
Server-Aided Anonymous Credentials

Rutchathon Chairattana-Apirom1(B) , Franklin Harding2 ,
Anna Lysyanskaya2 , and Stefano Tessaro1

1 Paul G. Allen School of Computer Science & Engineering, University of
Washington, Seattle, USA

{rchairat,tessaro}@cs.washington.edu
2 Brown University, Providence, RI, USA

{franklin harding,anna lysyanskaya}@brown.edu

Abstract. This paper formalizes the notion of server-aided anonymous
credentials (SAACs), a new model for anonymous credentials (ACs)
where, in the process of showing a credential, the holder is helped by
additional auxiliary information generated in an earlier (anonymous)
interaction with the issuer. This model enables lightweight instantia-
tions of publicly verifiable and multi-use ACs from pairing-free elliptic
curves, which is important for compliance with existing national stan-
dards. A recent candidate for the EU Digital Identity Wallet, BBS#,
roughly adheres to the SAAC model we have developed; however, it
lacks formal security definitions and proofs.

In this paper, we provide rigorous definitions of security for SAACs,
and show how to realize SAACs from the weaker notion of keyed-
verification ACs (KVACs) and special types of oblivious issuance pro-
tocols for zero-knowledge proofs. We instantiate this paradigm to obtain
two constructions: one achieves statistical anonymity with unforgeability
under the Gap .q-SDH assumption, and the other achieves computational
anonymity and unforgeability under the DDH assumption.

1 Introduction

Anonymous credentials (ACs), introduced by Chaum [25], allow a user (or
holder) to obtain a credential from an issuer. Typically, a credential is asso-
ciated with a number of attributes, such as the credential’s expiration date, or
the credential holder’s date of birth. This credential can be shown to a verifier
unlinkably, i.e. such that it cannot be linked to the transaction in which it was
issued, and different showings of the same credential cannot be linked to each
other. Further, a showing only reveals the minimum necessary amount of infor-
mation about the attributes—typically, that these attributes satisfy a certain
relevant predicate (e.g., that the holder is not a minor, that they have a valid
driver’s license, etc.).

ACs were first practically realized by Camenisch and Lysyanskaya [17– 19].
In the standard approach to designing ACs [32,33], a credential is a signature on

The full version of this work can be found at [21].
c© International Association for Cryptologic Research 2025
Y. Tauman Kalai and S. F. Kamara (Eds.): CRYPTO 2025, LNCS 16005, pp. 291–324, 2025.
https://doi.org/10.1007/978-3-032-01887-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-01887-8_10&domain=pdf
http://orcid.org/0009-0006-1990-1329
http://orcid.org/0009-0004-9811-1610
http://orcid.org/0000-0002-3567-3550
http://orcid.org/0000-0002-3751-8546
https://doi.org/10.1007/978-3-032-01887-8_10

292 R. Chairattana-Apirom et al.

the user’s attributes, generated by the issuer via a secure protocol that protects
the privacy of the user’s attributes. Credentials are shown via a zero-knowledge
proof of knowledge of a credential whose attributes satisfy the relevant predi-
cate. In principle, one can build ACs from any signature scheme by using generic
zero-knowledge proof systems, but in a practical instantiation, a digital signa-
ture scheme which enables efficient realizations of such proofs is a better app-
roach. Examples include RSA- and pairing-based CL signatures [18,19], as well
as pairing-based BBS signatures [3,12,19,41].

Systems using ACs have been proposed over the years, such as Microsoft’s
U-Prove [13,39] and IBM’s IDEMIX [20]. Recently, credentials have regained
popularity as components of decentralized/self-sovereign identity services like
Hyperledger Indy, Veramo and Okapi. These come with ongoing companion
standardization efforts by the IETF [31] and the World Wide Web Consortium
(W3C). Technology policy, especially that of the EU and its member states, has
mandated privacy-preserving authentication [1, 2] for which anonymous creden-
tials appear to be the right solution [7].

.Credentials based on pairing-free elliptic curves. Elliptic-curve-based
cryptography has outperformed and outpaced cryptographic constructions based
on RSA. Especially desirable from the practical point of view – both for efficiency
reasons and because of standardized curves – is elliptic-curve-based cryptogra-
phy that does not require pairing-friendly curves [5,10]. The lack of suitable
standards 1, in particular, often prevents the use of pairing-based solutions in
the public sector, where ACs find a natural use case. Other natural application
scenarios are web applications and anonymous browsing, and pairings are often
not supported by browser libraries such as NSS and BoringSSL. Unfortunately,
however, the only approach to (multi-show) ACs based on pairing-free curves
relies on generic zero-knowledge proofs, and is mostly very costly, and this is
due to the fact that pairing-free signature schemes are inherently non-algebraic
(as proved e.g. in [26]). To overcome this inherent barrier, prior works have
considered different settings where pairing-free ACs are possible:

• Blind signatures with attributes. Baldimtsi and Lysyanskaya [4] presented an
approach extending the notion of blind signatures to include attributes, for-
malizing ideas implicit in U-Prove [39]. The resulting construction gives a
use-once AC, referred to as “AC light” (ACL), i.e., one needs to interact
with the issuer to obtain as many copies of the credential as the number of
intended showings. This also introduces a tradeoff between privacy and effi-
ciency: either each user needs to get as many copies of the ACL credential
as a reasonable upper bound on the lifetime use of the credential, or it needs
to get credentials reissued upon running out of them, revealing the rate of
credential use.

• Keyed-Verification Anonymous Credentials (KVAC). The single-use aspect of
ACL can be a feature, but is mostly a bottleneck. Chase, Meiklejohn and
Zaverucha [23] considered multi-use credentials in an alternative setting where

1 For example, the IETF draft for pairing-friendly curves expired in 2023 [40].

Server-Aided Anonymous Credentials 293

the issuer and the verifier are the same entity, and provided pairing-free solu-
tions that rely on the lack of public verifiability when showing credentials.
The resulting schemes are very practical, and are widely adopted in the Signal
messaging system [24].

.This paper: Server-aided anonymous credentials. This paper formalizes
an alternative model for multi-use credentials in which efficient pairing-free cre-
dentials are possible, and which we refer to as Server-Aided Anonymous Creden-
tials (or SAAC, for short). In contrast to KVAC, SAAC enable publicly verifiable
showing of credentials, and this is achieved by allowing the holder to interact
with the issuer’s helper server to generate additional helper proofs. To preserve
anonymity, this interaction with the helper is entirely oblivious (in a way related,
but not formally equivalent, to the work of Orrú et al. [37]): the helper server
does not need to verify anything about the user it is interacting with, and can
neither link the interaction to any other by the same user, nor learn anything
about the user’s credential attributes. The extra cost of this interaction with the
helper is limited, in particular as the generation of these proofs can be performed
offline, and not at the time of showing the credential.

The helper flow is somewhat natural in the context of credentials. In OAuth
2.0 [28], the industry-standard authorization protocol for the web, users obtain
a refresh token and must query that refresh token to an issuer to obtain access
tokens which they can later spend. However, in the setting of anonymous creden-
tials, the use of a helper server was, to the best of our knowledge, only recently
brought up in the BBS# white paper [36,42]. BBS# is an industry white paper
that explores several ideas for the development of a European Digital Identity
Wallet. 2 However, it does not contain a formal security model or analysis. As a
result, we are the first to provide the foundations behind such an approach, as
well as provably secure solutions.

This work develops a formal treatment of SAAC, for which we give security
definitions. We also develop generic constructions that lift KVACs, which are not
meant to be publicly verifiable, to SAAC with the help of specific protocols for
oblivious issuance of zero-knowledge proofs. Interestingly, our security needs for
the latter are weaker than those considered by the recent work of Orrù et al. [37],
as our helper protocol is not required to resist strong attacks such as ROS [9],
and thus we can prove security based on a standard cryptographic assumption
without relying on the algebraic group model (AGM) [29].

We instantiate our framework with two concrete constructions: A first solu-
tion based on BBS (without pairings), which we prove unforgeable, in the
random-oracle (RO) model, under the Gap .q-SDH assumption, and statistically
anonymous. We also present a second instantiation for which both unforgeability
and anonymity hold under the DDH assumption in the RO model. Our security
analysis is in the random oracle model [8], but does not make any use of the
AGM or any other ideal group model.

2 BBS# includes other ideas besides including a helper server; and in particular inte-
gration with an HSM, which are outside the scope of this paper.

294 R. Chairattana-Apirom et al.

Issuer (sk) Holder (pk) Verifier (pk)

Issuance

Helper

Show

sk,φ pk, m,φ

σ

Iss U

sk pk, m,σ

aux

Help ObtHelp

pk, m,σ, aux,ψ pk,ψ

0{1

Show SVer

Fig. 1. Server-Aided Anonymous Credentials. Illustration of the SAAC setting.
Note that the secret and public keys (sk, pk) are generated by the KeyGen algorithm,
which is not described here. Also, we allow each showing to be linked to some additional
value nonce, which is a joint input of Show and SVer, and this is not illustrated here.

The next section provides a detailed overview of our contributions.

1.1 Overview of This Paper

We now give a detailed overview of our results and contributions. This section
also serves as a roadmap for the paper.

.Syntax for SAAC. We provide a definition of Server-Aided Anonymous Cre-
dentials (SAAC). A SAAC scheme is parameterized by a set of predicates . Φ,
and consists of a number of protocols, involving the issuer, the credential hold-
ers, and the verifier. The setting is also defined in Fig. 1. For simplicity, both
issuance and showing predicates come from the same space . Φ using our syntax.

• Key generation. The issuer generates a secret-key/public-key pair . (sk, pk)
by running the key generation algorithm.

• Issuance. A credential . σ is issued to the holder as the output of an interac-
tion with the issuer—in the same way as with a classical credential system.
The issuer’s input is . sk, whereas the holder’s inputs are .pk and a vector of
attributes . m. Further, their shared input is an issuance predicate .φ P Φ. The
intuition (which will be a consequence of our security notions we introduce

Server-Aided Anonymous Credentials 295

below) is that the credential is only issued if indeed .φ(m) “ 1, and that the
issuer only learns . φ where .φ(m) “ 1. The holder’s output is a credential . σ.

• Helper protocol. The main new component is a helper protocol between a
holder and the issuer. The issuer’s input is . sk, whereas the holder’s inputs are
. pk, a vector of attributes . m, along with a credential . σ for it. The protocol
outputs a string .aux, which we refer to as the helper information to the holder,
and produces no output for the issuer.

• Credential showing and verification. Showing and verification are similar
to those in any (publicly verifiable) credential system, in that the user can
select a showing predicate .ψ P Φ, an attribute vector . m, and a corresponding
credential . σ, and produce some showing message . τ which can be verified
(under the public key .pk and given . ψ) to assess that indeed .ψ(m) “ 1. But
in addition to this, we allow the process of creating . τ to also depend on helper
information .aux output by the helper protocol. Looking ahead once again to
our definitions, unlinkability is meant to hold as long as each showing uses a
freshly generated .aux. But crucially, we note that .aux does not depend on . ψ,
and thus can be precomputed by running the helper at any prior time after
receiving the credential . σ and it is obtained via a privacy-preserving protocol
that will ensure that an execution of the protocol generating .aux cannot be
linked to the credential showing using this .aux.

Here, predicates model information about the attributes which is revealed either
at issuance or at showing—in both cases, it is only revealed that .φ(m) “ 1.
The most relevant class of predicates describes selective disclosure. As part of
the showing protocol, the user sends a list of indices .I “ (i1, . . . , ik) and a list
of disclosed attributes .a P M! which determines the predicate .φI ,a given by
.φI ,a(m1, . . . ,m!) “ 1 if .aij “ mij for all j P [k], and otherwise . 0.
.Unforgeability of SAAC. We formalize a strong notion of unforgeability for
a SAAC scheme which postulates that a malicious holder can only convince the
verifier to accept a showing for a predicate . φ such that the holder has previously
obtained a credential for some attribute vector .m such that .φ(m) “ 1.

A definitional challenge is that a malicious holder may arbitrarily deviate
from the protocol when interacting with the issuer, and therefore, care must be
taken to ensure that the set of attribute vectors for which a credential was issued
is well-defined. To this end, our definition relies on an extractor which, whenever
a malicious message . µ from the holder is successfully answered by the issuer (run
on input . φ), extracts attribute vector .m from . µ such that .φ(m) “ 1. The holder
wins if a verifier is convinced by a showing for a predicate .φ˚ not satisfied by
any of the extracted attribute vectors.

Furthermore, we allow the malicious holder to leverage additional types of
interactions:
• Helper interaction. The malicious holder can interact as they please, in a

fully concurrent and arbitrarily interleaved way, with the helper protocol.
• Honest showings. The malicious holder can obtain honest showings of cre-

dentials; the winning condition disallows a win for the adversary by simply
replaying a showing of an honest user’s credential.

296 R. Chairattana-Apirom et al.

Our unforgeability notion, however, does not require that the helper protocol is
run for a successful showing. One could envision that the helper protocol serves
some rate-limiting purpose, but effectively our formalism and our instantiations
allow re-use of the helper string .aux (at the cost of losing anonymity), and thus
the rate-limiting effect is inconsequential. As a result of not making such a (in our
view, unnecessary) restriction in the definition, we get the benefit that existing
(multi-show, helper-free) anonymous credential systems immediately satisfy our
definition.

.Anonymity of SAAC. Our anonymity notion is meant to protect the creden-
tial holder from an adversary that controls the issuer (and thus both the issuance
and the helper processes), and that is also shown credentials. The only infor-
mation that is leaked at issuance is that the predicate . φ holds for the attribute
vector . m, and the only information leaked at showing is that the holder has a
credential for some vector .m satisfying the predicate . φ. Crucially, we need to
ensure that the helper protocol interaction is unlinkable to a particular showing
of a credential, a fact which is also guaranteed by the security definition.

.A generic construction. Our main contribution is a generic construction
that lifts a KVAC scheme to a SAAC scheme. Informally, KVAC differ from a
regular credential system in that the credential is meant to be verified by the
same party that issued it; i.e. verification of the showing of a credential requires
the secret key. Unlike in SAAC, no helper is involved. Despite not requiring the
issuer’s public key for verification, the public key of KVAC allows the issuer to
prove to their holders that the credential was issued correctly. Several construc-
tions of KVAC have been given in the literature [6,14,23].

Our generic construction replaces the keyed verification of a KVAC scheme
with a non-interactive proof that the showing message satisfies the verification
algorithm. The helper protocol will be an oblivious issuance of proof (oNIP) [37]
protocol, which allows the holder to obtain the proof without leaking its showing
message. Implementing this construction requires a KVAC scheme with a specific
structure where showing and verification are done in two steps:

• Key-dependent verification. The holder first uses its attributes .m and
credential . σ to compute a key-dependent showing message .τkey and a state
.st which are independent of the predicate . φ. The verifier can then verify . τkey
using its secret key . sk.

• Public verification. The holder then continues showing using its state . st to
compute public showing message .τpub, which is dependent on the predicate . φ
and can be bound to some additional value .nonce. Then, . (τkey, τpub,φ, nonce)
can be publicly verified using . pk. (Note that both key-dependent and public
verification needs to return 1.)

The key-dependent verification defines a relation .RV with statement . (pk, τkey)
and witness .sk such that (1) the key .sk corresponds to .pk based on the key
generation, and (2) .τkey is a valid key-dependent showing message when verified
by . sk. Then, using an oNIP protocol for the relation .RV (refer to Sect. 4.1 for the

Server-Aided Anonymous Credentials 297

deviation from the prior oNIP formalization in [37]), we arrive at the following
SAAC construction:

• Key generation and issuance are exactly those of the KVAC scheme.
• Helper protocol. First, the holder computing the key-dependent showing

message .τkey and a state . st. Then, the issuer and the holder runs the oNIP
protocol with the holder obtaining a proof .πV attesting that .τkey is valid with
respect to . sk. The helper information .aux contains .(τkey,πV, st).

• Showing. To show that the holder’s credential satisfies a predicate . φ, the
holder computes the public showing message .τpub for . φ with the additional
value .nonce set as .πV. The final showing message contains .(τkey, τpub,πV).

• Verification. The verifier checks the validity of the proof .πV with respect to
.τkey and the KVAC showing message .(τkey, τpub) with respect to . φ and .πV.

It is important that .τpub is dependent on .πV. Otherwise, the showing message
is malleable. In particular, a malicious holder can forge by obtaining an honest
user’s showing message and requesting a new .πV through the helper. With that
said, the security of our generic SAAC construction still requires other properties.

Achieving unforgeability. At a high level, unforgeability of the generic SAAC
construction requires the following properties:

• .The proof πV is sound. This ensures that a valid forgery .(τkey, τpub,πV) con-
tains .τkey that is valid with respect to the issuer’s secret key . sk. However,
soundness by itself only guarantees that there exists a secret key .sk′ (not
necessarily . sk) that verifies .τkey. Hence, we require an additional property for
KVAC, denoted validity of key generation, which is implied if each public key
corresponds to a unique secret key. This ensures that .τkey is valid with respect
to the issuer’s secret key . sk.

• .Helper protocol does not leak sk. A malicious holder should not be able to
distinguish between interactions with an honest helper or interactions with a
simulator. Looking ahead, the simulator may require some .sk-dependent com-
putation, e.g., checking whether .sk verifies a rerandomized statement. Hence,
we formalize instead the .O-zero-knowledge property, where the simulator is
assisted by an oracle .O embedded with . sk.

• Unforgeability of KVAC. We require a stronger than standard unforgeability
for KVAC with the following main changes:
1. Instead of a verification oracle, the adversary has access to the same oracle

. O from .O-zero-knowledge of oNIP. This is for our reduction to successfully
run the simulator discussed above. For our instantiations, the oracle . O
can be used to simulate the verification oracle as well.

2. Similarly to SAAC unforgeability, the adversary can query honest users’
showing messages. Each query access, however, is split into two steps:
first the adversary obtains an honest .τkey, then it adaptively chooses both
the predicate . φ it wants the honest user to show and the .nonce it wants
to be tied to the message, and gets .τpub in response.

298 R. Chairattana-Apirom et al.

One challenge to securely instantiate our generic construction is to balance the
strength of . O. Notably, if .O reveals too much information about . sk, the KVAC
would be insecure; in contrast, if it reveals too little, the oNIP would be insecure.

Achieving anonymity. Anonymity of our SAAC construction follows from
anonymity of KVAC and obliviousness of oNIP, with the following modifications
made to the definitions.

• Obliviousness of oNIP. To satisfy our simulation-based definition of SAAC
anonymity, we require a simulation-based obliviousness definition. However,
in our instantiations, we are able to show obliviousness only when honest
users request proofs for valid statements; specifically, .(pk, τkey) must be in the
language induced by the relation .RV. Hence, we require an extra property of
KVAC which ensures that even under a malicious issuer, if the user obtains
a credential and does not abort, it should be able to produce a valid .τkey (in
the sense that .(pk, τkey) is in the induced language).

• Anonymity of KVAC. Similar to anonymity of SAAC , we require that both
during issuance and during showing, the only information leaked to the adver-
sary is that the relevant predicate . φ is satisfied by the attributes . m. For
showing, the adversary chooses the predicate . φ and the value .nonce adap-
tively, after obtaining the key-dependent value .τkey.

We refer the readers to Sect. 4 for the formalization of KVAC and oNIP required
and our generic construction.

.Instantiation from BBS. Our first SAAC instantiation is inspired by the
KVAC by Barki et al. [6], which builds upon an algebraic message authentication
code (MAC) based on BBS/BBS+ signatures [3,12,41]. The scheme is based
on a pairing-free group .G of prime order . p and generator . G. The secret and
public keys are .x P Zp and .X “ xG, respectively. A credential for attributes
.m P Z!

p is of the form .(A P G, e P Zp, s P Zp) such that .A “ (x` e)´1C, where
.C “ G`∑!

i“1 miHi ` sH!`1 and .H1, . . . , H!`1 are public parameters. To show,
the holder rerandomizes .A,B “ C´eA, and . C into .Ã, B̃, C̃ and proves knowledge
of the underlying attributes with a valid credential via CDL proofs [15]. To verify
the showing message, one uses the secret key . x to check that .(G,X, Ã, B̃) form a
valid Diffie-Hellman tuple. By giving an oNIP for this relation (adapting Orrù et
al. [37]), we turn this KVAC into SAAC. Note that our oNIP is zero-knowledge
with respect to the restricted DDH oracle .rDDH(x, ·) which checks that its input
.(A,B) satisfies .xA “ B. 3

In order to use Barki et al.’s KVAC, however, we need to show that it satisfies
our required (stronger) security notions. Specifically, recall that our unforgeabil-
ity notions allows the adversary to (1) query the restricted DDH oracle embedded
with the secret key and (2) view showing messages of honest users (in the man-
ner described above). We show that this stronger version of unforgeability holds

3 This oracle is exactly the key-dependent verification.

Server-Aided Anonymous Credentials 299

in the ROM under the Gap-.q-SDH assumption. This “gap” assumption is nec-
essary for simulating the restricted DDH oracle. Note that Barki et al. already
require Gap-.q-SDH to simulate the verification oracle.

The efficiency of the resulting SAAC is comparable to that of Barki et al.’s
KVAC (see Table 1). For more details on this instantiation, we refer the readers
to Sect. 5.1.

.Instantiation from DDH. Sacrificing some efficiency (see Table 1), our sec-
ond SAAC instantiation completely removes the dependency on a gap .q-type
assumption and only relies on the much more standard DDH assumption. Our
starting point is the KVAC scheme introduced by Chase, Meiklejohn, and
Zaverucha [23], building upon an algebraic MAC. We then give a corresponding
oNIP protocol for the algebraic relation induced by the key-dependent verifica-
tion. Similar to the BBS-based instantiation, the zero-knowledge of this oNIP
is proved with respect to a simulator with access to an oracle, which we denote
.OSVerDDH (and will define later on in Sect. 5.2), that essentially runs the key-
dependent verification of this KVAC with the embedded secret key.

This KVAC was already known to be provably secure but under a weaker
definition not suitable for our generic construction. To address this gap, we made
the following contributions (and refer the readers to Sect. 5.2 for more details):

1. We revisited the unforgeability of the underlying MAC and gave a new proof
(albeit using similar techniques) for the security against adversaries who have
access to the oracle .OSVerDDH instead of the verification oracle. Additionally,
this new security still implies the standard UFCMVA security of MACs.

2. Building on the unforgeability of the MAC, we showed unforgeability of the
resulting KVAC scheme in the ROM. As we require unforgeability against
adversaries who can see honest users’ showings, there were several technical
difficulties to overcome. Mainly, the reduction (to unforgeability of the alge-
braic MAC) needs to be constructed so that it can simulate the honest users’
showings correctly, but still extract a valid MAC forgery from the adversary.

3. We gave a more efficient blind issuance protocol. In particular, our issuer’s
communication is independent of the number of attributes compared to the
one sketched in [23] which contains a linear number of group elements.

2 Preliminaries

.Notations. We use . λ as the security parameter. We denote . [n..m] “ {n, n `
1, . . . ,m} for any .n ď m P Z and .[n] “ [1..n] for any .n P N. We denote vectors
using bold-sized letters (e.g., .v,H). If .u “ (u1, . . . , un) and .v “ (v1, . . . , vm),
then .u‖v :“ (u1, . . . , un, v1, . . . , vm). Denote .x Ð a as assigning value . a to a vari-
able . x. Denote .a Ð$ S as uniformly sampling . a from a finite set . S. We denote
.y Ð$ A(x) as running a (probabilistic) algorithm . A on input . x with fresh random-
ness and .[A(x)] as the set of possible outputs of . A; . (y1, y2) Ð$ xA(x1) é B(x2)y
denotes a pair of interactive algorithms .A,B with inputs .x1, x2 and outputs . y1, y2
respectively. We often use the words messages and attributes interchangably.

300 R. Chairattana-Apirom et al.

Table 1. Comparison of group-based KVAC, AC, and BSA schemes and our high-
lighted SAAC instantiations. The number of attributes is . $. Showing size depends on
the number of disclosed attributes and is given as a close-to-tight upper-bound. Denote
.G and .Zp as the sizes of group elements and scalars, respectively. All security analyses
assume the ROM. . ˚: Showing requires two rounds of communication with the helper
server (helper interactions can be batched). This is “multi-show” in the sense that the
user does not have to re-prove that their attributes satisfy an issuance predicate, which
may be expensive, to compute a showing (in contrast to, e.g., ACL). .: : Only BBS is
pairing-based and .G1 denotes the size of a source group element. . ;: The DDH-based
version is less efficient.

Security

Scheme
Publicly
Verifiable

Multi-
Show

Credential
Size

Showing
Size

Unforge-
ability

Anonymity

CMZ14 [23] No Yes 2G (! ` 2)G
`(2! ` 2)Zp

GGM /
DDH; DDH

BBDT16 [6] No Yes 2G ` 2Zp
3G

`(! ` 7)Zp

Gap-
q-SDH

Statistical

KVACwBB [14] No Yes (! ` 1)G 2G
`(! ` 1)Zp

!-SCDHI Statistical

µCMZ [38] No Yes 2G (! ` 2)G
`(2! ` 2)Zp

AGM +
3-DL

Statistical

µBBS [38] No Yes 1G ` 1Zp
2G

`(! ` 4)Zp

AGM +
q-DL

Statistical

MBS+25 [35] No Yes (! ` 2)G 2G GGM Statistical

ACL [4] Yes No 2G ` 6Zp
2G

`(! ` 8)Zp
DL+AGM DDH

SAACBBS

(Sec. 5.1)
Yes Yes˚ 1G ` 2Zp

3G
` (! ` 8)Zp

Gap-
q-SDH

Statistical

SAACDDH

(Sec. 5.2)
Yes Yes˚ 4G (! ` 6)G `

(4! ` 11)Zp
DDH DDH

BBS [41]: Yes Yes 1G1 ` 1Zp
2G1

`(! ` 3)Zp
q-SDH Statistical

.Group parameter generator. A group parameter generator is a probabilis-
tic polynomial time algorithm .GGen taking as input .1λ and outputting a cyclic
group .G of .Θ(λ)-bit prime order . p with a generator . G. We assume that stan-
dard group operations in . G can be performed in polynomial time in . λ and adopt
additive notation (i.e., .A ̀ B for applying group operation on .A, B P G).

.Cryptographic assumptions. In Fig. 2, we define games for Decisional Diffie-
Hellman (DDH), Discrete Logarithm (DL), and a pairing-free analog of the .q-
Strong Diffie-Hellman assumption [11] augmented with a restricted DDH oracle.
Denote the advantage of an adversary .A against these assumptions as

. Adv (DL,(q,rDDH)-SDH)
GGen (A,λ) :“ Pr[(DL{(q , rDDH)-SDH)A

GGen(λ) “ 1] ,
Advddh GGen(A,λ) :“

∣∣Pr[DDHA
GGen,0(λ) “ 1] ́ Pr[DDHA

GGen,1(λ) “ 1]
∣∣ .

.Relations and non-interactive proofs. Let .R Ď X ˆ W be a relation and

.LR :“ {x P X|Dw P W : (x, w) P R} denotes its induced language. A non-

Server-Aided Anonymous Credentials 301

Game DLA
GGen(λ):

par “ (p, G, G) Ð$ GGen(1 λ); X Ð$ G
x Ð$ A(par, X)

return xG “ X
Game DDHA

GGen,b(λ):

par “ (p, G, G) Ð$ GGen(1 λ)

x, y, z Ð$ Zp; Z0 Ð xyG; Z1 Ð zG

b′ Ð$ A(par, xG, yG,Zb)

return b′

Game (q, O)-SDHA
GGen(λ)

par “ (p, G, G) Ð$ GGen(1 λ); x Ð$ Zp

(e, Z) Ð$ AO(par,x,xG,·) (par, (x i G)iP[q])

return (Z “ (x ` e)´1 G)

Oracle rDDH(par, x,X, (A, B))

return xA “ B
// X is unused.

Fig. 2. Games DDH, DL, and (q , O)-SDH, and a definition of the oracle rDDH.

interactive zero-knowledge (NIZK) proof system for a relation . R is a tuple of algo-
rithms .(NIZK.ProveH , NIZK.VerH) with access to a random oracle . H : {0, 1}˚ Ñ R
with the following syntax:

• .π Ð$ NIZK.ProveH (x, w): outputs a proof . π on input .(x, w) P R.
• .0{1 Ð NIZK.VerH (x, π): verifies a proof . π for statement . x.

We require a NIZK to be correct, sound, zero-knowledge, and optionally straight-
line extractable knowledge-sound for a relaxed relation .R̃ Ě R. We refer to the
full version for formal security definitions of NIZKs.

3 Server-Aided Anonymous Credentials

In this section, we introduce Server-Aided Anonymous Credentials (SAAC), with
the syntax and security definitions given in Sects. 3.1 and 3.2, respectively. SAAC
allow a user to obtain a credential for its attributes through a (blind) issuance
protocol and to anonymously show that it owns a credential for attributes which
satisfies some specified predicate. However, in contrast to anonymous credentials
(AC), the user may request the issuer to help produce helper information which
to be used to produce a publicly-verifiable showing message. This is modeled
as an unlinkable helper protocol independent of the predicate specified during
showing. Users may then ask for several pieces of helper information ahead of
time and spend them later during showing.

3.1 Syntax

A server-aided anonymous credential scheme .SAAC “ SAAC[Φ, M] defined with
respect to a predicate class family . Φ “ {Φpar}par 4 and an attribute space . M “
{Mpar}par consists of the following algorithms.
4 Alternatively, one can define the scheme with respect to two classes of predicates . ΦIss

and .ΦShow which model predicates accepted during issuance and showing. Here, we
define our SAAC syntax with respect to a single class of predicates . Φ “ ΦIss Y ΦShow

covering both issuance and showing predicate classes. For our constructions, we
consider the class of selective disclosure predicates for both issuance and showing.

302 R. Chairattana-Apirom et al.

• .par Ð$ SAAC.Setup(1λ , 1!) outputs public parameters .par which defines the
attribute space .M “ Mpar and a corresponding class of predicates .Φ “ Φpar.
For succinctness, we will abuse the notation and omit the subscript .par.

• .(sk, pk) Ð$ SAAC.KeyGen(par) outputs the secret and public key pair.
• .(K,σ) Ð$ xSAAC.Iss(par, sk,φ) é SAAC.U(par, pk, m,φ)y is an interactive

protocol between the issuer and the user where at the end, the user obtains
a credential . σ for its vector of attributes .m P M!, which satisfies a predi-
cate .φ P Φ (i.e., .φ(m) “ 1). We consider a round-optimal issuance protocol
consisting of the following algorithms:
– .(µ, stu) Ð$ SAAC.U1(par, pk, m,φ) outputs a protocol message and a

state.
– .imsg Ð$ SAAC.Iss(par, sk, µ,φ) outputs issuer’s message .imsg, and if the

issuer aborts, we say that .imsg “ K.
– .σ Ð$ SAAC.U2(stu , imsg) outputs a credential . σ for the attributes . m.

• .(K, aux) Ð$ xSAAC.Helper(par, sk) é SAAC.ObtHelp(par, pk, m,σ)y is a .r-
round protocol where the user interacts with the issuer to obtain a helper
information .aux. Formally, the protocol execution is of the following format:

. (umsg1, stu) Ð$ SAAC.ObtHelp1(par, pk, m,σ) ,
(hmsg1, sth) Ð$ SAAC.Helper1(par, sk, umsg1) ,
(umsgi, stu) Ð$ SAAC.ObtHelpi(stu , hmsgi´1) ,
(hmsgi, sth) Ð$ SAAC.Helperi(sth , umsgi) ,

}
for i “ 2, . . . , r

aux Ð$ SAAC.ObtHelpr`1(st
u , hmsgr) .

• .τ Ð$ SAAC.Show(par, pk, m,σ, aux,φ, nonce) outputs a showing . τ of the cre-
dential . σ issued for attributes .m such that .φ(m) “ 1.

• .0{1 Ð SAAC.SVer(par, pk, τ,φ, nonce) outputs a bit.

In the showing and verification algorithms, we allow the showing message . τ to be
bound to some additional value .nonce (which in some cases is the token identifier
or a nonce chosen by the verifier). We do not require a credential verification
algorithm, since the credential itself might not be publicly verifiable, and a secret
key credential verification is not required for our security properties.

.Correctness. A SAAC scheme is .η-correct if for any .λ, * “ *(λ) P N, any

.par P [SAAC.Setup(1λ , 1!)], any .(sk, pk) P [SAAC.KeyGen(par)], any attributes

.m P M!
par, any .nonce P {0, 1}˚, and any predicates .φ, φ′ P Φpar such that . φ(m) “

φ′(m) “ 1, the following experiment returns 1 with probability at least .1´ η(λ).

.(K,σ) Ð$ xSAAC.Iss(par, sk,φ) é SAAC.U(par, pk, m,φ)y
(K, aux) Ð$ xSAAC.Helper(par, sk) é SAAC.ObtHelp(par, pk, m,σ)y
τ Ð$ SAAC.Show(par, pk, m,σ, aux,φ′, nonce)
return SAAC.SVer(par, pk, τ,φ′, nonce) .

Server-Aided Anonymous Credentials 303

3.2 Security Definitions

We consider two main security notions for anonymous credentials: unforgeability
and anonymity. At the end of the section, we define an additional security notion,
denoted integrity, and discuss its importance.

.Unforgeability. A .SAAC scheme is unforgeable if there exists an extractor

.Ext “ (ExtSetup, ExtIss) such that

1. The distribution of .par from the setup algorithm and .ExtSetup are indistin-
guishable, i.e., for any adversary . A, the following advantage is bounded

. Advpar-indist SAAC,Ext(A,λ) :“ |Pr[A(par) “ 1|par Ð$ SAAC.Setup(1λ , 1!)]´

Pr[A(par) “ 1|(par, td) Ð$ ExtSetup(1λ , 1!)]| .

2. Denote the advantage of any adversary . A in the unforgeability game, defined
in Fig. 3 with respect to .Ext (more discussion on the game below), as

. Advunf SAAC,Ext(A,λ) :“ Pr[UNFA
SAAC,Ext(λ) “ 1] .

We now discuss in more detail our unforgeability game. First, the game generates
public parameters .par and a trapdoor .td using the extractor along with the secret
and public keys .(sk, pk). Then, it runs the adversary .A (acting as a malicious
user) which can arbitrarily interleave the execution of the following oracles.

Issuance oracle .Iss. The adversary .A can request a credential to be issued
via the blind issuance protocol modeled with .Iss. In this oracle, the game
extracts the underlying attributes .m using .ExtIss. The game keeps track of
the attributes of which a credential has been issued so far.

Helper oracles .Help1, . . . , Helpr. The adversary can run multiple helper pro-
tocol sessions with the issuer, with each identified with the session ID .sid.

New user oracle .NewUsr. The adversary can request generation of a credential
for attributes .m satisfying the predicate . φ for honest users. The adversary do
not see the credential .σcid generated from this oracle, but can identify them
in .SH with a credential ID .cid.

Showing oracle .SH. The adversary specifies the credential ID .cid (which links
to .mcid and .σcid) along with the predicate . φ and a value .nonce. Then, the
game will compute . τ by running (1) the helper protocol with the honest user
(using .mcid and .σcid) and (2) the showing algorithm .Show using the helper
information .aux obtained from the protocol, the predicate . φ, and the given
value .nonce. The tuple .(φ, nonce, τ) is recorded by the game.

Finally, .A wins the game if one of the following occurs:

• During issuance, the issuer does not abort *and* the extractor extracts
attributes .m that do not satisfy the predicate .φ specified at issuance.
This prevents adversaries who try to request credentials for unauthorized
attributes.

304 R. Chairattana-Apirom et al.

Game UNFA
SAAC,Ext(λ):

MsgQ, PfQ, I1, . . . , Ir, C Ð H; win Ð 0

(par, td) Ð$ ExtSetup(1
λ , 1")

(sk, pk) Ð$ SAAC.KeyGen(par)

(φ˚, nonce˚, τ ̊)

Ð$ AIss,Help1,...,Helpr ,NewUsr,SH (par, pk)

if (SAAC.SVer(par, pk, τ ̊,φ˚, nonce˚) “ 1) ^

(@m P MsgQ : φ˚(m) “ 0) ^

((φ˚, nonce˚, τ ̊) {P PfQ)

then return 1

return win

Oracle Iss(µ, φ) :

imsg Ð$ SAAC.Iss(par, sk, µ,φ)
if imsg “ K then abort

m Ð ExtIss(td, µ,φ)
if φ(m) “ 0 _ m “ K then win Ð 1

// A wins if it can request

// credentials for non-authorized attributes

MsgQ Ð MsgQ Y {m}
return imsg

Oracle NewUsr(cid, m ,φ):

if cid P C _ φ(m) “ 0 then abort

C Ð C Y {cid}; m cid Ð m

σcid Ð$ xSAAC.Iss(par, sk,φ)
é SAAC.U(par, pk, m ,φ)y

return closed

Oracle SH(cid,φ, nonce):

if cid {P C then abort

(K, aux) Ð$ xSAAC.Helper(par, sk)
é SAAC.ObtHelp(par, pk, m cid,σcid)y

τ Ð$ SAAC.Show(par, pk, m cid,σcid, aux,φ, nonce)
PfQ Ð PfQ Y {(φ, nonce, τ)}
return τ
Oracle Helpj (sid, umsgj) : // j “ 1, . . . , r

if sid {P I1, . . . , Ij´1 _ sid P Ij

then abort

Ij Ð Ij Y {sid}

if j “ 1 then // For j “ r, sth
sid “ K

(hmsgj , st
h
sid) Ð$ SAAC.Helper1(par, sk, umsgj)

else (hmsgj , st
h
sid) Ð$ SAAC.Helperj (st

h
sid, umsgj)

return hmsgj

Fig. 3. Unforgeability game for SAAC “ SAAC[Φ, M]. We assume that all the predi-
cates output by A are in Φ.

• They output a tuple .(φ˚, nonce˚, τ ̊) of which the game considers a forgery if
(1) .τ ̊ is valid with respect to the predicate .φ˚ and the value .nonce˚, (2) . φ˚

is not satisfied by any of the extracted attributes, and (3) they do not replay
honest users’ showing messages.

Below, we discuss the design choices for our unforgeability definition.

On the adversary winning if the extractor fails. We require this winning
condition for two important reasons:

The extracted attributes should satisfy the predicate. Consider a similar game
where the issuance oracle aborts if the extracted attributes do not satisfy the
predicate. It is possible that a SAAC is secure with respect to an extractor
that always aborts. In particular, the adversary will not get any credential,
so the security only prevents key-only attacks. Hence, we cannot simply allow
the game nor the issuer oracle to abort when the extraction fails.

Credentials should only be granted for authorized attributes. Consider the game
that only extracts and record the attributes into .MsgQ without aborting. One
could construct a SAAC scheme where the issuer algorithm ignores the pred-
icate and always computes .imsg. An adversary can then request credentials
for unauthorized attributes, a scenario which should not be allowed.

Server-Aided Anonymous Credentials 305

On the (non-)requirement of the helper interaction. Our unforgeability
notion only aims to prevent malicious holders from showing credentials that do
not correspond to their attributes, and does not prevent a situation where a user
is able to show a credential without helper interaction. In a way, we view SAAC
as a relaxed notion of multi-show AC where the helper protocol helps us achieve
public verification, as a consequence standard AC satisfies SAAC notion. We
note that our instantiations require at least one helper interaction to output a
publicly verifiable showing message.

The .NewUsr and .SH oracles model adversaries who can obtain showing mes-
sages of honest users. This is to provide a non-malleability guarantee where
the adversary cannot forge by modifying previous showing messages of honest
users. This scenario is also considered by the unforgeability of Privacy-Enhancing
Attribute-Based Signatures (PABS) from [16] and the extractability security of
KVAC given in [38], but not in the original KVAC unforgeability definition [23].

Honest users reusing .aux. As mentioned in the overview, it is possible that
the helper information .aux is reused at the cost of anonymity. However, we
assume that honest users do not reuse the helper information and do not consider
an adversary who forges a showing by forcing honest users to reuse a helper
information .aux. One may argue that (a) such situation can occur given a bug
in the system or (b) honest users might not care about their anonymity. However,
we see (a) as an implementation problem. For (b), such users could instead use
the more convenient (and efficient) non-anonymous credentials systems.

Adversary’s power over the honest users. We consider adversaries who can
see only the final showing message . τ of honest users. We leave the consideration
of a stronger model of adversaries (e.g., one that can view the transcript between
the user and the helper or intercept user’s messages) for future work.

.Anonymity. No adversary can distinguish between interactions with an honest
user and interactions with a simulator .Sim. In particular, a SAAC is anonymous
if there exists a simulator .Sim “ (SimSetup, SimU, SimObtH, SimShow) such that

1. The distribution of .par from the setup algorithm and .SimSetup are indistin-
guishable, i.e., for any adversary . A, the following advantage is bounded

. Advpar-indist SAAC,Sim(A,λ) :“ |Pr[A(par) “ 1|par Ð$ SAAC.Setup(1λ , 1!)]´

Pr[A(par) “ 1|(par, td) Ð$ SimSetup(1λ , 1!)]| .

2. The advantage of . A, denoted .Advanon SAAC,Sim(A,λ) and defined as follows, in the
anonymity game described in Fig. 4 with respect to .Sim, is bounded

. |Pr[AnonA
SAAC,Sim,0(λ) “ 1] ́ Pr[AnonA

SAAC,Sim,1(λ) “ 1]| .

For readability, we give more detail on our anonymity game below. The adver-
sary (acting as a malicious issuer) will first receive both the public parameters
.par and the trapdoor .td generated by the simulator and will do the following:

306 R. Chairattana-Apirom et al.

Game AnonA
SAAC,Sim,b(λ):

init Ð 0; I1, . . . , Ir`1, HP Ð H

(par, td) Ð$ SimSetup(1
λ , 1")

(pk, m , φ̃, stA) Ð$ A(par, td)

if φ̃(m) “ 0 then return 1

(µ, stu) Ð$ SAAC.U1(par, pk, m , φ̃) // b “ 0

(µ, stSim) Ð$ SimU(td, pk, φ̃) // b “ 1

(imsg, st′A) Ð$ A(stA, µ)

σ Ð$ SAAC.U2(st
u , imsg) // b “ 0

σ Ð$ SimU(stSim, imsg) // b “ 1

if σ “ K then return 1

b′ Ð$ AObtH1,...,ObtHr`1,SH (st′A)

return b′

Oracle SH(sid,φ, nonce) :

if φ(m) “ 0 _ sid {P HP then abort

HP Ð HP z {sid}
// Each auxsid is used ‘only once’.

τ Ð$ SAAC.Show(par, pk, m ,σ, auxsid,φ, nonce)

// b “ 0

τ Ð$ SimShow(td, pk,φ, nonce) // b “ 1

return τ

Oracle ObtH1(sid) :

if sid P I1 then abort

I1 Ð I1 Y {sid}

if j “ 1 then // b “ 0

(umsg1, stsid) Ð$ SAAC.ObtHelp1(par, pk, m ,σ)

if j “ 1 then // b “ 1

(umsg1, stsid) Ð$ SimObtH(td, pk)

return umsg1

Oracle ObtHj (sid, hmsgj´1) : // j “ 2, . . . , r ̀ 1

if sid {P I1, . . . , Ij´1 _ sid P Ij then abort

Ij Ð Ij Y {sid}

if 1 ă j ď r then // b “ 0

(umsgj , stsid) Ð$ SAAC.ObtHelpj (stsid, hmsgj´1)

return umsgj

if j “ r ` 1 then

auxsid Ð$ SAAC.ObtHelpj (stsid, hmsgj´1)

if 1 ă j ď r then // b “ 1

(umsgj , stsid) Ð$ SimObtH(stsid, hmsgj´1)

return umsgj

if j “ r ` 1 then

auxsid Ð$ SimObtH(stsid, hmsgj´1)

if j “ r ` 1 then HP Ð HP Y {sid}
if j “ r ` 1 ^ auxsid “ K then abort

return closed

Fig. 4. Anonymity game for SAAC “ SAAC[Φ, M], parameterized with a simulator Sim
and a bit b. We denote case b “ 0 in the dashed boxes and case b “ 1, denoted in the
dashed and highlighted boxes. When querying the oracle SH, the adversary specifies a
helper information auxsid via input sid. We assume all predicates output by A are in Φ.

Determine .pk, m, φ̃: The adversary determines its (possibly malicious) public
key . pk, the attributes . m, and the issuance predicate . φ̃ for which the honest
user will use to request a credential. The user (or the simulator) then computes
a protocol message . µ and sends them to the adversary.

Finish credential issuance: The adversary sends .imsg which lets the honest
user derive a credential . σ or abort. The simulator needs to correctly simulate
the abort as well.

The adversary then outputs a guess . b′ after interacting with the following oracles.

Obtain-help oracles .ObtH1, . . . ObtHr`1: The adversary forces the user hold-
ing . σ to request a helper information. In these oracles, the adversary would
interact with either (a) the honest user, who knows the attributes .m and the
credential . σ, or (b) the simulator, who knows neither the attributes nor the
credential. At the end, the honest user will either abort or receive a helper

Server-Aided Anonymous Credentials 307

information .auxsid tied to the session ID .sid. On the other hand, the simulator
would only need to simulate the abort correctly.

Showing oracle .SH: The adversary specifies a helper information (via .sid), a
predicate . φ, and a value .nonce, such that the honest user computes . τ via
.SAAC.Show using the helper information .auxsid, the attributes .m satisfying
. φ and the credential . σ. Each helper information is restricted to be used only
once. In contrast, the simulator only takes as input the trapdoor . td, the public
key . pk, and the predicate . φ.

We stress that, in oracle .SH, the simulator does not depend on the helper infor-
mation .auxsid nor the attributes and credential of the honest user. This captures
the fact that the helper protocol sessions and the final showing messages are
unlinkable, as the simulator is independent of the session ID .sid.

Moreover, although we stated the anonymity game with respect to a single
honest user, the multi-user/session security, where the adversary interacts with
multiple credential holders, is also defined and proved in the full version.

.Integrity. In the full version, we consider an additional security property,
denoted integrity, which ensures that a malicious issuer cannot convince a user
that they have been issued a valid credential and helper information, when in
fact, these cannot be used to create a valid showing for some adversarially-
chosen (valid) predicate. This protects against a scenario where a user does not
immediately compute a showing and check that it is valid, perhaps because they
do not yet know the predicate that they want to show the credential for. We
show that a weak notion of integrity follows from correctness and anonymity.

Remark 3.1 (Revocation). We do not consider revocation of credentials in this
work and see it as an interesting open problem. A possible (and not-so-efficient)
approach is to have the issuer to maintain a public list of allowed user identities
(which will be one of the users’ attributes), and at showing time, the user addi-
tionally shows with a predicate saying their attributes contains an identity on
this public list.

4 Generic Construction from Keyed-Verification
Anonymous Credentials

In this section, we introduce our building blocks, keyed-verification anonymous
credentials (KVAC) and oblivious proof issuance protocol (oNIP), in Sect. 4.1,
and give a generic construction of SAAC in Sect. 4.2.

4.1 Building Blocks

In this subsection, we give the syntax and definitions related to our building
blocks and point out several distinctions from prior works. These include (1)
global parameters generator, (2) syntax for relations and languages for oNIP,
(3) KVAC syntax and definitions, and (4) oNIP syntax and definitions.

308 R. Chairattana-Apirom et al.

.Global parameters generator. Inspired by the formalization in [16], we
define global parameters generator .Gen(1λ), a probabilistic algorithm which gen-
erates public parameters .parg. Note that .parg are shared by both of our building
blocks KVAC and oNIP. In practice, an example for .Gen is a group parameters
generator .GGen which outputs a group description .(p, G, G). In our instantia-
tions, the underlying building blocks KVAC and oNIP may require the global
parameters to be generated with some trapdoor .tdg, used to simulate components
of both building blocks in the security proofs. In that case, we need a simulator
.SimGen which returns .(parg, tdg) such that .parg is indistinguishable from .Gen.

.Syntax on relations for oblivious proof issuance. Particularly for this
section, we use a similar syntax for relations and languages from [37]. In [37],
a relation . R contains tuples of the form .((X, Y, Z), x), denoting .X the state-
ment, . x the witness, .Y an argument and .Z an augmented statement. In our
case, a relation contains tuples .((X, Y), x) and we instead call .Y an aug-
mented statement, containing both .(Y, Z) in their syntax. We denote the rela-
tion .Core(R) :“ {(X, x)|DY : ((X, Y), x) P R} and the induced language
.LR :“ {(X, Y)|Dx : ((X, Y), x) P R}. The membership .(X, x) P Core(R) can
be efficiently checked.

.Keyed-verification anonymous credentials. A keyed-verification anony-
mous credential (KVAC) scheme .KVAC “ KVAC[Gen,Φ, M], defined with respect
to .Gen, a predicate family . Φ and an attribute space .M, consists of the following
algorithms.

• .parKVAC Ð$ KVAC.Setup(1!, parg) takes as input .parg and outputs public
parameters .parKVAC defining the an attribute space .M “ MparKVAC and a
predicate class .Φ “ ΦparKVAC . We assume that .parKVAC contains .parg.

• .(sk, pk) Ð$ KVAC.KeyGen(parKVAC) outputs the secret/public key pair.
• .(K,σ) Ð$ xKVAC.Iss(parKVAC, sk,φ) é KVAC.U(parKVAC, pk, m,φ)y is a round-

optimal protocol with similar syntax to SAAC’s issuance (see Sect. 3.1).
• .τ “ (τkey, τpub) Ð$ KVAC.Show(parKVAC, pk, m,σ,φ, nonce) outputs a showing

message . τ . The showing algorithm is split into the two algorithms.
– .(τkey, st) Ð$ KVAC.Showkey(parKVAC, pk, m,σ) outputs a state . st and a key-

dependent showing message .τkey.
– .τpub Ð$ KVAC.Showpub(st,φ, nonce) outputs a message .τpub showing the

credential . σ issued for attributes .m such that .φ(m) “ 1.
• .0{1 Ð KVAC.SVer(parKVAC, sk, pk, (τkey, τpub),φ, nonce) outputs a bit. Similar

to showing, verification also splits into key-dependent and public verification
as follows. The output bit is determined by .b0 ^ b1.
– .b0 Ð KVAC.SVerkey(parKVAC, sk, τkey) verifies .τkey using . sk.
– .b1 Ð KVAC.SVerpub(parKVAC, pk, τkey, τpub,φ, nonce) verifies .τkey and .τpub.

One distinction from prior works’ syntax is the split in showing and verification
algorithms into key-dependent and public parts. In the showing algorithm, the
showing message .τpub is bound to an additional value .nonce (which in some cases
can be a token identifier or a nonce chosen by the verifier). For our generic SAAC
construction, we require that .τkey is independent of the predicate . φ and .nonce.

Server-Aided Anonymous Credentials 309

This syntax is applicable to some existing KVAC schemes (e.g., [6,23]), but not
for some others [35] where the predicate-dependent parts of the showing mes-
sage require the secret key to verify. The key-dependent verification algorithm
.KVAC.SVerkey induces a relation

. RV,parg :“




 (((parKVAC, pk), τkey), sk) :
parKVAC “ (parg, ·) ^
(sk, pk) P [KVAC.KeyGen(parKVAC)] ^
KVAC.SVerkey(parKVAC, sk, τkey) “ 1




 .

The relation contains a statement .((parKVAC, pk), τkey) and a witness .sk such that
.parKVAC contains .parg, .(sk, pk) can be generated from .KVAC.KeyGen(parKVAC),
and .τkey is valid with respect to . sk. Checking . (sk, pk) P [KVAC.KeyGen(parKVAC)]
can be done efficiently, e.g., interpreting .sk as random coins used to generate . pk.
We denote .LV,parg as the induced language of .RV,parg .

Then, we require a KVAC scheme to satisfy the following properties. We
refer the readers to the full version for the standard definitions of parameter
indistinguishability for various algorithms and the .η-correctness property which
is defined similarly to that of SAAC’s (without the helper). Later on in Sect. 5,
we modify some existing KVAC schemes to fit to our definitions.

Unforgeability. Let .O(parg, sk, (parKVAC, pk), ·) be an oracle embedded with
.parg, parKVAC, sk, pk, and taking a to-be-determined input. A .KVAC scheme is
.O-unforgeable if there exists an extractor .Ext “ (ExtSetup, ExtIss) such that
1. The distribution of .parKVAC from .KVAC.Setup(parg) and .ExtSetup(parg) for

.parg Ð$ Gen(1λ) are indistinguishable.
2. The following advantage of . A in the unforgeability game, defined in Fig. 5

with respect to the oracle .O and the extractor .Ext, is bounded.
.Advunf KVAC,Ext,O(A,λ) :“ Pr[UNFA

KVAC,Ext,O(A,λ) “ 1].
The KVAC unforgeability game is defined similarly to SAAC unforgeability
with the following exceptions: no helper oracle is involved, the adversary can
query the oracle .O which parameterized the game, and the adversary can
request honest users’ showing messages adaptively by first querying . SHkey

and then .SHpub with a predicate . φ and a value .nonce. The adversary’s goal
is still to forge a valid .(φ˚, nonce˚, τ ̊) for a predicate .φ˚ not satisfied by any
extracted attributes and without replaying honest users’ showings.
Compared to the original KVAC unforgeability in [23], we rely on an extractor
instead of having the adversary reveals the attributes, but we do not give the
adversary access to a verification oracle. Compared to the extractability defi-
nition of KVAC in [38], we do not require an extractor for the final forgery. In
their game, the issuer oracle also extracts the underlying attributes; however,
the game aborts if they do not satisfy the predicate, instead of allowing the
adversary to win (as in our case).

Anonymity. A .KVAC scheme is anonymous if there exists a simulator . SimGen

which generates .parg indistinguishable from .Gen and a simulator . Sim “
(SimSetup, SimU, SimShow) such that
1. The distribution of .parKVAC from .KVAC.Setup(parg) and .SimSetup(parg) for

.parg Ð$ Gen(1λ) are indistinguishable.

310 R. Chairattana-Apirom et al.

Game UNFA
KVAC,Ext,O(λ):

MsgQ, PfQ, C, S Ð H; sctr, win Ð 0

parg Ð$ Gen(1 λ); (parKVAC, td) Ð$ ExtSetup(1
", parg)

(sk, pk) Ð$ KVAC.KeyGen(parKVAC)

(τ ̊ ,φ˚, nonce˚) Ð$

AIss,NewUsr,SHkey ,SHpub,O(parg ,sk,(parKVAC,pk),·) (parKVAC, pk)

if (KVAC.SVer(parKVAC, sk, pk, τ ̊,φ˚, nonce˚) “ 1) ^

(@m P MsgQ : φ˚(m) “ 0) ^

((φ˚, nonce˚, τ ̊) {P PfQ) then

return 1

return win

Oracle Iss(µ, φ) :

imsg Ð$ KVAC.Iss(parKVAC, sk, µ,φ)
if imsg “ K then abort

m Ð ExtIss(td, µ,φ)
if m “ K _ φ(m) “ 0 then

win Ð 1 // A wins if it can request

// credentials for non-authorized attributes

MsgQ Ð MsgQ Y {m }
return imsg

Oracle NewUsr(cid, m ,φ):

if cid P C _ φ(m) “ 0 then
return K

C Ð C Y {cid}; m cid Ð m

σcid Ð$ xKVAC.Iss(parKVAC, sk,φ)
é KVAC.U(parKVAC, pk, m ,φ)y

return closed

Oracle SHkey(cid):

if cid {P C then abort

sctr Ð sctr ` 1
(τkey,sctr, stsctr) Ð$

KVAC.Showkey(parKVAC, pk, m cid,σcid)

return (sctr, τkey,sctr)

Oracle SHpub(sid,φ, nonce):

if sid P S _ sid ą sctr then abort

S Ð S Y {sid}
τpub Ð$ KVAC.Showpub(stsid,φ, nonce)
τ Ð (τkey,sid, τpub)
PfQ Ð PfQ Y {(φ, nonce, τ)}
return τpub

Game AnonA
KVAC,SimGen,Sim,b(λ):

sctr Ð 0; S Ð H

(parg, tdg) Ð$ SimGen(1
λ)

(parKVAC, tdKVAC) Ð$ SimSetup(1
", parg)

td Ð (tdg, tdKVAC)

(pk, m , φ̃, stA) Ð$ A(parKVAC, td)

if φ̃(m) “ 0 then return 1

(µ, stu) Ð$ KVAC.U1(parKVAC, pk, m , φ̃) // b “ 0

(µ, stSim) Ð$ SimU(td, pk, φ̃) // b “ 1

(imsg, st′A) Ð$ A(stA, µ)

σ Ð$ KVAC.U2(st
u , imsg) // b “ 0

σ Ð$ SimU(stSim, imsg) // b “ 1

if σ “ K then return 1

b′ Ð$ ASHkey ,SHpub (st′A)

return b′

Oracle SHkey():

sctr Ð sctr ` 1

(τkey,sctr, stsctr) // b “ 0

Ð$ KVAC.Showkey(parKVAC, pk, m ,σ)

(τkey,sctr, stsctr) Ð$ SimShow(“key”, td, pk)

// b “ 1
return (sctr, τkey,sctr)

Oracle SHpub(sid,φ, nonce):

if φ(m) “ 0 _ sid P S _ sid ą sctr
then abort

S Ð S Y {sid}

τpub Ð$ KVAC.Showpub(stsid,φ, nonce) // b “ 0

τpub Ð$ SimShow(“pub”, stsid,φ, nonce) // b “ 1

return τpub

Fig. 5. Unforgeability and anonymity game for KVAC “ KVAC[Gen,Φ, M] on the top
and bottom, respectively. We note that both the adversary and the simulator are given
access to the global trapdoor tdg and KVAC trapdoor tdKVAC. We assume that all the
predicates output by A are in Φ.

Server-Aided Anonymous Credentials 311

2. No adversary can distinguish between interactions with an honest user
and interactions with the simulator .Sim. The advantage of . A’s in the
anonymity game in Fig. 5 is . Advanon KVAC,SimGen,Sim(A,λ) :“
. |Pr[AnonA

KVAC,SimGen,Sim,0(λ) “ 1] ́ Pr[AnonA
KVAC,SimGen,Sim,1(λ) “ 1]| .

The anonymity game of KVAC’s is similar to that of SAAC’s without the
helper, except that we split the showing oracle into .SHkey and .SHpub. This
allows the adversary to adaptively choose the predicate . φ and value . nonce
depending on .τkey. Compared to the anonymity definition in [23], our defini-
tion incorporates blind issuance and considers maliciously generated key.

Integrity of issued credentials. No adversary can force the honest user to
output an invalid showing message even when the public key .pk is adversar-
ially chosen and the public parameters .parKVAC are sampled with a trapdoor
using the simulator .SimGen and .Sim (defined in the anonymity definition).
Denote the integrity advantage of .A as . Advinteg KVAC,SimGen,Sim

(A,λ) :“

. Pr



      

σ ‰ K ^
(pk, τkey) {P LV,parg

∣∣∣∣∣∣∣∣∣∣∣∣

(parg, tdg) Ð$ SimGen(1λ)
(parKVAC, tdKVAC) Ð$ SimSetup(1!, parg)
(pk, m,φ, st) Ð$ A(parKVAC, (tdg, tdKVAC))
if φ(m) “ 0 then abort
(K,σ) Ð$ xA(st) é KVAC.U(parKVAC, pk, m,φ)y
(τkey, st) Ð$ KVAC.Showkey(parKVAC, pk, m,σ)



      
.

Validity of key generation with respect to .Ext: For any .λ, * “ *(λ) P N, . parg P
[Gen(1λ)], .(parKVAC, td) P [ExtSetup(1!, parg)] and .((parKVAC, pk), τkey) P LV,parg ,
for any .sk that corresponds to .pk (i.e., .(sk, pk) P [KVAC.KeyGen(parKVAC)]),
we have .((parKVAC, pk), τkey), sk) P RV,parg . This property ensures that for any
.τkey that is valid for some secret key .sk which corresponds to the public key
. pk, it should also be valid for any other secret key .sk′ corresponding to . pk.
This property is satisfied if the secret key is unique for each public key.

.Oblivious issuance of non-interactive proofs. An oblivious issuance of
non-interactive proofs .oNIP “ oNIP[Gen, R] defined with respect to .Gen and a
family of relations .R “ {Rparg}parg consists of the following algorithms.

• .paroNIP Ð$ oNIP.Setup(parg) outputs public parameters .paroNIP. The input
.parg defines the relation .R “ Rparg , omitting subscript .parg when clear from
the context. We also assume that .paroNIP contains .parg.

• .(K,π) Ð$ xoNIP.Iss(paroNIP, x,X) é oNIP.U(paroNIP,X, Y)y is a .r-round
interactive protocol starting with the user algorithm .oNIP.U1 and concluding
with .oNIP.Ur`1 outputting the proof . π.

• .0{1 Ð oNIP.Ver(paroNIP, (X, Y),π) outputs a bit.

Our syntax deviates from [37] in that the user algorithm does not output an
augmented statement . Z, but the user takes as input the augmented statement
.Y (which we think of as .(Y, Z) in their work). We require oNIP to satisfy the
following properties, but unlike [37], unforgeability is not required for our generic

312 R. Chairattana-Apirom et al.

construction. We refer the readers to the full version for the standard definitions
of .η-correctness, parameter-indistinguishability, and soundness.

Zero-knowledge. Let .O(parg, x,X, ·) be a deterministic oracle embedded with
.parg (which defines .Rparg), and statement and witness .X, x and taking in
a to-be-determined input. An .oNIP is .O-Zero-knowledge if there exists a
simulator .Sim “ (SimSetup, SimIss), such that no adversary can distinguish
between an honest issuer using the witness . x from a simulator who does
not know the witness. Unconventionally, our simulator .Sim is assisted by
the oracle .O embedded with . x, modeling witness-dependent computation
that is not efficiently simulatable (e.g., checking if a rerandomized state-
ment is in the language). The advantage of .A in the ZK game in Fig. 6 is
.Advzk oNIP,Sim,O(A,λ) :“ |Pr[ZKA

oNIP,Sim,O,0(λ) “ 1] ́ Pr[ZKA
oNIP,Sim,O,1(λ) “ 1]|.

Obliviousness for valid statements. An .oNIP is oblivious for valid statements
if there exists a simulator .SimGen generating .parg indistinguishable from . Gen
and a simulator .Sim “ (SimSetup, SimU, SimPf) such that
1. The distribution of .paroNIP from .oNIP.Setup(parg) and .SimSetup(parg) for

.parg Ð$ Gen(1λ) are indistinguishable.
2. The adversary . A, given the simulation trapdoor, cannot distinguish

between an honest user who obtains the proof from the issuance proto-
col and a simulator who simulates the proof independent of the protocol.
Importantly, the simulator only gets the ‘core’ statement .X but not the
‘augmented’ statement .Ysid during the protocol. The advantage of .A in
the obliviousness game in Fig. 6 is defined as . Advoblv oNIP,SimGen,Sim(A,λ) :“
.|Pr[OBLVA

oNIP,SimGen,Sim,0(λ) “ 1] ́ Pr[OBLVA
oNIP,SimGen,Sim,1(λ) “ 1]|.

Our obliviousness definition is simulation-based instead of the definition
in [37]. Further, it only applies for statements in the language and not any
statements.

4.2 Construction

We construct below a SAAC scheme .SAAC “ SAAC[Gen, KVAC, oNIP] for
predicate family .Φ and attribute space .M, using . KVAC “ KVAC[Gen,Φ, M]
and .oNIP “ oNIP[Gen, RV] for the relation family .RV defined by the
.KVAC.SVerkey algorithm. The main idea is to replace the key-dependent veri-
fication .KVAC.SVerkey with a proof generated from .oNIP.

Setup: .SAAC.Setup(1λ) : .parg Ð$ Gen(1λ), .parKVAC Ð$ KVAC.Setup(1!, parg),
and .paroNIP Ð$ oNIP.Setup(parg). Return . par “ (parKVAC, paroNIP)

Key generation and Issuance: These are defined exactly as those of .KVAC.
Helper protocol: .xSAAC.Helper(par, sk) é SAAC.ObtHelp(par, pk,σ)y is

defined as follows:
• First, .SAAC.ObtHelp runs .(τkey, st) Ð$ KVAC.Showkey(parKVAC, pk, m,σ).
• Then, .SAAC.Helper and .SAAC.ObtHelp run the protocol . (K,πV) Ð$

.xoNIP.Iss(paroNIP, sk, (parKVAC, pk)) é
oNIP.U(paroNIP, (parKVAC, pk), τkey)y.

Server-Aided Anonymous Credentials 313

Game ZKA
oNIP,Sim,O,b(λ):

init Ð 0; I1, . . . , Ir Ð H

parg Ð$ Gen(1 λ)

paroNIP Ð$ oNIP.Setup(parg) // b “ 0

(paroNIP, td) Ð$ SimSetup(parg) // b “ 1

b′ Ð$ AInit,Iss1,...,Issr (paroNIP)

return b′

Oracle Init(X̃, ̃x):

if init “ 1 _ (X̃, ̃x) {P Core(R) then
abort

init Ð 1; X Ð X̃; x Ð x̃
return closed

Oracle Issj (sid, umsgj) : // j “ 1, , r

if sid {P I1, . . . , Ij´1 _ sid P Ij _ init “ 0
then abort

Ij Ð Ij Y {sid}
if j “ 1 then

(hmsg1, stsid) Ð$ oNIP.Iss1(paroNIP, x, umsg1) // b “ 0

(hmsg1, stsid) Ð$ Sim
O(parg ,x,X,·)
Iss (td, X, umsg1) // b “ 1

else // For j “ r, stsid “ K

(hmsgj , stsid) Ð$ oNIP.Issj (stsid, umsgj) // b “ 0

(hmsgj , stsid) Ð$ Sim
O(parg ,x,X,·)
Iss (stsid, umsgj) // b “ 1

return hmsgj

Game OBLVA
oNIP,SimGen,Sim,b(λ):

init Ð 0; I1, . . . , Ir`1, P Ð H

(parg, tdg) Ð$ SimGen(1
λ)

(paroNIP, tdoNIP) Ð$ SimSetup(parg)

td Ð (tdg, tdoNIP)

b′ Ð$ AInit,U1,...,Ur`1,Pf (paroNIP, td, stA)

return b′

Oracle Init(X̃):

if init “ 1 then abort

init Ð 1; X Ð X̃
return closed

Oracle Pf(sid):

if sid {P I1, . . . , Ir`1 _ sid P P
then abort

P Ð P Y {sid}

return πsid // b “ 0

if πsid #“ K then

return π Ð$ SimPf (td, X, Ysid)

else abort // b “ 1

Oracle U1(sid, Ysid)

if sid P I1 _ init “ 0 _ (X, Ysid) {P LRparg
then

abort

I1 Ð I1 Y {sid}

(umsg1, stsid) Ð$ oNIP.U1(paroNIP, X, Ysid) // b “ 0

(umsg1, stsid) Ð$ SimU(td, X) // b “ 1

return umsg1

Oracle Uj (sid, imsgj) // j “ 2, . . . , r ̀ 1

if sid {P I1, . . . , Ij´1 _ sid P Ij

then abort

Ij Ð Ij Y {sid}
if j ă r ` 1 then

(umsgj , stsid) Ð$ oNIP.Uj (stsid, imsgj) // b “ 0

(umsgj , stsid) Ð$ SimU(stsid, imsgj) // b “ 1

return umsgj

else

πsid Ð$ oNIP.Uj (stsid, imsgj) // b “ 0

πsid Ð$ SimU(stsid, imsgj) // b “ 1

return closed

Fig. 6. Zero-knowledge and obliviousness games of oNIP “ oNIP[Gen, R] on the top
and bottom, respectively. The ZK game is parameterized by the simulator Sim with
access to the oracle O. As with the KVAC’s anonymity definition, both the adversary
and the simulator in OBLV game are given access to the global trapdoor tdg and oNIP
trapdoor tdoNIP. Crucially, the OBLV simulator gets the ‘core’ statement X but not
the ‘augmented’ statement Y during the protocol.

314 R. Chairattana-Apirom et al.

• Finally, .SAAC.ObtHelp returns .aux “ (τkey,πV, st).
Show: .SAAC.Show(par, pk, m,σ, aux “ (τkey,πV, st),φ, nonce): computes . τpub Ð$

KVAC.Showpub(st,φ, (πV, nonce)) and returns .π “ (τkey, τpub,πV).
Verify: .SAAC.SVer(par, pk,π “ (τkey, τpub,πV),φ, nonce): returns .b0 ^ b1 where

• . b0 Ð oNIP.Ver(par, (parKVAC, pk), τkey,πV)
• . b1 Ð KVAC.SVerpub(par, pk, (τkey, τpub),φ, (πV, nonce))

The following theorem then establishes the properties of our generic . SAAC
construction. Correctness follows from the correctness of both building blocks.
We refer to the overview Sect. 1.1 for a proof sketch and to the full version for
the formal proofs and concrete security bounds.

Theorem 4.1. Let .* “ *(λ) and .Gen be a global parameters generator, . KVAC
be a keyed-verification anonymous credential, and .oNIP be an oblivious proof
issuance protocol for the relation family .RV induced by .KVAC.SVerkey. Then, the
server-aided anonymous credential scheme .SAAC “ SAAC[Gen, KVAC, oNIP] is

• .(ηKVAC ` ηoNIP)-correct if .KVAC is .ηKVAC-correct and .oNIP is .ηoNIP-correct.
• Unforgeable if there exists an oracle .O such that .oNIP is .O-zero-knowledge
and sound and .KVAC satisfies .O-unforgeability and validity of key generation
with respect to the same extractor .Ext.

• Anonymous if there exist simulators .SimGen, SimoNIP, SimKVAC such that . oNIP
is oblivious with respect to .SimGen and .SimoNIP, and .KVAC satisfies anonymity
and integrity with respect to .SimGen and .SimKVAC.

5 Instantiations

In this section, we give two SAAC instantiations in pairing-free groups from
two KVAC schemes based on algebraic MACs. In Sect. 5.1, we give a scheme
adapting Barki et al.’s KVAC [6] based on BBS-MAC. In Sect. 5.2, we give less
efficient scheme adapting ideas from Chase et al.’s DDH-based KVAC [23]. For
both instantiations, we construct a suitable oNIP protocol.

Both KVACs use three proof systems: .Πcom proving that committed
attributes satisfy an issuance predicate, .Πσ proving correct issuance of creden-
tials, and .Πpub used for showing a credential. 5 Except for the .Πcom which is
instantiated from the Fischlin transform [27,30], .Πσ and .Πpub are obtained by
applying the Fiat-Shamir transform to .Σ-protocols for linear relations [34] (see
the proof system .Lin in Fig. 7). Crucially, the prover of .Πpub takes as input a
string .nonce which is hashed by . H. This is necessary to achieve our stronger
KVAC security and ensure non-malleability of honest users’ showings in our
SAAC instantiations. We refer the full version for more details on these NIZKs.

5 We will refer to them as .Πcom,Πσ,Πpub for both instantiations, but note that they
are different proof systems.

Server-Aided Anonymous Credentials 315

Lin.ProveH ((M P Gnˆm , Y P Gn), x P Zm
p , nonce)

r Ð$ Z m
p ; R Ð M r ; c Ð H(M, Y , R, nonce)

s Ð r ` c · x
return π :“ (c, s)

Lin.VerH ((M P Gnˆm , Y P Gn),π, nonce)

(c, s) Ð π
R Ð M s ´ c · Y
return H(M, Y , R, nonce) “ c

Fig. 7. NIZK proof system Lin “ Lin[H, G] for RG :“ {((M, Y), x) : Y “ M x}. The
prover optionally takes an input nonce which will also be hashed by H.

5.1 Instantiation from BBS

In this section, we instantiate our SAAC construction with a KVAC based on
the BBS MAC, which can be seen as a variant of Barki et al.’s KVAC [6], and
a corresponding .oNIP scheme. Following the syntax in Sect. 4.1, we note that
our global parameters generator is exactly the group generator .GGen and the
simulator .SimGen simply runs .GGen and does not output any trapdoor.
.BBS-based KVAC. We first describe the .KVACBBS scheme in Fig. 8, which can
be seen as a variant of the KVAC from [6]. The credential for the attributes
.m “ (mi)!i“1 is computed as .(A :“ (x ` e)´1 C, e Ð$ Zp, s Ð$ Zp) where . x P Zp

is the secret key, .C “ G ̀
∑!

i“1 miHi ` sH!`1, and .H1 . . . ,H!`1 P G are parts
of the public parameters. To show a credential, a holder can sample . r, r′ Ð$ Zp
and compute . C̃ Ð rC, . Ã Ð r′rA, and . B̃ Ð r′C̃ ´ e Ã. The holder sends to
the issuer .(Ã, B̃, C̃), along with a proof of knowledge of .e, r, r′, m (using CDL
proofs [15]), and the issuer can check that .x Ã “ B̃. To bind a value .nonce to the
showing message, the hash computation in .Πpub also takes .nonce as an input. We
emphasize that this is crucial for the security of our final SAAC construction.
Our KVAC makes use of proof systems .Πcom,Πσ, and .Πpub for the following
relations (implicitly parameterized by the group description), respectively:

. Rcom :“ {((H , C,ψ), (s, m)) : C “ sH!`1 `
∑!

i“1 miHi ^ ψ(m) “ 1}
Rσ :“ {((X, A, B), x) : xG “ X ^ xA “ B}

Rpub :“
{
((Ã, B̃, C̃, Hpriv, Y), (e, r′, r′′, m̂, s) : r

′′C̃ ` xHpriv, (m̂‖s)y “ Y ̂
B̃ “ r′C̃ ´ e Ã

}
.

We require .Πcom to be straightline-extractable for the relaxed relation .R̃com which
in addition to statement and witness .((H, C,ψ), (s, m)) P Rcom also accepts
witnesses .(s‖m) ‰ 0 such that .0G “

∑!
i“1 miHi ` sH!`1. For the relations . Rσ

and .Rpub, we explicitly define the corresponding linear maps as follows: . M σ
G,A :“

(G, A)T and .M pub
C̃,Hpriv,1,...,Hpriv,k, Ã :“

(
C̃ Hpriv,1 · · · Hpriv,k 0 0
0 0 · · · 0 C̃ ´ Ã

)
. We point

out that .SVerkey induces the following DLEQ relation (parameterized by . parg “
(p, G, G) which we will omit) for which we give a corresponding .oNIP protocol.

.Rdleq :“ {((X, (Ã, B̃)), x) : X “ xG ^ B̃ “ x Ã} , (1)

The augmented statement is .(Ã, B̃), and the core relation .Core(Rdleq) contains
public-secret key pairs .(X “ xG, x) defined by the key generation of .KVACBBS.

316 R. Chairattana-Apirom et al.

KVACBBS.Setup(1
", parg “ (p, G, G))

Select H0, H1, H2 : {0, 1}˚ Ñ Zp

H “ (Hi)
"`1
i“1 Ð$ G"`1

Πσ Ð Lin[H1, G]; Πpub Ð Lin[H2, G]

return par “ (p, G, G, H , H0, H1, H2)

KVACBBS.KeyGen(par)

x Ð$ Zp; X Ð xG
return (sk Ð x, pk Ð X)

KVACBBS.Iss(par, x,ψ, µ “ (C, πcom))

if C ` G “ 0G ∨ Πcom.Ver
H0 ((H , C,ψ),πcom) “ 0

then abort

e Ð$ Zp; A Ð (x ` e)´1 (G ` C); B Ð C ´ eA

πσ Ð Πσ.Prove
H1 ((M σ

G,A, (X, B)), x)

return imsg Ð (A, e, πσ)

KVACBBS.SVerkey(par, x, τkey “ (Ã, B̃))

return x Ã “ B̃

KVACBBS.SVerpub(par, X, τkey, τpub,φI ,a , nonce)

parse (Ã, B̃) Ð τkey; (C̃, πpub) Ð τpub
H priv Ð (Hi)iP["`1]zI

Y Ð G ` xa, (Hi)iPI y
return Πpub.Ver

H2 ((M pub
C̃,H priv, Ã

, (Y, B̃)),

πpub, (φI ,a , nonce))

KVACBBS.U1(par, X, m P Z"
p,ψ)

s Ð$ Zp; C Ð sH"`1 `
∑"

i“1 miHi

if C ` G “ 0G then abort

πcom Ð Πcom.Prove
H0 ((H , C,ψ), (s, m))

return µ :“ (C, πcom)

KVACBBS.U2(imsg “ (A, e, πσ))

B Ð G ` C ´ eA

if Πσ.Ver
H1 ((M σ

G,A, (X, B)),πσ) “ 0

then abort

return σ Ð (A, e, s)

KVACBBS.Showkey(par, pk, m ,σ “ (A, e, s))

r, r′ Ð$ Z˚
p

C̃ Ð r(G ` sH"`1 `
∑"

i“1 miHi)

Ã Ð r′rA; B̃ Ð r′C̃ ´ e Ã

return τkey :“ (Ã, B̃)

KVACBBS.Showpub(φI ,a , nonce)

if φI ,a (m) “ 0 then abort

H priv Ð (Hi)iP["]zI

Y Ð G ` x(mi)iPI , (Hi)iPI y
πpub Ð Πpub.Prove

H2 ((M pub
C̃,H priv, Ã

, (Y, B̃)),

(r´1 , (mi)iP["]zI , r
′, s, e), (φI ,a , nonce))

return τpub :“ (C̃, πpub)

Fig. 8. Scheme KVACBBS “ KVACBBS[GGen]. The proof systems Πcom,Πσ,Πpub are
NIZKs for Rcom, Rσ, Rpub defined in Section 5.1, respectively. States are omitted for
readability – subsequent algorithms can use values defined before (e.g. KVACBBS.U2

can use variables from KVACBBS.U1). In Showpub, the value nonce is bound to πpub.

The following theorem, proved in the full version, establishes the security
properties of .KVACBBS. Note that the KVAC unforgeability adversary has access
to a restricted DDH oracle .rDDH defined in Fig. 2.

Theorem 5.1. Let .GGen be a group generator outputting groups of prime order
.p “ p(λ). Then, .KVACBBS “ KVACBBS[GGen] satisfies correctness, anonymity
and integrity of issued credentials in the ROM with respect to the same simulator
.Sim, and .rDDH-unforgeability in the ROM under .(q , rDDH)-SDH assumption
and validity of key generation with respect to the same extractor .Ext.

.oNIP for BBS-based instantiation. Here, we sketch the pro-
tocol .oNIPBBS “ oNIP[GGen, Rdleq] for the family of relations .Rdleq, defined in
Eq. (1), and refer to the full version for the full description. The protocol starts
by the user sending a rerandomized statement .(A “ Ã`βG, B “ B̃`βX) to the
issuer. The issuer first checks that .(X, (A, B)) is actually in the language .LRdleq .
Then, the two parties interact in a blinded .Σ-protocol to compute an OR-proof
that (1) .(X, (A, B)) P LRdleq or (2) the issuer knows the discrete logarithm of

Server-Aided Anonymous Credentials 317

public parameters .W P G. At the end of the protocol, the user obtains a proof
. π for its statement of choice .(Ã, B̃). This protocol is similar to a recent blind
signature scheme [22] and the oNIP for .Rdleq in [37], except that in their cases
the issuer computes .B “ xA for the user who sends . A. The following theorem
establishes the security properties of .oNIPBBS with the proof given in the full
version.

Theorem 5.2. Let .GGen be a group generator outputting groups of prime order
.p “ p(λ), .rDDH be a restricted DDH oracle, and .SimGen be the simulator for
the global parameters generator. Then, .oNIPBBS “ oNIPBBS[GGen, Rdleq] satisfies
perfect correctness, soundness in the ROM assuming .DL, perfect .rDDH-zero-
knowledge, and perfect obliviousness for valid statements with respect to .SimGen.

The following corollary follows from Theorems 4.1, 5.1 and 5.2. Although we
do not formally show this, strong integrity of .SAACBBS follows from the public
key of .KVACBBS fixing an underlying secret key and soundness of .Πσ ensuring
that the issued credential is valid.

Corollary 5.3. Let .SAACBBS “ SAAC[GGen, KVACBBS, oNIPBBS] be a SAAC
scheme from .KVACBBS and .oNIPBBS according to Theorem 4.1. Then, . SAACBBS

satisfies correctness, unforgeability in the ROM assuming .(q , rDDH)-SDH, and
anonymity in the ROM.

.Efficiency. In addition to the concrete sizes in Table 1, we also consider the
computational costs of showing (without the helper) and verification of .SAACBBS,
which are .* ` 4 (helper protocol includes .19 and . 5 exponentiations for the user
and issuer, resp.) and .* ` 12 exponentiations, resp. This is comparable to those
of pairing-based BBS which requires .*` 7 exponentiations for showing and . *` 5
exponentiations + 2 pairing evaluations for verification.

5.2 Instantiation from DDH

In this section, we instantiate our generic construction with a DDH-based
KVAC by Chase, Meiklejohn, and Zaverucha’s [23] and a corresponding oNIP
scheme. Following the syntax in Sect. 4.1, our global parameters generator,
denoted .GenDDH(1λ), runs .(p, G, G) Ð$ GGen(1λ), samples .H Ð$ G˚, and sets
.parg “ (p, G, G,H). For security of both KVAC and oNIP, we fix the simulator
.SimGen which samples .H “ vG with a trapdoor .v Ð$ Z˚

p.

.DDH-based KVAC. We first introduce the DDH-based KVAC in [23], building
on top of an algebraic MAC where a tag for a vector of attributes .(mi)!i“1 is
.(Sw, Sx, Sy, Sz) :“ (U Ð$ G, (x0 `

∑!
i“1 ximi)U, (y0 `

∑!
i“1 yimi)U, zU) with

the secret key containing scalars .(xi)!i“0, .(yi)!i“0, and . z. The issuer’s public key
includes .(Xi “ xiH, Yi “ yiH)!i“1 with .H being the public parameters. For
blind issuance, a user ElGamal encrypts each of their attributes, and the issuer
homomorphically creates a tag for the user to decrypt.

318 R. Chairattana-Apirom et al.

To show a credential: the user randomizes the tag as . (S′
w “ rSw, Cx “

rSx ` rxH, Cy “ rSy ` ryH, S′
z “ rSz) for .r Ð$ Z˚

p, rx, ry Ð$ Zp. Then, the
user computes commitments .Ci “ miU ′ ` riG to their attributes. With . U ′

and .(Ci)!i“1, the issuer can use their secret key to compute (for example)
. Ṽx “ x0U ′ ` ∑!

i“1 xiCi “ (x0 `
∑!

i“1 ximi)U ′ ` ∑!
i“1 riXi which is close to

.Cx, but with added randomness from the blinding. Hence, the user also sends

.Γx :“
∑!

i“1 riXi ´ rxH (and similarly . Γy). The issuer checks that . Cx ` Γx “ Ṽx
(respectively for .yi and .Cy,Γy, Ṽy). This is the key-dependent part of the verifi-
cation. The user also includes a publicly verifiable proof of knowledge of repre-
sentations of .(Ci)!i“1,Γx,Γy.

Our .KVACDDH, described in Fig. 9, made these changes to their scheme:

1. Public key: In [23], Pedersen commitments of .x0, y0, z are included in the
public key, allowing the issuer to prove correct credential issuance. In this
case, the underlying secret key is not uniquely determined (binding is com-
putational), which is insufficient for our SAAC compiler. We instead include
ElGamal ciphertexts of .x0, y0 (security is not affected) and publish . Z “ zH
in the clear. For the latter, we noticed that revealing .Z does not affect the
underlying MAC’s security, saving us one group element. 6

2. Blind Issuance: In [23], users individually encrypt each .mi, and let the
issuer computes and sends ciphertexts of .Sx, Sy. We observe that .pk contains
.Xi “ xiH, .Yi “ yiH for .i P [*], so the user can compute ciphertexts of
.
∑!

i“1 miXi and .
∑!

i“1 miYi, while the issuer can still compute ciphertexts of
.Sx, Sy. Now, the issuer’s communication is independent of . * as it only has to
compute a proof with respect to a smaller witness.

Our KVAC makes use of proof systems .Πcom,Πσ, and .Πpub for the relations
.Rcom, Rσ, Rpub, respectively defined below, respectively.

. Rcom :“





((Ẽx, Ẽy,D, (Xi)!i“1, (Yi)!i“1,ψ),

(ux, uy, m “ (mi)!i“1))
:
Ẽx “ (uxG, uxD ` ∑!

i“1 miXi)
Ẽy “ (uyG, uyD ` ∑!

i“1 miYi)
ψ(m) “ 1






Rσ :“






((Ex, Ey,D, Sw, Sz,

Ẽx, Ẽy, Z, ctx, cty),
(z, x0, y0, r′, tx, ty, γx, γy))

:

Z “ zH, r′Sw “ G, Sz “ zSw

Ẽx “ r′Ex ´ (γ0G, γ0D ` x0H)
Ẽy “ r′Ey ´ (γ0G, γ0D ` y0H)

ctx “ (txG, txH ` x0G)
cty “ (tyG, tyH ` y0G)






Rpub :“






(((mi)iPI , (Xi)!i“1, (Yi)!i“1,
Sw, (Ci)!i“1,Γx,Γy),

((mi)iP[!]zI , (ri)!i“1, rx, ry))
:
@i P [*] : Ci “ miSw ` riH
Γx “ (

∑!
i“1 riXi) ́ rxH

Γy “ (
∑!

i“1 riYi) ́ ryH




 .

We note that .Πcom is straightline-extractable for a relaxed relation . R̃com Ě Rcom

which also accepts witness .(ux “ 0, uy “ 0, m ‰ 0) where .0G “
∑!

i“1 miXi “

6 Intuitively, this is because .(U, zU) is included in every tag anyways.

Server-Aided Anonymous Credentials 319

KVACDDH.Setup(1
", parg “ (p, G, G, H))

Select H0, H1, H2 : {0, 1}˚ Ñ Zp

Πσ Ð Lin[H1, G]; Πpub Ð Lin[H2, G]

return par “ (p, G, G, H, H0, H1, H2)

KVACDDH.KeyGen(par)

x, y Ð$ Z"`1
p ; z, tx, ty Ð$ Zp; sk Ð (x, y , z, tx, ty)

ctx Ð (txG, txH ` x0G); cty Ð (tyG, tyH ` y0G)

pk Ð (X :“ (Xi)
"
i“1, Y :“ (Yi)

"
i“1, Z, ctx, cty)

return (sk, pk)

KVACDDH.Iss(par, x,ψ, µ “ (Ẽx, Ẽy, D,πcom))

if Πcom.Ver
H0 ((Ẽx, Ẽy, D, X , Y ,ψ),πcom) “ 0

then abort

r Ð$ Z˚
p; γx, γy Ð$ Zp; Sw Ð rH, Sz Ð rZ

Ex Ð r((γxG, γxD ` x0H) ` Ẽx)

Ey Ð r((γyG, γyD ` y0H) ` Ẽy)

πσ Ð Πσ.Prove
H1 ((M σ

G,H,Sw ,D,Ex,Ey ,

(Ẽx, Ẽy, Z, ctx, cty)), (z, x0, y0, r
´1 , tx, ty, γx, γy))

return (Sw, Ex, Ey, Sz,πσ)

KVACDDH.SVerkey(par, sk, τkey)

(S′
w, S′

z, (Ci)
"
i“1, Cx, Cy,Γx,Γy) Ð τkey

return S′
w ‰ 0G ^ S′

z “ zS′
w

^ Γx ` Cx “ (x0S
′
w `

∑"
i“1 xiCi)

^ Γy ` Cy “ (y0S
′
w `

∑"
i“1 yiCi)

KVACDDH.SVerpub(par, pk, τkey,πpub,φI ,a , nonce)

return Πpub.Ver
H2 ((M pub

G,H,S′
w ,X ,Y

, ((Ci)iP["]zI ,

(Ci ´ aiS
′
w)iPI ,Γx,Γy)),πpub, (φI ,a , nonce))

Oracle OSVerDDH(par, sk, Sw, Sz, (Ci)
"
i“1, ζx, ζy)

return Sz “ zSw ^ ζx “ x0Sw `
∑"

i“1 xiCi^

ζy “ y0Sw `
∑"

i“1 yiCi ^ Sw ‰ 0G

KVACDDH.U1(par, pk, m P Z"
p,ψ)

d, ux, uy Ð$ Zp; D Ð dG

Ẽx Ð (uxG, uxD ` ∑"
i“1 miXi)

Ẽy Ð (uyG, uyD ` ∑"
i“1 miYi)

πcom Ð Πcom.Prove
H0 ((Ẽx, Ẽy, D, X , Y ,ψ),

(ux, uy, m))

return µ :“ (Ẽx, Ẽy, D,πcom)

KVACDDH.U2(imsg “ (Sw, Ex, Ey, Sz,πσ))

if Πσ.Ver
H1 ((M σ

G,H,Sw ,D,Ex,Ey ,

(Ẽx, Ẽy, Z, ctx, cty),πσ) “ 0
then abort

(Ex,0, Ex,1) Ð Ex; (Ey,0, Ey,1) Ð Ey

Sx Ð Ex,1 ´ dEx,0; Sy Ð Ey,1 ´ dEy,0

return σ Ð (Sw, Sx, Sy, Sz)

KVACDDH.Showkey(par, pk, m ,σ)

r′, rx, ry Ð$ Zp; r :“ (ri)"
i“1 Ð$ Z"

p

(S′
w, S′

x, S
′
y, S

′
z) Ð r′σ

for i P [!] : Ci Ð miS
′
w ` riH

Cx Ð S′
x ` rxH; Cy Ð S′

y ` ryH

Γx Ð ∑"
i“1 riXi ´ rxH

Γy Ð ∑"
i“1 riYi ´ ryH

return (S′
w, S′

z, (Ci)
"
i“1, Cx, Cy,Γx,Γy)

KVACDDH.Showpub(φI ,a , nonce)

for i P I : C′
i Ð Ci ´ aiS

′
w

πpub Ð Πpub.Prove
H2 ((M pub

G,H,S′
w ,X ,Y

,

((Ci)iP["]zI , (C
′
i)iPI ,Γx,Γy)),

((mi)iP["]zI , r , rx, ry), (φI ,a , nonce))

return πpub

Fig. 9. Scheme KVACDDH “ KVACDDH[GenDDH] and oracle OSVerDDH. Πcom,Πσ,Πpub are
NIZKs for Rcom, Rσ, Rpub defined in Section 5.2, respectively. States are omitted for
readability – subsequent algorithms can use values defined before (e.g. KVACBBS.U2

can use variables from KVACBBS.U1). In Showpub, the value nonce is bound to πpub.

∑!
i“1 miYi . For .Rσ and .Rpub, let .M σ

G,H,Sw,D,Ex,Ey
and .M pub G,H,Sw,X ,Y be matri-

ces defined by the respective relations described above (omitting the explicit
representation for brevity), analogously to what was done in Sect. 5.1.

The algorithm .SVerkey induces the relation family .RDDH, parameterized by
.parg “ (p, G, G,H) (which we omit in the subscript), for which we give a cor-
responding .oNIP protocol. .RDDH contains statements .(pk “ (X, Y , Z, ctx, cty),

320 R. Chairattana-Apirom et al.

. τkey “ (Sw, (Ci)iP[!], ζx, ζy, Sz))7 and witnesses .sk “ (x, y, z, tx, ty), such that

.

Z “ zH, Sw ‰ 0G, Sz “ zSw, @i P [*] : Xi “ xiH, Yi “ yiH
ζx “ x0Sw `

∑!
i“1 xiCi, ζy “ y0Sw `

∑!
i“1 yiCi

ctx “ (txG, txH ` x0G), cty “ (tyG, tyH ` y0G)
(2)

The following theorem, proved in the full version, establishes the security
of .KVACDDH. In the proof, we first show unforgeability of the underlying MAC
against adversaries with access to .OSVerDDH (defined in Fig. 9), using techniques
similar to [23]. Then, we give a reduction from unforgeability of .KVACDDH to
that of the MAC. Our main contribution is twofold: (1) A careful rewinding
argument to extract a MAC forgery from the KVAC forgery; and (2) We show
how to simulate showings for an honest user by querying for a tag on a random
(and hidden) set of attributes, and that we still reliably extract a fresh forgery.

Theorem 5.4. Let .GenDDH be a global parameters generator defined in Sect. 5.2.
Then, .KVACDDH “ KVACDDH[GenDDH] satisfies correctness, anonymity assuming
DDH and integrity of issued credentials both in the ROM and with respect to the
same simulators .SimGen and .SimKVAC, and .OSVerDDH-unforgeability in the ROM
assuming DDH and validity of key generation with respect to the same extractor
.Ext.

.oNIP for DDH-based instantiation. We sketch the protocol . oNIPDDH “
oNIP[GenDDH, RDDH] for the family of relations .RDDH described in Eq. (2), con-
taining statement . pk, an augmented statement .τkey and witness . sk.

Our .oNIPDDH construction follows a similar structure to .oNIPBBS relying on
a blinded OR-proof of either (1) membership of the induced language .LRDDH or
(2) knowledge of discrete logarithm of public parameters . W . The key difference
lies in the first move, where the user rerandomizes the augmented statement
.(S′

w, (C ′
i)!i“1, ζ

′
x, ζ

′
y, S

′
z) by computing .Sw “ αS′

w, Ci “ αC ′
i ` βiH with random

scalars .α, β1, . . . ,β! and uses .X, Y in the public key to compute . ζx “ αζ ′
x `∑!

i“1 βiXi, ζy .“ αζ ′
y`

∑!
i“1 βiYi, Sz “ αS′

z, which still preserves the membership
of the language. The issuer then checks whether the rerandomized statement is
in the language. We refer to the full version for the full protocol description
and the proof of the following theorem, establishing the security properties of
.oNIPDDH. The proof follows from standard techniques as with .oNIPBBS, except
that for obliviousness, we inherently requires the global trapdoor . v to efficiently
simulate honest users without knowing the augmented statement .τkey.

Theorem 5.5. Let .GenDDH be a global parameters generator defined in Sect. 5.2
and .OSVerDDH be the oracle in Fig. 9. Then, .oNIPDDH “ oNIP[GenDDH, RDDH] sat-
isfies perfect correctness, soundness in the ROM assuming .DL, perfect .OSVerDDH-
zero-knowledge, and perfect obliviousness for valid statements with respect to the
simulator .SimGen.
7 Note that .ζx and .ζy represent .Cx ` Γx and .Cy ` Γy and can be computed from the
output .τkey of .Showkey.

Server-Aided Anonymous Credentials 321

Finally, the following corollary follows from Theorems 4.1, 5.4 and 5.5. Sim-
ilar to .SAACBBS, strong integrity of .SAACDDH follows from the structure of
.KVACDDH’s public key and soundness of .Πσ.

Corollary 5.6. Let .SAACDDH “ SAAC[GenDDH, KVACDDH, oNIPDDH] be a SAAC
scheme from .KVACDDH and .oNIPDDH according to Theorem 4.1. Then, . SAACDDH

satisfies correctness, unforgeability, and anonymity (both in the ROM and assum-
ing .DDH).

.Efficiency. The computational costs of showing (without the helper) and ver-
ification of .SAACDDH are .4* ` 2 (helper protocol includes .18* ` 47 and . 6* ` 15
exponentiations for the user and issuer, resp.) and .11*`22 exponentiations, resp.

6 Conclusion

This paper introduced the SAAC model and gave two efficient instantiations. We
emphasize that despite the requirement of the helper interaction, SAAC is not as
restrictive as it may seem to be. This is because (1) the helper information can
be requested ahead of time and can be spent later without any additional online
interaction, and (2) the helper protocol is independent of the showing predicate.

We envision that each user would obtain an upper bound .B pieces of helper
information at regular time increments (e.g., the number of times one uses a
digital ID per week, which need not be large). Since the showing predicate and
disclosed attributes can be decided later on, and the helper information is very
small in size, the space requirements for this are not significant.

In a real-world setting, timing or counting attacks may compromise
anonymity if our system is used carelessly. For example, if users always request
helper information immediately before showing a credential, then linking helper
interactions to showings becomes possible. Or, in a setting where the helper
server can identify users, if User-A interacts with the helper 99 times, and User-
B interacts only once, then a verifier who sees 2 different showings can be sure
that they interacted with user A in one of the interactions. Implementing the
system to hide usage patterns (e.g., as discussed earlier) should prevent these
attacks.

Our BBS-based instantiation improves considerably upon the state of the art
for pairing-free ACs: it is multi-show, the helper interaction is lightweight, and
it is provably secure in the ROM. This is in contrast to, e.g., ACL [4], which
requires re-proving a (potentially expensive) issuance predicate for each showing,
and is only proved secure in the AGM via an involved security proof [29].

Acknowledgements. We thank CRYPTO2025 anonymous reviewers for their feed-
back. Anna Lysyanskaya was supported by NSF Grants 2312241, 2154170, and 2247305
as well as the Ethereum Foundation. Chairattana-Apirom and Tessaro’s research was
partially supported by NSF grants CNS-2026774, CNS-2154174, CNS-2426905, a gift
from Microsoft, and a Stellar Development Foundation Academic Research Award.

322 R. Chairattana-Apirom et al.

References

1. Architecture proposal for the german eIDAS implementation (2024). https://
gitlab.opencode.de/bmi/eudi-wallet/eidas-2.0-architekturkonzept/-/blob/main/
architecture-proposal/01-architecture-proposal.md. Accessed 13 Feb 2025

2. The European digital identity wallet architecture and reference frame-
work (2024). https://eu-digital-identity-wallet.github.io/eudi-doc-architecture-
and-reference-framework/1.4.0/arf/. Accessed 13 Feb 2025

3. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k -TAA. In: De Prisco, R.,
Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg
(2006). https://doi.org/10.1007/11832072 8

4. Baldimtsi, F., Lysyanskaya, A.: Anonymous credentials light. In: Sadeghi, A.R.,
Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 1087–1098. ACM Press (2013).
https://doi.org/10.1145/2508859.2516687

5. Barker, E., Chen, L., Roginsky, A., Vassilev, A., Davis, R.: Recommenda-
tion for pair-wise key-establishment schemes using discrete logarithm cryptogra-
phy. Technical report NIST Special Publication 800-56A, National Institute of
Standards (NIST). https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.
SP.800-56Ar3.pdf. Accessed 13 Feb 2025

6. Barki, A., Brunet, S., Desmoulins, N., Traoré, J.: Improved algebraic MACs and
practical keyed-verification anonymous credentials. In: Avanzi, R., Heys, H. (eds.)
SAC 2016. LNCS, vol. 10532, pp. 360–380. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-69453-5 20

7. Baum, C., et al.: Cryptographers’ feedback on the EU digital identity’s ARF
(2024). https://github.com/user-attachments/files/15904122/cryptographers-
feedback.pdf

8. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 1993, pp. 62–73. ACM Press (1993). https://doi.org/10.1145/
168588.168596

9. Benhamouda, F., Lepoint, T., Loss, J., Orrù, M., Raykova, M.: On the (in)security
of ROS. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021, Part I.
LNCS, vol. 12696, pp. 33–53. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-77870-5 2

10. Bernstein, D.J., Lange, T.: Safecurves: choosing safe curves for elliptic-curve cryp-
tography. https://safecurves.cr.yp.to/. Accessed 13 Feb 2025

11. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2007). https://doi.org/
10.1007/s00145-007-9005-7

12. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-28628-8 3

13. Brands, S.: Rethinking public key infrastructure and digital certificates— building
in privacy. Ph.D. thesis, Eindhoven Inst. of Tech. The Netherlands (1999)

14. Camenisch, J., Drijvers, M., Dzurenda, P., Hajny, J.: Fast keyed-verification anony-
mous credentials on standard smart cards. In: Dhillon, G., Karlsson, F., Hedström,
K., Zúquete, A. (eds.) SEC 2019. IAICT, vol. 562, pp. 286–298. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-22312-0 20

15. Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous attestation using the strong
diffie hellman assumption revisited. In: Franz, M., Papadimitratos, P. (eds.) Trust

https://gitlab.opencode.de/bmi/eudi-wallet/eidas-2.0-architekturkonzept/-/blob/main/architecture-proposal/01-%20architecture-proposal.md
https://gitlab.opencode.de/bmi/eudi-wallet/eidas-2.0-architekturkonzept/-/blob/main/architecture-proposal/01-%20architecture-proposal.md
https://gitlab.opencode.de/bmi/eudi-wallet/eidas-2.0-architekturkonzept/-/blob/main/architecture-proposal/01-%20architecture-proposal.md
https://gitlab.opencode.de/bmi/eudi-wallet/eidas-2.0-architekturkonzept/-/blob/main/architecture-proposal/01-%20architecture-proposal.md
https://gitlab.opencode.de/bmi/eudi-wallet/eidas-2.0-architekturkonzept/-/blob/main/architecture-proposal/01-%20architecture-proposal.md
https://gitlab.opencode.de/bmi/eudi-wallet/eidas-2.0-architekturkonzept/-/blob/main/architecture-proposal/01-%20architecture-proposal.md
https://gitlab.opencode.de/bmi/eudi-wallet/eidas-2.0-architekturkonzept/-/blob/main/architecture-proposal/01-%20architecture-proposal.md
https://gitlab.opencode.de/bmi/eudi-wallet/eidas-2.0-architekturkonzept/-/blob/main/architecture-proposal/01-%20architecture-proposal.md
https://gitlab.opencode.de/bmi/eudi-wallet/eidas-2.0-architekturkonzept/-/blob/main/architecture-proposal/01-%20architecture-proposal.md
https://gitlab.opencode.de/bmi/eudi-wallet/eidas-2.0-architekturkonzept/-/blob/main/architecture-proposal/01-%20architecture-proposal.md
https://gitlab.opencode.de/bmi/eudi-wallet/eidas-2.0-architekturkonzept/-/blob/main/architecture-proposal/01-%20architecture-proposal.md
https://gitlab.opencode.de/bmi/eudi-wallet/eidas-2.0-architekturkonzept/-/blob/main/architecture-proposal/01-%20architecture-proposal.md
https://gitlab.opencode.de/bmi/eudi-wallet/eidas-2.0-architekturkonzept/-/blob/main/architecture-proposal/01-%20architecture-proposal.md
https://gitlab.opencode.de/bmi/eudi-wallet/eidas-2.0-architekturkonzept/-/blob/main/architecture-proposal/01-%20architecture-proposal.md
https://gitlab.opencode.de/bmi/eudi-wallet/eidas-2.0-architekturkonzept/-/blob/main/architecture-proposal/01-%20architecture-proposal.md
https://gitlab.opencode.de/bmi/eudi-wallet/eidas-2.0-architekturkonzept/-/blob/main/architecture-proposal/01-%20architecture-proposal.md
https://gitlab.opencode.de/bmi/eudi-wallet/eidas-2.0-architekturkonzept/-/blob/main/architecture-proposal/01-%20architecture-proposal.md
https://gitlab.opencode.de/bmi/eudi-wallet/eidas-2.0-architekturkonzept/-/blob/main/architecture-proposal/01-%20architecture-proposal.md
https://gitlab.opencode.de/bmi/eudi-wallet/eidas-2.0-architekturkonzept/-/blob/main/architecture-proposal/01-%20architecture-proposal.md
https://eu-digital-identity-wallet.github.io/eudi-doc-architecture-and-reference-framework/1.4.0/arf/
https://eu-digital-identity-wallet.github.io/eudi-doc-architecture-and-reference-framework/1.4.0/arf/
https://eu-digital-identity-wallet.github.io/eudi-doc-architecture-and-reference-framework/1.4.0/arf/
https://eu-digital-identity-wallet.github.io/eudi-doc-architecture-and-reference-framework/1.4.0/arf/
https://eu-digital-identity-wallet.github.io/eudi-doc-architecture-and-reference-framework/1.4.0/arf/
https://eu-digital-identity-wallet.github.io/eudi-doc-architecture-and-reference-framework/1.4.0/arf/
https://eu-digital-identity-wallet.github.io/eudi-doc-architecture-and-reference-framework/1.4.0/arf/
https://eu-digital-identity-wallet.github.io/eudi-doc-architecture-and-reference-framework/1.4.0/arf/
https://eu-digital-identity-wallet.github.io/eudi-doc-architecture-and-reference-framework/1.4.0/arf/
https://eu-digital-identity-wallet.github.io/eudi-doc-architecture-and-reference-framework/1.4.0/arf/
https://eu-digital-identity-wallet.github.io/eudi-doc-architecture-and-reference-framework/1.4.0/arf/
https://eu-digital-identity-wallet.github.io/eudi-doc-architecture-and-reference-framework/1.4.0/arf/
https://eu-digital-identity-wallet.github.io/eudi-doc-architecture-and-reference-framework/1.4.0/arf/
https://eu-digital-identity-wallet.github.io/eudi-doc-architecture-and-reference-framework/1.4.0/arf/
https://eu-digital-identity-wallet.github.io/eudi-doc-architecture-and-reference-framework/1.4.0/arf/
https://eu-digital-identity-wallet.github.io/eudi-doc-architecture-and-reference-framework/1.4.0/arf/
https://eu-digital-identity-wallet.github.io/eudi-doc-architecture-and-reference-framework/1.4.0/arf/
https://doi.org/10.1007/11832072_8
https://doi.org/10.1007/11832072_8
https://doi.org/10.1007/11832072_8
https://doi.org/10.1007/11832072_8
https://doi.org/10.1007/11832072_8
https://doi.org/10.1007/11832072_8
https://doi.org/10.1145/2508859.2516687
https://doi.org/10.1145/2508859.2516687
https://doi.org/10.1145/2508859.2516687
https://doi.org/10.1145/2508859.2516687
https://doi.org/10.1145/2508859.2516687
https://doi.org/10.1145/2508859.2516687
https://doi.org/10.1145/2508859.2516687
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/%20NIST.SP.800-56Ar3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/%20NIST.SP.800-56Ar3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/%20NIST.SP.800-56Ar3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/%20NIST.SP.800-56Ar3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/%20NIST.SP.800-56Ar3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/%20NIST.SP.800-56Ar3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/%20NIST.SP.800-56Ar3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/%20NIST.SP.800-56Ar3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/%20NIST.SP.800-56Ar3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/%20NIST.SP.800-56Ar3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/%20NIST.SP.800-56Ar3.pdf
https://doi.org/10.1007/978-3-319-69453-5_20
https://doi.org/10.1007/978-3-319-69453-5_20
https://doi.org/10.1007/978-3-319-69453-5_20
https://doi.org/10.1007/978-3-319-69453-5_20
https://doi.org/10.1007/978-3-319-69453-5_20
https://doi.org/10.1007/978-3-319-69453-5_20
https://doi.org/10.1007/978-3-319-69453-5_20
https://doi.org/10.1007/978-3-319-69453-5_20
https://doi.org/10.1007/978-3-319-69453-5_20
https://doi.org/10.1007/978-3-319-69453-5_20
https://github.com/user-attachments/files/15904122/cryptographers-feedback.pdf
https://github.com/user-attachments/files/15904122/cryptographers-feedback.pdf
https://github.com/user-attachments/files/15904122/cryptographers-feedback.pdf
https://github.com/user-attachments/files/15904122/cryptographers-feedback.pdf
https://github.com/user-attachments/files/15904122/cryptographers-feedback.pdf
https://github.com/user-attachments/files/15904122/cryptographers-feedback.pdf
https://github.com/user-attachments/files/15904122/cryptographers-feedback.pdf
https://github.com/user-attachments/files/15904122/cryptographers-feedback.pdf
https://github.com/user-attachments/files/15904122/cryptographers-feedback.pdf
https://github.com/user-attachments/files/15904122/cryptographers-feedback.pdf
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-030-77870-5_2
https://safecurves.cr.yp.to/
https://safecurves.cr.yp.to/
https://safecurves.cr.yp.to/
https://safecurves.cr.yp.to/
https://safecurves.cr.yp.to/
https://doi.org/10.1007/s00145-007-9005-7
https://doi.org/10.1007/s00145-007-9005-7
https://doi.org/10.1007/s00145-007-9005-7
https://doi.org/10.1007/s00145-007-9005-7
https://doi.org/10.1007/s00145-007-9005-7
https://doi.org/10.1007/s00145-007-9005-7
https://doi.org/10.1007/s00145-007-9005-7
https://doi.org/10.1007/s00145-007-9005-7
https://doi.org/10.1007/s00145-007-9005-7
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-030-22312-0_20
https://doi.org/10.1007/978-3-030-22312-0_20
https://doi.org/10.1007/978-3-030-22312-0_20
https://doi.org/10.1007/978-3-030-22312-0_20
https://doi.org/10.1007/978-3-030-22312-0_20
https://doi.org/10.1007/978-3-030-22312-0_20
https://doi.org/10.1007/978-3-030-22312-0_20
https://doi.org/10.1007/978-3-030-22312-0_20
https://doi.org/10.1007/978-3-030-22312-0_20
https://doi.org/10.1007/978-3-030-22312-0_20

Server-Aided Anonymous Credentials 323

2016. LNCS, vol. 9824, pp. 1–20. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-45572-3 1

16. Camenisch, J., Krenn, S., Lehmann, A., Mikkelsen, G.L., Neven, G., Pedersen,
M.Ø.: Formal treatment of privacy-enhancing credential systems. In: Dunkelman,
O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 3–24. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-31301-6 1

17. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6 7

18. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7 20

19. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 4

20. Camenisch, J., Van Herreweghen, E.: Design and implementation of the idemix
anonymous credential system. In: Atluri, V. (ed.) ACM CCS 2002, pp. 21–30.
ACM Press (2002). https://doi.org/10.1145/586110.586114

21. Chairattana-Apirom, R., Harding, F., Lysyanskaya, A., Tessaro, S.: Server-
aided anonymous credentials. Cryptology ePrint Archive, Paper 2025/513 (2025).
https://eprint.iacr.org/2025/513

22. Chairattana-Apirom, R., Tessaro, S., Zhu, C.: Pairing-free blind signatures from
CDH assumptions. In: Reyzin, L., Stebila, D. (eds.) CRYPTO 2024, Part I. LNCS,
vol. 14920, pp. 174–209. Springer, Cham (2024). https://doi.org/10.1007/978-3-
031-68376-3 6

23. Chase, M., Meiklejohn, S., Zaverucha, G.: Algebraic MACs and keyed-verification
anonymous credentials. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 2014, pp.
1205–1216. ACM Press (2014). https://doi.org/10.1145/2660267.2660328

24. Chase, M., Perrin, T., Zaverucha, G.: The Signal private group system and anony-
mous credentials supporting efficient verifiable encryption. In: Ligatti, J., Ou, X.,
Katz, J., Vigna, G. (eds.) ACM CCS 2020, pp. 1445–1459. ACM Press (2020).
https://doi.org/10.1145/3372297.3417887

25. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203. Springer, Boston
(1983). https://doi.org/10.1007/978-1-4757-0602-4 18

26. Döttling, N., Hartmann, D., Hofheinz, D., Kiltz, E., Schäge, S., Ursu, B.: On the
impossibility of purely algebraic signatures. In: Nissim, K., Waters, B. (eds.) TCC
2021. LNCS, vol. 13044, pp. 317–349. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-90456-2 11

27. Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with
online extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–
168. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 10

28. Hardt, D.: The OAuth 2.0 Authorization Framework. RFC 6749 (2012). https://
doi.org/10.17487/RFC6749. https://www.rfc-editor.org/info/rfc6749

29. Kastner, J., Loss, J., Renawi, O.: Concurrent security of anonymous creden-
tials light, revisited. In: Meng, W., Jensen, C.D., Cremers, C., Kirda, E. (eds.)
ACM CCS 2023, pp. 45–59. ACM Press (2023). https://doi.org/10.1145/3576915.
3623184

https://doi.org/10.1007/978-3-319-45572-3_1
https://doi.org/10.1007/978-3-319-45572-3_1
https://doi.org/10.1007/978-3-319-45572-3_1
https://doi.org/10.1007/978-3-319-45572-3_1
https://doi.org/10.1007/978-3-319-45572-3_1
https://doi.org/10.1007/978-3-319-45572-3_1
https://doi.org/10.1007/978-3-319-45572-3_1
https://doi.org/10.1007/978-3-319-45572-3_1
https://doi.org/10.1007/978-3-319-45572-3_1
https://doi.org/10.1007/978-3-319-45572-3_1
https://doi.org/10.1007/978-3-319-31301-6_1
https://doi.org/10.1007/978-3-319-31301-6_1
https://doi.org/10.1007/978-3-319-31301-6_1
https://doi.org/10.1007/978-3-319-31301-6_1
https://doi.org/10.1007/978-3-319-31301-6_1
https://doi.org/10.1007/978-3-319-31301-6_1
https://doi.org/10.1007/978-3-319-31301-6_1
https://doi.org/10.1007/978-3-319-31301-6_1
https://doi.org/10.1007/978-3-319-31301-6_1
https://doi.org/10.1007/978-3-319-31301-6_1
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1145/586110.586114
https://doi.org/10.1145/586110.586114
https://doi.org/10.1145/586110.586114
https://doi.org/10.1145/586110.586114
https://doi.org/10.1145/586110.586114
https://doi.org/10.1145/586110.586114
https://doi.org/10.1145/586110.586114
https://eprint.iacr.org/2025/513
https://eprint.iacr.org/2025/513
https://eprint.iacr.org/2025/513
https://eprint.iacr.org/2025/513
https://eprint.iacr.org/2025/513
https://eprint.iacr.org/2025/513
https://doi.org/10.1007/978-3-031-68376-3_6
https://doi.org/10.1007/978-3-031-68376-3_6
https://doi.org/10.1007/978-3-031-68376-3_6
https://doi.org/10.1007/978-3-031-68376-3_6
https://doi.org/10.1007/978-3-031-68376-3_6
https://doi.org/10.1007/978-3-031-68376-3_6
https://doi.org/10.1007/978-3-031-68376-3_6
https://doi.org/10.1007/978-3-031-68376-3_6
https://doi.org/10.1007/978-3-031-68376-3_6
https://doi.org/10.1007/978-3-031-68376-3_6
https://doi.org/10.1145/2660267.2660328
https://doi.org/10.1145/2660267.2660328
https://doi.org/10.1145/2660267.2660328
https://doi.org/10.1145/2660267.2660328
https://doi.org/10.1145/2660267.2660328
https://doi.org/10.1145/2660267.2660328
https://doi.org/10.1145/2660267.2660328
https://doi.org/10.1145/3372297.3417887
https://doi.org/10.1145/3372297.3417887
https://doi.org/10.1145/3372297.3417887
https://doi.org/10.1145/3372297.3417887
https://doi.org/10.1145/3372297.3417887
https://doi.org/10.1145/3372297.3417887
https://doi.org/10.1145/3372297.3417887
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-3-030-90456-2_11
https://doi.org/10.1007/978-3-030-90456-2_11
https://doi.org/10.1007/978-3-030-90456-2_11
https://doi.org/10.1007/978-3-030-90456-2_11
https://doi.org/10.1007/978-3-030-90456-2_11
https://doi.org/10.1007/978-3-030-90456-2_11
https://doi.org/10.1007/978-3-030-90456-2_11
https://doi.org/10.1007/978-3-030-90456-2_11
https://doi.org/10.1007/978-3-030-90456-2_11
https://doi.org/10.1007/978-3-030-90456-2_11
https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/11535218_10
https://doi.org/10.17487/RFC6749
https://doi.org/10.17487/RFC6749
https://doi.org/10.17487/RFC6749
https://doi.org/10.17487/RFC6749
https://doi.org/10.17487/RFC6749
https://doi.org/10.17487/RFC6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://doi.org/10.1145/3576915.3623184
https://doi.org/10.1145/3576915.3623184
https://doi.org/10.1145/3576915.3623184
https://doi.org/10.1145/3576915.3623184
https://doi.org/10.1145/3576915.3623184
https://doi.org/10.1145/3576915.3623184
https://doi.org/10.1145/3576915.3623184

324 R. Chairattana-Apirom et al.

30. Kondi, Y., Shelat, A.: Improved straight-line extraction in the random oracle model
with applications to signature aggregation. In: Agrawal, S., Lin, D. (eds.) ASI-
ACRYPT 2022, Part II. LNCS, vol. 13792, pp. 279–309. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-22966-4 10

31. Looker, T., Kalos, V., Whitehead, A., Lodder, M.: The BBS Signature Scheme.
Internet-Draft draft-IRTF-CFRG-BBS-signatures-07, Internet Engineering Task
Force (2024). https://datatracker.ietf.org/doc/draft-irtf-cfrg-bbs-signatures/07/.
Work in Progress

32. Lysyanskaya, A.: Signature schemes and applications to cryptographic protocol
design. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, Mas-
sachusetts (2002)

33. Lysyanskaya, A., Rivest, R., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys, H.,
Adams, C. (eds.) Selected Areas in Cryptography. LNCS, vol. 1758 (1999)

34. Maurer, U.: Zero-knowledge proofs of knowledge for group homomorphisms. DCC
77(2-3), 663–676 (2015). https://doi.org/10.1007/s10623-015-0103-5

35. Mirzamohammadi, O., et al.: Keyed-verification anonymous credentials with highly
efficient partial disclosure. Cryptology ePrint Archive, Paper 2025/041 (2025).
https://eprint.iacr.org/2025/041

36. Orange Innovation: The BBS# protocol: technical details. https://github.com/
eu-digital-identity-wallet/eudi-doc-architecture-and-reference-framework/issues/
193#issuecomment-2179355934. Accessed 13 Feb 2025

37. Orrù, M., Tessaro, S., Zaverucha, G., Zhu, C.: Oblivious issuance of proofs. In:
Reyzin, L., Stebila, D. (eds.) CRYPTO 2024, Part IX. LNCS, vol. 14928, pp. 254–
287. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-68400-5 8

38. Orrù, M.: Revisiting keyed-verification anonymous credentials. Cryptology ePrint
Archive, Paper 2024/1552 (2024). https://eprint.iacr.org/2024/1552

39. Paquin, C., Zaverucha, G.: U-prove cryptographic specification v1.1 (revi-
sion 3) (2013). https://www.microsoft.com/en-us/research/publication/u-prove-
cryptographic-specification-v1-1-revision-3/. Released under the Open Specifi-
cation Promise. http://www.microsoft.com/openspecifications/en/us/programs/
osp/default.aspx

40. Sakemi, Y., Kobayashi, T., Saito, T., Wahby, R.S.: Pairing-Friendly Curves.
Internet-Draft draft-IRTF-CFRG-pairing-friendly-curves-11, Internet Engineer-
ing Task Force (2022). https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-
friendly-curves/11/. Work in Progress

41. Tessaro, S., Zhu, C.: Revisiting BBS signatures. In: Hazay, C., Stam, M. (eds.)
EUROCRYPT 2023, Part V. LNCS, vol. 14008, pp. 691–721. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-30589-4 24

42. Traoré, J., Dumanois, A.: BBS# and eIDAS 2.0.: making BBS anonymous
credentials eIDAS 2.0 compliant. https://csrc.nist.gov/csrc/media/presentations/
2024/wpec2024-3b3/images-media/wpec2024-3b3-slides-antoine-jacques--BBS-
sharp-eIDAS2.pdf. Accessed 13 Feb 2025

https://doi.org/10.1007/978-3-031-22966-4_10
https://doi.org/10.1007/978-3-031-22966-4_10
https://doi.org/10.1007/978-3-031-22966-4_10
https://doi.org/10.1007/978-3-031-22966-4_10
https://doi.org/10.1007/978-3-031-22966-4_10
https://doi.org/10.1007/978-3-031-22966-4_10
https://doi.org/10.1007/978-3-031-22966-4_10
https://doi.org/10.1007/978-3-031-22966-4_10
https://doi.org/10.1007/978-3-031-22966-4_10
https://doi.org/10.1007/978-3-031-22966-4_10
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bbs-%20signatures/07/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bbs-%20signatures/07/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bbs-%20signatures/07/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bbs-%20signatures/07/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bbs-%20signatures/07/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bbs-%20signatures/07/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bbs-%20signatures/07/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bbs-%20signatures/07/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bbs-%20signatures/07/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bbs-%20signatures/07/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bbs-%20signatures/07/
https://doi.org/10.1007/s10623-015-0103-5
https://doi.org/10.1007/s10623-015-0103-5
https://doi.org/10.1007/s10623-015-0103-5
https://doi.org/10.1007/s10623-015-0103-5
https://doi.org/10.1007/s10623-015-0103-5
https://doi.org/10.1007/s10623-015-0103-5
https://doi.org/10.1007/s10623-015-0103-5
https://doi.org/10.1007/s10623-015-0103-5
https://doi.org/10.1007/s10623-015-0103-5
https://eprint.iacr.org/2025/041
https://eprint.iacr.org/2025/041
https://eprint.iacr.org/2025/041
https://eprint.iacr.org/2025/041
https://eprint.iacr.org/2025/041
https://eprint.iacr.org/2025/041
https://github.com/eu-digital-identity-wallet/eudi-doc-%20architecture-and-reference-framework/issues/193#issuecomment-%202179355934
https://github.com/eu-digital-identity-wallet/eudi-doc-%20architecture-and-reference-framework/issues/193#issuecomment-%202179355934
https://github.com/eu-digital-identity-wallet/eudi-doc-%20architecture-and-reference-framework/issues/193#issuecomment-%202179355934
https://github.com/eu-digital-identity-wallet/eudi-doc-%20architecture-and-reference-framework/issues/193#issuecomment-%202179355934
https://github.com/eu-digital-identity-wallet/eudi-doc-%20architecture-and-reference-framework/issues/193#issuecomment-%202179355934
https://github.com/eu-digital-identity-wallet/eudi-doc-%20architecture-and-reference-framework/issues/193#issuecomment-%202179355934
https://github.com/eu-digital-identity-wallet/eudi-doc-%20architecture-and-reference-framework/issues/193#issuecomment-%202179355934
https://github.com/eu-digital-identity-wallet/eudi-doc-%20architecture-and-reference-framework/issues/193#issuecomment-%202179355934
https://github.com/eu-digital-identity-wallet/eudi-doc-%20architecture-and-reference-framework/issues/193#issuecomment-%202179355934
https://github.com/eu-digital-identity-wallet/eudi-doc-%20architecture-and-reference-framework/issues/193#issuecomment-%202179355934
https://github.com/eu-digital-identity-wallet/eudi-doc-%20architecture-and-reference-framework/issues/193#issuecomment-%202179355934
https://github.com/eu-digital-identity-wallet/eudi-doc-%20architecture-and-reference-framework/issues/193#issuecomment-%202179355934
https://github.com/eu-digital-identity-wallet/eudi-doc-%20architecture-and-reference-framework/issues/193#issuecomment-%202179355934
https://github.com/eu-digital-identity-wallet/eudi-doc-%20architecture-and-reference-framework/issues/193#issuecomment-%202179355934
https://github.com/eu-digital-identity-wallet/eudi-doc-%20architecture-and-reference-framework/issues/193#issuecomment-%202179355934
https://github.com/eu-digital-identity-wallet/eudi-doc-%20architecture-and-reference-framework/issues/193#issuecomment-%202179355934
https://github.com/eu-digital-identity-wallet/eudi-doc-%20architecture-and-reference-framework/issues/193#issuecomment-%202179355934
https://doi.org/10.1007/978-3-031-68400-5_8
https://doi.org/10.1007/978-3-031-68400-5_8
https://doi.org/10.1007/978-3-031-68400-5_8
https://doi.org/10.1007/978-3-031-68400-5_8
https://doi.org/10.1007/978-3-031-68400-5_8
https://doi.org/10.1007/978-3-031-68400-5_8
https://doi.org/10.1007/978-3-031-68400-5_8
https://doi.org/10.1007/978-3-031-68400-5_8
https://doi.org/10.1007/978-3-031-68400-5_8
https://doi.org/10.1007/978-3-031-68400-5_8
https://eprint.iacr.org/2024/1552
https://eprint.iacr.org/2024/1552
https://eprint.iacr.org/2024/1552
https://eprint.iacr.org/2024/1552
https://eprint.iacr.org/2024/1552
https://eprint.iacr.org/2024/1552
https://www.microsoft.com/en-us/research/publication/u-prove-cryptographic-specification-v1-1-revision-3/
https://www.microsoft.com/en-us/research/publication/u-prove-cryptographic-specification-v1-1-revision-3/
https://www.microsoft.com/en-us/research/publication/u-prove-cryptographic-specification-v1-1-revision-3/
https://www.microsoft.com/en-us/research/publication/u-prove-cryptographic-specification-v1-1-revision-3/
https://www.microsoft.com/en-us/research/publication/u-prove-cryptographic-specification-v1-1-revision-3/
https://www.microsoft.com/en-us/research/publication/u-prove-cryptographic-specification-v1-1-revision-3/
https://www.microsoft.com/en-us/research/publication/u-prove-cryptographic-specification-v1-1-revision-3/
https://www.microsoft.com/en-us/research/publication/u-prove-cryptographic-specification-v1-1-revision-3/
https://www.microsoft.com/en-us/research/publication/u-prove-cryptographic-specification-v1-1-revision-3/
https://www.microsoft.com/en-us/research/publication/u-prove-cryptographic-specification-v1-1-revision-3/
https://www.microsoft.com/en-us/research/publication/u-prove-cryptographic-specification-v1-1-revision-3/
https://www.microsoft.com/en-us/research/publication/u-prove-cryptographic-specification-v1-1-revision-3/
https://www.microsoft.com/en-us/research/publication/u-prove-cryptographic-specification-v1-1-revision-3/
https://www.microsoft.com/en-us/research/publication/u-prove-cryptographic-specification-v1-1-revision-3/
https://www.microsoft.com/en-us/research/publication/u-prove-cryptographic-specification-v1-1-revision-3/
https://www.microsoft.com/en-us/research/publication/u-prove-cryptographic-specification-v1-1-revision-3/
http://www.microsoft.com/openspecifications/en/us/programs/osp/default.aspx
http://www.microsoft.com/openspecifications/en/us/programs/osp/default.aspx
http://www.microsoft.com/openspecifications/en/us/programs/osp/default.aspx
http://www.microsoft.com/openspecifications/en/us/programs/osp/default.aspx
http://www.microsoft.com/openspecifications/en/us/programs/osp/default.aspx
http://www.microsoft.com/openspecifications/en/us/programs/osp/default.aspx
http://www.microsoft.com/openspecifications/en/us/programs/osp/default.aspx
http://www.microsoft.com/openspecifications/en/us/programs/osp/default.aspx
http://www.microsoft.com/openspecifications/en/us/programs/osp/default.aspx
http://www.microsoft.com/openspecifications/en/us/programs/osp/default.aspx
http://www.microsoft.com/openspecifications/en/us/programs/osp/default.aspx
https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves/11/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves/11/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves/11/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves/11/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves/11/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves/11/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves/11/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves/11/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves/11/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves/11/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves/11/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves/11/
https://doi.org/10.1007/978-3-031-30589-4_24
https://doi.org/10.1007/978-3-031-30589-4_24
https://doi.org/10.1007/978-3-031-30589-4_24
https://doi.org/10.1007/978-3-031-30589-4_24
https://doi.org/10.1007/978-3-031-30589-4_24
https://doi.org/10.1007/978-3-031-30589-4_24
https://doi.org/10.1007/978-3-031-30589-4_24
https://doi.org/10.1007/978-3-031-30589-4_24
https://doi.org/10.1007/978-3-031-30589-4_24
https://doi.org/10.1007/978-3-031-30589-4_24
https://csrc.nist.gov/csrc/media/presentations/2024/%20wpec2024-3b3/images-media/wpec2024-3b3-slides-antoine-%20jacques--BBS-sharp-eIDAS2.pdf
https://csrc.nist.gov/csrc/media/presentations/2024/%20wpec2024-3b3/images-media/wpec2024-3b3-slides-antoine-%20jacques--BBS-sharp-eIDAS2.pdf
https://csrc.nist.gov/csrc/media/presentations/2024/%20wpec2024-3b3/images-media/wpec2024-3b3-slides-antoine-%20jacques--BBS-sharp-eIDAS2.pdf
https://csrc.nist.gov/csrc/media/presentations/2024/%20wpec2024-3b3/images-media/wpec2024-3b3-slides-antoine-%20jacques--BBS-sharp-eIDAS2.pdf
https://csrc.nist.gov/csrc/media/presentations/2024/%20wpec2024-3b3/images-media/wpec2024-3b3-slides-antoine-%20jacques--BBS-sharp-eIDAS2.pdf
https://csrc.nist.gov/csrc/media/presentations/2024/%20wpec2024-3b3/images-media/wpec2024-3b3-slides-antoine-%20jacques--BBS-sharp-eIDAS2.pdf
https://csrc.nist.gov/csrc/media/presentations/2024/%20wpec2024-3b3/images-media/wpec2024-3b3-slides-antoine-%20jacques--BBS-sharp-eIDAS2.pdf
https://csrc.nist.gov/csrc/media/presentations/2024/%20wpec2024-3b3/images-media/wpec2024-3b3-slides-antoine-%20jacques--BBS-sharp-eIDAS2.pdf
https://csrc.nist.gov/csrc/media/presentations/2024/%20wpec2024-3b3/images-media/wpec2024-3b3-slides-antoine-%20jacques--BBS-sharp-eIDAS2.pdf
https://csrc.nist.gov/csrc/media/presentations/2024/%20wpec2024-3b3/images-media/wpec2024-3b3-slides-antoine-%20jacques--BBS-sharp-eIDAS2.pdf
https://csrc.nist.gov/csrc/media/presentations/2024/%20wpec2024-3b3/images-media/wpec2024-3b3-slides-antoine-%20jacques--BBS-sharp-eIDAS2.pdf
https://csrc.nist.gov/csrc/media/presentations/2024/%20wpec2024-3b3/images-media/wpec2024-3b3-slides-antoine-%20jacques--BBS-sharp-eIDAS2.pdf
https://csrc.nist.gov/csrc/media/presentations/2024/%20wpec2024-3b3/images-media/wpec2024-3b3-slides-antoine-%20jacques--BBS-sharp-eIDAS2.pdf
https://csrc.nist.gov/csrc/media/presentations/2024/%20wpec2024-3b3/images-media/wpec2024-3b3-slides-antoine-%20jacques--BBS-sharp-eIDAS2.pdf
https://csrc.nist.gov/csrc/media/presentations/2024/%20wpec2024-3b3/images-media/wpec2024-3b3-slides-antoine-%20jacques--BBS-sharp-eIDAS2.pdf
https://csrc.nist.gov/csrc/media/presentations/2024/%20wpec2024-3b3/images-media/wpec2024-3b3-slides-antoine-%20jacques--BBS-sharp-eIDAS2.pdf
https://csrc.nist.gov/csrc/media/presentations/2024/%20wpec2024-3b3/images-media/wpec2024-3b3-slides-antoine-%20jacques--BBS-sharp-eIDAS2.pdf
https://csrc.nist.gov/csrc/media/presentations/2024/%20wpec2024-3b3/images-media/wpec2024-3b3-slides-antoine-%20jacques--BBS-sharp-eIDAS2.pdf
https://csrc.nist.gov/csrc/media/presentations/2024/%20wpec2024-3b3/images-media/wpec2024-3b3-slides-antoine-%20jacques--BBS-sharp-eIDAS2.pdf
https://csrc.nist.gov/csrc/media/presentations/2024/%20wpec2024-3b3/images-media/wpec2024-3b3-slides-antoine-%20jacques--BBS-sharp-eIDAS2.pdf
https://csrc.nist.gov/csrc/media/presentations/2024/%20wpec2024-3b3/images-media/wpec2024-3b3-slides-antoine-%20jacques--BBS-sharp-eIDAS2.pdf

	Server-Aided Anonymous Credentials
	1 Introduction
	1.1 Overview of This Paper

	2 Preliminaries
	3 Server-Aided Anonymous Credentials
	3.1 Syntax
	3.2 Security Definitions

	4 Generic Construction from Keyed-Verification Anonymous Credentials
	4.1 Building Blocks
	4.2 Construction

	5 Instantiations
	5.1 Instantiation from BBS
	5.2 Instantiation from DDH

	6 Conclusion
	References

