of fewer than . t shares. We limit the adversary 
to just one such target query; this is without loss of generality (see Observation 4 
below). 

Finally, in the Forgery phase, the forger outputs a tuple consisting of a nonce, 
attributes, and credential presentation. If this tuple verifies and the contents 
of the tuple do not correspond to a credential produced by the issuing oracle 
or a presentation output by the presentation oracle, then the forger wins the 
experiment. Otherwise, the forger loses. 

The experiment .Expc-uf-pres A is given below and summarized in the full version 
of this paper [FSS+24, Figure 5]. 

Experiment 3 (.Expc-uf-pres F —Concurrent unforgeability of MHAC pre-
sentation).
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Setup Phase. The challenger executes .IssSetup(κ), which returns the set of public 
parameters .pp and a key pair .(sk, pk). The challenger sends .(pp, pk) to . F . 

Training Phase. The forger .F has access to two oracles, .Oiss and .Opres, which  it  
may query in the following ways: 

– .F can query an issuing oracle .Oiss for a polynomial number .qI of full cre-
dentials .cred for attributes .{ai}i∈[m] of its choice, and one single query for a 
partial credential (target credential) .{credi}i∈cor for .{ai}i∈[m]. 8
• Issuance of full credentials: on input the set of attributes .{ai}i∈[m] cho-

sen by . F , .Oiss provides .F with a credential . cred = {credi}i∈[n]
$←−

CredIss(pp, sk, n, t, {ai}i∈[m],Prv) on these attributes. 
.Oiss stores a record .(cred) in a credential table .CT. 

• Issuance of the target credential: .F gives as input to .Oiss the tuple 
.({ai}i∈[m], t, n, cor) where .{ai}i∈[m] are attributes chosen by .F to include 
in the credential, .(t, n) are the parameters of the secret sharing of the 
credential, and .cor ⊂ [n], |cor| < t, are the parties .F wants to corrupt. 
.Oiss computes .CredIss(pp, sk, t, n, {ai}i∈[m],Prv) → {credi}i∈[n] and gives 
to .F only the shares corresponding to the parties in .cor. 
.Oiss stores the value .targetCred ← ({credi}i∈[n], n, t, cor). 

– .F can query a presentation oracle .Opres for a polynomial number .qP of pre-
sentations of the target credential specifying the nonce .nonce to use and the 
attributes .{ai}i∈Rev to reveal 9. We allow the adversary to open concurrently 
many sessions of the presentation protocol for the target credential and inter-
leave messages between different sessions. Therefore, to distinguish sessions, 
.F includes a unique session identifier .ssid to messages sent to .Opres. To sim-
plify the description, we will omit .ssid which is included in every message 
exchanged between the holders. 
• Presentation of the target credential .targetCred: .F gives in input to . Opres

the tuple .(nonce, {ai}i∈Rev, hon) which specifies the nonce for the presen-
tation, the set of attributes to reveal and the set of parties . hon ⊆ [n] \ cor
s.t. .|cor|+ |hon| = t. 
.Opres, controlling .hon, interacts with . F , controlling .cor, in the execution 
of .CredPres({Pi, credi}i∈cor∪hon, {ai}i∈Rev, nonce, pp, pk). If  .Opres sends its 
last protocol message associated to that specific session, it stores in the 
presentation table .PT the record . (nonce, {ai}i∈Rev)10.

8 In this experiment we always assume that the adversary knows all the attributes 
included in the credentials it is issued, therefore we do not need to mention the 
private attributes. 

9 Note that .F can generate presentations for the full credentials on its own, without 
the help of any oracle, and since it can query for the issuance of full credentials, we 
omit the ability to query presentations of credentials it does not control. 

10 
.Opres does not store the presentation output of the protocol execution because it 
might not learn its value since in the protocol execution it always sends its messages 
first. 
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Forgery Phase. At the end of the training, .F produces a forgery 
.(nonce%, {a%

i }i∈Rev" , pres%) given by a presentation .pres% for . (nonce%, {a%
i }i∈Rev")

of its choice. 
.F wins the experiment if .VfPres(nonce%, {a%

i }i∈Rev, pres%) = 1 and the follow-
ing win conditions related to the queries made by .F are satisfied: 

– For every record .(nonce, {ai}i∈Rev) in the presentation table .PT: 
.(nonce%, {a%

i }i∈Rev") '= (nonce, {ai}i∈Rev). 
This check guarantees that the forgery is not a forgery generated in a presen-
tation query of the target credential. 

– For every record .cred in .CT, being .{ai}i∈[m] the attributes associated to .cred, 
.{ai}i∈Rev" '= {a%

i }i∈Rev" . 
This guarantees that the forgery is not derived from a full credential that has 
been issued by .Oiss. 

Observation 1. In this security game, we consider the issuance of credentials 
as an algorithm which is executed by the issuer given the adversary’s input 
.({ai}i∈[m], t, n, cor). However, in general, the issuing of credentials might happen 
via an issuing protocol which allows an adversary to keep some attributes hidden 
from the issuer, so we should allow the adversary to make queries for credentials 
without sending all the attributes in the clear as we do. However, this kind of 
query can be omitted in the security definition if we require issuing protocols that 
always allow the challenger of the experiment (acting on behalf of the issuer) to 
extract the attribute values, even when the adversary tries to keep them hidden, 
for example by means of straight-line extractable NIZKPs. 

Definition 11 (Concurrent unforgeability of MHAC presentations). 
We say that a MHAC scheme has concurrently unforgeable presentations 

if for any PPT adversary . F , .F wins with at most negligible probability in 
.Expc-uf-pres F (κ). That is, .Pr

[
Expc-uf-pres F (κ) = 1

]
≤ ν(κ), where  .ν(κ) is negligible 

in . κ. 

Observation 2. In practical scenarios, the nonce is sent to the provers by a ver-
ifier who wants to receive a fresh presentation. Therefore, if a presentation pro-
tocol is unforgeable, i.e. the adversary can not forge a presentation for attributes 
.{ai}i∈Rev and a nonce .nonce of its choice, then it will not succeed in forging a 
presentation for a nonce chosen by the verifier. 

Observation 3. We remark that our unforgeability experiment (Experiment 3) 
also captures the standard unforgeability for anonymous credentials. In our def-
inition, an adversary can win Experiment 3 by either producing a presentation 
forgery of the target credential or by producing a presentation for a (full) creden-
tial that was never queried by the adversary. An adversary that forges credentials 
in the traditional sense wins the unforgeability experiment via the latter condi-
tion.
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Observation 4. Note that we could allow the adversary of the unforgeability 
game to receive a polynomial number .qIp = qIp(κ) of partial credentials. It is 
easy to see that a scheme secure according to our definition of security is secure 
also according to this stronger notion of security. However, the reduction to the 
cryptographic assumption would reduce its tightness by a factor . 1

qIp
, which  is  

non-negligible in . κ. This would impact the dimension of the parameters when it 
comes the time to instantiate the scheme. 

6 .BBS Multi-holder Anonymous Credentials 

In this section we describe a secure MHAC scheme which is compatible with 
the .BBS anonymous credential scheme [TZ23]. According to the definition of 
MHAC scheme compatible with an anonymous credential scheme, the credential 
issuance algorithm consists in computing a secret sharing of a .BBS credential, 
and the presentation structure is the same as the one presented by Tessaro and 
Zhu in [TZ23, Section 5]. 

Design Principle. Every issuer can decide the structure, or schema, of the cre-
dentials it issues, determining, for example, (1) the number of attributes, which 
could even be zero, (2) the semantic meaning of the attributes and (3) the pos-
sible values associated with each attribute, ranging from the binary value to all 
. Zp. As we have mentioned in Sect. 4, it is desirable to design a MHAC scheme 
compatible with an anonymous credential scheme that does not require a specific 
structure of the underlying anonymous credential. This, to take full advantage of 
the compatibility of the MHAC scheme and to consistently ensure that a holder 
can convert any credential it is provided into a multi-holder credential. The only 
way to achieve this, and to have a secret sharing completely independent of the 
credential structure, is to secret share the signature component, which in this 
work is done by distributing the value . e of the .BBS signature .(A, e). 

Private Attributes. Our construction (optionally) allows private attributes; they 
are secret-shared by the holders. Attributes not known in the clear are denoted 
by the set .Prv, and attributes known by all holders are denoted as .Pub. Though 
our protocols are described in terms of .t-of-. n Shamir secret sharing, replacing 
the sharing algorithm enables using different access structures (e.g., enforcing 
that one party always participates in presentations). This extension is given in 
Sect. 6.4. 

6.1 Credential Issuing 
In this section, we describe protocols involving the issuer. The issuer setup (Algo-
rithm 1) only needs to be run once locally by the issuer. 

Algorithm 1 (Issuer setup algorithm). 

. IssSetupBBS(κ)
$−→ (pp, (pk, sk))

The algorithm .IssSetupBBS(κ) works as follows.
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1. . PgenBBS(κ) → pp = (p,G1,G2,GT , e, g1, g2, h1, . . . , hm)
2. . KGenBBS(pp) → (sk, pk) = (x, gx2 )
3. Output . (pp, (pk, sk))

The credential issuance protocol can be run by the issuer with any set of . n
holders. We give two variants of credential issuance .CredIssBBS: one  for issuing a  
credential when there are no private attributes (Protocol 1) and another when 
there are private attributes (Protocol 2). 

Credential Issuance without Private Attributes. In the case where all 
attributes are known in the clear, the holders simply supply the attributes 
to the issuer, and the issuer can produce the shares of the credential locally. 
Upon receiving attributes .{ai}i∈[m], the issuer creates a credential as follows. 

Protocol 1. CredIssBBS(pp, sk, {ai}i∈[m]) — Multi-holder issuing protocol 
(without private attributes) 

1. Compute a BBS signature as (A, e) $←− SignBBS(sk, {ai}i∈[m]) 

2. {e(i)}i∈[n] 
$←− Share(t, n, e) 

3. For i ∈ [n], set  credi = (A, e(i) , {Dj}j∈[n]\{i}, ({aj}j∈[m], ⊥)) with Dj = 
A−e(j) and output credi to party Pi. 

Credential Issuance with Private Attributes. In the case where some 
attributes may not be known to all holders, each party’s credential will have 
a share of each private attribute rather than the full attribute itself. Let . Prv
denote the set of private attributes and .Pub the set of attributes known by 
each holder. 

Our starting point here is multi-base Pedersen verifiable secret sharing (VSS) 
[Ped91] 11, for example as presented by Cachin et al. [CKLS02] (but with thresh-
old .t < n/2 since we are in the synchronous case). That is, for each private 
attribute .aj ∈ Prv, each party . Pi’s share of the credential contains a Shamir 
secret share .a(i)j ; additionally, the .mth attribute .am is always a private attribute 
that is meant to serve as the randomness for Pedersen VSS, so .Pi also has a 
Shamir share of it, .a(i)m . 

To simplify our notation, we will include .m in the set of private attributes 
.Prv and .[m] = Prv ∪ Pub.
11 The private attributes may not be known by the holders and may not be known even 

by the issuer. If the holders do not know the private attribute, the Pedersen VSS 
can be executed starting from a value known by the issuer who divides it in shares, 
or by the holders who generate the secret sharing of an unknown attribute [Ped91, 
Section 5.2], and in this case not even the issuer will know this value. 



346 A. Flamini et al.

Finally, for each . Pi, a share of multi-base Pedersen commitment . Ci =
∏

j∈Prv h
a(i)
j

j to these attribute shares is known. We assume this was set up prior 
to the protocol’s execution and that each holder has also published a straight-line 
extractable [Fis05,KS22,LR22,CDG+24] proof of knowledge .πi of these secret 
shares. 

To create a credential with private attributes, the issuer performs the follow-
ing: 

Protocol 2. CredIssBBS(pp, sk, {πi}i∈[n], {Ci}i∈[n], Prv, {ai}i∈Pub) — Multi-
holder issuing protocol (with private attributes) 

1. For each Pi, verify proof πi corresponding to each Ci, and verify that 
{Ci}i∈[n] are consistent with a Pedersen VSS of C =

∏
j∈Prv h aj 

j . 
2. Compute C(a) =  g1C

∏
j∈Pub h aj 

j . Pick a random e and compute A = 
C(a)1/(x+e). 

3. Generate a secret sharing of e, {e(i)}i∈[n] 
$←− Share(t, n, e). 

4. For all k ∈ [n], compute 

. Dk = CkA
−e(k)

=
∏

j∈Prv

h
a(k)
j

j A−e(k)
,

then set, for all i ∈ [n]

. credi = (A, e(i), {Dk}k∈[n]\{i}, ({aj}j∈Pub, {a(i)j }j∈Prv)),

and output credi to party Pi.

Observation 5. Note that, in case one of the private attributes is never revealed 
and it is secret-shared using a .t-out-of-. n Shamir secret sharing, it is not necessary 

to secret-share also the value . e. In that case, the values .Di =
∏

j∈Prv h
a(k)
j

j and 
.credi = (A, e, {Dk}k∈[n]\{i}, ({aj}j∈Pub, {a(i)j }j∈Prv)). 

However, to keep the presentation of the scheme consistent with the case 
where private attributes (1) are not used, or (2) are distributed in a way dif-
ferent from the .(t, n)−Shamir secret sharing, or (3) might be revealed in rare 
circumstances (see Remark 3), in our description of the protocol we secret-share 
also the value . e. 

6.2 Multi-holder Presentation 
An overview of the presentation protocol is depicted in the full version of this 
paper in [FLL24, Appendix C, Fig. 4]. We recall that the attributes revealed,
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denoted as .Rev, is a subset of the public attributes .Pub. The remaining attributes 
not revealed to the verifier are denoted as .Hid. An extension for handling 
attributes shared only among a subset of .n′ < n holders is described in Sect. 6.4. 

Every presentation protocol execution is associated with a unique session 
identifier .ssid which is included in every message sent by the participants over 
the private broadcast channel, therefore, we will omit it in our description. 

This protocol is run by a subset .{Pi}i∈S ⊆ {P1, . . . ,Pn}, |S| = t, with each  
party .Pi ∈ S holding a share of a credential 

. credi = (A, e(i), {Dj}j∈[n]\{i}, ({aj}j∈Pub, {a(i)j }j∈Prv)).

Protocol 3. CredPresBBS — Multi-holder presentation protocol 

Let j ∈ S refer to a designated “primary party” Pj . Upon receiving the nonce 
nonce from a verifier to present a credential with a set of revealed attributes 
a′ = {aj}j∈Rev, parties Pi for i ∈ S produce the credential presentation as 
follows. 

Signature material randomization phase. Parties begin the presenta-
tion by first producing randomness. 
1. The primary Pj first samples an element r $←− Zp broadcasts r to 

every other party in S. 
2. Every party Pi for i ∈ S computes: 

. A = Ar, D =
∏

k∈S

Dk
λS,k(0), C(a′) = g1

∏

j∈Rev

h
aj

j ,

B̃j =
(
C(a′) ·

( ∏

k∈Hid\Prv

hak
k

)
·DλS,j(0)

j

)r
, B̃i =

(
D

λS,i(0)
i

)r
,

B =
∏

i∈S

B̃i =
(
C(a′) ·

( ∏

k∈Hid\Prv

hak
k

)
·D

)r
.

where λS,i(0) denotes the Lagrange coefficient for interpolating party
Pi’s share with the parties indexed by S. Actually, B can be computed
only by the primary party.

Sigma protocol execution phase. The participants next jointly gener-
ate a proof of knowledge of a representation of B w.r.t. C(a′), {hi}i∈Hid, A. 
3. Parties begin the proof by doing the following: 

– Pj samples α(j) , {β (j) i }i∈Hid, γ(j) $←− Zp and computes Uj = 

C(a′)α
(j) ·

∏
i∈Hid h β

(j) 
i 

i · A γ
(j) 

. 
– Every other party Pk for k ∈ S \ {j} instead samples 

{β (k) i }i∈Prv, γ(k) $←− Zp and computes Uk =
∏

i∈Prv h β
(k) 
i 

i · A γ
(k) 

.
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All the participants Pi, for  i ∈ S, then compute commitments to their 
Ui as ,i = H,(ssid, nonce, Ui) and broadcast ,i to the other parties. 

4. Upon receiving ,k from every other party k ∈ S \ {i}, each  Pi opens 
its commitment by broadcasting Ui to every other party. 

5. For each Uk that party Pi receives from each Pk, for  k ∈ S \{i}, if  Uk 
is not a valid opening for ,k, then  Pi outputs (abort, k) and aborts. 

6. For each k ∈ S, Pk computes: 

. U =
∏

i∈S

Ui, ch = Hsig

(
ssid, nonce, U,A,B, {ai}i∈Rev

)
,

{
z(k)i

}

i∈Prv
=

{
β(k)
i + ch

(
r · a(k)i · λS,k(0)

)}

i∈Prv
,

z(k)e = γ(k) + ch
(
−e(k) · λS,k(0)

)

and broadcasts {z (k) i }i∈Prv and z (i) e . 
The primary Pj additionally computes and broadcast 

. z(j)r = αj + ch · r,
{
z(j)i

}

i∈Hid\Prv
=

{
β(j)
i + ch · (air)

}

i∈Hid\Prv

and broadcasts z (j) r , {z (j) i }i∈Hid\Prv. 
7. Upon Pi receiving {zi}i∈Hid, z  (j) e , z  (j) r from the primary Pj , check  

. Uj · B̃ch
j

?= C(a′)z
(j)
r ·

∏

i∈Hid

h
z(j)
i

i ·Az(j)
e .

If the equality does not hold, then Pi outputs (abort, j) and aborts. 
Otherwise, upon receiving z (k) e , {z (k) i }i∈Prv from party Pk for k ∈ 
S \ {j}, check  

. Uk · (B̃k)ch
?=

∏

i∈Prv

h
z(k)
i

i A
z(k)
e .

8. For each k ∈ S, party  Pk computes 

zr = z(j) r , {zi}i∈Hid\Prv =
{
z (j) i

}

i∈Hid\Prv 
, 

{zi}i∈Prv =

{
∑

i′∈S 

z (i
′) 

i

}

i∈Prv 

, ze =
∑

i∈S 

z(i) e . 

where j corresponds to the index of the primary. Pk sets 

. pres ←
(
A,B, ch, (zr, {zi}i∈Hid , ze)

)

and outputs the tuple (nonce, pres) as the output of the protocol.
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Note that it is crucial to include the revealed attributes in the challenge 
computation (Step 6) to avoid the principal revealing the attributes in a subset 
of .Hid ∩ Pub different from the one agreed with the other parties participating 
in the presentation protocol. 

When distributing the value . e is unnecessary (see Observation 5), the presen-
tation protocol must be modified so that the principal carries out the creation 
of the response corresponding to . A. This leads to a straightforward variant of 
the presentation protocol whose security can be proved as an exercise. 
Comparing Computational and Communication Cost to .BBS We can evaluate 
the cost of our protocol as a function of the number . t of parties participating 
in the protocol, hidden attributes . h in the presentation, of which . p are private 
attributes .p < h, and the number of attributes . m. The principal party per-
forms 4 broadcasts and, omitting the computation of D, computes the following 
exponentiations: 

– in the second step: . 1 to compute . A, .(m − h) to compute .C(a′), .h − p+ 2 to 
compute .B̃j , .t − 1 to compute all the .B̃i, i ∈ S \ {j}; 

– in the third step: .h+ 2 exponentiations to compute . Uj ; 

for a total amount of .m+ h − p+ t+ 4 exponentiations 
The other parties each perform only 3 broadcasts and computes the following 

exponentiations: 

– in the second step : . 1 to compute . A, .(m− h) to compute .C(a′), .h− p+ 2 to 
compute .B̃j , .t − 1 to compute all the .B̃i, i ∈ S \ {j}; 

– in the third step: .p+ 1 exponentiations to compute .Uk; 

for a total amount of .m+ t+ 3 exponentiations. 
Part of these exponentiations are executed to perform the identifiable abort 

checks; if we omit these checks, the number of exponentiations is reduced because 
the party .Pi does not have to compute the values .B̃k for .k '= i. 

The centralized case described in [TZ23] requires the following exponentia-
tions: 

– 1 to compute .A = Ar; 
– .m − h to compute .C(a′) and other .h+ 2 to compute . B; 
– .h+ 2 to compute the proof of knowledge of a representation of . B. 

For a total number of .m+ h+ 5 exponentiations. 

6.3 Verification 

Since our MHAC scheme is compatible with the .BBS anonymous credential 
scheme, the verification algorithm is exactly the same as the one described in 
[TZ23].
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Algorithm 2 (Multi-holder presentation verification algorithm). 

. VfPresBBS(pp, pk, nonce, {ai}i∈Rev, pres) → 0/1

Let .pres =
(
A,B, ch, (zr, {zi}i∈Hid , ze)

)
. The verifier runs the same verification 

algorithm as in the centralized case [TZ23]: 

. U ← B
−ch

C(a′)zr
∏

i∈Hid

hzi
i A

ze
,

ch
?= Hsig

(
ssid, nonce, U,A,B, {ai}i∈Rev

)
, e(A,X2)

?= e(B, g2).

If the relations hold, the verifier outputs . 1. Otherwise, outputs . 0. 

6.4 Extensions 

Flexible Presentation Subsets. Let us refer to any subset of holders who can 
present a MHAC using their shares of credential as a presentation subset for the 
given credential. In this work we have described a scheme where the attributes 
.{aj}j∈Prv are shared among the holders in an homogeneous way using a .(t, n)-
Shamir secret sharing, so any subset of . t parties is a presentation subset. 

This construction can be easily generalized, allowing the issuer to share one 
attribute only among a subset of the holders (performing a .(t′, n′)- Shamir secret 
sharing with .n′ < n), or even to a single holder (in this case, the cooperation of 
this holder will be necessary to create the presentation). Therefore, the presen-
tation subsets can be any subset of holders that know enough shares for each 
attribute. The participants will also be required to deterministically choose a 
factorization of .B which allows them to generate the proof of knowledge of the 
representation in a coordinated way. 

Share Size Optimization. In the full version of this paper [FLL24, Appendix 
H] we describe an optimization to the size of the shares of the credentials. As 
currently given, the size of each credential share is linear in the number . n of 
participants due to each party knowing the values .Di of every other group mem-
ber. This can be reduced by having the issuer give each party .Pi only its own 
value .Di along with a signature .σi on .Di and some values binding .Di to the 
multi-holder anonymous credential. In the first step of the presentation proto-
col, the participants broadcast their values . ,i together with the values . (Di,σi)
corresponding to their share and the issuer’s signature. 

Distributing the Issuer. Note that while our issuing protocol (Protocol 1) is  
described in terms of a single issuer, distributing the issuer can be achieved by 
replacing computation of the BBS component (Steps 1. and 2.) with a distributed 
protocol such as [DKL+23].
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7 Security Analysis 

In this section we prove our .BBS MHAC scheme from Sect. 6 satisfies the secu-
rity properties defined in Sect. 5. We split the proof into four parts, showing 
that our .BBS MHAC satisfies correctness, unlinkability, identifiable abort, and 
unforgeability. 

Theorem 3. Let . ΠMHAC−BBS = (IssSetupBBS,CredIssBBS,CredPresBBS,
VfPresBBS). Assuming .BBS is SUF-CMA and the .DL assumption holds in our 
group .G1, .ΠMHAC−BBS is a concurrently secure MHAC scheme in the pro-
grammable random oracle model satisfying the security properties in Sect. 5 
against an active static adversary corrupting less than . t holders and an honest-
but-curious issuer. 

The proof follows from Lemmas 2, 3, 4, 5, and  6. 

7.1 Correctness of .BBS MHAC 
Lemma 2. .ΠMHAC−BBS satisfies correctness (Definition 6). 

The proof is given in the full version [FLL24]. 

7.2 Unlinkability of Presentations of .BBS MHAC. 
Lemma 3. .ΠMHAC−BBS satisfies presentation unlinkability (Definition 7) in the 
programmable random oracle model. 

Proof. To prove unlinkability, we show there exist an algorithm . SimCredPres(·)
which simulates an honest presentation of a multi-holder credential. 

Regarding the multi-holder .BBS anonymous credential scheme, it being com-
patible with the .BBS anonymous credential scheme [TZ23], we can choose as 
.SimCredPres(pp, pk, τ, {ai}i∈Rev, nonce) the same algorithm used to simulate the 
generation of presentation of a .BBS anonymous credential presented in [TZ23] 12. 
The transcript . T of the communication between the participants is instead gen-
erated as a random string of a given length which is indistinguishable from a real 
transcript since the participants execute the protocol over a private broadcast 
channel. 

Since the challenger of the experiment programs the random oracle, the simu-
lated presentation is indistinguishable from the real one, and the simulation fails 
only with negligible probability if we allow the adversary to query the random 
oracle a polynomial number of times. .23

12 We recall that, together with the public key . pk, the adversary must provide the 
challenger . C with a pair .(U1, U2) such that .e(U1, pk) = e(U2, g2) which the simulator 
must use to simulate the generation of the values .A,B. Such a pair is assumed 
to be known for every .BBS credential issuer because it can be obtained from any 
presentation of any credential issued by that specific issuer, as it is specified in 
[TZ23,CDL16,LKWL22]. 
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7.3 Unlinkability of Private Attributes of .BBS MHAC 
Lemma 4. .ΠMHAC−BBS satisfies private attribute unlinkability (Definition 8). 

We provide a proof sketch below and give the formal proof in the full version 
of this paper [FLL24, Appendix D]. 

Proof Sketch. It is possible to design a reduction to the hiding property [KL07] 
of the Pedersen commitment scheme [Ped91] which is perfectly hiding. 

The adversary . A of private attribute unlinkability sends to the challenger (i.e. 
the reduction) . B two attributes .a∗

0, a
∗
1 and the set of public attributes .{ai}i∈Pub. 

The reduction .B sends the same messages to the challenger . C of the hiding 
property of Pedersen commitment who samples a bit . b uniformly at random and 
computes a commitment .c ∈ G1 to .a∗

b and sends it to . B. 
The reduction . B uses the received commitment to create the shares of cre-

dential for . A, and its own partial shares of credential because it does not know 
the shares of the attribute .a∗

b committed to by . C. 
During the presentation protocol queries the reduction . B simulates the exe-

cution of the presentation protocol programming the random oracle. 
At the end of the training, the adversary .A outputs a bit . b′ specifying their 

guess about the attribute included in the credential, and . B forwards . b′ to . C. 

7.4 Presentation with Identifiable Abort of .BBS MHAC 

Lemma 5. Assuming that the protocol participants communicate over an 
authenticated channel, .H, is a secure commitment scheme, .ΠMHAC−BBS satis-
fies presentation with identifiable abort (Definition 10). 

Proof is given in the full version [FLL24, Appendix E]. 

7.5 Unforgeability of Presentations of .BBS MHAC 

Lemma 6. Assuming .BBS is SUF-CMA and the .DL assumption holds in our 
group, .ΠMHAC−BBS satisfies concurrent unforgeability of presentations (Defini-
tion 11) against an active static adversary corrupting less than . t holders and an 
honest-but-curious issuer. 

We sketch the security proof of Lemma 6 and we provide a complete proof 
in in the full version of this paper [FLL24, Appendix F]. 

Proof Sketch. To prove that .ΠMHAC−BBS is unforgeable according to the 
security notion of Definition 11, we instantiate the unforgeability experiment 
.Expc−uf−pres

F (κ) in the case of .BBS MHAC in in the full version of this paper 
in [FLL24, Appendix F.1], which results in the definition of .Expc−uf−pres

F,BBS (κ). 
Then, we show how it is possible to use an adversary .F of the experiment 
.Expc−uf−pres

F,BBS (κ) as a subroutine of a reduction . B to the .DL assumption, if the 
adversary forges a presentation derived from the target credential (Case A), or
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to the .qSDH assumption, if the adversary forges a presentation derived from 
another credential it was never issued (Case B). More precisely, a reduction that 
rewinds the adversary .F will end up extracting, from the adversary’s forgeries 
(that are proofs of knowledge of a .BBS credential) a credential that will fall into 
one of these two cases (as we show in the full version of this paper in [FLL24, 
Appendix F.2]). It is easy to see that, for MHAC schemes compatible with secure 
anonymous credential schemes this proving Case B is trivial, since it is possible 
to easily reduce to the unforgeability of the digital signature scheme underlying 
the anonymous credential scheme. 

Proving Case A instead is more challenging, and in this sketch proof we limit 
to describe how our reduction can set up the unforgeability experiment to reduce 
the .DL assumption. 

We consider a forger . F who can forge a presentation associated to the target 
credential it is issued. We must define a reduction . B interacting with . F , and  with  
the challenger .CDL of the .DL problem (Definition 1), who can win the .DL exper-
iment with non-negligible probability, if .F wins the unforgeability experiment 
with non-negligible probability. 

The reduction .B receives in input the tuple .(p,G1, g, h) from .CDL, where  
.(g, h) ∈ G2

1 is an instance of the discrete logarithm problem that . B needs to 
solve. 

Setup Phase. .B must generate the public parameters to send to . F , and  the  
issuer’s public key for the .BBS signature scheme. It must generate it in a way 
that, when .F sends an issuance query .({ai}i∈[m], t, n, cor) for the target creden-
tial, it will be able to generate .t − 1 shares of the target credential for the par-
ties in .cor corrupted by .F . {credi}i∈cor ← ((A, {e%(i)}i∈cor, {Di}i∈[n], {aj}j∈[m]),
which is a secret sharing of a .BBS credential .((A, e%), {ai}i∈[m]) where the 
value .e% = logg h, and is unknown to . B13. In particular, .B(g, h) must gener-
ate .pp, x in a way that, for any .{ai}i∈[m] ∈ Zm

p , it will be able to compute the 
value .A = C(a)

1
x+e" , which is univocally determined by the attributes once . DL

challenge .(g, h) and .pp, x are fixed. Additionally, . B must be able to generate 
.D = A−e"

that is secret shared in .{Di}i∈[n] which is implicitly included in every 
share of credential. 

To do that, . B performs the following operations: 

1. samples the group generator of .G2, .g2
$←− G2, the issuer’s secret key .x $←− Zp, 

and sets .X2 = gx2 as in Algorithm 1; 
2. sets .k ← gxh, k ∈ G1, which is the trapdoor that allows . B to compute, 

.∀a = {ai}i∈[m] ∈ Zm
p the values .A,A−e"

satisfying .Ax+e"

= C(a); 
3. generates the public parameters .pp as follows: .γ0, γ1, . . . , γm

$←− Zp then, 
set .g1 ← kγ0 as the generator of .G1 and .hi = kγi ,∀i ∈ [m] and . pp ←
(p,G1,G2,GT , e, g1, g2, h1, . . . , hm);

13 We recall that in this experiment we do not consider private attributes because the 
challenger always learns the attributes from the online-extractable proofs . π it receive 
from the holders in the issuing protocol (Protocol 2). 
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4. sends .pp,X2 to . F . 

The simulation of parameter generation and key generation is indistinguishable 
from a real execution of the parameter generation because the key generation is 
calculated exactly the same way, and the elements .(g2, g1, h1, . . . , hm) are chosen 
uniformly at random in .G2 × Gm+1

1 . However, . B knows the discrete logarithm 
of the elements in .G1 with respect to the basis .k = gxh. 

Training Phase. During the Training Phase the adversary . F we consider in Case 
A will send an issuance query for the single target credential, giving in input to 
.Opres the tuple .({ai}i∈[m], t, n, cor), |cor| = t − 1. Without loss of generality, we 
can restrict to the case .t = n and .cor = [t − 1]. 

Having received .({ai}i∈[m], t, n, cor) from . F , .B computes .α = logk C(a), 
which is .α = γ0

∑m
i=1 γiai. Being .k = gxh = gx+e"

, for the unknown . e%, the  
knowledge of . α allows . B to compute 

. A = C(a)
1

x+e" = (kα)
1

x+e" = (k
1

x+e" )α = gα,

. Ae"

= (gα)e
"

= (ge
"

)α = hα.

In summary, . B simulates the issuance of the target credential as follows: 

1. computes .α ← γ0
∑m

i=1 γiai and sets .A ← gα and .D ← (hα)−1; 
2. simulates a secret sharing of . e%: .{e%(i)}i∈cor

$←− Z|cor|
p ; 

3. sets .Di ← A−e"(i)
,∀i ∈ cor and .Dn ← D

∏
i∈cor D

−1
i ; 

4. . B sets .{credi}i∈cor ← ((A, {e%(i)}i∈cor, {Di}i∈[n], ({aj}j∈[m])). 

This completes the simulation of the issuance of the target credential. 
Note that . B knows all the information associated with the target credential 

apart from the value .e%(n) = − logA Dn. 
When . F sends to . B a query to create a presentation of the target credential, 

with input .(nonce, {ai}i∈Rev, hon), we can assume that .F controls the primary 
party who sends to . B the value .r ∈ Zp. Then  . B can compute . A = Ar, B =
C(a)rA−e"

= C(a)rDr and .B̃n = Dr
n. Given this information, . B can simulate 

the presentation protocol by programming the random oracle similarly to how 
it is done in [CKM23a]. 

We include all the remaining details of the simulation of Case A, and the 
whole analysis of Case B, in the full version of this paper in [FLL24, Appendix 
F.2] 

We highlight that our reduction can simulate the unforgeability experi-
ment without rewinding the adversary, therefore the reductions both to the 
.DL assumption and to the .qSDH assumption 14 described in in the full version 
of this paper in [FLL24, Appendix F.2] allow the adversary to open concurrent 
presentation session during the training phase. This guarantees the concurrent 
security of the .BBS multi-holder anonymous credential scheme .ΠMHAC−BBS.
14 The strong unforgeability of .BBS signatures is proven to hold in [TZ23] under the 

.qSDH assumption. 
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