
Multi-Holder Anonymous Credentials
from BBS Signatures

Andrea Flamini1,2(B), Eysa Lee3, and Anna Lysyanskaya4

1 Department of Mathematical Sciences, Politecnico di Torino, Torino, Italy
andrea.flamini@polito.it

2 Mathematics Department, University of Trento, Povo, Trento, Italy
3 Data Science Institute, Brown University, Providence, RI, USA

eysa_lee@brown.edu
4 Computer Science Department, Brown University, Providence, RI, USA

anna_lysyanskaya@brown.edu

Abstract. The eIDAS 2.0 regulation aims to develop interoperable dig-
ital identities for European citizens, and it has recently become law. One
of its requirements is that credentials be unlinkable. Anonymous creden-
tials (AC) allow holders to prove statements about their identity in a
way that does not require to reveal their identity and does not enable
linking different usages of the same credential. As a result, they are likely
to become the technology that provides digital identity for Europeans.

Any digital credential system, including anonymous credentials, needs
to be secured against identity theft and fraud. In this work, we introduce
the notion of a multi-holder anonymous credential scheme that allows
issuing shares of credentials to different authentication factors (or “hold-
ers”). To present the credential, the user’s authentication factors jointly
run a threshold presentation protocol. Our definition of security requires
that the scheme provide unforgeability: the adversary cannot succeed in
presenting a credential with identity attributes that do not correspond to
an identity for which the adversary controls at least . t shares; this is true
even if the adversary can obtain credentials of its choice and cause con-
current executions of the presentation protocol. Further, our definition
requires that the presentation protocol provide security with identifiable
abort. Finally, presentations generated by all honest holders must be
unlinkable and must not reveal the user’s secret identity attributes even
to an adversary that controls some of the user’s authentication factors.

We design and prove the (concurrent) security of a multi-holder ver-
sion of the .BBS anonymous credential scheme. In our construction, each
holder is issued a secret share of a .BBS credential. Using these shares, the
holders jointly compute a credential presentation that is identical to (and
therefore compatible with) the traditional, single-holder variant (due to
Tessaro and Zhu, Eurocrypt’23) of a .BBS credential presentation.

c© International Association for Cryptologic Research 2025
Y. Tauman Kalai and S. F. Kamara (Eds.): CRYPTO 2025, LNCS 16005, pp. 325–357, 2025.
https://doi.org/10.1007/978-3-032-01887-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-01887-8_11&domain=pdf
https://doi.org/10.1007/978-3-032-01887-8_11

326 A. Flamini et al.

1 Introduction

According to W3C Verifiable Credential Data Model 1, “a verifiable credential is
a tamper-evident credential that has authorship that can be cryptographically
verified”. Verifiable credentials are issued by issuers to holders, and the holders
can use them to create presentations used to prove claims about their identity
to verifiers.

Anonymous credentials are a special kind of verifiable credentials and allow
a holder to obtain and prove possession of a credential to a verifier in a way
that does not require the holder to reveal its identity or the credential itself.
This technology is particularly useful to protect the privacy of the holders by
preventing the issuers and the verifiers to track the holder’s activity.

Anonymous credentials recently attracted renewed interest due to the publi-
cation of the eIDAS 2.0 regulation 2, which aims to facilitate secure cross-border
transactions by establishing a framework for digital identity and authentication
for digital services in the EU. The cryptographic community was invited to pro-
vide feedback on this regulation, and the resulting feedback document [BBC+24]
recommends the creation of the EUDI wallet (the digital wallet that Euro-
pean citizens will use to store their credential) which might support the use of
anonymous credentials; it specifically encourages the EU to use the BBS-based
family [BBS04,CL04,ASM06,BL10,CDL16,TZ23,LKWL22] of constructions of
anonymous credentials.

At a minimum, anonymous credentials satisfy two main properties, namely
unforgeability and privacy. Unforgeability guarantees that a user cannot gen-
erate a verifying presentation without the consent of the issuer, and privacy
guarantees that verifiers cannot correlate presentations of the same credential or
learn anything about its attributes not explicitly revealed in the presentation. A
useful additional property we consider is selective disclosure, which allows the
credential holder to choose a subset of signed attributes to reveal to the verifier
during the credential presentation phase [FSS+24].

A natural framework for constructing anonymous credentials, the so-called
CL framework proposed by Camenisch and Lysyanskaya [CL03], is instantiated
in several anonymous credentials systems such as [CL01,CL04,CDL16,PS16,
TZ23]. In the CL framework, a credential is a signature on a set of attributes, and
to prove possession of the credential, the holder proves in zero-knowledge that
they hold a signature on a set of attributes that verifies under the credential
issuer’s public key.
.BBS Signatures as Anonymous Credentials. Boneh, Boyen and Shacham [BBS04]
gave a group signature scheme that Camenisch and Lysyanskaya [CL04] sug-
gested could be adapted to anonymous credentials. The resulting schemes, . BBS
and a variant called .BBS+, were subsequently analyzed, improved, and adapted,
in a provably secure fashion, for use in direct anonymous attestation (DAA) and
anonymous credential schemes [ASM06,BL10,CDL16].

1 https://www.w3.org/TR/vc-data-model-2.0/.
2 https://digital-strategy.ec.europa.eu/en/policies/eidas-regulation.

https://www.w3.org/TR/vc-data-model-2.0/
https://www.w3.org/TR/vc-data-model-2.0/
https://www.w3.org/TR/vc-data-model-2.0/
https://www.w3.org/TR/vc-data-model-2.0/
https://www.w3.org/TR/vc-data-model-2.0/
https://www.w3.org/TR/vc-data-model-2.0/
https://www.w3.org/TR/vc-data-model-2.0/
https://www.w3.org/TR/vc-data-model-2.0/
https://www.w3.org/TR/vc-data-model-2.0/
https://www.w3.org/TR/vc-data-model-2.0/
https://digital-strategy.ec.europa.eu/en/policies/eidas-regulation
https://digital-strategy.ec.europa.eu/en/policies/eidas-regulation
https://digital-strategy.ec.europa.eu/en/policies/eidas-regulation
https://digital-strategy.ec.europa.eu/en/policies/eidas-regulation
https://digital-strategy.ec.europa.eu/en/policies/eidas-regulation
https://digital-strategy.ec.europa.eu/en/policies/eidas-regulation
https://digital-strategy.ec.europa.eu/en/policies/eidas-regulation
https://digital-strategy.ec.europa.eu/en/policies/eidas-regulation
https://digital-strategy.ec.europa.eu/en/policies/eidas-regulation
https://digital-strategy.ec.europa.eu/en/policies/eidas-regulation

Multi-Holder Anonymous Credentials from BBS Signatures 327

The state-of-the-art security proof for this use of .BBS and a zero-knowledge
protocol for proving knowledge of a .BBS signature were given by Tessaro and
Zhu [TZ23]. The .BBS signature as described in [TZ23] is the most efficient of the
known candidate signatures in the CL framework [CL03,CL04,PS16,CDL16] 3
and is also the object of a standardization effort of W3C [LKWL22] 4.

Motivation. Digital credentials require that the users protect the cryptographic
material representing the credentials. Corruption, loss, or theft of the device
where this material is stored can result in identity theft and fraud, defeating the
purpose of a digital credential system. For anonymous credentials, the threat is
all the more serious here, as it is impossible to trace how the adversary used a
stolen credential (unlike in linkable verifiable credentials [AAM23]). Addition-
ally, an adversary who compromises a single-factor credential learns sensitive
information about this user, which is a threat to privacy.

Multi-factor authentication is a popular way to enhance the security of digital
authentication. For anonymous credentials, it would amount to storing shares
of credentials on multiple devices and proving possession of the credential in
a distributed fashion. This is similar to how shares of secret keys are used in
threshold signature schemes. In particular, if an adversary corrupts at most . t−1
devices (and therefore learns the value of .t − 1 shares of a credential), it should
not be able to generate a valid credential presentation. On the other hand, if a
threshold . t of the devices agree to present the credential, they can generate a
valid presentation executing a multiparty protocol, while keeping their share of
the credential private.

1.1 Our Contribution

In this work, we introduce multi-holder anonymous credential (MHAC) schemes.
In a MHAC scheme, the credential attributes and the credential itself are not
stored on a single device of a single user, but instead are distributed among
multiple devices and/or holders. An adversary that gains control of fewer than . t
devices will be unable to demonstrate possession of the credential or even learn
anything about the private attributes. In order to present a credential, devices
must jointly convince a verifier that a valid credential is distributed among the
parties.

An MHAC scheme addresses the same security goals as a single-holder anony-
mous credential system: unforgeability, which roughly means that the adversary
cannot present credential attributes that it was not issued, and privacy, which
means that a credential presentation reveals nothing other than the intended
attribute set and cannot be linked to another presentation of the same creden-
tial.
3 A comparison between [CL03,PS16,CDL16,TZ23] is performed in [FSS+24].
4 The authors of the specification have updated the credential format from BBS+ to
BBS signatures after the publication of [TZ23], however they have decided to adopt
an alternative protocol for the creation of the presentation of BBS credentials, which
has recently been included in an update of the paper of [TZ23, Appendix B].

328 A. Flamini et al.

Let us go over unforgeability for MHAC in more depth. Suppose an adversary
controls fewer than . t holders of a credential with attributes . a issued by an
honest issuer. Further, suppose that the adversary can query the issuer for new
credentials with attributes; let .ai correspond to credentials from query . i. It
can participate in computing several concurrent presentations of a credential
where it controls a subset of the holders, and arbitrarily schedule messages in
these presentations. Suppose some attribute .aj (or, more generally, a subset of
attributes .(aj1 , . . . , aj!)) does not appear any of . ai. Then the adversary cannot
create a valid presentation of . aj , even if it appears in . a.

Moreover, we require that, when the adversary controls fewer than . t holders,
its participation in a credential presentation results either in a correct output
for the honest participants, or in the identification (and, as a result, removal) of
at least one of the adversarial holders.

As far as privacy is concerned, we consider two different notions based on
what information the adversary already knows. Specifically, we require unlink-
ability (Definition 7) that applies in the case when the adversary controls the
credential verifier but none of the credential holders; here, a simulator creates
the adversary’s view on input just the attributes revealed as part of creden-
tial presentation, and this simulated view is indistinguishable from the real one.
Additionally, we require attribute hiding (Definition 8) that applies in the case
when the adversary controls fewer than . t credential holders involved in present-
ing the credential. Here, the adversary already knows the identity of the holder
devices that computed the credential presentation, so the best we can hope for
is that the adversary does not learn anything it does not already know about
the credential attributes from participating in credential presentation.

Once we put forth these definitions, we satisfy them with a construction of an
efficient MHAC scheme compatible with the .BBS anonymous credential scheme
described by Tessaro and Zhu in [TZ23]. By “compatible” we mean that the setup
and verification are identical, and the MHAC credential shares can be derived
from the credential issued in the underlying single-party scheme (here, .BBS).
We prove that our MHAC scheme satisfies our security definition. Our scheme
also allows the holders to selectively disclose some of the attributes included in
the credential.

1.2 Our Techniques

First, let us recall .BBS anonymous credentials. They require a bilinear pairing
. e over groups .G1, .G2 of order . q with generators .g1 and . g2, and additional
generators .h1, . . . , hm for the group .G1. The secret key . x for the .BBS signature
scheme is a random element of . Zq, while the public key is .pk = gx2 .

A .BBS signature on the message vector .a = (a1, . . . , am) is of the form .(A, e),
where .A = C(a)

1
e+x and .C(a) is a way to encode . a: .C(a) = g1

∏m
i=1 h

ai
i . The . BBS

verification algorithm verifies that . A was computed correctly by checking that
.e(A, (pk)ge2) = e(C(a), g2), or, equivalently, that .e(A, pk) = e(B, g2), where
.B = C(a)A−e.

Multi-Holder Anonymous Credentials from BBS Signatures 329

Note that if this equality holds for a given pair . A and . B, then for any .r ∈ Zq,
it will also hold for .A = Ar and .B = Br = C(a)rA−re = C(a)rA−e. Moreover,
given .A and .B for which this equality holds, and the values . (α,β1, . . . ,βm, γ)
such that .B = gα

1 (
∏m

i=1 h
βi
i)Aγ , the message vector . a and the .BBS signature on

this vector can be recovered as follows: set .r = α, let .ai = βi/α, and let .e = −γ.
As a result, a zero-knowledge proof of knowledge of the message vector . a and

a signature .(A, e) boils down to (1) picking a random . r and computing .A = Ar,
a “blinded” version of the value . A; (2) computing the corresponding .B = Br;
and (3) proving knowledge of the representation of . B in bases . g1, .h1, . . . , hm and
. A. A series of papers [CL04,BL10,CDL16] culminating in the work of Tessaro
and Zhu [TZ23] showed that indeed the resulting protocol is a zero-knowledge
proof of knowledge of a .BBS signature.

Credential Secret Sharing. How do we secret-share a .BBS anonymous cre-
dential in such a way that the protocol used to create a presentation is efficient?
Is it always possible for a holder to perform a secret sharing of its credential
irrespective of the type of .BBS credential it is issued?

The more naive approach to distributing a .BBS credential .((A, e),a) would
be to include in the credential an extra attribute that is never revealed and dis-
tributed among the holders, basically leading to the distribution of a . BBS+
anonymous credential [CDL16]. However, this approach would not take full
advantage of the use of the more compact .BBS anonymous credentials as
described in [TZ23], and restricts the distribution of the anonymous credential
to credentials including a random attribute which is never disclosed.

Instead, we describe how to distribute any .BBS credential by providing each
holder with all the attributes signed in that credential, as this is likely to be
the most common application, and does not tie the distribution process to the
kind of .BBS credential issued. This is done by secret-sharing the value . e of the
.BBS signature and providing every holder with the value .A−e. Proving that this
distribution of the .BBS signature is secure is an unexpectedly tricky task that we
address in the security proof of the unforgeability of presentations (in Sect. 7.5
and more in detail in the full version of this paper [FLL24, Appendix F.2, Case
A]

Given our basic construction, we enhance it by adding an optional feature:
the support of distribution of some private attributes .{aj}j∈Prv in . a that are
especially sensitive and that we might not want to store in the clear on any
device. The remaining attributes in . a (.{aj}j∈Pub) and the value . A will be known
to each credential holder, i.e. they are part of the joint input to all participants.
Since we aim to be very flexible about the way the attributes are distributed, we
plug this feature onto the basic protocol where the value . e is .t-out-of-. n secret-
shared. However, in some circumstances, in particular when a private attribute
is never revealed, the distribution of . e becomes unnecessary.

Given its shares .e(i), {a(i)j }j∈Prv of . e and .{aj}j∈Prv as well as the joint input,
each holder participates in a joint computation of the proof of knowledge of . a,
. A and . e, while possibly revealing some of the attributes in .{aj}j∈Pub.

330 A. Flamini et al.

Our protocol for computing this proof is efficient because the value . D =(∏
j∈Prv h

aj

j

)
A−e is (implicitly) provided to all the holders. To be more precise,

we give to each holder .{Di}i∈[n], with .Di =
(∏

j∈Prv h
a(i)
j

j

)
A−e(i) , from which

.D can be recovered. While hiding the values of .{aj}j∈Prv and . e, .D allows them
to compute the value . B as .(C(a)A−e)r, which is necessary to build the proof of
knowledge of a .BBS signature. The proof of knowledge can be computed by the
holders in a distributed fashion by having each participant prove knowledge of
a different factor of .B depending on its secret shares of . e and .{aj}j∈Prv.

Proving that distributing . e and revealing to every holder .D is safe is done
via a reduction to discrete logarithm. This reduction receives as input from the
.DL challenger .(g, h), and from the unforgeability adversary a set of attributes . a,
from which it can compute .C(a) = g1

∏m
i=1 h

ai
i . The challenging part in design-

ing the reduction resides in the generation of the values .A, Ã(= Ae) satisfying
the conditions: (1) .logA Ã = logg h, as well as (2) .A = C(a)

1
x+logg h . Thus, if

the adversary succeeds in forging a proof of knowledge of this credential, our
reduction solves the discrete logarithm problem.

Access to .{Di}i∈[n] is also helpful in achieving the identifiable abort property,
which allows identifying a malicious participant who would cause the protocol to
generate an invalid presentation. When the holders cooperate in the generation
of the proof of knowledge of a representation of . B, each participant . Pi, i ∈ S
proves knowledge of a representation of a factor .B̃i of .B =

∏
i∈S B̃i which can

be computed by every other party. Therefore if they generate an invalid proof,
their misbehaviour can be detected by verifying each participant proof.

We can also optimize the size of the credential shares, which otherwise would
be linear in the number of holders (due to the need to store .{Di}i∈[n]). Instead,
at issue time, each .Di will be signed under a public key used just for this purpose
and each holder stores only its own signed .Di. Each holder can then send its
signed .Di to others as part of the presentation protocol.

Presentation Protocol Overview. The presentation protocol executed by the
parties .Pi, i ∈ S, |S| = t instructs a protocol participant, the primary party . Pj ,
to sample a random .r

$←− Zp and broadcast it to the other parties in . S. Next, each
participating holder derives .A = Ar and .B = Br as defined in the presentation
protocol described in [TZ23] that we recall at the beginning of this section.

The simplest case for our protocol is when the presentation discloses all
the attributes .{ai}i∈Pub, i.e. the set of revealed indices is .Rev = Pub. Then
the presentation is simply a proof of knowledge of a discrete logarithm rep-
resentation of .B with respect to .C(a′) = g1

∏
i∈Rev h

ai
i , {hi}i∈Prv and . A, i.e.

. B = C(a′)r
∏

i∈Prv h
rai
i A

−e
.

Note that the credential shares contain the values .Di, i ∈ S, therefore it is
possible for every participant to compute

– .B̃j = C(a′)rDrλS,j(0)
j , corresponding to the primary party . Pj ;

– .B̃i = D
rλS,i(0)
i ,∀i ∈ S \ {j}, corresponding to each other party;

Multi-Holder Anonymous Credentials from BBS Signatures 331

where .λS,i(0) is the .i-th Lagrange coefficient w.r.t. participating parties . S.
Moreover each party .Pi, i ∈ S \ {j} knows a representation of .B̃i w.r.t

.{hi}i∈Prv, A, and .Pj knows a representation of .B̃j w.r.t. .C(a′), {hi}i∈Prv, A.
Therefore, since .B =

∏
i∈S B̃i, we instruct each party .Pi, i ∈ S to prove

knowledge of the corresponding .B̃i with respect to the aforementioned basis in a
coordinated way so that the proof of knowledge can be aggregated. More specif-
ically the parties execute a variant of the threshold Schnorr signature Sparkle
[CKM23a] producing in output a proof of knowledge of a representation of . B
w.r.t. .C(a′), {hi}i∈Prv, A. We show that this results in a concurrently secure pro-
tocol.

1.3 Outline

The rest of the paper is organized as follows. We briefly review related works in
Sect. 2 and preliminaries in Sect. 3. In Sect. 4, we define the notion of multi-holder
anonymous credentials, and in Sect. 5 we give the security notions a multi-holder
anonymous credential must satisfy. In Sect. 6, we give the construction of a BBS-
based multi-holder anonymous credential, and in Sect. 7 we prove this scheme
secure.

2 Related Works

Distributed Computation of Zero-knowledge Proofs. In [KMR12], the authors
describe a framework for distributing the prover side of sigma protocols over
multiple parties and provide a general characterization of such protocols defining
three different flavors of zero-knowledge. The authors apply their framework to
user-centric protocols, for example, the sigma protocol used to prove knowledge
of a CL anonymous credential [CL04].

The problem of turning the threshold version of a sigma protocol (similar
to [KMR12]) to a non-interactive protocol with respect to the verifier has been
studied in [BF24], where the authors determine the properties that the threshold
sigma protocol must satisfy to obtain an unforgeable threshold signature against
static and active adversaries. In their work the prover side does not require the
existence of the combiner since they assume a broadcast channel between the
provers.

Our work follows the setting adopted in [BF24], and more generally by thresh-
old digital signatures [CKM23a,DKL+23], since we design a protocol that does
not require the interaction between the provers and the verifier.

Therefore, in our security analysis, we do not need to consider the case in
which the verifier is malicious and we only focus on specific security notions for
the application to anonymous credential systems which are:

– the unforgeability of the presentations, meaning that an adversary who cor-
rupts at most .t − 1 holders (i.e. knows .t − 1 shares of credentials) can not
forge a presentation;

332 A. Flamini et al.

– the unlinkability of presentation, meaning that if the participants to the pro-
tocol are honest, the presentation is indistinguishable from a simulated pre-
sentation.

– the unlinkability of private attributes, meaning that an adversary who corrupts
at most .t − 1 holders and passively corrupts the issuer can not distinguish if
a credential includes a specific private attribute.

– the identifiable abort, meaning that the honest parties can identify a misbe-
having participant when a presentation creation fails.

Distributed Anonymous Credentials. There is a line of works which describes
solutions to distribute anonymous credentials on two distinct devices which have
distinct computational power or corruption models; for instance [HSS23,HS21]
distributing an anonymous credential between a digital wallet on a smart phone
and a computationally constrained object such as a smart card. In both cases
the involvement of the constrained object in the creation of the presentation is
essential, but the amount of operations it must perform does not depend on the
size of the credential and of the attributes to disclose, and the authors try to
keep it as small as possible. Protocols in which the credential is shared between a
device (e.g. smartphone) and a server or a blockchain have also been considered
in [LHAT20,MY24].

In our work, we describe a protocol which allows the storage and the pre-
sentation of credentials over an arbitrary number of devices, with an arbitrary
threshold of them needed to present the credentials. Each party is assumed to
have enough computational power to carry out the protocol, and we only require
that the adversary can corrupt a number of devices below the specified threshold
needed to present the credential.

3 Preliminaries

Notation. Let .[n] denote the set .{1, 2, . . . , n}, and let .x
$←− S denote sampling an

element . x from a set . S uniformly randomly. Let .x $←− A(i1, . . . , in) denote that . x
is the output of the probabilistic algorithm . A which takes in input .(i1, . . . , in).
Alternatively, we may make explicit the randomness used by . A by writing . x ←
A(i1, . . . , in;R). A deterministic protocol .V taking in input .(j1, . . . , jm) and
outputting . y is represented as .y ← V (j1, . . . , jm).

Security and Communication Model. We work in the synchronous model against
a static adversary that can actively corrupt up to .t−1 holders in the presentation
protocol. We assume point-to-point private communication between the issuer
and each holder. For the credential presentation protocol, we assume parties
have access to a private, authenticated broadcast channel between the set of
parties involved in the credential presentation protocol. Moreover, we assume
that each session is identified by a unique session identifier .ssid agreed upon by
the parties involved in the protocol execution, which is included in each message
sent between parties and in broadcasts.

Multi-Holder Anonymous Credentials from BBS Signatures 333

Private broadcast and synchrony are simplifying assumptions to describe a
simple .t-of-. n three-round protocol achieving presentation unlinkability and iden-
tifiable abort, but it is possible to loosen these requirements. The private channel
is needed to achieve the unlinkability of presentations, and we can remove the
broadcast channel using techniques similar to those used in [BLT+24] and in
[CKM23b] while preserving the unforgeability of presentations. Removing syn-
chrony is more tricky. Without either synchrony or an honest majority, we cannot
achieve identifiable abort or guarantee termination (see [CLOS02,CL17]). How-
ever, in the asynchronous setting we can still achieve selective abort, meaning
that the adversary can choose which executions produce output. The adversary
is not able to produce dishonest presentations in either of these settings.

Bilinear Groups. A bilinear group (or pairing group) is a trio of groups
.(G1,G2,GT) with an efficient map (or pairing) operation .e : G1×G2 → GT, such
that (1) for any .x,∈ Zp and .y ∈ Zp, .e(gx1 , g

y
2) = e(g1, g2)

x·y and (2) .e(g1, g2) '= 1.
There are three types of pairings [GPS08]: type-1, in which .G1 = G2; type-2,
in which .G1 '= G2 and there exists an efficient isomorphism .ψ : G2 → G1; and
type-3, in which .G1 '= G2 and there does not exist an efficient isomorphism . ψ.

Secret Sharing. A classic technique to create a .t-of-. n secret sharing of a value
. v is Shamir’s secret sharing [Sha79]: a dealer samples a random .(t − 1)-degree
polynomial .p(·) such that .p(0) = v and gives each party .Pi their own point
on the polynomial .p(i). Given at least . t points, Lagrange interpolation can
be used to reconstruct . p and retrieve . v. We use .Share(t, n, v) to denote the
dealer’s algorithm for generating a .t-of-. n Shamir secret sharing of . v. That is,
.{p(i)}i∈[n]

$←− Share(t, n, v), where .p(0) = v. We also make use of verifiable secret
sharing (VSS), a variant of secret sharing which considers a possibly corrupt
dealer who may distribute shares that do not correspond to a valid sharing of
a value. VSS allows parties to verify that their received shares correspond to a
valid sharing of some value . v.

Hardness Assumptions. We recall hardness assumptions .BBS and our construc-
tion rely on: the discrete logarithm (.DL) assumption and the .q-strong Diffie-
Hellman (.qSDH) assumption.

Definition 1 (Discrete logarithm assumption). Let .pp ← (G, p, g) where
.G is a cyclic groups of prime order . p with generator . g. The discrete logarithm
(.DL) assumption holds in .G if for any PPT adversary . A

. Pr[A(pp, g, gx) = x)] ≤ negl(λ)

where .x $←− Zp, (g, gx) ∈ G2 and . κ is the security parameter.

Definition 2 (.q-Strong Diffie-Hellman assumption [BB08]). Let .G1 and
.G2 be two cyclic groups of prime order . p with generators .g1 and . g2, respectively.

334 A. Flamini et al.

The .q-Strong Diffie-Hellman (.qSDH) assumption holds in .(G1,G2) if for any
PPT adversary . A

. Pr[A(G1,G2, g1, {g(x
i)

1 }i∈[q], g2, g
x
2) = (c, g

1
x+c

1)] ≤ negl(λ)

where .(g1, {g(x
i)

1 }i∈[q], g2, g
x
2) ∈ Gq+1

1 × G2
2 and . λ is the security parameter.

3.1 .BBS Signatures

The .BBS anonymous credential scheme presented by Tessaro and Zhu [TZ23] is
one of the pillars of our work. The authors revisit the security analysis of the
.BBS signature [BBS04] and provide a novel protocol to prove possession of a
credential.

The idea of using .BBS signatures [BBS04] to generate anonymous credentials
was initially proposed by Camenisch and Lysyanskaya in [CL04, Section 5], and
a slightly modified version known as .BBS+ was studied and proven unforgeable
by [ASM06,CDL16]. [TZ23] later showed the modification is not needed for
unforgeability and propose a protocol for proof of possession (which could be
applied also to .BBS+ signatures) which produces proofs smaller in size.

Definition 3 (.BBS signature scheme [BBS04,CL04]). The algorithms defin-
ing the .BBS digital signature are the following:

– .PgenBBS(κ). Let .G1 = 〈g1〉,G2 = 〈g2〉 and .GT be groups of prime order . p,
and .e : G1×G2 → GT be the pairing operation. Sample .h1, . . . , hm

$←− G1 and
set the set of public parameters .pp ← (p,G1,G2,GT , e, g1, g2, h1, . . . , hm).

– .KGenBBS(pp). Sample a random .x
$←− Zp. Compute .X2 = gx2 , and set .sk ← x,

and .pk ← X2.
– .SignBBS(pp, sk, (a1, . . . , am)). Compute .C(a) = g1

∏m
i=1 h

ai
i . Randomly gen-

erate .e $←− Zp and compute .A = C(a)
1

e+x . Output the pair .(A, e) ∈ G1 × Zp.
– .VerifyBBS(pp, pk, (A, e),a). Set .C(a) = g1

∏m
i=1 h

ai
i and check that

.e(A,X2ge2) = e(C(a), g2), or equivalently

.e(A,X2) = e(C(a)A−e, g2). (1)

Lemma 1 ([TZ23, Theorem 1]). The .BBS signature scheme is strongly
unforgeable against chosen messages under the .qSDH assumption.

Zero-Knowledge Proofs of Knowledge for .BBS Signatures. A few efficient
zero-knowledge proofs of knowledge for .BBS signatures are given by [TZ23].
We recall for convenience the protocol for Partial Disclosure given in [TZ23,
Section 5.2] in the full version of this paper [FLL24, Appendix B, Protocol 4].

If we assume that the issuer only issues credentials containing .BBS signatures
generated according to Definition 3, this protocol is a proof of knowledge of a
.BBS signature and allows the prover to reveal some of the attributes signed in

Multi-Holder Anonymous Credentials from BBS Signatures 335

it. We refer to the set of revealed attributes of the signature with the symbol
.Rev ⊆ [m], and to the hidden attribute with the symbol .Hid = [m] \ Rev.

At a high level, the prover first randomizes the signature material and then
executes a sigma protocol for linear relations. The verifier then checks that the
randomized signature material is consistent with the public key of the signer . pk,
the sigma protocol for linear relations produced a valid response, and that the
.BBS verification algorithm verifies for the randomized signature material (i.e.,
.e(A,X2) = e(B, g2)).

Non-interactive and Fresh Proofs of Knowledge. To present in a non-interactive
way a .BBS credential, a sigma protocol to prove knowledge of the credential (see
the full version [FLL24, Figure 2]) is made non-interactive by applying the Fiat-
Shamir transform. Moreover, in order to be sure that the proof of knowledge of
the credential is fresh (i.e. has been created after the session with the verifier has
been opened), the verifier sends a random nonce .nonce that the prover incorpo-
rates into the proof. For completeness, we explicitly describe the presentation
algorithm and the verification in the full version [FLL24, Appendix B, Fig. 3]

4 Multi-holder Anonymous Credentials

In this section we introduce the concept of a Multi-Holder Anonymous Credential
(MHAC) scheme. At high level, a MHAC scheme allows an issuer to issue shares
.credi of a credential to multiple holders .Pi, i ∈ [n]. Then, if at least a threshold
. t of the holders agree to present the credential, they can execute a multi-party
protocol which returns a valid presentation .pres of the credential. However, with-
out the participation of at least . t holders, they are unable to produce a valid
presentation.

Definition 4 (Multi-holder anonymous credential scheme) A MHAC
scheme consists of the following algorithms:

– Issuer setup algorithm:

. IssSetup(κ) $−→ (pp, (pk, sk)).

This algorithm generates public parameters .pp (e.g. the number of attributes
. m) and the issuer key pair .(pk, sk);

– Multi-holder credential issuing protocol:

. CredIss(pp, sk, t, n, {Pi}i∈[n], {ai}i∈[m],Prv)
$−→ {credi}i∈[n].

This protocol is executed by the issuer (possibly interacting with the holders
.Pi, i ∈ [n]) to generate shares .{credi}i∈[n] of a credential with threshold . t for
attributes .{aj}j∈[m], where the attributes .{aj}j∈Prv,Prv ⊆ [m] are “private”
and not necessarily known in the clear to all holders.

336 A. Flamini et al.

– Multi-holder presentation protocol:

. CredPres(pp, pk, t, {(Pi, credi)}i∈S , {ai}i∈Rev, nonce)
$−→ pres.

This protocol is executed by a set .{Pi}i∈S of . t holders who jointly create a
presentation .pres for .nonce and public attributes .{ai}i∈Rev.

– Multi-holder presentation verification algorithm:

. VfPres(pp, pk, nonce, {ai}i∈Rev, pres) → 0/1.

This algorithm is executed by the verifier who checks if .pres is a valid presen-
tation (for .nonce and .{ai}i∈Rev) of a credential .cred issued by .pk such that, if
.{a′

j}j∈[m] are the attributes included in .cred, then .∀j ∈ Rev, aj = a′
j.

Now we introduce a special class of MHAC scheme which is of practical
interest: a MHAC scheme compatible with secure anonymous credential schemes.
We say that a MHAC scheme is compatible with an anonymous credential scheme
if the MHAC is built on top of an existing anonymous credential scheme in a
way that:

– an anonymous credential can be reconstructed from . t credential shares. There-
fore, it is worth defining an algorithm . ReconstructCred({credi}i∈S), |S| ≥ t
that returns the reconstructed credential .cred of the underlying anonymous
credential scheme, if the shares .{credi}i∈S are consistent and valid shares.

– the presentation .pres produced by .CredPres has the same structure and is
verified in the same way as in the underlying anonymous credential scheme.
Moreover, as long as all the holders participating to the presentation pro-
tocol are honest, the distribution of the output .pres is the same as for the
distribution of the presentations of the anonymous credential scheme.

Note that it is straightforward to convert between classic anonymous creden-
tials and their compatible multi-holder variants.

1. To convert a multi-holder version into the single holder, the issuer can sim-
ply send . t shares to a single party execute the algorithm .ReconstructCred to
generate the associated credential and generate the presentation on its own.

2. To convert from a single holder credential to a multi-holder credential, the
party holding the full credential acts as the issuer and uses the issuing algo-
rithm to split the credential into shares. It distributes the shares to the other
holders and keeps only the share it generated for itself (i.e., it deletes the full
credential). In this case, it is desirable that the secret-sharing specified by the
MHAC scheme does not rely on specific restrictions on the structure of the
underlying single holder credential that, in some cases, might not be satisfied.
For example, if the secret sharing is performed by distributing an attribute
. s that is always kept hidden, then it will not be possible for a holder to
distribute over multiple devices a credential that is not provided of this extra
attribute.

Multi-Holder Anonymous Credentials from BBS Signatures 337

Remark 1. In the above definition, we describe an issue algorithm that outputs
credential shares based on credential attributes it takes as input. However, an
issuer may be adversarial and the user might want to ensure that the adversary
does not learn anything about the private attributes being certified (even while
ensuring that these attributes satisfy a particular policy). Thus, as part of our
construction, we give a protocol that securely implements the issue algorithm in
a way that ensures the security of the private attributes.

5 Security Definitions

In this section we define the security notions associated to MHAC schemes,
namely correctness (Sect. 5.1), unlinkability (Sect. 5.2), presentation with identi-
fiable abort (Sect. 5.3), and concurrent unforgeability of presentations (Sect. 5.4).

Definition 5 (Secure MHAC scheme). We say that a MHAC scheme is
secure if it satisfies the notions of correctness (Definition 6), unlinkability (Defi-
nitions 7 and 8), identifiable abort (Definition 10), and concurrent unforgeability
of presentations (Definition 11).

5.1 Correctness

Intuitively, correctness states that running credential presentation with an hon-
estly generated credential will always verify.

Definition 6 (Correctness). A MHAC scheme is correct if for values
.nonce, {ai}i∈[m],Rev ⊆ [m] \ Prv, S ⊆ [n], |S| = t, t ≤ n, it holds that

. 1 ← VfPres(pp, pk, nonce, {ai}i∈Rev, pres)

where

. (pp, (pk, sk)) $←− IssSetup(κ)

{credi}i∈[n]
$←− CredIss(pp, sk, t, n, {ai}i∈[m],Prv)

pres
$←− CredPres(pp, pk, t, {(Pi, credi)}i∈S , {ai}i∈Rev, nonce)

5.2 Unlinkability

When defining unlinkability, there are two general notions: (1) an adversary
cannot “link” usage of the same credential across different presentations and (2) if
a credential contains private attributes (i.e., attributes not known to all holders),
an adversary cannot learn any information about these private attributes from
presentations.

338 A. Flamini et al.

Unlinkability of Presentations. This first notion of unlinkability across cre-
dential presentations we can only hope to capture in the setting where the cre-
dential presentation is generated by all honest parties. Intuitively, unlinkability
of a credential across different presentations cannot be realized if an adversary
participates in the presentation because it inherently must know the credential
in order to participate in the protocol. Moreover, to convince another party that
a presentation the adversary took part in corresponds to a particular credential,
the adversary can reveal the credential and the randomness it used to produce
the transcript.

Experiment 1 (.Expunlink A (κ) —MHAC Presentation Unlinkability).

1. The adversary .A generates a set of public parameters . pp, an issuer public
key . pk, and a multi-holder credential .{credi}i∈[n] on attributes .{ai}i∈[m] of
its choosing issued under . pk. The adversary sends this information to the
challenger . C together with the information related to the presentation that . C
must produce, namely .nonce, {ai}i∈Rev ⊆ {ai}i∈[m].

2. . C runs .pres ← CredPres(pp, pk, t, {(Pi, credi)i∈S , {ai}i∈Rev, nonce}) with a set
.S ⊆ [n], .|S| = t and records the transcript of the protocol execution as . T .
. C then checks that .VfPres(pp, pk, nonce, {ai}i∈Rev, pres) → 1 . If the presen-
tation does not verify, . C aborts and the experiment outputs a random bit
. b5. Otherwise, . C samples uniformly at random a bit . b. If .b = 1, . C over-
writes .(pres, T) with the output from a simulated presentation as . (pres, T) ←
SimCredPres(pp, pk, t, τ, {ai}i∈Rev, nonce). Otherwise, . C keeps .(pres, T) as is.

3. . C sends .(pres, T) to the adversary . A.
4. If .b = b′, the experiments outputs . 1. Otherwise the experiment outputs . 0.

Definition 7 (Unlinkability of MHAC presentations). We say that
the presentations of a MHAC scheme are unlinkable if there exist an algo-
rithm .SimCredPres(pp, pk, t, {ai}i∈Rev, nonce) such that an adversary .A can win
.Expunlink A (κ) with at most negligible advantage. That is,
.

∣∣∣Pr
[
Expunlink A (κ) = 1

]
− 1 2

∣∣∣ ≤ ν(κ), where .ν(κ) is negligible in . κ.

Unlinkability of Private Attributes. For settings in which some attributes
are not known to all holders, we introduce another notion of unlinkability to
capture that an adversary does not learn anything about these secret attributes
when less than . t holders are corrupt. Note that these private attributes are
determined when the credential is issued and are always a subset of the attributes
that are hidden from the verifier.

Experiment 2. (.Expunlink-attr A (κ) —MHAC Unlinkability of Private
Attributes).
5 When the MHAC scheme is compatible with an anonymous credential scheme
(which is our main case of study), this step can be replaced by an instruction
to the challenger to verify the validity of the shares it is provided by executing
.ReconstructCred({credi}i∈[n]) → cred and verifying the validity of .cred.

Multi-Holder Anonymous Credentials from BBS Signatures 339

1. The challenger . C runs .(pp, (pk, sk)) $←− IssSetup(κ) and sends .(pp, (pk, sk)) to
the adversary . A.

2. .A chooses and sends to . C:
– a set of attributes .a1, . . . , am−2;
– two challenge private attributes .a(0)m−1, a

(1)
m−1;

– A subset .cor ⊆ [n] of parties to corrupt, with .|cor| < t.
3. . C flips a coin .b $←− {0, 1} and runs .CredIss with .A honestly with private
attribute .a(b)m−1 and public attributes . a1, . . . , am−2

6. . C plays the role of the
issuer and of the honest parties, and . C sends to .A its shares of credential
.{credi}i∈cor.

4. The adversary may choose to run .CredPres a polynomial number of times
with sets .S ⊆ [n] of size . t, distinct values .nonce, and sets .Rev of its choosing
(which do not contain the private attribute), with . C playing the role of the
honest parties.

5. At the end, .A sends . C its guess . b′. If .b = b′, the experiment outputs . 1,
otherwise the experiment outputs . 0.

Definition 8 (Unlinkability of Private Attributes). We say that the
private attributes of a MHAC scheme are unlinkable if any PPT adver-
sary .A can win .Expunlink-attr A (κ) with at most negligible advantage. That is,
.

∣∣∣Pr
[
Expunlink-attr A (κ) = 1

]
− 1 2

∣∣∣ ≤ ν(κ), where .ν(κ) is negligible in . κ.
Remark 2. Note that Experiment 1 and 2 could be modified to allow the chal-
lenger to generate the public parameters using a trapdoor and send them, with
the trapdoor, to the adversary. However, our definition, which instructs the chal-
lenger to generate the parameters honestly (Experiment 2), or allows the adver-
sary to choose them (Experiment 1), is stronger and encompasses its variant
that involves using trapdoors in the parameter generation.
Remark 3. One might ask what the motivation is behind having private
attributes not known to holders. The private attributes might be attributes
that are sometimes revealed, but only in extremely rare circumstances. In these
circumstances, the holders reconstruct the private attribute, reveal it, prove its
correctness, and then erase it. For private attributes that are never revealed, we
can consider a multi-authority scenario in which issuers use a private attribute
to ensure that multiple credentials are issued to the same entity. For example,
one issuer may be responsible for physically making sure that a user’s holder
devices meet an appropriate measure of hardware security; a private attribute
can be created by these devices at the time this “device binding” credential is
issued. Another issuer can incorporate the secret device binding attribute into
the credential it issues to take advantage of the hardware security guarantees
that comes with it: the holders can only successfully prove knowledge of this
attribute if they are using the appropriate hardware. In this case, the value of
the attribute can never be reconstructed. This use is specific to multi-authority
case which we do not formally address in this paper, however.
6 Note that the challenger . C, which in this experiment acts as an issuer, knows the
value of the private attribute. This is not always true in general, in fact a private
attribute might be unknown both to the holders and to the issuer.

340 A. Flamini et al.

5.3 Presentation with Identifiable Abort

We adapt the notion of identifiable abort [IOZ14] to credential presentations.
Intuitively, in our setting, we wish to capture that a protocol satisfying iden-
tifiable abort allows the protocol participants to detect malicious behavior by
other participants which would prevent the creation of a valid presentation. Our
definition is weaker than what is typically used in general multiparty computa-
tion [IOZ14, Appendix B] because we do not aim to realize any functionality. We
only want to be assured that the protocol does not abort if all the participant
are honest, and that when the protocol aborts, at least a corrupted participant
is detected.

We do that by defining the notion of an identifiable abort detector algorithm
which is an algorithm run by each participant .Pi of a multi-party protocol . Π
and allows to determine if one of the other participants .Pj has misbehaved.

Definition 9 (Identifiable Abort Detector Algorithm). Let .Π be the
multi-party protocol and let .{Pi}i∈S be the set of participants to a protocol execu-
tion. An identifiable abort detector .W is an algorithm which can be executed by
any party .Pi, i ∈ S and is a “wrapper” interactive algorithm that relays messages
between .Π algorithm run by .Pi and the other participants in . S. Essentially,
instead of executing protocol . Π, party .Pi executes .W ◦ Π which is defined as
follows:
– .W is initialized by the public inputs to the protocol, and it keeps state (on
a special state tape) after processing each message exchanged between .Π and
. Pi.

– Each time .Π sends a message .m to . Pi, .m is forwarded to . W ’s input tape
before reaching . Pi. . W ’s processing of .m results in either:
1. forwarding .m to . Pi: more precisely, .W clears its input tape, updates its

state tape, and outputs .(message,m) on its output tape, resulting in the
message going through. In this case .Pi keeps executing . Π;

2. aborting the protocol and identifying another participant, . Pj, that deviated
from the prescribed protocol: more precisely, .W writes .(abort, j) for some
.j ∈ S on its output tape. In this case .Pi aborts the protocol and a message
.(abort, j) is broadcast to . Π7.

Put another way, .W observes the incoming communication of a party . Pi

and has the option to either let the communication through, or to abort the
protocol; each time it chooses to abort, it also accuses another participant, . j,
of maliciously deviating from the protocol. Whenever .W outputs .(abort, j) for
some .j ∈ S, it causes .Pi to abort the protocol as well.

Definition 10 (Presentation with identifiable abort). Let .CredPres′ be a
multi-holder credential presentation algorithm. If there exists an efficient identi-
fiable abort detector algorithm .W for .CredPres′ such that the following properties
hold for the composed algorithm .CredPres = W ◦ CredPres′:
7 This instance covers the case where another participant has output a message
.(abort, k).

Multi-Holder Anonymous Credentials from BBS Signatures 341

– Correctness: Whenever .CredPres never instructs a party to abort, the output
.pres of .CredPres verifies, i.e. .VfPres(pp, pk, nonce, {ai}i∈Rev, pres) = 1.

– Identifiability: Whenever .CredPres outputs a message is .(abort, j) for some
.j ∈ S, .Pj did not follow the protocol instructions and is therefore corrupt.

We say that .CredPres satisfies identifiable abort.

Remark 4. Note that this property is not concerned with assuring that only a
legitimate holder can carry out the presentation protocol without being detected.
Legitimacy of the credential being presented is addressed in the unforgeability
of presentations property described in Sect. 5.4. For identifiable abort, we only
want to be assured that if a holder would cause the protocol to output an invalid
presentation, the honest parties can identify the this holder. Conversely, if the
algorithm does not abort, the presentation will be valid.

5.4 Concurrent Unforgeability of Presentations

We describe an experiment defining the unforgeability of a multi-holder anony-
mous credential presentation algorithm .CredPres. The experiment resembles the
security experiment for threshold signature schemes. We can think of the shares
of the .t-of-. n multi-holder credential as shares of the signing key in a threshold
signature scheme. The message that gets signed is the nonce .nonce provided by
the verifier before the presentation is created.

If the adversary has . t or more shares of a .t-of-. n multi-holder anonymous
credential, we will write that the adversary is given a “full credential”, since with
. t shares the adversary can produce presentations on its own.

The experiment is divided in three phases: a Setup phase, a Training phase
and a Forgery phase. In the Setup phase, the challenger generates the parameters
and credential issuing keys. During the Training phase, the forger is allowed
polynomially many queries to an issuing oracle and a credential presentation
oracle. There are two types of issuing queries: (1) a query for a full credential
where the adversary gets all the shares of the credential and can present it
on its own from now on; and (2) a query for a “target” credential for which the
adversary is only provided a subset of fewer than . t shares. We limit the adversary
to just one such target query; this is without loss of generality (see Observation 4
below).

Finally, in the Forgery phase, the forger outputs a tuple consisting of a nonce,
attributes, and credential presentation. If this tuple verifies and the contents
of the tuple do not correspond to a credential produced by the issuing oracle
or a presentation output by the presentation oracle, then the forger wins the
experiment. Otherwise, the forger loses.

The experiment .Expc-uf-pres A is given below and summarized in the full version
of this paper [FSS+24, Figure 5].

Experiment 3 (.Expc-uf-pres F —Concurrent unforgeability of MHAC pre-
sentation).

342 A. Flamini et al.

Setup Phase. The challenger executes .IssSetup(κ), which returns the set of public
parameters .pp and a key pair .(sk, pk). The challenger sends .(pp, pk) to . F .

Training Phase. The forger .F has access to two oracles, .Oiss and .Opres, which it
may query in the following ways:

– .F can query an issuing oracle .Oiss for a polynomial number .qI of full cre-
dentials .cred for attributes .{ai}i∈[m] of its choice, and one single query for a
partial credential (target credential) .{credi}i∈cor for .{ai}i∈[m]. 8
• Issuance of full credentials: on input the set of attributes .{ai}i∈[m] cho-

sen by . F , .Oiss provides .F with a credential . cred = {credi}i∈[n]
$←−

CredIss(pp, sk, n, t, {ai}i∈[m],Prv) on these attributes.
.Oiss stores a record .(cred) in a credential table .CT.

• Issuance of the target credential: .F gives as input to .Oiss the tuple
.({ai}i∈[m], t, n, cor) where .{ai}i∈[m] are attributes chosen by .F to include
in the credential, .(t, n) are the parameters of the secret sharing of the
credential, and .cor ⊂ [n], |cor| < t, are the parties .F wants to corrupt.
.Oiss computes .CredIss(pp, sk, t, n, {ai}i∈[m],Prv) → {credi}i∈[n] and gives
to .F only the shares corresponding to the parties in .cor.
.Oiss stores the value .targetCred ← ({credi}i∈[n], n, t, cor).

– .F can query a presentation oracle .Opres for a polynomial number .qP of pre-
sentations of the target credential specifying the nonce .nonce to use and the
attributes .{ai}i∈Rev to reveal 9. We allow the adversary to open concurrently
many sessions of the presentation protocol for the target credential and inter-
leave messages between different sessions. Therefore, to distinguish sessions,
.F includes a unique session identifier .ssid to messages sent to .Opres. To sim-
plify the description, we will omit .ssid which is included in every message
exchanged between the holders.
• Presentation of the target credential .targetCred: .F gives in input to . Opres

the tuple .(nonce, {ai}i∈Rev, hon) which specifies the nonce for the presen-
tation, the set of attributes to reveal and the set of parties . hon ⊆ [n] \ cor
s.t. .|cor|+ |hon| = t.
.Opres, controlling .hon, interacts with . F , controlling .cor, in the execution
of .CredPres({Pi, credi}i∈cor∪hon, {ai}i∈Rev, nonce, pp, pk). If .Opres sends its
last protocol message associated to that specific session, it stores in the
presentation table .PT the record . (nonce, {ai}i∈Rev)10.

8 In this experiment we always assume that the adversary knows all the attributes
included in the credentials it is issued, therefore we do not need to mention the
private attributes.

9 Note that .F can generate presentations for the full credentials on its own, without
the help of any oracle, and since it can query for the issuance of full credentials, we
omit the ability to query presentations of credentials it does not control.

10
.Opres does not store the presentation output of the protocol execution because it
might not learn its value since in the protocol execution it always sends its messages
first.

Multi-Holder Anonymous Credentials from BBS Signatures 343

Forgery Phase. At the end of the training, .F produces a forgery
.(nonce%, {a%

i }i∈Rev" , pres%) given by a presentation .pres% for . (nonce%, {a%
i }i∈Rev")

of its choice.
.F wins the experiment if .VfPres(nonce%, {a%

i }i∈Rev, pres%) = 1 and the follow-
ing win conditions related to the queries made by .F are satisfied:

– For every record .(nonce, {ai}i∈Rev) in the presentation table .PT:
.(nonce%, {a%

i }i∈Rev") '= (nonce, {ai}i∈Rev).
This check guarantees that the forgery is not a forgery generated in a presen-
tation query of the target credential.

– For every record .cred in .CT, being .{ai}i∈[m] the attributes associated to .cred,
.{ai}i∈Rev" '= {a%

i }i∈Rev" .
This guarantees that the forgery is not derived from a full credential that has
been issued by .Oiss.

Observation 1. In this security game, we consider the issuance of credentials
as an algorithm which is executed by the issuer given the adversary’s input
.({ai}i∈[m], t, n, cor). However, in general, the issuing of credentials might happen
via an issuing protocol which allows an adversary to keep some attributes hidden
from the issuer, so we should allow the adversary to make queries for credentials
without sending all the attributes in the clear as we do. However, this kind of
query can be omitted in the security definition if we require issuing protocols that
always allow the challenger of the experiment (acting on behalf of the issuer) to
extract the attribute values, even when the adversary tries to keep them hidden,
for example by means of straight-line extractable NIZKPs.

Definition 11 (Concurrent unforgeability of MHAC presentations).
We say that a MHAC scheme has concurrently unforgeable presentations

if for any PPT adversary . F , .F wins with at most negligible probability in
.Expc-uf-pres F (κ). That is, .Pr

[
Expc-uf-pres F (κ) = 1

]
≤ ν(κ), where .ν(κ) is negligible

in . κ.

Observation 2. In practical scenarios, the nonce is sent to the provers by a ver-
ifier who wants to receive a fresh presentation. Therefore, if a presentation pro-
tocol is unforgeable, i.e. the adversary can not forge a presentation for attributes
.{ai}i∈Rev and a nonce .nonce of its choice, then it will not succeed in forging a
presentation for a nonce chosen by the verifier.

Observation 3. We remark that our unforgeability experiment (Experiment 3)
also captures the standard unforgeability for anonymous credentials. In our def-
inition, an adversary can win Experiment 3 by either producing a presentation
forgery of the target credential or by producing a presentation for a (full) creden-
tial that was never queried by the adversary. An adversary that forges credentials
in the traditional sense wins the unforgeability experiment via the latter condi-
tion.

344 A. Flamini et al.

Observation 4. Note that we could allow the adversary of the unforgeability
game to receive a polynomial number .qIp = qIp(κ) of partial credentials. It is
easy to see that a scheme secure according to our definition of security is secure
also according to this stronger notion of security. However, the reduction to the
cryptographic assumption would reduce its tightness by a factor . 1

qIp
, which is

non-negligible in . κ. This would impact the dimension of the parameters when it
comes the time to instantiate the scheme.

6 .BBS Multi-holder Anonymous Credentials

In this section we describe a secure MHAC scheme which is compatible with
the .BBS anonymous credential scheme [TZ23]. According to the definition of
MHAC scheme compatible with an anonymous credential scheme, the credential
issuance algorithm consists in computing a secret sharing of a .BBS credential,
and the presentation structure is the same as the one presented by Tessaro and
Zhu in [TZ23, Section 5].

Design Principle. Every issuer can decide the structure, or schema, of the cre-
dentials it issues, determining, for example, (1) the number of attributes, which
could even be zero, (2) the semantic meaning of the attributes and (3) the pos-
sible values associated with each attribute, ranging from the binary value to all
. Zp. As we have mentioned in Sect. 4, it is desirable to design a MHAC scheme
compatible with an anonymous credential scheme that does not require a specific
structure of the underlying anonymous credential. This, to take full advantage of
the compatibility of the MHAC scheme and to consistently ensure that a holder
can convert any credential it is provided into a multi-holder credential. The only
way to achieve this, and to have a secret sharing completely independent of the
credential structure, is to secret share the signature component, which in this
work is done by distributing the value . e of the .BBS signature .(A, e).

Private Attributes. Our construction (optionally) allows private attributes; they
are secret-shared by the holders. Attributes not known in the clear are denoted
by the set .Prv, and attributes known by all holders are denoted as .Pub. Though
our protocols are described in terms of .t-of-. n Shamir secret sharing, replacing
the sharing algorithm enables using different access structures (e.g., enforcing
that one party always participates in presentations). This extension is given in
Sect. 6.4.

6.1 Credential Issuing
In this section, we describe protocols involving the issuer. The issuer setup (Algo-
rithm 1) only needs to be run once locally by the issuer.

Algorithm 1 (Issuer setup algorithm).

. IssSetupBBS(κ)
$−→ (pp, (pk, sk))

The algorithm .IssSetupBBS(κ) works as follows.

Multi-Holder Anonymous Credentials from BBS Signatures 345

1. . PgenBBS(κ) → pp = (p,G1,G2,GT , e, g1, g2, h1, . . . , hm)
2. . KGenBBS(pp) → (sk, pk) = (x, gx2)
3. Output . (pp, (pk, sk))

The credential issuance protocol can be run by the issuer with any set of . n
holders. We give two variants of credential issuance .CredIssBBS: one for issuing a
credential when there are no private attributes (Protocol 1) and another when
there are private attributes (Protocol 2).

Credential Issuance without Private Attributes. In the case where all
attributes are known in the clear, the holders simply supply the attributes
to the issuer, and the issuer can produce the shares of the credential locally.
Upon receiving attributes .{ai}i∈[m], the issuer creates a credential as follows.

Protocol 1. CredIssBBS(pp, sk, {ai}i∈[m]) — Multi-holder issuing protocol
(without private attributes)

1. Compute a BBS signature as (A, e) $←− SignBBS(sk, {ai}i∈[m])

2. {e(i)}i∈[n]
$←− Share(t, n, e)

3. For i ∈ [n], set credi = (A, e(i) , {Dj}j∈[n]\{i}, ({aj}j∈[m], ⊥)) with Dj =
A−e(j) and output credi to party Pi.

Credential Issuance with Private Attributes. In the case where some
attributes may not be known to all holders, each party’s credential will have
a share of each private attribute rather than the full attribute itself. Let . Prv
denote the set of private attributes and .Pub the set of attributes known by
each holder.

Our starting point here is multi-base Pedersen verifiable secret sharing (VSS)
[Ped91] 11, for example as presented by Cachin et al. [CKLS02] (but with thresh-
old .t < n/2 since we are in the synchronous case). That is, for each private
attribute .aj ∈ Prv, each party . Pi’s share of the credential contains a Shamir
secret share .a(i)j ; additionally, the .mth attribute .am is always a private attribute
that is meant to serve as the randomness for Pedersen VSS, so .Pi also has a
Shamir share of it, .a(i)m .

To simplify our notation, we will include .m in the set of private attributes
.Prv and .[m] = Prv ∪ Pub.
11 The private attributes may not be known by the holders and may not be known even

by the issuer. If the holders do not know the private attribute, the Pedersen VSS
can be executed starting from a value known by the issuer who divides it in shares,
or by the holders who generate the secret sharing of an unknown attribute [Ped91,
Section 5.2], and in this case not even the issuer will know this value.

346 A. Flamini et al.

Finally, for each . Pi, a share of multi-base Pedersen commitment . Ci =
∏

j∈Prv h
a(i)
j

j to these attribute shares is known. We assume this was set up prior
to the protocol’s execution and that each holder has also published a straight-line
extractable [Fis05,KS22,LR22,CDG+24] proof of knowledge .πi of these secret
shares.

To create a credential with private attributes, the issuer performs the follow-
ing:

Protocol 2. CredIssBBS(pp, sk, {πi}i∈[n], {Ci}i∈[n], Prv, {ai}i∈Pub) — Multi-
holder issuing protocol (with private attributes)

1. For each Pi, verify proof πi corresponding to each Ci, and verify that
{Ci}i∈[n] are consistent with a Pedersen VSS of C =

∏
j∈Prv h aj

j .
2. Compute C(a) = g1C

∏
j∈Pub h aj

j . Pick a random e and compute A =
C(a)1/(x+e).

3. Generate a secret sharing of e, {e(i)}i∈[n]
$←− Share(t, n, e).

4. For all k ∈ [n], compute

. Dk = CkA
−e(k)

=
∏

j∈Prv

h
a(k)
j

j A−e(k)
,

then set, for all i ∈ [n]

. credi = (A, e(i), {Dk}k∈[n]\{i}, ({aj}j∈Pub, {a(i)j }j∈Prv)),

and output credi to party Pi.

Observation 5. Note that, in case one of the private attributes is never revealed
and it is secret-shared using a .t-out-of-. n Shamir secret sharing, it is not necessary

to secret-share also the value . e. In that case, the values .Di =
∏

j∈Prv h
a(k)
j

j and
.credi = (A, e, {Dk}k∈[n]\{i}, ({aj}j∈Pub, {a(i)j }j∈Prv)).

However, to keep the presentation of the scheme consistent with the case
where private attributes (1) are not used, or (2) are distributed in a way dif-
ferent from the .(t, n)−Shamir secret sharing, or (3) might be revealed in rare
circumstances (see Remark 3), in our description of the protocol we secret-share
also the value . e.

6.2 Multi-holder Presentation
An overview of the presentation protocol is depicted in the full version of this
paper in [FLL24, Appendix C, Fig. 4]. We recall that the attributes revealed,

Multi-Holder Anonymous Credentials from BBS Signatures 347

denoted as .Rev, is a subset of the public attributes .Pub. The remaining attributes
not revealed to the verifier are denoted as .Hid. An extension for handling
attributes shared only among a subset of .n′ < n holders is described in Sect. 6.4.

Every presentation protocol execution is associated with a unique session
identifier .ssid which is included in every message sent by the participants over
the private broadcast channel, therefore, we will omit it in our description.

This protocol is run by a subset .{Pi}i∈S ⊆ {P1, . . . ,Pn}, |S| = t, with each
party .Pi ∈ S holding a share of a credential

. credi = (A, e(i), {Dj}j∈[n]\{i}, ({aj}j∈Pub, {a(i)j }j∈Prv)).

Protocol 3. CredPresBBS — Multi-holder presentation protocol

Let j ∈ S refer to a designated “primary party” Pj . Upon receiving the nonce
nonce from a verifier to present a credential with a set of revealed attributes
a′ = {aj}j∈Rev, parties Pi for i ∈ S produce the credential presentation as
follows.

Signature material randomization phase. Parties begin the presenta-
tion by first producing randomness.
1. The primary Pj first samples an element r $←− Zp broadcasts r to

every other party in S.
2. Every party Pi for i ∈ S computes:

. A = Ar, D =
∏

k∈S

Dk
λS,k(0), C(a′) = g1

∏

j∈Rev

h
aj

j ,

B̃j =
(
C(a′) ·

(∏

k∈Hid\Prv

hak
k

)
·DλS,j(0)

j

)r
, B̃i =

(
D

λS,i(0)
i

)r
,

B =
∏

i∈S

B̃i =
(
C(a′) ·

(∏

k∈Hid\Prv

hak
k

)
·D

)r
.

where λS,i(0) denotes the Lagrange coefficient for interpolating party
Pi’s share with the parties indexed by S. Actually, B can be computed
only by the primary party.

Sigma protocol execution phase. The participants next jointly gener-
ate a proof of knowledge of a representation of B w.r.t. C(a′), {hi}i∈Hid, A.
3. Parties begin the proof by doing the following:

– Pj samples α(j) , {β (j) i }i∈Hid, γ(j) $←− Zp and computes Uj =

C(a′)α
(j) ·

∏
i∈Hid h β

(j)
i

i · A γ
(j)

.
– Every other party Pk for k ∈ S \ {j} instead samples

{β (k) i }i∈Prv, γ(k) $←− Zp and computes Uk =
∏

i∈Prv h β
(k)
i

i · A γ
(k)

.

348 A. Flamini et al.

All the participants Pi, for i ∈ S, then compute commitments to their
Ui as ,i = H,(ssid, nonce, Ui) and broadcast ,i to the other parties.

4. Upon receiving ,k from every other party k ∈ S \ {i}, each Pi opens
its commitment by broadcasting Ui to every other party.

5. For each Uk that party Pi receives from each Pk, for k ∈ S \{i}, if Uk
is not a valid opening for ,k, then Pi outputs (abort, k) and aborts.

6. For each k ∈ S, Pk computes:

. U =
∏

i∈S

Ui, ch = Hsig

(
ssid, nonce, U,A,B, {ai}i∈Rev

)
,

{
z(k)i

}

i∈Prv
=

{
β(k)
i + ch

(
r · a(k)i · λS,k(0)

)}

i∈Prv
,

z(k)e = γ(k) + ch
(
−e(k) · λS,k(0)

)

and broadcasts {z (k) i }i∈Prv and z (i) e .
The primary Pj additionally computes and broadcast

. z(j)r = αj + ch · r,
{
z(j)i

}

i∈Hid\Prv
=

{
β(j)
i + ch · (air)

}

i∈Hid\Prv

and broadcasts z (j) r , {z (j) i }i∈Hid\Prv.
7. Upon Pi receiving {zi}i∈Hid, z (j) e , z (j) r from the primary Pj , check

. Uj · B̃ch
j

?= C(a′)z
(j)
r ·

∏

i∈Hid

h
z(j)
i

i ·Az(j)
e .

If the equality does not hold, then Pi outputs (abort, j) and aborts.
Otherwise, upon receiving z (k) e , {z (k) i }i∈Prv from party Pk for k ∈
S \ {j}, check

. Uk · (B̃k)ch
?=

∏

i∈Prv

h
z(k)
i

i A
z(k)
e .

8. For each k ∈ S, party Pk computes

zr = z(j) r , {zi}i∈Hid\Prv =
{
z (j) i

}

i∈Hid\Prv
,

{zi}i∈Prv =

{
∑

i′∈S

z (i
′)

i

}

i∈Prv

, ze =
∑

i∈S

z(i) e .

where j corresponds to the index of the primary. Pk sets

. pres ←
(
A,B, ch, (zr, {zi}i∈Hid , ze)

)

and outputs the tuple (nonce, pres) as the output of the protocol.

Multi-Holder Anonymous Credentials from BBS Signatures 349

Note that it is crucial to include the revealed attributes in the challenge
computation (Step 6) to avoid the principal revealing the attributes in a subset
of .Hid ∩ Pub different from the one agreed with the other parties participating
in the presentation protocol.

When distributing the value . e is unnecessary (see Observation 5), the presen-
tation protocol must be modified so that the principal carries out the creation
of the response corresponding to . A. This leads to a straightforward variant of
the presentation protocol whose security can be proved as an exercise.
Comparing Computational and Communication Cost to .BBS We can evaluate
the cost of our protocol as a function of the number . t of parties participating
in the protocol, hidden attributes . h in the presentation, of which . p are private
attributes .p < h, and the number of attributes . m. The principal party per-
forms 4 broadcasts and, omitting the computation of D, computes the following
exponentiations:

– in the second step: . 1 to compute . A, .(m − h) to compute .C(a′), .h − p+ 2 to
compute .B̃j , .t − 1 to compute all the .B̃i, i ∈ S \ {j};

– in the third step: .h+ 2 exponentiations to compute . Uj ;

for a total amount of .m+ h − p+ t+ 4 exponentiations
The other parties each perform only 3 broadcasts and computes the following

exponentiations:

– in the second step : . 1 to compute . A, .(m− h) to compute .C(a′), .h− p+ 2 to
compute .B̃j , .t − 1 to compute all the .B̃i, i ∈ S \ {j};

– in the third step: .p+ 1 exponentiations to compute .Uk;

for a total amount of .m+ t+ 3 exponentiations.
Part of these exponentiations are executed to perform the identifiable abort

checks; if we omit these checks, the number of exponentiations is reduced because
the party .Pi does not have to compute the values .B̃k for .k '= i.

The centralized case described in [TZ23] requires the following exponentia-
tions:

– 1 to compute .A = Ar;
– .m − h to compute .C(a′) and other .h+ 2 to compute . B;
– .h+ 2 to compute the proof of knowledge of a representation of . B.

For a total number of .m+ h+ 5 exponentiations.

6.3 Verification

Since our MHAC scheme is compatible with the .BBS anonymous credential
scheme, the verification algorithm is exactly the same as the one described in
[TZ23].

350 A. Flamini et al.

Algorithm 2 (Multi-holder presentation verification algorithm).

. VfPresBBS(pp, pk, nonce, {ai}i∈Rev, pres) → 0/1

Let .pres =
(
A,B, ch, (zr, {zi}i∈Hid , ze)

)
. The verifier runs the same verification

algorithm as in the centralized case [TZ23]:

. U ← B
−ch

C(a′)zr
∏

i∈Hid

hzi
i A

ze
,

ch
?= Hsig

(
ssid, nonce, U,A,B, {ai}i∈Rev

)
, e(A,X2)

?= e(B, g2).

If the relations hold, the verifier outputs . 1. Otherwise, outputs . 0.

6.4 Extensions

Flexible Presentation Subsets. Let us refer to any subset of holders who can
present a MHAC using their shares of credential as a presentation subset for the
given credential. In this work we have described a scheme where the attributes
.{aj}j∈Prv are shared among the holders in an homogeneous way using a .(t, n)-
Shamir secret sharing, so any subset of . t parties is a presentation subset.

This construction can be easily generalized, allowing the issuer to share one
attribute only among a subset of the holders (performing a .(t′, n′)- Shamir secret
sharing with .n′ < n), or even to a single holder (in this case, the cooperation of
this holder will be necessary to create the presentation). Therefore, the presen-
tation subsets can be any subset of holders that know enough shares for each
attribute. The participants will also be required to deterministically choose a
factorization of .B which allows them to generate the proof of knowledge of the
representation in a coordinated way.

Share Size Optimization. In the full version of this paper [FLL24, Appendix
H] we describe an optimization to the size of the shares of the credentials. As
currently given, the size of each credential share is linear in the number . n of
participants due to each party knowing the values .Di of every other group mem-
ber. This can be reduced by having the issuer give each party .Pi only its own
value .Di along with a signature .σi on .Di and some values binding .Di to the
multi-holder anonymous credential. In the first step of the presentation proto-
col, the participants broadcast their values . ,i together with the values . (Di,σi)
corresponding to their share and the issuer’s signature.

Distributing the Issuer. Note that while our issuing protocol (Protocol 1) is
described in terms of a single issuer, distributing the issuer can be achieved by
replacing computation of the BBS component (Steps 1. and 2.) with a distributed
protocol such as [DKL+23].

Multi-Holder Anonymous Credentials from BBS Signatures 351

7 Security Analysis

In this section we prove our .BBS MHAC scheme from Sect. 6 satisfies the secu-
rity properties defined in Sect. 5. We split the proof into four parts, showing
that our .BBS MHAC satisfies correctness, unlinkability, identifiable abort, and
unforgeability.

Theorem 3. Let . ΠMHAC−BBS = (IssSetupBBS,CredIssBBS,CredPresBBS,
VfPresBBS). Assuming .BBS is SUF-CMA and the .DL assumption holds in our
group .G1, .ΠMHAC−BBS is a concurrently secure MHAC scheme in the pro-
grammable random oracle model satisfying the security properties in Sect. 5
against an active static adversary corrupting less than . t holders and an honest-
but-curious issuer.

The proof follows from Lemmas 2, 3, 4, 5, and 6.

7.1 Correctness of .BBS MHAC
Lemma 2. .ΠMHAC−BBS satisfies correctness (Definition 6).

The proof is given in the full version [FLL24].

7.2 Unlinkability of Presentations of .BBS MHAC.
Lemma 3. .ΠMHAC−BBS satisfies presentation unlinkability (Definition 7) in the
programmable random oracle model.

Proof. To prove unlinkability, we show there exist an algorithm . SimCredPres(·)
which simulates an honest presentation of a multi-holder credential.

Regarding the multi-holder .BBS anonymous credential scheme, it being com-
patible with the .BBS anonymous credential scheme [TZ23], we can choose as
.SimCredPres(pp, pk, τ, {ai}i∈Rev, nonce) the same algorithm used to simulate the
generation of presentation of a .BBS anonymous credential presented in [TZ23] 12.
The transcript . T of the communication between the participants is instead gen-
erated as a random string of a given length which is indistinguishable from a real
transcript since the participants execute the protocol over a private broadcast
channel.

Since the challenger of the experiment programs the random oracle, the simu-
lated presentation is indistinguishable from the real one, and the simulation fails
only with negligible probability if we allow the adversary to query the random
oracle a polynomial number of times. .23

12 We recall that, together with the public key . pk, the adversary must provide the
challenger . C with a pair .(U1, U2) such that .e(U1, pk) = e(U2, g2) which the simulator
must use to simulate the generation of the values .A,B. Such a pair is assumed
to be known for every .BBS credential issuer because it can be obtained from any
presentation of any credential issued by that specific issuer, as it is specified in
[TZ23,CDL16,LKWL22].

352 A. Flamini et al.

7.3 Unlinkability of Private Attributes of .BBS MHAC
Lemma 4. .ΠMHAC−BBS satisfies private attribute unlinkability (Definition 8).

We provide a proof sketch below and give the formal proof in the full version
of this paper [FLL24, Appendix D].

Proof Sketch. It is possible to design a reduction to the hiding property [KL07]
of the Pedersen commitment scheme [Ped91] which is perfectly hiding.

The adversary . A of private attribute unlinkability sends to the challenger (i.e.
the reduction) . B two attributes .a∗

0, a
∗
1 and the set of public attributes .{ai}i∈Pub.

The reduction .B sends the same messages to the challenger . C of the hiding
property of Pedersen commitment who samples a bit . b uniformly at random and
computes a commitment .c ∈ G1 to .a∗

b and sends it to . B.
The reduction . B uses the received commitment to create the shares of cre-

dential for . A, and its own partial shares of credential because it does not know
the shares of the attribute .a∗

b committed to by . C.
During the presentation protocol queries the reduction . B simulates the exe-

cution of the presentation protocol programming the random oracle.
At the end of the training, the adversary .A outputs a bit . b′ specifying their

guess about the attribute included in the credential, and . B forwards . b′ to . C.

7.4 Presentation with Identifiable Abort of .BBS MHAC

Lemma 5. Assuming that the protocol participants communicate over an
authenticated channel, .H, is a secure commitment scheme, .ΠMHAC−BBS satis-
fies presentation with identifiable abort (Definition 10).

Proof is given in the full version [FLL24, Appendix E].

7.5 Unforgeability of Presentations of .BBS MHAC

Lemma 6. Assuming .BBS is SUF-CMA and the .DL assumption holds in our
group, .ΠMHAC−BBS satisfies concurrent unforgeability of presentations (Defini-
tion 11) against an active static adversary corrupting less than . t holders and an
honest-but-curious issuer.

We sketch the security proof of Lemma 6 and we provide a complete proof
in in the full version of this paper [FLL24, Appendix F].

Proof Sketch. To prove that .ΠMHAC−BBS is unforgeable according to the
security notion of Definition 11, we instantiate the unforgeability experiment
.Expc−uf−pres

F (κ) in the case of .BBS MHAC in in the full version of this paper
in [FLL24, Appendix F.1], which results in the definition of .Expc−uf−pres

F,BBS (κ).
Then, we show how it is possible to use an adversary .F of the experiment
.Expc−uf−pres

F,BBS (κ) as a subroutine of a reduction . B to the .DL assumption, if the
adversary forges a presentation derived from the target credential (Case A), or

Multi-Holder Anonymous Credentials from BBS Signatures 353

to the .qSDH assumption, if the adversary forges a presentation derived from
another credential it was never issued (Case B). More precisely, a reduction that
rewinds the adversary .F will end up extracting, from the adversary’s forgeries
(that are proofs of knowledge of a .BBS credential) a credential that will fall into
one of these two cases (as we show in the full version of this paper in [FLL24,
Appendix F.2]). It is easy to see that, for MHAC schemes compatible with secure
anonymous credential schemes this proving Case B is trivial, since it is possible
to easily reduce to the unforgeability of the digital signature scheme underlying
the anonymous credential scheme.

Proving Case A instead is more challenging, and in this sketch proof we limit
to describe how our reduction can set up the unforgeability experiment to reduce
the .DL assumption.

We consider a forger . F who can forge a presentation associated to the target
credential it is issued. We must define a reduction . B interacting with . F , and with
the challenger .CDL of the .DL problem (Definition 1), who can win the .DL exper-
iment with non-negligible probability, if .F wins the unforgeability experiment
with non-negligible probability.

The reduction .B receives in input the tuple .(p,G1, g, h) from .CDL, where
.(g, h) ∈ G2

1 is an instance of the discrete logarithm problem that . B needs to
solve.

Setup Phase. .B must generate the public parameters to send to . F , and the
issuer’s public key for the .BBS signature scheme. It must generate it in a way
that, when .F sends an issuance query .({ai}i∈[m], t, n, cor) for the target creden-
tial, it will be able to generate .t − 1 shares of the target credential for the par-
ties in .cor corrupted by .F . {credi}i∈cor ← ((A, {e%(i)}i∈cor, {Di}i∈[n], {aj}j∈[m]),
which is a secret sharing of a .BBS credential .((A, e%), {ai}i∈[m]) where the
value .e% = logg h, and is unknown to . B13. In particular, .B(g, h) must gener-
ate .pp, x in a way that, for any .{ai}i∈[m] ∈ Zm

p , it will be able to compute the
value .A = C(a)

1
x+e" , which is univocally determined by the attributes once . DL

challenge .(g, h) and .pp, x are fixed. Additionally, . B must be able to generate
.D = A−e"

that is secret shared in .{Di}i∈[n] which is implicitly included in every
share of credential.

To do that, . B performs the following operations:

1. samples the group generator of .G2, .g2
$←− G2, the issuer’s secret key .x $←− Zp,

and sets .X2 = gx2 as in Algorithm 1;
2. sets .k ← gxh, k ∈ G1, which is the trapdoor that allows . B to compute,

.∀a = {ai}i∈[m] ∈ Zm
p the values .A,A−e"

satisfying .Ax+e"

= C(a);
3. generates the public parameters .pp as follows: .γ0, γ1, . . . , γm

$←− Zp then,
set .g1 ← kγ0 as the generator of .G1 and .hi = kγi ,∀i ∈ [m] and . pp ←
(p,G1,G2,GT , e, g1, g2, h1, . . . , hm);

13 We recall that in this experiment we do not consider private attributes because the
challenger always learns the attributes from the online-extractable proofs . π it receive
from the holders in the issuing protocol (Protocol 2).

354 A. Flamini et al.

4. sends .pp,X2 to . F .

The simulation of parameter generation and key generation is indistinguishable
from a real execution of the parameter generation because the key generation is
calculated exactly the same way, and the elements .(g2, g1, h1, . . . , hm) are chosen
uniformly at random in .G2 × Gm+1

1 . However, . B knows the discrete logarithm
of the elements in .G1 with respect to the basis .k = gxh.

Training Phase. During the Training Phase the adversary . F we consider in Case
A will send an issuance query for the single target credential, giving in input to
.Opres the tuple .({ai}i∈[m], t, n, cor), |cor| = t − 1. Without loss of generality, we
can restrict to the case .t = n and .cor = [t − 1].

Having received .({ai}i∈[m], t, n, cor) from . F , .B computes .α = logk C(a),
which is .α = γ0

∑m
i=1 γiai. Being .k = gxh = gx+e"

, for the unknown . e%, the
knowledge of . α allows . B to compute

. A = C(a)
1

x+e" = (kα)
1

x+e" = (k
1

x+e")α = gα,

. Ae"

= (gα)e
"

= (ge
"

)α = hα.

In summary, . B simulates the issuance of the target credential as follows:

1. computes .α ← γ0
∑m

i=1 γiai and sets .A ← gα and .D ← (hα)−1;
2. simulates a secret sharing of . e%: .{e%(i)}i∈cor

$←− Z|cor|
p ;

3. sets .Di ← A−e"(i)
,∀i ∈ cor and .Dn ← D

∏
i∈cor D

−1
i ;

4. . B sets .{credi}i∈cor ← ((A, {e%(i)}i∈cor, {Di}i∈[n], ({aj}j∈[m])).

This completes the simulation of the issuance of the target credential.
Note that . B knows all the information associated with the target credential

apart from the value .e%(n) = − logA Dn.
When . F sends to . B a query to create a presentation of the target credential,

with input .(nonce, {ai}i∈Rev, hon), we can assume that .F controls the primary
party who sends to . B the value .r ∈ Zp. Then . B can compute . A = Ar, B =
C(a)rA−e"

= C(a)rDr and .B̃n = Dr
n. Given this information, . B can simulate

the presentation protocol by programming the random oracle similarly to how
it is done in [CKM23a].

We include all the remaining details of the simulation of Case A, and the
whole analysis of Case B, in the full version of this paper in [FLL24, Appendix
F.2]

We highlight that our reduction can simulate the unforgeability experi-
ment without rewinding the adversary, therefore the reductions both to the
.DL assumption and to the .qSDH assumption 14 described in in the full version
of this paper in [FLL24, Appendix F.2] allow the adversary to open concurrent
presentation session during the training phase. This guarantees the concurrent
security of the .BBS multi-holder anonymous credential scheme .ΠMHAC−BBS.
14 The strong unforgeability of .BBS signatures is proven to hold in [TZ23] under the

.qSDH assumption.

Multi-Holder Anonymous Credentials from BBS Signatures 355

Acknowledgments. Andrea Flamini acknowledges support from Eustema S.p.A.
through the PhD scholarship and is supported by the QUBIP project, funded by the
European Union under the Horizon Europe framework program [grant agreement no.
101119746]. Eysa Lee was supported by the Data Science Institute at Brown Univer-
sity. Anna Lysyanskaya was supported by NSF Grants 2312241, 2154170, and 2247305,
as well as funding from a Brown University Seed Award and Meta.

References

AAM23. Mobile Driver’s License (mDL) implementation guidelines, version 1.2.
https://www.aamva.org/topics/mobile-driver-license, 01 2023

ASM06. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k-TAA. In: SCN 2006,
volume 4116 of LNCS, pp. 111–125 (2006)

BB08. Boneh, D., Boyen, X.: Short signatures without random oracles and the sdh
assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)

BBC+24. Baum, C., et al.: Cryptographers’ feedback on the eu digital identity’s
ARF. https://github.com/user-attachments/files/15904122/cryptographers-
feedback.pdf (2024)

BBS04. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Annual Inter-
national Cryptology Conference, pp. 41–55. Springer (2004)

BF24. Battagliola, M., Flamini, A.: Distributed fiat-shamir transform: from thresh-
old identification protocols to signatures. Cryptology ePrint Archive (2024)

BL10. Brickell, E., Li, J.: A pairing-based daa scheme further reducing tpm
resources. In: International Conference on Trust and Trustworthy Comput-
ing, pp. 181–195. Springer (2010)

BLT+24. Bacho, R., Loss, J., Tessaro, S., Wagner, B., Zhu, C.: Twinkle: threshold
signatures from ddh with full adaptive security. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
pp. 429–459. Springer (2024)

CDG+24. Chen, M., Dey, P., Ganesh, C., Mukherjee, P., Sarkar, P., Sasmal, S.: Uni-
versally composable non-interactive zero-knowledge from sigma protocols via
a new straight-line compiler. Cryptology ePrint Archive (2024)

CDL16. Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous attestation using the
strong diffie hellman assumption revisited. In: Trust and Trustworthy Com-
puting: 9th International Conference, TRUST 2016, Vienna, Austria, 29–30
August 2016, Proceedings 9, pp. 1–20. Springer (2016)

CKLS02. Cachin, C., Kursawe, K., Lysyanskaya, A., Strobl, R.: Asynchronous ver-
ifiable secret sharing and proactive cryptosystems. In: Proceedings of the
9th ACM Conference on Computer and Communications Security, pp. 88–97
(2002)

CKM23a. Crites, E., Komlo, C., Maller, M.: Fully adaptive schnorr threshold signa-
tures. In: Handschuh, H., Lysyanskaya, A. (eds.) Advances in Cryptology –
CRYPTO 2023, pp. 678–709, Springer, Cham (2023)

CKM23b. Crites, E., Komlo, C., Maller, M.: Fully adaptive schnorr threshold signa-
tures. Cryptology ePrint Archive (2023)

CL01. Camenisch, J., Lysyanskaya, A.: An efficient system for nontransferable
anonymous credentials with optional anonymity revocation. In: Pfitzmann,
B. (ed.), Advances in Cryptology - EUROCRYPT 2001, International Confer-
ence on the Theory and Application of Cryptographic Techniques, Innsbruck,

https://www.aamva.org/topics/mobile-driver-license
https://www.aamva.org/topics/mobile-driver-license
https://www.aamva.org/topics/mobile-driver-license
https://www.aamva.org/topics/mobile-driver-license
https://www.aamva.org/topics/mobile-driver-license
https://www.aamva.org/topics/mobile-driver-license
https://www.aamva.org/topics/mobile-driver-license
https://www.aamva.org/topics/mobile-driver-license
https://github.com/user-attachments/files/15904122/cryptographers-feedback.pdf
https://github.com/user-attachments/files/15904122/cryptographers-feedback.pdf
https://github.com/user-attachments/files/15904122/cryptographers-feedback.pdf
https://github.com/user-attachments/files/15904122/cryptographers-feedback.pdf
https://github.com/user-attachments/files/15904122/cryptographers-feedback.pdf
https://github.com/user-attachments/files/15904122/cryptographers-feedback.pdf
https://github.com/user-attachments/files/15904122/cryptographers-feedback.pdf
https://github.com/user-attachments/files/15904122/cryptographers-feedback.pdf
https://github.com/user-attachments/files/15904122/cryptographers-feedback.pdf
https://github.com/user-attachments/files/15904122/cryptographers-feedback.pdf

356 A. Flamini et al.

Austria, 6–10 May 2001, Proceeding, vol. 2045, LNCS, pp. 93–118. Springer
(2001)

CL03. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols.
In: Security in Communication Networks: Third International Conference,
SCN 2002 Amalfi, Italy, 11–13 September 2002 Revised Papers 3, pp. 268–
289. Springer (2003)

CL04. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous creden-
tials from bilinear maps. In: Annual International Cryptology Conference,
pp. 56–72. Springer (2004)

CL17. Cohen, R., Lindell, Y.: Fairness versus guaranteed output delivery in secure
multiparty computation. J. Cryptol. 30(4), 1157–1186 (2017)

CLOS02. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable
two-party and multi-party secure computation. In: Proceedings of the Tthiry-
Fourth Annual ACM Symposium on Theory of Computing, pp. 494–503
(2002)

DKL+23. Jack Doerner, Yashvanth Kondi, Eysa Lee, abhi shelat, and LaKyah Tyner.
Threshold bbs+ signatures for distributed anonymous credential issuance. In
2023 IEEE Symposium on Security and Privacy (SP), pages 773–789. IEEE,
2023

Fis05. Marc Fischlin. Communication-efficient non-interactive proofs of knowledge
with online extractors. In Annual International Cryptology Conference, pages
152–168. Springer, 2005

FLL24. Andrea Flamini, Eysa Lee, and Anna Lysyanskaya. Multi-holder anonymous
credentials from bbs signatures. Cryptology ePrint Archive, 2024

FSS+24. Flamini, A., Sciarretta, G., Scuro, M., Sharif, A., Tomasi, A., Ranise, S.: On
cryptographic mechanisms for the selective disclosure of verifiable credentials.
Journal of Information Security and Applications 83, 103789 (2024)

GPS08. Steven D Galbraith, Kenneth G Paterson, and Nigel P Smart. Pairings for
cryptographers. Discrete Applied Mathematics, 156(16):3113–3121, 2008

HS21. Lucjan Hanzlik and Daniel Slamanig. With a little help from my friends: Con-
structing practical anonymous credentials. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, pages
2004–2023, 2021

HSS23. Julia Hesse, Nitin Singh, and Alessandro Sorniotti. How to bind anony-
mous credentials to humans. In 32nd USENIX Security Symposium (USENIX
Security 23), pages 3047–3064, Anaheim, CA, August 2023. USENIX Asso-
ciation

IOZ14. Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party compu-
tation with identifiable abort. In Advances in Cryptology–CRYPTO 2014:
34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-
21, 2014, Proceedings, Part II 34, pages 369–386. Springer, 2014

KL07. Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography:
principles and protocols. Chapman and hall/CRC, 2007

KMR12. Marcel Keller, Gert Læssøe Mikkelsen, and Andy Rupp. Efficient threshold
zero-knowledge with applications to user-centric protocols. In Information
Theoretic Security: 6th International Conference, ICITS 2012, Montreal, QC,
Canada, August 15-17, 2012. Proceedings 6, pages 147–166. Springer, 2012

KS22. Yashvanth Kondi and Abhi Shelat. Improved straight-line extraction in the
random oracle model with applications to signature aggregation. In Interna-
tional Conference on the Theory and Application of Cryptology and Infor-
mation Security, pages 279–309. Springer, 2022

Multi-Holder Anonymous Credentials from BBS Signatures 357

LHAT20. Lueks, W., Hampiholi, B., Alpár, G., Troncoso, C.: Tandem: Securing keys
by using a central server while preserving privacy. Proceedings on Privacy
Enhancing Technologies 327–355(07), 2020 (2020)

LKWL22. Tobias Looker, Vasilis Kalos, Andrew Whitehead, and Mike Lodder.
The BBS Signature Scheme. Internet-Draft draft-irtf-cfrg-bbs-signatures-01,
Internet Engineering Task Force, October 2022. Work in Progress

LR22. Anna Lysyanskaya and Leah Namisa Rosenbloom. Universally composable
.σ-protocols in the global random-oracle model. In Theory of Cryptography
Conference, pages 203–233. Springer, 2022

MY24. Jamal H Mosakheil and Kan Yang. Silentproof: Anonymous authentication
with blockchain-backed offloading. In Proceedings of the 19th ACM Asia Con-
ference on Computer and Communications Security, pages 1361–1377, 2024

Ped91. Torben Pryds Pedersen. Non-interactive and information-theoretic secure
verifiable secret sharing. In Annual international cryptology conference, pages
129–140. Springer, 1991

PS16. David Pointcheval and Olivier Sanders. Short randomizable signatures. In
Topics in Cryptology-CT-RSA 2016: The Cryptographers’ Track at the RSA
Conference 2016, San Francisco, CA, USA, February 29-March 4, 2016, Pro-
ceedings, pages 111–126. Springer, 2016

Sha79. Shamir, A.: How to share a secret. Communications of the Association for
Computing Machinery 22(11), 612–613 (1979)

TZ23. Stefano Tessaro and Chenzhi Zhu. Revisiting bbs signatures. In Annual Inter-
national Conference on the Theory and Applications of Cryptographic Tech-
niques, pages 691–721. Springer, 2023

	Multi-Holder Anonymous Credentials from BBS Signatures
	1 Introduction
	1.1 Our Contribution
	1.2 Our Techniques
	1.3 Outline

	2 Related Works
	3 Preliminaries
	3.1 \BBSBBS Signatures

	4 Multi-holder Anonymous Credentials
	5 Security Definitions
	5.1 Correctness
	5.2 Unlinkability
	5.3 Presentation with Identifiable Abort
	5.4 Concurrent Unforgeability of Presentations

	6 \BBSBBS Multi-holder Anonymous Credentials
	6.1 Credential Issuing
	6.2 Multi-holder Presentation
	6.3 Verification
	6.4 Extensions

	7 Security Analysis
	7.1 Correctness of \BBSBBS MHAC
	7.2 Unlinkability of Presentations of \BBSBBS MHAC.
	7.3 Unlinkability of Private Attributes of \BBSBBS MHAC
	7.4 Presentation with Identifiable Abort of \BBSBBS MHAC
	7.5 Unforgeability of Presentations of \BBSBBS MHAC

	References

