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Abstract. This paper formalizes the notion of server-aided anonymous 
credentials (SAACs), a new model for anonymous credentials (ACs) 
where, in the process of showing a credential, the holder is helped by 
additional auxiliary information generated in an earlier (anonymous) 
interaction with the issuer. This model enables lightweight instantia-
tions of publicly verifiable and multi-use ACs from pairing-free elliptic 
curves, which is important for compliance with existing national stan-
dards. A recent candidate for the EU Digital Identity Wallet, BBS#, 
roughly adheres to the SAAC model we have developed; however, it 
lacks formal security definitions and proofs. 

In this paper, we provide rigorous definitions of security for SAACs, 
and show how to realize SAACs from the weaker notion of keyed-
verification ACs (KVACs) and special types of oblivious issuance pro-
tocols for zero-knowledge proofs. We instantiate this paradigm to obtain 
two constructions: one achieves statistical anonymity with unforgeability 
under the Gap .q-SDH assumption, and the other achieves computational 
anonymity and unforgeability under the DDH assumption. 

1 Introduction 

Anonymous credentials (ACs), introduced by Chaum [ 25], allow a user (or 
holder) to obtain a credential from an issuer. Typically, a credential is asso-
ciated with a number of attributes, such as the credential’s expiration date, or 
the credential holder’s date of birth. This credential can be shown to a verifier 
unlinkably, i.e. such that it cannot be linked to the transaction in which it was 
issued, and different showings of the same credential cannot be linked to each 
other. Further, a showing only reveals the minimum necessary amount of infor-
mation about the attributes—typically, that these attributes satisfy a certain 
relevant predicate (e.g., that the holder is not a minor, that they have a valid 
driver’s license, etc.). 

ACs were first practically realized by Camenisch and Lysyanskaya [ 17– 19]. 
In the standard approach to designing ACs [ 32,33], a credential is a signature on 
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the user’s attributes, generated by the issuer via a secure protocol that protects 
the privacy of the user’s attributes. Credentials are shown via a zero-knowledge 
proof of knowledge of a credential whose attributes satisfy the relevant predi-
cate. In principle, one can build ACs from any signature scheme by using generic 
zero-knowledge proof systems, but in a practical instantiation, a digital signa-
ture scheme which enables efficient realizations of such proofs is a better app-
roach. Examples include RSA- and pairing-based CL signatures [ 18,19], as well 
as pairing-based BBS signatures [ 3,12,19,41]. 

Systems using ACs have been proposed over the years, such as Microsoft’s 
U-Prove [ 13,39] and IBM’s IDEMIX [ 20]. Recently, credentials have regained 
popularity as components of decentralized/self-sovereign identity services like 
Hyperledger Indy, Veramo and Okapi. These come with ongoing companion 
standardization efforts by the IETF [ 31] and the World Wide Web Consortium 
(W3C). Technology policy, especially that of the EU and its member states, has 
mandated privacy-preserving authentication [ 1, 2] for which anonymous creden-
tials appear to be the right solution [ 7]. 

.Credentials based on pairing-free elliptic curves. Elliptic-curve-based 
cryptography has outperformed and outpaced cryptographic constructions based 
on RSA. Especially desirable from the practical point of view – both for efficiency 
reasons and because of standardized curves – is elliptic-curve-based cryptogra-
phy that does not require pairing-friendly curves [ 5,10]. The lack of suitable 
standards 1, in particular, often prevents the use of pairing-based solutions in 
the public sector, where ACs find a natural use case. Other natural application 
scenarios are web applications and anonymous browsing, and pairings are often 
not supported by browser libraries such as NSS and BoringSSL. Unfortunately, 
however, the only approach to (multi-show) ACs based on pairing-free curves 
relies on generic zero-knowledge proofs, and is mostly very costly, and this is 
due to the fact that pairing-free signature schemes are inherently non-algebraic 
(as proved e.g. in [ 26]). To overcome this inherent barrier, prior works have 
considered different settings where pairing-free ACs are possible: 

• Blind signatures with attributes. Baldimtsi and Lysyanskaya [ 4] presented  an  
approach extending the notion of blind signatures to include attributes, for-
malizing ideas implicit in U-Prove [ 39]. The resulting construction gives a 
use-once AC, referred to as “AC light” (ACL), i.e., one needs to interact 
with the issuer to obtain as many copies of the credential as the number of 
intended showings. This also introduces a tradeoff between privacy and effi-
ciency: either each user needs to get as many copies of the ACL credential 
as a reasonable upper bound on the lifetime use of the credential, or it needs 
to get credentials reissued upon running out of them, revealing the rate of 
credential use. 

• Keyed-Verification Anonymous Credentials (KVAC). The single-use aspect of 
ACL can be a feature, but is mostly a bottleneck. Chase, Meiklejohn and 
Zaverucha [ 23] considered multi-use credentials in an alternative setting where

1 For example, the IETF draft for pairing-friendly curves expired in 2023 [40]. 
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the issuer and the verifier are the same entity, and provided pairing-free solu-
tions that rely on the lack of public verifiability when showing credentials. 
The resulting schemes are very practical, and are widely adopted in the Signal 
messaging system [ 24]. 

.This paper: Server-aided anonymous credentials. This paper formalizes 
an alternative model for multi-use credentials in which efficient pairing-free cre-
dentials are possible, and which we refer to as Server-Aided Anonymous Creden-
tials (or SAAC, for short). In contrast to KVAC, SAAC enable publicly verifiable 
showing of credentials, and this is achieved by allowing the holder to interact 
with the issuer’s helper server to generate additional helper proofs. To preserve 
anonymity, this interaction with the helper is entirely oblivious (in a way related, 
but not formally equivalent, to the work of Orrú et al. [ 37]): the helper server 
does not need to verify anything about the user it is interacting with, and can 
neither link the interaction to any other by the same user, nor learn anything 
about the user’s credential attributes. The extra cost of this interaction with the 
helper is limited, in particular as the generation of these proofs can be performed 
offline, and not at the time of showing the credential. 

The helper flow is somewhat natural in the context of credentials. In OAuth 
2.0 [ 28], the industry-standard authorization protocol for the web, users obtain 
a refresh token and must query that refresh token to an issuer to obtain access 
tokens which they can later spend. However, in the setting of anonymous creden-
tials, the use of a helper server was, to the best of our knowledge, only recently 
brought up in the BBS# white paper [ 36,42]. BBS# is an industry white paper 
that explores several ideas for the development of a European Digital Identity 
Wallet. 2 However, it does not contain a formal security model or analysis. As a 
result, we are the first to provide the foundations behind such an approach, as 
well as provably secure solutions. 

This work develops a formal treatment of SAAC, for which we give security 
definitions. We also develop generic constructions that lift KVACs, which are not 
meant to be publicly verifiable, to SAAC with the help of specific protocols for 
oblivious issuance of zero-knowledge proofs. Interestingly, our security needs for 
the latter are weaker than those considered by the recent work of Orrù et al. [ 37], 
as our helper protocol is not required to resist strong attacks such as ROS [ 9], 
and thus we can prove security based on a standard cryptographic assumption 
without relying on the algebraic group model (AGM) [ 29]. 

We instantiate our framework with two concrete constructions: A first solu-
tion based on BBS (without pairings), which we prove unforgeable, in the 
random-oracle (RO) model, under the Gap .q-SDH assumption, and statistically 
anonymous. We also present a second instantiation for which both unforgeability 
and anonymity hold under the DDH assumption in the RO model. Our security 
analysis is in the random oracle model [ 8], but does not make any use of the 
AGM or any other ideal group model.

2 BBS# includes other ideas besides including a helper server; and in particular inte-
gration with an HSM, which are outside the scope of this paper. 
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Fig. 1. Server-Aided Anonymous Credentials. Illustration of the SAAC setting. 
Note that the secret and public keys (sk, pk) are generated by the KeyGen algorithm, 
which is not described here. Also, we allow each showing to be linked to some additional 
value nonce, which is a joint input of Show and SVer, and this is not illustrated here. 

The next section provides a detailed overview of our contributions. 

1.1 Overview of This Paper 

We now give a detailed overview of our results and contributions. This section 
also serves as a roadmap for the paper. 

.Syntax for SAAC. We provide a definition of Server-Aided Anonymous Cre-
dentials (SAAC). A SAAC scheme is parameterized by a set of predicates . Φ, 
and consists of a number of protocols, involving the issuer, the  credential hold-
ers, and the verifier. The setting is also defined in Fig. 1. For simplicity, both 
issuance and showing predicates come from the same space . Φ using our syntax. 

• Key generation. The issuer generates a secret-key/public-key pair . (sk, pk)
by running the key generation algorithm. 

• Issuance. A credential . σ is issued to the holder as the output of an interac-
tion with the issuer—in the same way as with a classical credential system. 
The issuer’s input is . sk, whereas the holder’s inputs are .pk and a vector of 
attributes . m. Further, their shared input is an issuance predicate .φ P Φ. The  
intuition (which will be a consequence of our security notions we introduce
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below) is that the credential is only issued if indeed .φ(m) “ 1, and that the 
issuer only learns . φ where .φ(m) “ 1. The holder’s output is a credential . σ. 

• Helper protocol. The main new component is a helper protocol between a 
holder and the issuer. The issuer’s input is . sk, whereas the holder’s inputs are 
. pk, a vector of attributes . m, along with a credential . σ for it. The protocol 
outputs a string .aux, which  we  refer to as the  helper information to the holder, 
and produces no output for the issuer. 

• Credential showing and verification. Showing and verification are similar 
to those in any (publicly verifiable) credential system, in that the user can 
select a showing predicate .ψ P Φ, an attribute vector . m, and a corresponding 
credential . σ, and produce some showing message . τ which can be verified 
(under the public key .pk and given . ψ) to assess that indeed .ψ(m) “ 1. But  
in addition to this, we allow the process of creating . τ to also depend on helper 
information .aux output by the helper protocol. Looking ahead once again to 
our definitions, unlinkability is meant to hold as long as each showing uses a 
freshly generated .aux. But crucially, we note that .aux does not depend on . ψ, 
and thus can be precomputed by running the helper at any prior time after 
receiving the credential . σ and it is obtained via a privacy-preserving protocol 
that will ensure that an execution of the protocol generating .aux cannot be 
linked to the credential showing using this .aux. 

Here, predicates model information about the attributes which is revealed either 
at issuance or at showing—in both cases, it is only revealed that .φ(m) “ 1. 
The most relevant class of predicates describes selective disclosure. As part of  
the showing protocol, the user sends a list of indices .I “ (i1, . . . , ik) and a list 
of disclosed attributes .a P M! which determines the predicate .φI ,a given by 
.φI ,a(m1, . . . ,m!) “ 1 if .aij “ mij for all j P [k], and otherwise . 0. 
.Unforgeability of SAAC. We formalize a strong notion of unforgeability for 
a SAAC scheme which postulates that a malicious holder can only convince the 
verifier to accept a showing for a predicate . φ such that the holder has previously 
obtained a credential for some attribute vector .m such that .φ(m) “ 1. 

A definitional challenge is that a malicious holder may arbitrarily deviate 
from the protocol when interacting with the issuer, and therefore, care must be 
taken to ensure that the set of attribute vectors for which a credential was issued 
is well-defined. To this end, our definition relies on an extractor which, whenever 
a malicious message . µ from the holder is successfully answered by the issuer (run 
on input . φ), extracts attribute vector .m from . µ such that .φ(m) “ 1. The holder 
wins if a verifier is convinced by a showing for a predicate .φ˚ not satisfied by 
any of the extracted attribute vectors. 

Furthermore, we allow the malicious holder to leverage additional types of 
interactions: 
• Helper interaction. The malicious holder can interact as they please, in a 

fully concurrent and arbitrarily interleaved way, with the helper protocol. 
• Honest showings. The malicious holder can obtain honest showings of cre-

dentials; the winning condition disallows a win for the adversary by simply 
replaying a showing of an honest user’s credential.
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Our unforgeability notion, however, does not require that the helper protocol is 
run for a successful showing. One could envision that the helper protocol serves 
some rate-limiting purpose, but effectively our formalism and our instantiations 
allow re-use of the helper string .aux (at the cost of losing anonymity), and thus 
the rate-limiting effect is inconsequential. As a result of not making such a (in our 
view, unnecessary) restriction in the definition, we get the benefit that existing 
(multi-show, helper-free) anonymous credential systems immediately satisfy our 
definition. 

.Anonymity of SAAC. Our anonymity notion is meant to protect the creden-
tial holder from an adversary that controls the issuer (and thus both the issuance 
and the helper processes), and that is also shown credentials. The only infor-
mation that is leaked at issuance is that the predicate . φ holds for the attribute 
vector . m, and the only information leaked at showing is that the holder has a 
credential for some vector .m satisfying the predicate . φ. Crucially, we need to 
ensure that the helper protocol interaction is unlinkable to a particular showing 
of a credential, a fact which is also guaranteed by the security definition. 

.A generic construction. Our main contribution is a generic construction 
that lifts a KVAC scheme to a SAAC scheme. Informally, KVAC differ from a 
regular credential system in that the credential is meant to be verified by the 
same party that issued it; i.e. verification of the showing of a credential requires 
the secret key. Unlike in SAAC, no helper is involved. Despite not requiring the 
issuer’s public key for verification, the public key of KVAC allows the issuer to 
prove to their holders that the credential was issued correctly. Several construc-
tions of KVAC have been given in the literature [ 6,14,23]. 

Our generic construction replaces the keyed verification of a KVAC scheme 
with a non-interactive proof that the showing message satisfies the verification 
algorithm. The helper protocol will be an oblivious issuance of proof (oNIP) [ 37] 
protocol, which allows the holder to obtain the proof without leaking its showing 
message. Implementing this construction requires a KVAC scheme with a specific 
structure where showing and verification are done in two steps: 

• Key-dependent verification. The holder first uses its attributes .m and 
credential . σ to compute a key-dependent showing message .τkey and a state 
.st which are independent of the predicate . φ. The verifier can then verify . τkey
using its secret key . sk. 

• Public verification. The holder then continues showing using its state . st to 
compute public showing message .τpub, which  is  dependent on the predicate . φ
and can be bound to some additional value .nonce. Then, . (τkey, τpub,φ, nonce)
can be publicly verified using . pk. (Note that both key-dependent and public 
verification needs to return 1.) 

The key-dependent verification defines a relation .RV with statement . (pk, τkey)
and witness .sk such that (1) the key .sk corresponds to .pk based on the key 
generation, and (2) .τkey is a valid key-dependent showing message when verified 
by . sk. Then, using an oNIP protocol for the relation .RV (refer to Sect. 4.1 for the
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deviation from the prior oNIP formalization in [ 37]), we arrive at the following 
SAAC construction: 

• Key generation and issuance are exactly those of the KVAC scheme. 
• Helper protocol. First, the holder computing the key-dependent showing 

message .τkey and a state . st. Then, the issuer and the holder runs the oNIP 
protocol with the holder obtaining a proof .πV attesting that .τkey is valid with 
respect to . sk. The helper information .aux contains .(τkey,πV, st). 

• Showing. To show that the holder’s credential satisfies a predicate . φ, the  
holder computes the public showing message .τpub for . φ with the additional 
value .nonce set as .πV. The final showing message contains .(τkey, τpub,πV). 

• Verification. The verifier checks the validity of the proof .πV with respect to 
.τkey and the KVAC showing message .(τkey, τpub) with respect to . φ and .πV. 

It is important that .τpub is dependent on .πV. Otherwise, the showing message 
is malleable. In particular, a malicious holder can forge by obtaining an honest 
user’s showing message and requesting a new .πV through the helper. With that 
said, the security of our generic SAAC construction still requires other properties. 

Achieving unforgeability. At a high level, unforgeability of the generic SAAC 
construction requires the following properties: 

• .The proof πV is sound. This ensures that a valid forgery .(τkey, τpub,πV) con-
tains .τkey that is valid with respect to the issuer’s secret key . sk. However, 
soundness by itself only guarantees that there exists a secret key .sk′ (not 
necessarily . sk) that verifies .τkey. Hence, we require an additional property for 
KVAC, denoted validity of key generation, which is implied if each public key 
corresponds to a unique secret key. This ensures that .τkey is valid with respect 
to the issuer’s secret key . sk. 

• .Helper protocol does not leak sk. A malicious holder should not be able to 
distinguish between interactions with an honest helper or interactions with a 
simulator. Looking ahead, the simulator may require some .sk-dependent com-
putation, e.g., checking whether .sk verifies a rerandomized statement. Hence, 
we formalize instead the .O-zero-knowledge property, where the simulator is 
assisted by an oracle .O embedded with . sk. 

• Unforgeability of KVAC. We require a stronger than standard unforgeability 
for KVAC with the following main changes: 
1. Instead of a verification oracle, the adversary has access to the same oracle 

. O from .O-zero-knowledge of oNIP. This is for our reduction to successfully 
run the simulator discussed above. For our instantiations, the oracle . O
can be used to simulate the verification oracle as well. 

2. Similarly to SAAC unforgeability, the adversary can query honest users’ 
showing messages. Each query access, however, is split into two steps: 
first the adversary obtains an honest .τkey, then it adaptively chooses both 
the predicate . φ it wants the honest user to show and the .nonce it wants 
to be tied to the message, and gets .τpub in response.
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One challenge to securely instantiate our generic construction is to balance the 
strength of . O. Notably, if .O reveals too much information about . sk, the KVAC 
would be insecure; in contrast, if it reveals too little, the oNIP would be insecure. 

Achieving anonymity. Anonymity of our SAAC construction follows from 
anonymity of KVAC and obliviousness of oNIP, with the following modifications 
made to the definitions. 

• Obliviousness of oNIP. To satisfy our simulation-based definition of SAAC 
anonymity, we require a simulation-based obliviousness definition. However, 
in our instantiations, we are able to show obliviousness only when honest 
users request proofs for valid statements; specifically, .(pk, τkey) must be in the 
language induced by the relation .RV. Hence, we require an extra property of 
KVAC which ensures that even under a malicious issuer, if the user obtains 
a credential and does not abort, it should be able to produce a valid .τkey (in 
the sense that .(pk, τkey) is in the induced language). 

• Anonymity of KVAC. Similar to anonymity of SAAC , we require that both 
during issuance and during showing, the only information leaked to the adver-
sary is that the relevant predicate . φ is satisfied by the attributes . m. For  
showing, the adversary chooses the predicate . φ and the value .nonce adap-
tively, after obtaining the key-dependent value .τkey. 

We refer the readers to Sect. 4 for the formalization of KVAC and oNIP required 
and our generic construction. 

.Instantiation from BBS. Our first SAAC instantiation is inspired by the 
KVAC by Barki et al. [ 6], which builds upon an algebraic message authentication 
code (MAC) based on BBS/BBS+ signatures [ 3,12,41]. The scheme is based 
on a pairing-free group .G of prime order . p and generator . G. The secret and 
public keys are .x P Zp and .X “ xG, respectively. A credential for attributes 
.m P Z!

p is of the form .(A P G, e P Zp, s P Zp) such that .A “ (x` e)´1C, where 
.C “ G`∑!

i“1 miHi ` sH!`1 and .H1, . . . , H!`1 are public parameters. To show, 
the holder rerandomizes .A,B “ C´eA, and . C into .Ã, B̃, C̃ and proves knowledge 
of the underlying attributes with a valid credential via CDL proofs [ 15]. To verify 
the showing message, one uses the secret key . x to check that .(G,X, Ã, B̃) form a 
valid Diffie-Hellman tuple. By giving an oNIP for this relation (adapting Orrù et  
al. [ 37]), we turn this KVAC into SAAC. Note that our oNIP is zero-knowledge 
with respect to the restricted DDH oracle .rDDH(x, ·) which checks that its input 
.(A,B) satisfies .xA “ B. 3

In order to use Barki et al.’s KVAC, however, we need to show that it satisfies 
our required (stronger) security notions. Specifically, recall that our unforgeabil-
ity notions allows the adversary to (1) query the restricted DDH oracle embedded 
with the secret key and (2) view showing messages of honest users (in the man-
ner described above). We show that this stronger version of unforgeability holds

3 This oracle is exactly the key-dependent verification. 
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in the ROM under the Gap-.q-SDH assumption. This “gap” assumption is nec-
essary for simulating the restricted DDH oracle. Note that Barki et al. already 
require Gap-.q-SDH to simulate the verification oracle. 

The efficiency of the resulting SAAC is comparable to that of Barki et al.’s 
KVAC (see Table 1). For more details on this instantiation, we refer the readers 
to Sect. 5.1. 

.Instantiation from DDH. Sacrificing some efficiency (see Table 1), our sec-
ond SAAC instantiation completely removes the dependency on a gap  .q-type 
assumption and only relies on the much more standard DDH assumption. Our 
starting point is the KVAC scheme introduced by Chase, Meiklejohn, and 
Zaverucha [ 23], building upon an algebraic MAC. We then give a corresponding 
oNIP protocol for the algebraic relation induced by the key-dependent verifica-
tion. Similar to the BBS-based instantiation, the zero-knowledge of this oNIP 
is proved with respect to a simulator with access to an oracle, which we denote 
.OSVerDDH (and will define later on in Sect. 5.2), that essentially runs the key-
dependent verification of this KVAC with the embedded secret key. 

This KVAC was already known to be provably secure but under a weaker 
definition not suitable for our generic construction. To address this gap, we made 
the following contributions (and refer the readers to Sect. 5.2 for more details): 

1. We revisited the unforgeability of the underlying MAC and gave a new proof 
(albeit using similar techniques) for the security against adversaries who have 
access to the oracle .OSVerDDH instead of the verification oracle. Additionally, 
this new security still implies the standard UFCMVA security of MACs. 

2. Building on the unforgeability of the MAC, we showed unforgeability of the 
resulting KVAC scheme in the ROM. As we require unforgeability against 
adversaries who can see honest users’ showings, there were several technical 
difficulties to overcome. Mainly, the reduction (to unforgeability of the alge-
braic MAC) needs to be constructed so that it can simulate the honest users’ 
showings correctly, but still extract a valid MAC forgery from the adversary. 

3. We gave a more efficient blind issuance protocol. In particular, our issuer’s 
communication is independent of the number of attributes compared to the 
one sketched in [ 23] which contains a linear number of group elements. 

2 Preliminaries 

.Notations. We use . λ as the security parameter. We denote . [n..m] “ {n, n `
1, . . . ,m} for any .n ď m P Z and .[n] “ [1..n] for any .n P N. We denote vectors 
using bold-sized letters (e.g., .v,H). If .u “ (u1, . . . , un) and .v “ (v1, . . . , vm), 
then .u‖v :“ (u1, . . . , un, v1, . . . , vm). Denote .x Ð a as assigning value . a to a vari-
able . x. Denote .a Ð$ S as uniformly sampling . a from a finite set . S. We denote 
.y Ð$ A(x) as running a (probabilistic) algorithm . A on input . x with fresh random-
ness and .[A(x)] as the set of possible outputs of . A; . (y1, y2) Ð$ xA(x1) é B(x2)y
denotes a pair of interactive algorithms .A,B with inputs .x1, x2 and outputs . y1, y2
respectively. We often use the words messages and attributes interchangably.
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Table 1. Comparison of group-based KVAC, AC, and BSA schemes and our high-
lighted SAAC instantiations. The number of attributes is . $. Showing size depends on 
the number of disclosed attributes and is given as a close-to-tight upper-bound. Denote 
.G and .Zp as the sizes of group elements and scalars, respectively. All security analyses 
assume the ROM. . ˚: Showing requires two rounds of communication with the helper 
server (helper interactions can be batched). This is “multi-show” in the sense that the 
user does not have to re-prove that their attributes satisfy an issuance predicate, which 
may be expensive, to compute a showing (in contrast to, e.g., ACL). .: : Only BBS is 
pairing-based and .G1 denotes the size of a source group element. . ;: The DDH-based 
version is less efficient.  

Security 

Scheme 
Publicly 
Verifiable 

Multi-
Show 

Credential 
Size 

Showing 
Size 

Unforge-
ability 

Anonymity 

CMZ14 [23] No Yes 2G (! ` 2)G 
`(2! ` 2)Zp 

GGM / 
DDH; DDH 

BBDT16 [ 6] No Yes 2G ` 2Zp 
3G 

`(! ` 7)Zp 

Gap-
q-SDH 

Statistical 

KVACwBB [14] No Yes (! ` 1)G 2G 
`(! ` 1)Zp

!-SCDHI Statistical 

µCMZ [38] No Yes 2G (! ` 2)G 
`(2! ` 2)Zp 

AGM + 
3-DL 

Statistical 

µBBS [38] No Yes 1G ` 1Zp 
2G 

`(! ` 4)Zp 

AGM + 
q-DL 

Statistical 

MBS+25 [35] No Yes (! ` 2)G 2G GGM Statistical 

ACL [ 4] Yes No 2G ` 6Zp 
2G 

`(! ` 8)Zp 
DL+AGM DDH 

SAACBBS 

(Sec. 5.1) 
Yes Yes˚ 1G ` 2Zp 

3G 
` (! ` 8)Zp 

Gap-
q-SDH 

Statistical 

SAACDDH 

(Sec. 5.2) 
Yes Yes˚ 4G (! ` 6)G ` 

(4! ` 11)Zp 
DDH DDH 

BBS [41]: Yes Yes 1G1 ` 1Zp 
2G1 

`(! ` 3)Zp 
q-SDH Statistical 

.Group parameter generator. A group parameter generator is a probabilis-
tic polynomial time algorithm .GGen taking as input .1λ and outputting a cyclic 
group .G of .Θ(λ)-bit prime order . p with a generator . G. We assume that stan-
dard group operations in . G can be performed in polynomial time in . λ and adopt 
additive notation (i.e., .A ̀  B for applying group operation on .A, B P G). 

.Cryptographic assumptions. In Fig. 2, we define games for Decisional Diffie-
Hellman (DDH), Discrete Logarithm (DL), and a pairing-free analog of the .q-
Strong Diffie-Hellman assumption [ 11] augmented with a restricted DDH oracle. 
Denote the advantage of an adversary .A against these assumptions as 

. Adv (DL,(q,rDDH)-SDH) 
GGen (A,λ) :“ Pr[(DL{(q , rDDH)-SDH)A 

GGen(λ) “ 1] , 
Advddh GGen(A,λ) :“

∣∣Pr[DDHA 
GGen,0(λ) “ 1] ́  Pr[DDHA 

GGen,1(λ) “ 1]
∣∣ . 

.Relations and non-interactive proofs. Let .R Ď X ˆ W be a relation and 

.LR :“ {x P X|Dw P W : (x, w) P R} denotes its induced language. A non-
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Game DLA 
GGen(λ): 

par “ (p, G, G) Ð$ GGen(1 λ ); X Ð$ G 
x Ð$ A(par, X) 

return xG “ X 
Game DDHA 

GGen,b(λ): 

par “ (p, G, G) Ð$ GGen(1 λ ) 

x, y, z Ð$ Zp; Z0 Ð xyG; Z1 Ð zG 

b′ Ð$ A(par, xG,  yG,Zb) 

return b′

Game (q, O)-SDHA 
GGen(λ) 

par “ (p, G, G) Ð$ GGen(1 λ ); x Ð$ Zp 

(e, Z) Ð$ AO(par,x,xG,·) (par, (x i G)iP[q]) 

return (Z “ (x ` e)´1 G) 

Oracle rDDH(par, x,X,  (A, B)) 

return xA “ B 
// X is unused. 

Fig. 2. Games DDH, DL, and (q , O)-SDH, and a definition of the oracle rDDH. 

interactive zero-knowledge (NIZK) proof system for a relation . R is a tuple of algo-
rithms .(NIZK.ProveH , NIZK.VerH ) with access to a random oracle . H : {0, 1}˚ Ñ R 
with the following syntax: 

• .π Ð$ NIZK.ProveH (x, w): outputs a proof . π on input .(x, w) P R. 
• .0{1 Ð NIZK.VerH (x, π): verifies a proof . π for statement . x. 

We require a NIZK to be correct, sound, zero-knowledge, and optionally straight-
line extractable knowledge-sound for a relaxed relation .R̃ Ě R. We refer to the 
full version for formal security definitions of NIZKs. 

3 Server-Aided Anonymous Credentials 

In this section, we introduce Server-Aided Anonymous Credentials (SAAC), with 
the syntax and security definitions given in Sects. 3.1 and 3.2, respectively. SAAC 
allow a user to obtain a credential for its attributes through a (blind) issuance 
protocol and to anonymously show that it owns a credential for attributes which 
satisfies some specified predicate. However, in contrast to anonymous credentials 
(AC), the user may request the issuer to help produce helper information which 
to be used to produce a publicly-verifiable showing message. This is modeled 
as an unlinkable helper protocol independent of the predicate specified during 
showing. Users may then ask for several pieces of helper information ahead of 
time and spend them later during showing. 

3.1 Syntax 

A server-aided anonymous credential scheme .SAAC “ SAAC[Φ, M] defined with 
respect to a predicate class family . Φ “ {Φpar}par 4 and an attribute space . M “ 
{Mpar}par consists of the following algorithms. 
4 Alternatively, one can define the scheme with respect to two classes of predicates . ΦIss 

and .ΦShow which model predicates accepted during issuance and showing. Here, we 
define our SAAC syntax with respect to a single class of predicates . Φ “ ΦIss Y ΦShow 

covering both issuance and showing predicate classes. For our constructions, we 
consider the class of selective disclosure predicates for both issuance and showing. 
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• .par Ð$ SAAC.Setup(1λ , 1!) outputs public parameters .par which defines the 
attribute space .M “ Mpar and a corresponding class of predicates .Φ “ Φpar. 
For succinctness, we will abuse the notation and omit the subscript .par. 

• .(sk, pk) Ð$ SAAC.KeyGen(par) outputs the secret and public key pair. 
• .(K,σ) Ð$ xSAAC.Iss(par, sk,φ) é SAAC.U(par, pk, m,φ)y is an interactive 

protocol between the issuer and the user where at the end, the user obtains 
a credential . σ for its vector of attributes .m P M!, which satisfies a predi-
cate .φ P Φ (i.e., .φ(m) “ 1). We consider a round-optimal issuance protocol 
consisting of the following algorithms: 
– .(µ, stu) Ð$ SAAC.U1(par, pk, m,φ) outputs a protocol message and a 

state. 
– .imsg Ð$ SAAC.Iss(par, sk, µ,φ) outputs issuer’s message .imsg, and if the 

issuer aborts, we say that .imsg “ K. 
– .σ Ð$ SAAC.U2(stu , imsg) outputs a credential . σ for the attributes . m. 

• .(K, aux) Ð$ xSAAC.Helper(par, sk) é SAAC.ObtHelp(par, pk, m,σ)y is a .r-
round protocol where the user interacts with the issuer to obtain a helper 
information .aux. Formally, the protocol execution is of the following format: 

. (umsg1, stu) Ð$ SAAC.ObtHelp1(par, pk, m,σ) , 
(hmsg1, sth) Ð$ SAAC.Helper1(par, sk, umsg1) , 
(umsgi, stu) Ð$ SAAC.ObtHelpi(stu , hmsgi´1) , 
(hmsgi, sth) Ð$ SAAC.Helperi(sth , umsgi) ,

}
for i “ 2, . . . , r  

aux Ð$ SAAC.ObtHelpr`1(st
u , hmsgr) . 

• .τ Ð$ SAAC.Show(par, pk, m,σ,  aux,φ,  nonce) outputs a showing . τ of the cre-
dential . σ issued for attributes .m such that .φ(m) “ 1. 

• .0{1 Ð SAAC.SVer(par, pk, τ,φ,  nonce) outputs a bit. 

In the showing and verification algorithms, we allow the showing message . τ to be 
bound to some additional value .nonce (which in some cases is the token identifier 
or a nonce chosen by the verifier). We do not require a credential verification 
algorithm, since the credential itself might not be publicly verifiable, and a secret 
key credential verification is not required for our security properties. 

.Correctness. A SAAC scheme is .η-correct if for any .λ, * “ *(λ) P N, any  

.par P [SAAC.Setup(1λ , 1!)], any  .(sk, pk) P [SAAC.KeyGen(par)], any attributes 

.m P M!
par, any .nonce P {0, 1}˚, and any predicates .φ, φ′ P Φpar such that . φ(m) “ 

φ′(m) “ 1, the following experiment returns 1 with probability at least .1´ η(λ). 

.(K,σ) Ð$ xSAAC.Iss(par, sk,φ) é SAAC.U(par, pk, m,φ)y 
(K, aux) Ð$ xSAAC.Helper(par, sk) é SAAC.ObtHelp(par, pk, m,σ)y 
τ Ð$ SAAC.Show(par, pk, m,σ,  aux,φ′, nonce) 
return SAAC.SVer(par, pk, τ,φ′, nonce) . 
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3.2 Security Definitions 

We consider two main security notions for anonymous credentials: unforgeability 
and anonymity. At the end of the section, we define an additional security notion, 
denoted integrity, and discuss its importance. 

.Unforgeability. A .SAAC scheme is unforgeable if there exists an extractor 

.Ext “ (ExtSetup, ExtIss) such that 

1. The distribution of .par from the setup algorithm and .ExtSetup are indistin-
guishable, i.e., for any adversary . A, the following advantage is bounded 

. Advpar-indist SAAC,Ext(A,λ) :“ |Pr[A(par) “ 1|par Ð$ SAAC.Setup(1λ , 1!)]´ 

Pr[A(par) “ 1|(par, td) Ð$ ExtSetup(1λ , 1!)]| . 

2. Denote the advantage of any adversary . A in the unforgeability game, defined 
in Fig. 3 with respect to .Ext (more discussion on the game below), as 

. Advunf SAAC,Ext(A,λ) :“ Pr[UNFA 
SAAC,Ext(λ) “ 1] . 

We now discuss in more detail our unforgeability game. First, the game generates 
public parameters .par and a trapdoor .td using the extractor along with the secret 
and public keys .(sk, pk). Then, it runs the adversary .A (acting as a malicious 
user) which can arbitrarily interleave the execution of the following oracles. 

Issuance oracle .Iss. The adversary .A can request a credential to be issued 
via the blind issuance protocol modeled with .Iss. In this oracle, the game 
extracts the underlying attributes .m using .ExtIss. The game keeps track of 
the attributes of which a credential has been issued so far. 

Helper oracles .Help1, . . . ,  Helpr. The adversary can run multiple helper pro-
tocol sessions with the issuer, with each identified with the session ID .sid. 

New user oracle .NewUsr. The adversary can request generation of a credential 
for attributes .m satisfying the predicate . φ for honest users. The adversary do 
not see the credential .σcid generated from this oracle, but can identify them 
in .SH with a credential ID .cid. 

Showing oracle .SH. The adversary specifies the credential ID .cid (which links 
to .mcid and .σcid) along with the predicate . φ and a value .nonce. Then, the 
game will compute . τ by running (1) the helper protocol with the honest user 
(using .mcid and .σcid) and (2) the showing algorithm .Show using the helper 
information .aux obtained from the protocol, the predicate . φ, and the given 
value .nonce. The tuple .(φ, nonce, τ) is recorded by the game. 

Finally, .A wins the game if one of the following occurs: 

• During issuance, the issuer does not abort *and* the extractor extracts 
attributes .m that do not satisfy the predicate .φ specified at issuance. 
This prevents adversaries who try to request credentials for unauthorized 
attributes. 
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Game UNFA 
SAAC,Ext(λ): 

MsgQ, PfQ, I1, . . . ,  Ir, C Ð H; win Ð 0 

(par, td) Ð$ ExtSetup(1 
λ , 1") 

(sk, pk) Ð$ SAAC.KeyGen(par) 

(φ˚, nonce˚, τ  ̊) 

Ð$ AIss,Help1,...,Helpr ,NewUsr,SH (par, pk) 

if (SAAC.SVer(par, pk, τ  ̊,φ˚, nonce˚) “ 1) ^ 

(@m P MsgQ : φ˚(m ) “ 0) ^ 

((φ˚, nonce˚, τ  ̊) {P PfQ) 

then return 1 

return win 

Oracle Iss(µ, φ) :  

imsg Ð$ SAAC.Iss(par, sk, µ,φ) 
if imsg “ K  then abort 

m Ð ExtIss(td, µ,φ) 
if φ(m ) “ 0 _ m “ K  then win Ð 1 

// A wins if it can request 

// credentials for non-authorized attributes 

MsgQ Ð MsgQ Y {m} 
return imsg 

Oracle NewUsr(cid, m ,φ): 

if cid P C _ φ(m ) “ 0 then abort 

C Ð C Y {cid}; m cid Ð m 

σcid Ð$ xSAAC.Iss(par, sk,φ) 
é SAAC.U(par, pk, m ,φ)y 

return closed 

Oracle SH(cid,φ,  nonce): 

if cid {P C then abort 

(K, aux) Ð$ xSAAC.Helper(par, sk) 
é SAAC.ObtHelp(par, pk, m cid,σcid)y 

τ Ð$ SAAC.Show(par, pk, m cid,σcid, aux,φ,  nonce) 
PfQ Ð PfQ Y {(φ, nonce, τ  )} 
return τ 
Oracle Helpj (sid, umsgj ) : // j “ 1, . . . , r  

if sid {P I1, . . . ,  Ij´1 _ sid P Ij 

then abort 

Ij Ð Ij Y {sid} 

if j “ 1 then // For  j “ r, sth 
sid “ K  

(hmsgj , st
h 
sid) Ð$ SAAC.Helper1(par, sk, umsgj ) 

else (hmsgj , st
h 
sid) Ð$ SAAC.Helperj (st

h 
sid, umsgj ) 

return hmsgj 

Fig. 3. Unforgeability game for SAAC “ SAAC[Φ, M]. We assume that all the predi-
cates output by A are in Φ. 

• They output a tuple .(φ˚, nonce˚, τ  ̊) of which the game considers a forgery if 
(1) .τ ̊  is valid with respect to the predicate .φ˚ and the value .nonce˚, (2) . φ˚ 

is not satisfied by any of the extracted attributes, and (3) they do not replay 
honest users’ showing messages. 

Below, we discuss the design choices for our unforgeability definition. 

On the adversary winning if the extractor fails. We require this winning 
condition for two important reasons: 

The extracted attributes should satisfy the predicate. Consider a similar game 
where the issuance oracle aborts if the extracted attributes do not satisfy the 
predicate. It is possible that a SAAC is secure with respect to an extractor 
that always aborts. In particular, the adversary will not get any credential, 
so the security only prevents key-only attacks. Hence, we cannot simply allow 
the game nor the issuer oracle to abort when the extraction fails. 

Credentials should only be granted for authorized attributes. Consider the game 
that only extracts and record the attributes into .MsgQ without aborting. One 
could construct a SAAC scheme where the issuer algorithm ignores the pred-
icate and always computes .imsg. An adversary can then request credentials 
for unauthorized attributes, a scenario which should not be allowed. 
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On the (non-)requirement of the helper interaction. Our unforgeability 
notion only aims to prevent malicious holders from showing credentials that do 
not correspond to their attributes, and does not prevent a situation where a user 
is able to show a credential without helper interaction. In a way, we view SAAC 
as a relaxed notion of multi-show AC where the helper protocol helps us achieve 
public verification, as a consequence standard AC satisfies SAAC notion. We 
note that our instantiations require at least one helper interaction to output a 
publicly verifiable showing message. 

The .NewUsr and .SH oracles model adversaries who can obtain showing mes-
sages of honest users. This is to provide a non-malleability guarantee where 
the adversary cannot forge by modifying previous showing messages of honest 
users. This scenario is also considered by the unforgeability of Privacy-Enhancing 
Attribute-Based Signatures (PABS) from [ 16] and the extractability security of 
KVAC given in [ 38], but not in the original KVAC unforgeability definition [ 23]. 

Honest users reusing .aux. As mentioned in the overview, it is possible that 
the helper information .aux is reused at the cost of anonymity. However, we 
assume that honest users do not reuse the helper information and do not consider 
an adversary who forges a showing by forcing honest users to reuse a helper 
information .aux. One may argue that (a) such situation can occur given a bug 
in the system or (b) honest users might not care about their anonymity. However, 
we see (a) as an implementation problem. For (b), such users could instead use 
the more convenient (and efficient) non-anonymous credentials systems. 

Adversary’s power over the honest users. We consider adversaries who can 
see only the final showing message . τ of honest users. We leave the consideration 
of a stronger model of adversaries (e.g., one that can view the transcript between 
the user and the helper or intercept user’s messages) for future work. 

.Anonymity. No adversary can distinguish between interactions with an honest 
user and interactions with a simulator .Sim. In particular, a SAAC is anonymous 
if there exists a simulator .Sim “ (SimSetup, SimU, SimObtH, SimShow) such that 

1. The distribution of .par from the setup algorithm and .SimSetup are indistin-
guishable, i.e., for any adversary . A, the following advantage is bounded 

. Advpar-indist SAAC,Sim(A,λ) :“ |Pr[A(par) “ 1|par Ð$ SAAC.Setup(1λ , 1!)]´ 

Pr[A(par) “ 1|(par, td) Ð$ SimSetup(1λ , 1!)]| . 

2. The advantage of . A, denoted .Advanon SAAC,Sim(A,λ) and defined as follows, in the 
anonymity game described in Fig. 4 with respect to .Sim, is bounded 

. |Pr[AnonA 
SAAC,Sim,0(λ) “ 1] ́  Pr[AnonA 

SAAC,Sim,1(λ) “ 1]| . 

For readability, we give more detail on our anonymity game below. The adver-
sary (acting as a malicious issuer) will first receive both the public parameters 
.par and the trapdoor .td generated by the simulator and will do the following: 
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Game AnonA 
SAAC,Sim,b(λ): 

init Ð 0; I1, . . . ,  Ir`1, HP Ð H  

(par, td) Ð$ SimSetup(1 
λ , 1") 

(pk, m , φ̃, stA) Ð$ A(par, td) 

if φ̃(m ) “ 0 then return 1 

(µ, stu ) Ð$ SAAC.U1(par, pk, m , φ̃) // b “ 0 

(µ, stSim) Ð$ SimU(td, pk, φ̃) // b “ 1 

(imsg, st′A) Ð$ A(stA, µ) 

σ Ð$ SAAC.U2(st
u , imsg) // b “ 0 

σ Ð$ SimU(stSim, imsg) // b “ 1 

if σ “ K  then return 1 

b′ Ð$ AObtH1,...,ObtHr`1,SH (st′A) 

return b′

Oracle SH(sid,φ,  nonce) :  

if φ(m ) “ 0 _ sid {P HP then abort 

HP Ð HP z {sid} 
// Each  auxsid is used ‘only once’. 

τ Ð$ SAAC.Show(par, pk, m ,σ,  auxsid,φ,  nonce) 

// b “ 0 

τ Ð$ SimShow(td, pk,φ,  nonce) // b “ 1 

return τ 

Oracle ObtH1(sid) :  

if sid P I1 then abort 

I1 Ð I1 Y {sid} 

if j “ 1 then // b “ 0 

(umsg1, stsid) Ð$ SAAC.ObtHelp1(par, pk, m ,σ) 

if j “ 1 then // b “ 1 

(umsg1, stsid) Ð$ SimObtH(td, pk) 

return umsg1 

Oracle ObtHj (sid, hmsgj´1) :  // j “ 2, . . . , r  ̀  1 

if sid {P I1, . . . ,  Ij´1 _ sid P Ij then abort 

Ij Ð Ij Y {sid} 

if 1 ă j ď r then // b “ 0 

(umsgj , stsid) Ð$ SAAC.ObtHelpj (stsid, hmsgj´1) 

return umsgj 

if j “ r ` 1 then 

auxsid Ð$ SAAC.ObtHelpj (stsid, hmsgj´1) 

if 1 ă j ď r then // b “ 1 

(umsgj , stsid) Ð$ SimObtH(stsid, hmsgj´1) 

return umsgj 

if j “ r ` 1 then 

auxsid Ð$ SimObtH(stsid, hmsgj´1) 

if j “ r ` 1 then HP Ð HP Y {sid} 
if j “ r ` 1 ^ auxsid “ K  then abort 

return closed 

Fig. 4. Anonymity game for SAAC “ SAAC[Φ, M], parameterized with a simulator Sim 
and a bit b. We denote case  b “ 0 in the dashed boxes and case b “ 1, denoted in the 
dashed and highlighted boxes. When querying the oracle SH, the adversary specifies a 
helper information auxsid via input sid. We assume all predicates output by A are in Φ. 

Determine .pk, m, φ̃: The adversary determines its (possibly malicious) public 
key . pk, the attributes . m, and the issuance predicate . φ̃ for which the honest 
user will use to request a credential. The user (or the simulator) then computes 
a protocol message . µ and sends them to the adversary. 

Finish credential issuance: The adversary sends .imsg which lets the honest 
user derive a credential . σ or abort. The simulator needs to correctly simulate 
the abort as well. 

The adversary then outputs a guess . b′ after interacting with the following oracles. 

Obtain-help oracles .ObtH1, . . .  ObtHr`1: The adversary forces the user hold-
ing . σ to request a helper information. In these oracles, the adversary would 
interact with either (a) the honest user, who knows the attributes .m and the 
credential . σ, or (b) the simulator, who knows neither the attributes nor the 
credential. At the end, the honest user will either abort or receive a helper 
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information .auxsid tied to the session ID .sid. On the other hand, the simulator 
would only need to simulate the abort correctly. 

Showing oracle .SH: The adversary specifies a helper information (via .sid), a 
predicate . φ, and  a value  .nonce, such that the honest user computes . τ via 
.SAAC.Show using the helper information .auxsid, the attributes .m satisfying 
. φ and the credential . σ. Each helper information is restricted to be used only 
once. In contrast, the simulator only takes as input the trapdoor . td, the public 
key . pk, and the predicate . φ. 

We stress that, in oracle .SH, the simulator does not depend on the helper infor-
mation .auxsid nor the attributes and credential of the honest user. This captures 
the fact that the helper protocol sessions and the final showing messages are 
unlinkable, as the simulator is independent of the session ID .sid. 

Moreover, although we stated the anonymity game with respect to a single  
honest user, the multi-user/session security, where the adversary interacts with 
multiple credential holders, is also defined and proved in the full version. 

.Integrity. In the full version, we consider an additional security property, 
denoted integrity, which ensures that a malicious issuer cannot convince a user 
that they have been issued a valid credential and helper information, when in 
fact, these cannot be used to create a valid showing for some adversarially-
chosen (valid) predicate. This protects against a scenario where a user does not 
immediately compute a showing and check that it is valid, perhaps because they 
do not yet know the predicate that they want to show the credential for. We 
show that a weak notion of integrity follows from correctness and anonymity. 

Remark 3.1 (Revocation). We do not consider revocation of credentials in this 
work and see it as an interesting open problem. A possible (and not-so-efficient) 
approach is to have the issuer to maintain a public list of allowed user identities 
(which will be one of the users’ attributes), and at showing time, the user addi-
tionally shows with a predicate saying their attributes contains an identity on 
this public list. 

4 Generic Construction from Keyed-Verification 
Anonymous Credentials 

In this section, we introduce our building blocks, keyed-verification anonymous 
credentials (KVAC) and oblivious proof issuance protocol (oNIP), in Sect. 4.1, 
and give a generic construction of SAAC in Sect. 4.2. 

4.1 Building Blocks 

In this subsection, we give the syntax and definitions related to our building 
blocks and point out several distinctions from prior works. These include (1) 
global parameters generator, (2) syntax for relations and languages for oNIP, 
(3) KVAC syntax and definitions, and (4) oNIP syntax and definitions. 
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.Global parameters generator. Inspired by the formalization in [ 16], we 
define global parameters generator .Gen(1λ), a probabilistic algorithm which gen-
erates public parameters .parg. Note that .parg are shared by both of our building 
blocks KVAC and oNIP. In practice, an example for .Gen is a group parameters 
generator .GGen which outputs a group description .(p, G, G). In our instantia-
tions, the underlying building blocks KVAC and oNIP may require the global 
parameters to be generated with some trapdoor .tdg, used to simulate components 
of both building blocks in the security proofs. In that case, we need a simulator 
.SimGen which returns .(parg, tdg) such that .parg is indistinguishable from .Gen. 

.Syntax on relations for oblivious proof issuance. Particularly for this 
section, we use a similar syntax for relations and languages from [ 37]. In [ 37], 
a relation . R contains tuples of the form .((X, Y, Z), x), denoting .X the state-
ment, . x the witness, .Y an argument and .Z an augmented statement. In our  
case, a relation contains tuples .((X, Y ), x) and we instead call .Y an aug-
mented statement, containing both .(Y, Z) in their syntax. We denote the rela-
tion .Core(R) :“ {(X, x)|DY : ((X, Y ), x) P R} and the induced language 
.LR :“ {(X, Y )|Dx : ((X, Y ), x) P R}. The membership .(X, x) P Core(R) can 
be efficiently checked. 

.Keyed-verification anonymous credentials. A keyed-verification anony-
mous credential (KVAC) scheme .KVAC “ KVAC[Gen,Φ,  M], defined with respect 
to .Gen, a predicate family . Φ and an attribute space .M, consists of the following 
algorithms. 

• .parKVAC Ð$ KVAC.Setup(1!, parg) takes as input .parg and outputs public 
parameters .parKVAC defining the an attribute space .M “ MparKVAC and a 
predicate class .Φ “ ΦparKVAC . We assume that .parKVAC contains .parg. 

• .(sk, pk) Ð$ KVAC.KeyGen(parKVAC) outputs the secret/public key pair. 
• .(K,σ) Ð$ xKVAC.Iss(parKVAC, sk,φ) é KVAC.U(parKVAC, pk, m,φ)y is a round-

optimal protocol with similar syntax to SAAC’s issuance (see Sect. 3.1). 
• .τ “ (τkey, τpub) Ð$ KVAC.Show(parKVAC, pk, m,σ,φ,  nonce) outputs a showing 

message . τ . The showing algorithm is split into the two algorithms. 
– .(τkey, st) Ð$ KVAC.Showkey(parKVAC, pk, m,σ) outputs a state . st and a key-

dependent showing message .τkey. 
– .τpub Ð$ KVAC.Showpub(st,φ,  nonce) outputs a message .τpub showing the 

credential . σ issued for attributes .m such that .φ(m) “ 1. 
• .0{1 Ð KVAC.SVer(parKVAC, sk, pk, (τkey, τpub),φ,  nonce) outputs a bit. Similar 

to showing, verification also splits into key-dependent and public verification 
as follows. The output bit is determined by .b0 ^ b1. 
– .b0 Ð KVAC.SVerkey(parKVAC, sk, τkey) verifies .τkey using . sk. 
– .b1 Ð KVAC.SVerpub(parKVAC, pk, τkey, τpub,φ,  nonce) verifies .τkey and .τpub. 

One distinction from prior works’ syntax is the split in showing and verification 
algorithms into key-dependent and public parts. In the showing algorithm, the 
showing message .τpub is bound to an additional value .nonce (which in some cases 
can be a token identifier or a nonce chosen by the verifier). For our generic SAAC 
construction, we require that .τkey is independent of the predicate . φ and .nonce. 
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This syntax is applicable to some existing KVAC schemes (e.g., [ 6,23]), but not 
for some others [ 35] where the predicate-dependent parts of the showing mes-
sage require the secret key to verify. The key-dependent verification algorithm 
.KVAC.SVerkey induces a relation 

. RV,parg :“ 

 
 

 (((parKVAC, pk), τkey), sk) :  
parKVAC “ (parg, ·) ^ 
(sk, pk) P [KVAC.KeyGen(parKVAC)] ^ 
KVAC.SVerkey(parKVAC, sk, τkey) “ 1 

 
 

 . 

The relation contains a statement .((parKVAC, pk), τkey) and a witness .sk such that 
.parKVAC contains .parg, .(sk, pk) can be generated from .KVAC.KeyGen(parKVAC), 
and .τkey is valid with respect to . sk. Checking . (sk, pk) P [KVAC.KeyGen(parKVAC)] 
can be done efficiently, e.g., interpreting .sk as random coins used to generate . pk. 
We denote .LV,parg as the induced language of .RV,parg . 

Then, we require a KVAC scheme to satisfy the following properties. We 
refer the readers to the full version for the standard definitions of parameter 
indistinguishability for various algorithms and the .η-correctness property which 
is defined similarly to that of SAAC’s (without the helper). Later on in Sect. 5, 
we modify some existing KVAC schemes to fit to our definitions. 

Unforgeability. Let .O(parg, sk, (parKVAC, pk), ·) be an oracle embedded with 
.parg, parKVAC, sk, pk, and taking a to-be-determined input. A .KVAC scheme is 
.O-unforgeable if there exists an extractor .Ext “ (ExtSetup, ExtIss) such that 
1. The distribution of .parKVAC from .KVAC.Setup(parg) and .ExtSetup(parg) for 

.parg Ð$ Gen(1λ) are indistinguishable. 
2. The following advantage of . A in the unforgeability game, defined in Fig. 5 

with respect to the oracle .O and the extractor .Ext, is bounded. 
.Advunf KVAC,Ext,O(A,λ) :“ Pr[UNFA 

KVAC,Ext,O(A,λ) “ 1]. 
The KVAC unforgeability game is defined similarly to SAAC unforgeability 
with the following exceptions: no helper oracle is involved, the adversary can 
query the oracle .O which parameterized the game, and the adversary can 
request honest users’ showing messages adaptively by first querying . SHkey 

and then .SHpub with a predicate . φ and a value .nonce. The adversary’s goal 
is still to forge a valid .(φ˚, nonce˚, τ  ̊) for a predicate .φ˚ not satisfied by any 
extracted attributes and without replaying honest users’ showings. 
Compared to the original KVAC unforgeability in [ 23], we rely on an extractor 
instead of having the adversary reveals the attributes, but we do not give the 
adversary access to a verification oracle. Compared to the extractability defi-
nition of KVAC in [ 38], we do not require an extractor for the final forgery. In 
their game, the issuer oracle also extracts the underlying attributes; however, 
the game aborts if they do not satisfy the predicate, instead of allowing the 
adversary to win (as in our case). 

Anonymity. A .KVAC scheme is anonymous if there exists a simulator . SimGen 

which generates .parg indistinguishable from .Gen and a simulator . Sim “ 
(SimSetup, SimU, SimShow) such that 
1. The distribution of .parKVAC from .KVAC.Setup(parg) and .SimSetup(parg) for 

.parg Ð$ Gen(1λ) are indistinguishable. 
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Game UNFA 
KVAC,Ext,O(λ): 

MsgQ, PfQ, C, S Ð H; sctr, win Ð 0 

parg Ð$ Gen(1 λ ); (parKVAC, td) Ð$ ExtSetup(1
", parg) 

(sk, pk) Ð$ KVAC.KeyGen(parKVAC) 

(τ ̊ ,φ˚, nonce˚) Ð$ 

AIss,NewUsr,SHkey ,SHpub,O(parg ,sk,(parKVAC,pk),·) (parKVAC, pk) 

if (KVAC.SVer(parKVAC, sk, pk, τ  ̊,φ˚, nonce˚) “ 1) ^ 

(@m P MsgQ : φ˚(m ) “ 0) ^ 

((φ˚, nonce˚, τ  ̊) {P PfQ) then 

return 1 

return win 

Oracle Iss(µ, φ) :  

imsg Ð$ KVAC.Iss(parKVAC, sk, µ,φ) 
if imsg “ K  then abort 

m Ð ExtIss(td, µ,φ) 
if m “ K  _  φ(m ) “ 0 then 

win Ð 1 // A wins if it can request 

// credentials for non-authorized attributes 

MsgQ Ð MsgQ Y {m } 
return imsg 

Oracle NewUsr(cid, m ,φ): 

if cid P C _ φ(m ) “ 0 then 
return K 

C Ð C Y {cid}; m cid Ð m 

σcid Ð$ xKVAC.Iss(parKVAC, sk,φ) 
é KVAC.U(parKVAC, pk, m ,φ)y 

return closed 

Oracle SHkey(cid): 

if cid {P C then abort 

sctr Ð sctr ` 1 
(τkey,sctr, stsctr) Ð$ 

KVAC.Showkey(parKVAC, pk, m cid,σcid) 

return (sctr, τkey,sctr) 

Oracle SHpub(sid,φ,  nonce): 

if sid P S _ sid ą sctr then abort 

S Ð S Y {sid} 
τpub Ð$ KVAC.Showpub(stsid,φ,  nonce) 
τ Ð (τkey,sid, τpub) 
PfQ Ð PfQ Y {(φ, nonce, τ  )} 
return τpub 

Game AnonA 
KVAC,SimGen,Sim,b(λ): 

sctr Ð 0; S Ð H  

(parg, tdg) Ð$ SimGen(1 
λ ) 

(parKVAC, tdKVAC) Ð$ SimSetup(1
", parg) 

td Ð (tdg, tdKVAC) 

(pk, m , φ̃, stA) Ð$ A(parKVAC, td) 

if φ̃(m ) “ 0 then return 1 

(µ, stu ) Ð$ KVAC.U1(parKVAC, pk, m , φ̃) // b “ 0 

(µ, stSim) Ð$ SimU(td, pk, φ̃) // b “ 1 

(imsg, st′A) Ð$ A(stA, µ) 

σ Ð$ KVAC.U2(st
u , imsg) // b “ 0 

σ Ð$ SimU(stSim, imsg) // b “ 1 

if σ “ K  then return 1 

b′ Ð$ ASHkey ,SHpub (st′A) 

return b′

Oracle SHkey(): 

sctr Ð sctr ` 1 

(τkey,sctr, stsctr) // b “ 0 

Ð$ KVAC.Showkey(parKVAC, pk, m ,σ) 

(τkey,sctr, stsctr) Ð$ SimShow(“key”, td, pk) 

// b “ 1 
return (sctr, τkey,sctr) 

Oracle SHpub(sid,φ,  nonce): 

if φ(m ) “ 0 _ sid P S _ sid ą sctr 
then abort 

S Ð S Y {sid} 

τpub Ð$ KVAC.Showpub(stsid,φ,  nonce) // b “ 0 

τpub Ð$ SimShow(“pub”, stsid,φ,  nonce) // b “ 1 

return τpub 

Fig. 5. Unforgeability and anonymity game for KVAC “ KVAC[Gen,Φ,  M] on the  top  
and bottom, respectively. We note that both the adversary and the simulator are given 
access to the global trapdoor tdg and KVAC trapdoor tdKVAC. We assume that all the 
predicates output by A are in Φ. 
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2. No adversary can distinguish between interactions with an honest user 
and interactions with the simulator .Sim. The advantage of . A’s in the 
anonymity game in Fig. 5 is . Advanon KVAC,SimGen,Sim(A,λ) :“ 
. |Pr[AnonA 

KVAC,SimGen,Sim,0(λ) “ 1] ́  Pr[AnonA 
KVAC,SimGen,Sim,1(λ) “ 1]| . 

The anonymity game of KVAC’s is similar to that of SAAC’s without the 
helper, except that we split the showing oracle into .SHkey and .SHpub. This 
allows the adversary to adaptively choose the predicate . φ and value . nonce 
depending on .τkey. Compared to the anonymity definition in [ 23], our defini-
tion incorporates blind issuance and considers maliciously generated key. 

Integrity of issued credentials. No adversary can force the honest user to 
output an invalid showing message even when the public key .pk is adversar-
ially chosen and the public parameters .parKVAC are sampled with a trapdoor 
using the simulator .SimGen and .Sim (defined in the anonymity definition). 
Denote the integrity advantage of .A as . Advinteg KVAC,SimGen,Sim

(A,λ) :“ 

. Pr 

 

       

σ ‰ K ^  
(pk, τkey) {P LV,parg

∣∣∣∣∣∣∣∣∣∣∣∣

(parg, tdg) Ð$ SimGen(1λ) 
(parKVAC, tdKVAC) Ð$ SimSetup(1!, parg) 
(pk, m,φ,  st) Ð$ A(parKVAC, (tdg, tdKVAC)) 
if φ(m) “ 0 then abort 
(K,σ) Ð$ xA(st) é KVAC.U(parKVAC, pk, m,φ)y 
(τkey, st) Ð$ KVAC.Showkey(parKVAC, pk, m,σ) 

 

       
. 

Validity of key generation with respect to .Ext: For any .λ, * “ *(λ) P N, . parg P 
[Gen(1λ)], .(parKVAC, td) P [ExtSetup(1!, parg)] and .((parKVAC, pk), τkey) P LV,parg , 
for any .sk that corresponds to .pk (i.e., .(sk, pk) P [KVAC.KeyGen(parKVAC)]), 
we have .((parKVAC, pk), τkey), sk) P RV,parg . This property ensures that for any 
.τkey that is valid for some secret key .sk which corresponds to the public key 
. pk, it should also be valid for any other secret key .sk′ corresponding to . pk. 
This property is satisfied if the secret key is unique for each public key. 

.Oblivious issuance of non-interactive proofs. An oblivious issuance of 
non-interactive proofs .oNIP “ oNIP[Gen, R] defined with respect to .Gen and a 
family of relations .R “ {Rparg}parg consists of the following algorithms. 

• .paroNIP Ð$ oNIP.Setup(parg) outputs public parameters .paroNIP. The input 
.parg defines the relation .R “ Rparg , omitting subscript .parg when clear from 
the context. We also assume that .paroNIP contains .parg. 

• .(K,π) Ð$ xoNIP.Iss(paroNIP, x,X) é oNIP.U(paroNIP,X, Y  )y is a .r-round 
interactive protocol starting with the user algorithm .oNIP.U1 and concluding 
with .oNIP.Ur`1 outputting the proof . π. 

• .0{1 Ð oNIP.Ver(paroNIP, (X, Y ),π) outputs a bit. 

Our syntax deviates from [ 37] in that the user algorithm does not output an 
augmented statement . Z, but the user takes as input the augmented statement 
.Y (which we think of as .(Y, Z) in their work). We require oNIP to satisfy the 
following properties, but unlike [ 37], unforgeability is not required for our generic 
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construction. We refer the readers to the full version for the standard definitions 
of .η-correctness, parameter-indistinguishability, and soundness. 

Zero-knowledge. Let .O(parg, x,X,  ·) be a deterministic oracle embedded with 
.parg (which defines .Rparg ), and statement and witness .X, x and taking in 
a to-be-determined input. An .oNIP is .O-Zero-knowledge if there exists a 
simulator .Sim “ (SimSetup, SimIss), such that no adversary can distinguish 
between an honest issuer using the witness . x from a simulator who does 
not know the witness. Unconventionally, our simulator .Sim is assisted by 
the oracle .O embedded with . x, modeling witness-dependent computation 
that is not efficiently simulatable (e.g., checking if a rerandomized state-
ment is in the language). The advantage of .A in the ZK game in Fig. 6 is 
.Advzk oNIP,Sim,O(A,λ) :“ |Pr[ZKA 

oNIP,Sim,O,0(λ) “ 1] ́  Pr[ZKA 
oNIP,Sim,O,1(λ) “ 1]|. 

Obliviousness for valid statements. An .oNIP is oblivious for valid statements 
if there exists a simulator .SimGen generating .parg indistinguishable from . Gen 
and a simulator .Sim “ (SimSetup, SimU, SimPf) such that 
1. The distribution of .paroNIP from .oNIP.Setup(parg) and .SimSetup(parg) for 

.parg Ð$ Gen(1λ) are indistinguishable. 
2. The adversary . A, given the simulation trapdoor, cannot distinguish 

between an honest user who obtains the proof from the issuance proto-
col and a simulator who simulates the proof independent of the protocol. 
Importantly, the simulator only gets the ‘core’ statement .X but not the 
‘augmented’ statement .Ysid during the protocol. The advantage of .A in 
the obliviousness game in Fig. 6 is defined as . Advoblv oNIP,SimGen,Sim(A,λ) :“ 
.|Pr[OBLVA 

oNIP,SimGen,Sim,0(λ) “ 1] ́  Pr[OBLVA 
oNIP,SimGen,Sim,1(λ) “ 1]|. 

Our obliviousness definition is simulation-based instead of the definition 
in [ 37]. Further, it only applies for statements in the language and not any 
statements. 

4.2 Construction 

We construct below a SAAC scheme .SAAC “ SAAC[Gen, KVAC, oNIP] for 
predicate family .Φ and attribute space .M, using  . KVAC “ KVAC[Gen,Φ,  M] 
and .oNIP “ oNIP[Gen, RV] for the relation family .RV defined by the 
.KVAC.SVerkey algorithm. The main idea is to replace the key-dependent veri-
fication .KVAC.SVerkey with a proof generated from .oNIP. 

Setup: .SAAC.Setup(1λ) :  .parg Ð$ Gen(1λ), .parKVAC Ð$ KVAC.Setup(1!, parg), 
and .paroNIP Ð$ oNIP.Setup(parg). Return . par “ (parKVAC, paroNIP) 

Key generation and Issuance: These are defined exactly as those of .KVAC. 
Helper protocol: .xSAAC.Helper(par, sk) é SAAC.ObtHelp(par, pk,σ)y is 

defined as follows: 
• First, .SAAC.ObtHelp runs .(τkey, st) Ð$ KVAC.Showkey(parKVAC, pk, m,σ). 
• Then, .SAAC.Helper and .SAAC.ObtHelp run the protocol . (K,πV) Ð$ 

.xoNIP.Iss(paroNIP, sk, (parKVAC, pk)) é 
oNIP.U(paroNIP, (parKVAC, pk), τkey)y. 
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Game ZKA 
oNIP,Sim,O,b(λ): 

init Ð 0; I1, . . . ,  Ir Ð H  

parg Ð$ Gen(1 λ ) 

paroNIP Ð$ oNIP.Setup(parg) // b “ 0 

(paroNIP, td) Ð$ SimSetup(parg) // b “ 1 

b′ Ð$ AInit,Iss1,...,Issr (paroNIP) 

return b′

Oracle Init( X̃,  ̃x): 

if init “ 1 _ ( X̃,  ̃x) {P Core(R) then 
abort 

init Ð 1; X Ð X̃; x Ð x̃ 
return closed 

Oracle Issj (sid, umsgj ) : // j “ 1, . . . . , r  

if sid {P I1, . . . ,  Ij´1 _ sid P Ij _ init “ 0 
then abort 

Ij Ð Ij Y {sid} 
if j “ 1 then 

(hmsg1, stsid) Ð$ oNIP.Iss1(paroNIP, x,  umsg1) // b “ 0 

(hmsg1, stsid) Ð$ Sim
O(parg ,x,X,·) 
Iss (td, X,  umsg1) // b “ 1 

else // For  j “ r, stsid “ K  

(hmsgj , stsid) Ð$ oNIP.Issj (stsid, umsgj ) // b “ 0 

(hmsgj , stsid) Ð$ Sim
O(parg ,x,X,·) 
Iss (stsid, umsgj ) // b “ 1 

return hmsgj 

Game OBLVA 
oNIP,SimGen,Sim,b(λ): 

init Ð 0; I1, . . . ,  Ir`1, P Ð H  

(parg, tdg) Ð$ SimGen(1 
λ ) 

(paroNIP, tdoNIP) Ð$ SimSetup(parg) 

td Ð (tdg, tdoNIP) 

b′ Ð$ AInit,U1,...,Ur`1,Pf (paroNIP, td, stA) 

return b′

Oracle Init( X̃): 

if init “ 1 then abort 

init Ð 1; X Ð X̃ 
return closed 

Oracle Pf(sid): 

if sid {P I1, . . . ,  Ir`1 _ sid P P 
then abort 

P Ð P Y {sid} 

return πsid // b “ 0 

if πsid #“ K  then 

return π Ð$ SimPf (td, X, Ysid) 

else abort // b “ 1 

Oracle U1(sid, Ysid) 

if sid P I1 _ init “ 0 _ (X, Ysid) {P LRparg 
then 

abort 

I1 Ð I1 Y {sid} 

(umsg1, stsid) Ð$ oNIP.U1(paroNIP, X, Ysid) // b “ 0 

(umsg1, stsid) Ð$ SimU(td, X) // b “ 1 

return umsg1 

Oracle Uj (sid, imsgj ) // j “ 2, . . . , r  ̀  1 

if sid {P I1, . . . ,  Ij´1 _ sid P Ij 

then abort 

Ij Ð Ij Y {sid} 
if j ă r ` 1 then 

(umsgj , stsid) Ð$ oNIP.Uj (stsid, imsgj ) // b “ 0 

(umsgj , stsid) Ð$ SimU(stsid, imsgj ) // b “ 1 

return umsgj 

else 

πsid Ð$ oNIP.Uj (stsid, imsgj ) // b “ 0 

πsid Ð$ SimU(stsid, imsgj ) // b “ 1 

return closed 

Fig. 6. Zero-knowledge and obliviousness games of oNIP “ oNIP[Gen, R] on the  top  
and bottom, respectively. The ZK game is parameterized by the simulator Sim with 
access to the oracle O. As with the KVAC’s anonymity definition, both the adversary 
and the simulator in OBLV game are given access to the global trapdoor tdg and oNIP 
trapdoor tdoNIP. Crucially, the OBLV simulator gets the ‘core’ statement X but not 
the ‘augmented’ statement Y during the protocol. 
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• Finally, .SAAC.ObtHelp returns .aux “ (τkey,πV, st). 
Show: .SAAC.Show(par, pk, m,σ,  aux “ (τkey,πV, st),φ,  nonce): computes . τpub Ð$ 

KVAC.Showpub(st,φ,  (πV, nonce)) and returns .π “ (τkey, τpub,πV). 
Verify: .SAAC.SVer(par, pk,π  “ (τkey, τpub,πV),φ,  nonce): returns .b0 ^ b1 where 

• . b0 Ð oNIP.Ver(par, (parKVAC, pk), τkey,πV) 
• . b1 Ð KVAC.SVerpub(par, pk, (τkey, τpub),φ,  (πV, nonce)) 

The following theorem then establishes the properties of our generic . SAAC 
construction. Correctness follows from the correctness of both building blocks. 
We refer to the overview Sect. 1.1 for a proof sketch and to the full version for 
the formal proofs and concrete security bounds. 

Theorem 4.1. Let .* “ *(λ) and .Gen be a global parameters generator, . KVAC 
be a keyed-verification anonymous credential, and .oNIP be an oblivious proof 
issuance protocol for the relation family .RV induced by .KVAC.SVerkey. Then, the 
server-aided anonymous credential scheme .SAAC “ SAAC[Gen, KVAC, oNIP] is 

• .(ηKVAC ` ηoNIP)-correct if .KVAC is .ηKVAC-correct and .oNIP is .ηoNIP-correct. 
• Unforgeable if there exists an oracle .O such that .oNIP is .O-zero-knowledge 
and sound and .KVAC satisfies .O-unforgeability and validity of key generation 
with respect to the same extractor .Ext. 

• Anonymous if there exist simulators .SimGen, SimoNIP, SimKVAC such that . oNIP 
is oblivious with respect to .SimGen and .SimoNIP, and  .KVAC satisfies anonymity 
and integrity with respect to .SimGen and .SimKVAC. 

5 Instantiations 

In this section, we give two SAAC instantiations in pairing-free groups from 
two KVAC schemes based on algebraic MACs. In Sect. 5.1, we give a scheme 
adapting Barki et al.’s KVAC [ 6] based on BBS-MAC. In Sect. 5.2, we give less 
efficient scheme adapting ideas from Chase et al.’s DDH-based KVAC [ 23]. For 
both instantiations, we construct a suitable oNIP protocol. 

Both KVACs use three proof systems: .Πcom proving that committed 
attributes satisfy an issuance predicate, .Πσ proving correct issuance of creden-
tials, and .Πpub used for showing a credential. 5 Except for the .Πcom which is 
instantiated from the Fischlin transform [ 27,30], .Πσ and .Πpub are obtained by 
applying the Fiat-Shamir transform to .Σ-protocols for linear relations [ 34] (see  
the proof system .Lin in Fig. 7). Crucially, the prover of .Πpub takes as input a 
string .nonce which is hashed by . H. This is necessary to achieve our stronger 
KVAC security and ensure non-malleability of honest users’ showings in our 
SAAC instantiations. We refer the full version for more details on these NIZKs. 

5 We will refer to them as .Πcom,Πσ,Πpub for both instantiations, but note that they 
are different proof systems. 
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Lin.ProveH ((M P Gnˆm , Y P Gn ), x P Zm 
p , nonce) 

r Ð$ Z m 
p ; R Ð M r ; c Ð H(M, Y , R, nonce) 

s Ð r ` c · x 
return π :“ (c, s) 

Lin.VerH ((M P Gnˆm , Y P Gn ),π,  nonce) 

(c, s) Ð π 
R Ð M s ´ c · Y 
return H(M, Y , R, nonce) “ c 

Fig. 7. NIZK proof system Lin “ Lin[H, G] for  RG :“ {((M, Y ), x) :  Y “ M x}. The  
prover optionally takes an input nonce which will also be hashed by H. 

5.1 Instantiation from BBS 

In this section, we instantiate our SAAC construction with a KVAC based on 
the BBS MAC, which can be seen as a variant of Barki et al.’s KVAC [ 6], and 
a corresponding .oNIP scheme. Following the syntax in Sect. 4.1, we note that 
our global parameters generator is exactly the group generator .GGen and the 
simulator .SimGen simply runs .GGen and does not output any trapdoor. 
.BBS-based KVAC. We first describe the .KVACBBS scheme in Fig. 8, which can 
be seen as a variant of the KVAC from [ 6]. The credential for the attributes 
.m “ (mi)!i“1 is computed as .(A :“ (x ` e)´1 C, e Ð$ Zp, s  Ð$ Zp) where . x P Zp 

is the secret key, .C “ G ̀
∑!

i“1 miHi ` sH!`1, and  .H1 . . . ,H!`1 P G are parts 
of the public parameters. To show a credential, a holder can sample . r, r′ Ð$ Zp 
and compute . C̃ Ð rC, . Ã Ð r′rA, and  . B̃ Ð r′C̃ ´ e Ã. The holder sends to 
the issuer .( Ã, B̃, C̃), along with a proof of knowledge of .e, r, r′, m (using CDL 
proofs [ 15]), and the issuer can check that .x Ã “ B̃. To bind a value .nonce to the 
showing message, the hash computation in .Πpub also takes .nonce as an input. We 
emphasize that this is crucial for the security of our final SAAC construction. 
Our KVAC makes use of proof systems .Πcom,Πσ, and .Πpub for the following 
relations (implicitly parameterized by the group description), respectively: 

. Rcom :“ {((H , C,ψ), (s, m)) : C “ sH!`1 `
∑!

i“1 miHi ^ ψ(m) “ 1} 
Rσ :“ {((X, A, B), x) :  xG “ X ^ xA “ B} 

Rpub :“
{
(( Ã, B̃, C̃, Hpriv, Y  ), (e, r′, r′′, m̂, s) :  r

′′C̃ ` xHpriv, ( m̂‖s)y “  Y ̂  
B̃ “ r′C̃ ´ e Ã

}
. 

We require .Πcom to be straightline-extractable for the relaxed relation .R̃com which 
in addition to statement and witness .((H, C,ψ), (s, m)) P Rcom also accepts 
witnesses .(s‖m) ‰ 0 such that .0G “

∑!
i“1 miHi ` sH!`1. For the relations . Rσ 

and .Rpub, we explicitly define the corresponding linear maps as follows: . M σ 
G,A :“ 

(G, A)T and .M pub 
C̃,Hpriv,1,...,Hpriv,k, Ã :“

(
C̃ Hpriv,1 · · ·  Hpriv,k 0 0  
0 0  · · · 0 C̃ ´ Ã

)
. We point 

out that .SVerkey induces the following DLEQ relation (parameterized by . parg “ 
(p, G, G) which we will omit) for which we give a corresponding .oNIP protocol. 

.Rdleq :“ {((X, ( Ã, B̃)), x) :  X “ xG ^ B̃ “ x Ã} , (1) 

The augmented statement is .( Ã, B̃), and the core relation .Core(Rdleq) contains 
public-secret key pairs .(X “ xG, x) defined by the key generation of .KVACBBS. 
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KVACBBS.Setup(1
", parg “ (p, G, G)) 

Select H0, H1, H2 : {0, 1}˚ Ñ Zp 

H “ (Hi)
"`1 
i“1 Ð$ G"`1 

Πσ Ð Lin[H1, G]; Πpub Ð Lin[H2, G] 

return par “ (p, G, G, H , H0, H1, H2) 

KVACBBS.KeyGen(par) 

x Ð$ Zp; X Ð xG 
return (sk Ð x, pk Ð X) 

KVACBBS.Iss(par, x,ψ, µ  “ (C, πcom)) 

if C ` G “ 0G ∨ Πcom.Ver
H0 ((H , C,ψ),πcom) “ 0 

then abort 

e Ð$ Zp; A Ð (x ` e)´1 (G ` C); B Ð C ´ eA 

πσ Ð Πσ.Prove
H1 ((M σ 

G,A, (X, B)), x) 

return imsg Ð (A, e, πσ) 

KVACBBS.SVerkey(par, x, τkey “ ( Ã, B̃)) 

return x Ã “ B̃ 

KVACBBS.SVerpub(par, X, τkey, τpub,φI ,a , nonce) 

parse ( Ã, B̃) Ð τkey; (  C̃, πpub) Ð τpub 
H priv Ð (Hi)iP["`1]zI 

Y Ð G ` xa, (Hi)iPI y 
return Πpub.Ver

H2 ((M pub 
C̃,H priv, Ã 

, (Y, B̃)), 

πpub, (φI ,a , nonce)) 

KVACBBS.U1(par, X,  m P Z"
p,ψ) 

s Ð$ Zp; C Ð sH"`1 `
∑"

i“1 miHi 

if C ` G “ 0G then abort 

πcom Ð Πcom.Prove
H0 ((H , C,ψ), (s, m )) 

return µ :“ (C, πcom) 

KVACBBS.U2(imsg “ (A, e, πσ)) 

B Ð G ` C ´ eA 

if Πσ.Ver
H1 ((M σ 

G,A, (X, B)),πσ) “ 0 

then abort 

return σ Ð (A, e, s) 

KVACBBS.Showkey(par, pk, m ,σ  “ (A, e, s)) 

r, r′ Ð$ Z˚ 
p 

C̃ Ð r(G ` sH"`1 `
∑"

i“1 miHi) 

Ã Ð r′rA; B̃ Ð r′C̃ ´ e Ã 

return τkey :“ ( Ã, B̃) 

KVACBBS.Showpub(φI ,a , nonce) 

if φI ,a (m ) “ 0 then abort 

H priv Ð (Hi)iP["]zI 

Y Ð G ` x(mi)iPI , (Hi)iPI y 
πpub Ð Πpub.Prove

H2 ((M pub 
C̃,H priv, Ã 

, (Y, B̃)), 

(r´1 , (mi)iP["]zI , r
′, s, e), (φI ,a , nonce)) 

return τpub :“ ( C̃, πpub) 

Fig. 8. Scheme KVACBBS “ KVACBBS[GGen]. The proof systems Πcom,Πσ,Πpub are 
NIZKs for Rcom, Rσ, Rpub defined in Section 5.1, respectively. States are omitted for 
readability – subsequent algorithms can use values defined before (e.g. KVACBBS.U2 

can use variables from KVACBBS.U1). In Showpub, the  value  nonce is bound to πpub. 

The following theorem, proved in the full version, establishes the security 
properties of .KVACBBS. Note that the KVAC unforgeability adversary has access 
to a restricted DDH oracle .rDDH defined in Fig. 2. 

Theorem 5.1. Let .GGen be a group generator outputting groups of prime order 
.p “ p(λ). Then,  .KVACBBS “ KVACBBS[GGen] satisfies correctness, anonymity 
and integrity of issued credentials in the ROM with respect to the same simulator 
.Sim, and  .rDDH-unforgeability in the ROM under .(q , rDDH)-SDH assumption 
and validity of key generation with respect to the same extractor .Ext. 

.oNIP for BBS-based instantiation. Here, we sketch the pro-
tocol .oNIPBBS “ oNIP[GGen, Rdleq] for the family of relations .Rdleq, defined in 
Eq. (1), and refer to the full version for the full description. The protocol starts 
by the user sending a rerandomized statement .(A “ Ã`βG, B “ B̃`βX) to the 
issuer. The issuer first checks that .(X, (A, B)) is actually in the language .LRdleq . 
Then, the two parties interact in a blinded .Σ-protocol to compute an OR-proof 
that (1) .(X, (A, B)) P LRdleq or (2) the issuer knows the discrete logarithm of 
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public parameters .W P G. At the end of the protocol, the user obtains a proof 
. π for its statement of choice .( Ã, B̃). This protocol is similar to a recent blind 
signature scheme [ 22] and the oNIP for .Rdleq in [ 37], except that in their cases 
the issuer computes .B “ xA for the user who sends . A. The following theorem 
establishes the security properties of .oNIPBBS with the proof given in the full 
version. 

Theorem 5.2. Let .GGen be a group generator outputting groups of prime order 
.p “ p(λ), .rDDH be a restricted DDH oracle, and .SimGen be the simulator for 
the global parameters generator. Then, .oNIPBBS “ oNIPBBS[GGen, Rdleq] satisfies 
perfect correctness, soundness in the ROM assuming .DL, perfect .rDDH-zero-
knowledge, and perfect obliviousness for valid statements with respect to .SimGen. 

The following corollary follows from Theorems 4.1, 5.1 and 5.2. Although we 
do not formally show this, strong integrity of .SAACBBS follows from the public 
key of .KVACBBS fixing an underlying secret key and soundness of .Πσ ensuring 
that the issued credential is valid. 

Corollary 5.3. Let .SAACBBS “ SAAC[GGen, KVACBBS, oNIPBBS] be a SAAC 
scheme from .KVACBBS and .oNIPBBS according to Theorem 4.1. Then,  . SAACBBS 

satisfies correctness, unforgeability in the ROM assuming .(q , rDDH)-SDH, and  
anonymity in the ROM. 

.Efficiency. In addition to the concrete sizes in Table 1, we also consider the 
computational costs of showing (without the helper) and verification of .SAACBBS, 
which are .* ` 4 (helper protocol includes .19 and . 5 exponentiations for the user 
and issuer, resp.) and .* ` 12 exponentiations, resp. This is comparable to those 
of pairing-based BBS which requires .*` 7 exponentiations for showing and . *` 5 
exponentiations + 2 pairing evaluations for verification. 

5.2 Instantiation from DDH 

In this section, we instantiate our generic construction with a DDH-based 
KVAC by Chase, Meiklejohn, and Zaverucha’s [ 23] and a corresponding oNIP 
scheme. Following the syntax in Sect. 4.1, our global parameters generator, 
denoted .GenDDH(1λ), runs .(p, G, G) Ð$ GGen(1λ), samples .H Ð$ G˚, and  sets  
.parg “ (p, G, G,H). For security of both KVAC and oNIP, we fix the simulator 
.SimGen which samples .H “ vG with a trapdoor .v Ð$ Z˚

p. 

.DDH-based KVAC. We first introduce the DDH-based KVAC in [ 23], building 
on top of an algebraic MAC where a tag for a vector of attributes .(mi)!i“1 is 
.(Sw, Sx, Sy, Sz) :“ (U Ð$ G, (x0 `

∑!
i“1 ximi)U, (y0 `

∑!
i“1 yimi)U, zU) with 

the secret key containing scalars .(xi)!i“0, .(yi)!i“0, and  . z. The issuer’s public key 
includes .(Xi “ xiH, Yi “ yiH)!i“1 with .H being the public parameters. For 
blind issuance, a user ElGamal encrypts each of their attributes, and the issuer 
homomorphically creates a tag for the user to decrypt. 
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To show a credential: the user randomizes the tag as . (S′
w “ rSw, Cx “ 

rSx ` rxH, Cy “ rSy ` ryH, S′
z “ rSz) for .r Ð$ Z˚

p, rx, ry Ð$ Zp. Then, the 
user computes commitments .Ci “ miU ′ ` riG to their attributes. With . U ′

and .(Ci)!i“1, the issuer can use their secret key to compute (for example) 
. Ṽx “ x0U ′ ` ∑!

i“1 xiCi “ (x0 `
∑!

i“1 ximi)U ′ ` ∑!
i“1 riXi which is close to 

.Cx, but with added randomness from the blinding. Hence, the user also sends 

.Γx :“
∑!

i“1 riXi ´ rxH (and similarly . Γy). The issuer checks that . Cx ` Γx “ Ṽx 
(respectively for .yi and .Cy,Γy, Ṽy). This is the key-dependent part of the verifi-
cation. The user also includes a publicly verifiable proof of knowledge of repre-
sentations of .(Ci)!i“1,Γx,Γy. 

Our .KVACDDH, described in Fig. 9, made these changes to their scheme: 

1. Public key: In [ 23], Pedersen commitments of .x0, y0, z  are included in the 
public key, allowing the issuer to prove correct credential issuance. In this 
case, the underlying secret key is not uniquely determined (binding is com-
putational), which is insufficient for our SAAC compiler. We instead include 
ElGamal ciphertexts of .x0, y0 (security is not affected) and publish . Z “ zH 
in the clear. For the latter, we noticed that revealing .Z does not affect the 
underlying MAC’s security, saving us one group element. 6 

2. Blind Issuance: In [ 23], users individually encrypt each .mi, and let the 
issuer computes and sends ciphertexts of .Sx, Sy. We observe that .pk contains 
.Xi “ xiH, .Yi “ yiH for .i P [*], so the user can compute ciphertexts of 
.
∑!

i“1 miXi and .
∑!

i“1 miYi, while the issuer can still compute ciphertexts of 
.Sx, Sy. Now, the issuer’s communication is independent of . * as it only has to 
compute a proof with respect to a smaller witness. 

Our KVAC makes use of proof systems .Πcom,Πσ, and .Πpub for the relations 
.Rcom, Rσ, Rpub, respectively defined below, respectively. 

. Rcom :“ 

 
 

 
((Ẽx, Ẽy,D,  (Xi)!i“1, (Yi)!i“1,ψ), 

(ux, uy, m “ (mi)!i“1)) 
:
Ẽx “ (uxG, uxD ` ∑!

i“1 miXi)
Ẽy “ (uyG, uyD ` ∑!

i“1 miYi) 
ψ(m) “ 1 

 
 

 

Rσ :“ 

 
 

 

((Ex, Ey,D, Sw, Sz,

Ẽx, Ẽy, Z,  ctx, cty), 
(z, x0, y0, r′, tx, ty, γx, γy)) 

: 

Z “ zH, r′Sw “ G, Sz “ zSw

Ẽx “ r′Ex ´ (γ0G, γ0D ` x0H)
Ẽy “ r′Ey ´ (γ0G, γ0D ` y0H) 

ctx “ (txG, txH ` x0G) 
cty “ (tyG, tyH ` y0G) 

 
 

 

Rpub :“ 

 
 

 

(((mi)iPI , (Xi)!i“1, (Yi)!i“1, 
Sw, (Ci)!i“1,Γx,Γy), 

((mi)iP[!]zI , (ri)!i“1, rx, ry)) 
: 
@i P [*] :  Ci “ miSw ` riH 
Γx “ (

∑!
i“1 riXi) ́  rxH 

Γy “ (
∑!

i“1 riYi) ́  ryH 

 
 

 . 

We note that .Πcom is straightline-extractable for a relaxed relation . R̃com Ě Rcom 

which also accepts witness .(ux “ 0, uy “ 0, m ‰ 0) where .0G “
∑!

i“1 miXi “ 

6 Intuitively, this is because .(U, zU ) is included in every tag anyways. 
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KVACDDH.Setup(1
", parg “ (p, G, G, H)) 

Select H0, H1, H2 : {0, 1}˚ Ñ Zp 

Πσ Ð Lin[H1, G]; Πpub Ð Lin[H2, G] 

return par “ (p, G, G, H,  H0, H1, H2) 

KVACDDH.KeyGen(par) 

x, y Ð$ Z"`1 
p ; z, tx, ty Ð$ Zp; sk Ð (x, y , z, tx, ty) 

ctx Ð (txG, txH ` x0G); cty Ð (tyG, tyH ` y0G) 

pk Ð (X :“ (Xi)
"
i“1, Y :“ (Yi)

"
i“1, Z,  ctx, cty) 

return (sk, pk) 

KVACDDH.Iss(par, x,ψ, µ  “ (Ẽx, Ẽy, D,πcom)) 

if Πcom.Ver
H0 ((Ẽx, Ẽy, D,  X , Y ,ψ),πcom) “ 0 

then abort 

r Ð$ Z˚ 
p; γx, γy Ð$ Zp; Sw Ð rH, Sz Ð rZ 

Ex Ð r((γxG, γxD ` x0H) ` Ẽx) 

Ey Ð r((γyG, γyD ` y0H) ` Ẽy) 

πσ Ð Πσ.Prove
H1 ((M σ 

G,H,Sw ,D,Ex,Ey , 

(Ẽx, Ẽy, Z,  ctx, cty)), (z, x0, y0, r
´1 , tx, ty, γx, γy)) 

return (Sw, Ex, Ey, Sz,πσ) 

KVACDDH.SVerkey(par, sk, τkey) 

(S′
w, S′

z, (Ci)
"
i“1, Cx, Cy,Γx,Γy) Ð τkey 

return S′
w ‰ 0G ^ S′

z “ zS′
w 

^ Γx ` Cx “ (x0S
′
w `

∑"
i“1 xiCi) 

^ Γy ` Cy “ (y0S
′
w `

∑"
i“1 yiCi) 

KVACDDH.SVerpub(par, pk, τkey,πpub,φI ,a , nonce) 

return Πpub.Ver
H2 ((M pub 

G,H,S′
w ,X ,Y 

, ((Ci)iP["]zI , 

(Ci ´ aiS
′
w)iPI ,Γx,Γy)),πpub, (φI ,a , nonce)) 

Oracle OSVerDDH(par, sk, Sw, Sz, (Ci)
"
i“1, ζx, ζy) 

return Sz “ zSw ^ ζx “ x0Sw `
∑"

i“1 xiCi^ 

ζy “ y0Sw `
∑"

i“1 yiCi ^ Sw ‰ 0G 

KVACDDH.U1(par, pk, m P Z"
p,ψ) 

d, ux, uy Ð$ Zp; D Ð dG

Ẽx Ð (uxG, uxD ` ∑"
i“1 miXi)

Ẽy Ð (uyG, uyD ` ∑"
i“1 miYi) 

πcom Ð Πcom.Prove
H0 ((Ẽx, Ẽy, D,  X , Y ,ψ), 

(ux, uy, m )) 

return µ :“ (Ẽx, Ẽy, D,πcom) 

KVACDDH.U2(imsg “ (Sw, Ex, Ey, Sz,πσ)) 

if Πσ.Ver
H1 ((M σ 

G,H,Sw ,D,Ex,Ey , 

(Ẽx, Ẽy, Z,  ctx, cty),πσ) “ 0 
then abort 

(Ex,0, Ex,1) Ð Ex; (Ey,0, Ey,1) Ð Ey 

Sx Ð Ex,1 ´ dEx,0; Sy Ð Ey,1 ´ dEy,0 

return σ Ð (Sw, Sx, Sy, Sz) 

KVACDDH.Showkey(par, pk, m ,σ) 

r′, rx, ry Ð$ Zp; r :“ (ri)"
i“1 Ð$ Z"

p 

(S′
w, S′

x, S
′
y, S

′
z) Ð r′σ 

for i P [!] :  Ci Ð miS
′
w ` riH 

Cx Ð S′
x ` rxH; Cy Ð S′

y ` ryH 

Γx Ð ∑"
i“1 riXi ´ rxH 

Γy Ð ∑"
i“1 riYi ´ ryH 

return (S′
w, S′

z, (Ci)
"
i“1, Cx, Cy,Γx,Γy) 

KVACDDH.Showpub(φI ,a , nonce) 

for i P I : C′
i Ð Ci ´ aiS

′
w 

πpub Ð Πpub.Prove
H2 ((M pub 

G,H,S′
w ,X ,Y 

, 

((Ci)iP["]zI , (C
′
i)iPI ,Γx,Γy)), 

((mi)iP["]zI , r , rx, ry), (φI ,a , nonce)) 

return πpub 

Fig. 9. Scheme KVACDDH “ KVACDDH[GenDDH] and oracle OSVerDDH. Πcom,Πσ,Πpub are 
NIZKs for Rcom, Rσ, Rpub defined in Section 5.2, respectively. States are omitted for 
readability – subsequent algorithms can use values defined before (e.g. KVACBBS.U2 

can use variables from KVACBBS.U1). In Showpub, the  value  nonce is bound to πpub. 

∑!
i“1 miYi . For  .Rσ and .Rpub, let  .M σ 

G,H,Sw,D,Ex,Ey 
and .M pub G,H,Sw,X ,Y be matri-

ces defined by the respective relations described above (omitting the explicit 
representation for brevity), analogously to what was done in Sect. 5.1. 

The algorithm .SVerkey induces the relation family .RDDH, parameterized by 
.parg “ (p, G, G,H) (which we omit in the subscript), for which we give a cor-
responding .oNIP protocol. .RDDH contains statements .(pk “ (X, Y , Z,  ctx, cty), 
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. τkey “ (Sw, (Ci)iP[!], ζx, ζy, Sz))7 and witnesses .sk “ (x, y, z, tx, ty), such that 

. 

Z “ zH, Sw ‰ 0G, Sz “ zSw, @i P [*] :  Xi “ xiH, Yi “ yiH 
ζx “ x0Sw `

∑!
i“1 xiCi, ζy “ y0Sw `

∑!
i“1 yiCi 

ctx “ (txG, txH ` x0G), cty “ (tyG, tyH ` y0G) 
(2) 

The following theorem, proved in the full version, establishes the security 
of .KVACDDH. In the proof, we first show unforgeability of the underlying MAC 
against adversaries with access to .OSVerDDH (defined in Fig. 9), using techniques 
similar to [ 23]. Then, we give a reduction from unforgeability of .KVACDDH to 
that of the MAC. Our main contribution is twofold: (1) A careful rewinding 
argument to extract a MAC forgery from the KVAC forgery; and (2) We show 
how to simulate showings for an honest user by querying for a tag on a random 
(and hidden) set of attributes, and that we still reliably extract a fresh forgery. 

Theorem 5.4. Let .GenDDH be a global parameters generator defined in Sect. 5.2. 
Then, .KVACDDH “ KVACDDH[GenDDH] satisfies correctness, anonymity assuming 
DDH and integrity of issued credentials both in the ROM and with respect to the 
same simulators .SimGen and .SimKVAC, and  .OSVerDDH-unforgeability in the ROM 
assuming DDH and validity of key generation with respect to the same extractor 
.Ext. 

.oNIP for DDH-based instantiation. We sketch the protocol . oNIPDDH “ 
oNIP[GenDDH, RDDH] for the family of relations .RDDH described in Eq. (2), con-
taining statement . pk, an augmented statement .τkey and witness . sk. 

Our .oNIPDDH construction follows a similar structure to .oNIPBBS relying on 
a blinded OR-proof of either (1) membership of the induced language .LRDDH or 
(2) knowledge of discrete logarithm of public parameters . W . The key difference 
lies in the first move, where the user rerandomizes the augmented statement 
.(S′

w, (C ′
i)!i“1, ζ

′
x, ζ

′
y, S

′
z) by computing .Sw “ αS′

w, Ci “ αC ′
i ` βiH with random 

scalars .α, β1, . . . ,β! and uses .X, Y in the public key to compute . ζx “ αζ ′
x `∑!

i“1 βiXi, ζy .“ αζ ′
y`

∑!
i“1 βiYi, Sz “ αS′

z, which still preserves the membership 
of the language. The issuer then checks whether the rerandomized statement is 
in the language. We refer to the full version for the full protocol description 
and the proof of the following theorem, establishing the security properties of 
.oNIPDDH. The proof follows from standard techniques as with .oNIPBBS, except 
that for obliviousness, we inherently requires the global trapdoor . v to efficiently 
simulate honest users without knowing the augmented statement .τkey. 

Theorem 5.5. Let .GenDDH be a global parameters generator defined in Sect. 5.2 
and .OSVerDDH be the oracle in Fig. 9. Then,  .oNIPDDH “ oNIP[GenDDH, RDDH] sat-
isfies perfect correctness, soundness in the ROM assuming .DL, perfect .OSVerDDH-
zero-knowledge, and perfect obliviousness for valid statements with respect to the 
simulator .SimGen. 
7 Note that .ζx and .ζy represent .Cx ` Γx and .Cy ` Γy and can be computed from the 
output .τkey of .Showkey. 
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Finally, the following corollary follows from Theorems 4.1, 5.4 and 5.5. Sim-
ilar to .SAACBBS, strong integrity of .SAACDDH follows from the structure of 
.KVACDDH’s public key and soundness of .Πσ. 

Corollary 5.6. Let .SAACDDH “ SAAC[GenDDH, KVACDDH, oNIPDDH] be a SAAC 
scheme from .KVACDDH and .oNIPDDH according to Theorem 4.1. Then,  . SAACDDH 

satisfies correctness, unforgeability, and anonymity (both in the ROM and assum-
ing .DDH). 

.Efficiency. The computational costs of showing (without the helper) and ver-
ification of .SAACDDH are .4* ` 2 (helper protocol includes .18* ` 47 and . 6* ` 15 
exponentiations for the user and issuer, resp.) and .11*`22 exponentiations, resp. 

6 Conclusion 

This paper introduced the SAAC model and gave two efficient instantiations. We 
emphasize that despite the requirement of the helper interaction, SAAC is not as 
restrictive as it may seem to be. This is because (1) the helper information can 
be requested ahead of time and can be spent later without any additional online 
interaction, and (2) the helper protocol is independent of the showing predicate. 

We envision that each user would obtain an upper bound .B pieces of helper 
information at regular time increments (e.g., the number of times one uses a 
digital ID per week, which need not be large). Since the showing predicate and 
disclosed attributes can be decided later on, and the helper information is very 
small in size, the space requirements for this are not significant. 

In a real-world setting, timing or counting attacks may compromise 
anonymity if our system is used carelessly. For example, if users always request 
helper information immediately before showing a credential, then linking helper 
interactions to showings becomes possible. Or, in a setting where the helper 
server can identify users, if User-A interacts with the helper 99 times, and User-
B interacts only once, then a verifier who sees 2 different showings can be sure 
that they interacted with user A in one of the interactions. Implementing the 
system to hide usage patterns (e.g., as discussed earlier) should prevent these 
attacks. 

Our BBS-based instantiation improves considerably upon the state of the art 
for pairing-free ACs: it is multi-show, the helper interaction is lightweight, and 
it is provably secure in the ROM. This is in contrast to, e.g., ACL [ 4], which 
requires re-proving a (potentially expensive) issuance predicate for each showing, 
and is only proved secure in the AGM via an involved security proof [ 29]. 
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