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Abstract. This paper formalizes the notion of server-aided anonymous
credentials (SAACs), a new model for anonymous credentials (ACs)
where, in the process of showing a credential, the holder is helped by
additional auxiliary information generated in an earlier (anonymous)
interaction with the issuer. This model enables lightweight instantia-
tions of publicly verifiable and multi-use ACs from pairing-free elliptic
curves, which is important for compliance with existing national stan-
dards. A recent candidate for the EU Digital Identity Wallet, BBS#,
roughly adheres to the SAAC model we have developed; however, it
lacks formal security definitions and proofs.

In this paper, we provide rigorous definitions of security for SAACs,
and show how to realize SAACs from the weaker notion of keyed-
verification ACs (KVACs) and special types of oblivious issuance pro-
tocols for zero-knowledge proofs. We instantiate this paradigm to obtain
two constructions: one achieves statistical anonymity with unforgeability
under the Gap ¢-SDH assumption, and the other achieves computational
anonymity and unforgeability under the DDH assumption.

1 Introduction

Anonymous credentials (ACs), introduced by Chaum [25], allow a user (or
holder) to obtain a credential from an issuer. Typically, a credential is asso-
ciated with a number of attributes, such as the credential’s expiration date, or
the credential holder’s date of birth. This credential can be shown to a verifier
unlinkably, i.e. such that it cannot be linked to the transaction in which it was
issued, and different showings of the same credential cannot be linked to each
other. Further, a showing only reveals the minimum necessary amount of infor-
mation about the attributes—typically, that these attributes satisfy a certain
relevant predicate (e.g., that the holder is not a minor, that they have a valid
driver’s license, etc.).

ACs were first practically realized by Camenisch and Lysyanskaya [17-19).
In the standard approach to designing ACs [32,33], a credential is a signature on
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the user’s attributes, generated by the issuer via a secure protocol that protects
the privacy of the user’s attributes. Credentials are shown via a zero-knowledge
proof of knowledge of a credential whose attributes satisfy the relevant predi-
cate. In principle, one can build ACs from any signature scheme by using generic
zero-knowledge proof systems, but in a practical instantiation, a digital signa-
ture scheme which enables efficient realizations of such proofs is a better app-
roach. Examples include RSA- and pairing-based CL signatures [18,19], as well
as pairing-based BBS signatures [3,12,19,41].

Systems using ACs have been proposed over the years, such as Microsoft’s
U-Prove [13,39] and IBM’s IDEMIX [20]. Recently, credentials have regained
popularity as components of decentralized/self-sovereign identity services like
Hyperledger Indy, Veramo and Okapi. These come with ongoing companion
standardization efforts by the IETF [31] and the World Wide Web Consortium
(W3C). Technology policy, especially that of the EU and its member states, has
mandated privacy-preserving authentication [1,2] for which anonymous creden-
tials appear to be the right solution [7].

CREDENTIALS BASED ON PAIRING-FREE ELLIPTIC CURVES. Elliptic-curve-based
cryptography has outperformed and outpaced cryptographic constructions based
on RSA. Especially desirable from the practical point of view — both for efficiency
reasons and because of standardized curves — is elliptic-curve-based cryptogra-
phy that does not require pairing-friendly curves [5,10]. The lack of suitable
standards!, in particular, often prevents the use of pairing-based solutions in
the public sector, where ACs find a natural use case. Other natural application
scenarios are web applications and anonymous browsing, and pairings are often
not supported by browser libraries such as NSS and BoringSSL. Unfortunately,
however, the only approach to (multi-show) ACs based on pairing-free curves
relies on generic zero-knowledge proofs, and is mostly very costly, and this is
due to the fact that pairing-free signature schemes are inherently non-algebraic
(as proved e.g. in [26]). To overcome this inherent barrier, prior works have
considered different settings where pairing-free ACs are possible:

e Blind signatures with attributes. Baldimtsi and Lysyanskaya [4] presented an
approach extending the notion of blind signatures to include attributes, for-
malizing ideas implicit in U-Prove [39]. The resulting construction gives a
use-once AC, referred to as “AC light” (ACL), i.e., one needs to interact
with the issuer to obtain as many copies of the credential as the number of
intended showings. This also introduces a tradeoff between privacy and effi-
ciency: either each user needs to get as many copies of the ACL credential
as a reasonable upper bound on the lifetime use of the credential, or it needs
to get credentials reissued upon running out of them, revealing the rate of
credential use.

e Keyed-Verification Anonymous Credentials (KVAC). The single-use aspect of
ACL can be a feature, but is mostly a bottleneck. Chase, Meiklejohn and
Zaverucha [23] considered multi-use credentials in an alternative setting where

! For example, the IETF draft for pairing-friendly curves expired in 2023 [40].
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the issuer and the verifier are the same entity, and provided pairing-free solu-
tions that rely on the lack of public verifiability when showing credentials.
The resulting schemes are very practical, and are widely adopted in the Signal
messaging system [24].

THIS PAPER: SERVER-AIDED ANONYMOUS CREDENTIALS. This paper formalizes
an alternative model for multi-use credentials in which efficient pairing-free cre-
dentials are possible, and which we refer to as Server-Aided Anonymous Creden-
tials (or SAAC, for short). In contrast to KVAC, SAAC enable publicly verifiable
showing of credentials, and this is achieved by allowing the holder to interact
with the issuer’s helper server to generate additional helper proofs. To preserve
anonymity, this interaction with the helper is entirely oblivious (in a way related,
but not formally equivalent, to the work of Orrd et al. [37]): the helper server
does not need to verify anything about the user it is interacting with, and can
neither link the interaction to any other by the same user, nor learn anything
about the user’s credential attributes. The extra cost of this interaction with the
helper is limited, in particular as the generation of these proofs can be performed
offline, and not at the time of showing the credential.

The helper flow is somewhat natural in the context of credentials. In OAuth
2.0 [28], the industry-standard authorization protocol for the web, users obtain
a refresh token and must query that refresh token to an issuer to obtain access
tokens which they can later spend. However, in the setting of anonymous creden-
tials, the use of a helper server was, to the best of our knowledge, only recently
brought up in the BBS# white paper [36,42]. BBS# is an industry white paper
that explores several ideas for the development of a European Digital Identity
Wallet.? However, it does not contain a formal security model or analysis. As a
result, we are the first to provide the foundations behind such an approach, as
well as provably secure solutions.

This work develops a formal treatment of SAAC, for which we give security
definitions. We also develop generic constructions that lift KVACs, which are not
meant to be publicly verifiable, to SAAC with the help of specific protocols for
oblivious issuance of zero-knowledge proofs. Interestingly, our security needs for
the latter are weaker than those considered by the recent work of Orrii et al. [37],
as our helper protocol is not required to resist strong attacks such as ROS [9],
and thus we can prove security based on a standard cryptographic assumption
without relying on the algebraic group model (AGM) [29].

We instantiate our framework with two concrete constructions: A first solu-
tion based on BBS (without pairings), which we prove unforgeable, in the
random-oracle (RO) model, under the Gap ¢-SDH assumption, and statistically
anonymous. We also present a second instantiation for which both unforgeability
and anonymity hold under the DDH assumption in the RO model. Our security
analysis is in the random oracle model [8], but does not make any use of the
AGM or any other ideal group model.

2 BBS# includes other ideas besides including a helper server; and in particular inte-
gration with an HSM, which are outside the scope of this paper.
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Fig. 1. Server-Aided Anonymous Credentials. Illustration of the SAAC setting.
Note that the secret and public keys (sk, pk) are generated by the KeyGen algorithm,
which is not described here. Also, we allow each showing to be linked to some additional
value nonce, which is a joint input of Show and SVer, and this is not illustrated here.

The next section provides a detailed overview of our contributions.

1.1 Overview of This Paper

We now give a detailed overview of our results and contributions. This section
also serves as a roadmap for the paper.

SYNTAX FOR SAAC. We provide a definition of Server-Aided Anonymous Cre-
dentials (SAAC). A SAAC scheme is parameterized by a set of predicates @,
and consists of a number of protocols, involving the issuer, the credential hold-
ers, and the verifier. The setting is also defined in Fig. 1. For simplicity, both
issuance and showing predicates come from the same space @ using our syntax.

e Key generation. The issuer generates a secret-key/public-key pair (sk, pk)
by running the key generation algorithm.

e Issuance. A credential o is issued to the holder as the output of an interac-
tion with the issuer—in the same way as with a classical credential system.
The issuer’s input is sk, whereas the holder’s inputs are pk and a vector of
attributes m. Further, their shared input is an issuance predicate ¢ € @. The
intuition (which will be a consequence of our security notions we introduce
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below) is that the credential is only issued if indeed ¢(m) = 1, and that the
issuer only learns ¢ where ¢(m) = 1. The holder’s output is a credential o.

e Helper protocol. The main new component is a helper protocol between a
holder and the issuer. The issuer’s input is sk, whereas the holder’s inputs are
pk, a vector of attributes m, along with a credential o for it. The protocol
outputs a string aux, which we refer to as the helper information to the holder,
and produces no output for the issuer.

e Credential showing and verification. Showing and verification are similar
to those in any (publicly verifiable) credential system, in that the user can
select a showing predicate ¥ € @, an attribute vector m, and a corresponding
credential o, and produce some showing message 7 which can be verified
(under the public key pk and given ) to assess that indeed ¢(m) = 1. But
in addition to this, we allow the process of creating 7 to also depend on helper
information aux output by the helper protocol. Looking ahead once again to
our definitions, unlinkability is meant to hold as long as each showing uses a
freshly generated aux. But crucially, we note that aux does not depend on 1,
and thus can be precomputed by running the helper at any prior time after
receiving the credential o and it is obtained via a privacy-preserving protocol
that will ensure that an execution of the protocol generating aux cannot be
linked to the credential showing using this aux.

Here, predicates model information about the attributes which is revealed either
at issuance or at showing—in both cases, it is only revealed that ¢(m) = 1.
The most relevant class of predicates describes selective disclosure. As part of
the showing protocol, the user sends a list of indices I = (i1,...,7;) and a list
of disclosed attributes @ € M* which determines the predicate ¢r.a given by
é1,a(ma,...,me) = 1if a;; = my, for all j € [k], and otherwise 0.

UNFORGEABILITY OF SAAC. We formalize a strong notion of unforgeability for
a SAAC scheme which postulates that a malicious holder can only convince the
verifier to accept a showing for a predicate ¢ such that the holder has previously
obtained a credential for some attribute vector m such that ¢(m) = 1.

A definitional challenge is that a malicious holder may arbitrarily deviate
from the protocol when interacting with the issuer, and therefore, care must be
taken to ensure that the set of attribute vectors for which a credential was issued
is well-defined. To this end, our definition relies on an extractor which, whenever
a malicious message u from the holder is successfully answered by the issuer (run
on input ¢), extracts attribute vector m from p such that ¢(m) = 1. The holder
wins if a verifier is convinced by a showing for a predicate ¢* not satisfied by
any of the extracted attribute vectors.

Furthermore, we allow the malicious holder to leverage additional types of
interactions:

e Helper interaction. The malicious holder can interact as they please, in a
fully concurrent and arbitrarily interleaved way, with the helper protocol.

e Honest showings. The malicious holder can obtain honest showings of cre-
dentials; the winning condition disallows a win for the adversary by simply
replaying a showing of an honest user’s credential.
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Our unforgeability notion, however, does not require that the helper protocol is
run for a successful showing. One could envision that the helper protocol serves
some rate-limiting purpose, but effectively our formalism and our instantiations
allow re-use of the helper string aux (at the cost of losing anonymity), and thus
the rate-limiting effect is inconsequential. As a result of not making such a (in our
view, unnecessary) restriction in the definition, we get the benefit that existing
(multi-show, helper-free) anonymous credential systems immediately satisfy our
definition.

ANONYMITY OF SAAC. Our anonymity notion is meant to protect the creden-
tial holder from an adversary that controls the issuer (and thus both the issuance
and the helper processes), and that is also shown credentials. The only infor-
mation that is leaked at issuance is that the predicate ¢ holds for the attribute
vector m, and the only information leaked at showing is that the holder has a
credential for some vector m satisfying the predicate ¢. Crucially, we need to
ensure that the helper protocol interaction is unlinkable to a particular showing
of a credential, a fact which is also guaranteed by the security definition.

A GENERIC CONSTRUCTION. Our main contribution is a generic construction
that lifts a KVAC scheme to a SAAC scheme. Informally, KVAC differ from a
regular credential system in that the credential is meant to be verified by the
same party that issued it; i.e. verification of the showing of a credential requires
the secret key. Unlike in SAAC, no helper is involved. Despite not requiring the
issuer’s public key for verification, the public key of KVAC allows the issuer to
prove to their holders that the credential was issued correctly. Several construc-
tions of KVAC have been given in the literature [6,14,23].

Our generic construction replaces the keyed verification of a KVAC scheme
with a non-interactive proof that the showing message satisfies the verification
algorithm. The helper protocol will be an oblivious issuance of proof (oNIP) [37]
protocol, which allows the holder to obtain the proof without leaking its showing
message. Implementing this construction requires a KVAC scheme with a specific
structure where showing and verification are done in two steps:

e Key-dependent verification. The holder first uses its attributes m and
credential o to compute a key-dependent showing message 7y and a state
st which are independent of the predicate ¢. The verifier can then verify Ty
using its secret key sk.

e Public verification. The holder then continues showing using its state st to
compute public showing message Toup, Which is dependent on the predicate ¢
and can be bound to some additional value nonce. Then, (7key, Tpub, ¢, NONce)
can be publicly verified using pk. (Note that both key-dependent and public
verification needs to return 1.)

The key-dependent verification defines a relation Ry with statement (pk, 7key)
and witness sk such that (1) the key sk corresponds to pk based on the key
generation, and (2) Tiey is a valid key-dependent showing message when verified
by sk. Then, using an oNIP protocol for the relation Ry (refer to Sect. 4.1 for the
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deviation from the prior oNIP formalization in [37]), we arrive at the following
SAAC construction:

Key generation and issuance are exactly those of the KVAC scheme.
Helper protocol. First, the holder computing the key-dependent showing
message Tkey and a state st. Then, the issuer and the holder runs the oNIP
protocol with the holder obtaining a proof 7y attesting that 7y, is valid with
respect to sk. The helper information aux contains (7key, v, St).

e Showing. To show that the holder’s credential satisfies a predicate ¢, the
holder computes the public showing message 7oy for ¢ with the additional
value nonce set as my. The final showing message contains (Tkey, Tpub, Tv).

e Verification. The verifier checks the validity of the proof my with respect to
Tkey and the KVAC showing message (Tkey, Teub) With respect to ¢ and my.

It is important that 7y, is dependent on my. Otherwise, the showing message
is malleable. In particular, a malicious holder can forge by obtaining an honest
user’s showing message and requesting a new my through the helper. With that
said, the security of our generic SAAC construction still requires other properties.

Achieving unforgeability. At a high level, unforgeability of the generic SAAC
construction requires the following properties:

e The proof my is sound. This ensures that a valid forgery (Tkey, Tpub, Ty CON-
tains Ty that is valid with respect to the issuer’s secret key sk. However,
soundness by itself only guarantees that there ewists a secret key sk’ (not
necessarily sk) that verifies 7ie,. Hence, we require an additional property for
KVAC, denoted validity of key generation, which is implied if each public key
corresponds to a unique secret key. This ensures that 7y, is valid with respect
to the issuer’s secret key sk.

e Helper protocol does not leak sk. A malicious holder should not be able to
distinguish between interactions with an honest helper or interactions with a
simulator. Looking ahead, the simulator may require some sk-dependent com-
putation, e.g., checking whether sk verifies a rerandomized statement. Hence,
we formalize instead the O-zero-knowledge property, where the simulator is
assisted by an oracle O embedded with sk.

o Unforgeability of KVAC. We require a stronger than standard unforgeability
for KVAC with the following main changes:

1. Instead of a verification oracle, the adversary has access to the same oracle
O from O-zero-knowledge of oNIP. This is for our reduction to successfully
run the simulator discussed above. For our instantiations, the oracle O
can be used to simulate the verification oracle as well.

2. Similarly to SAAC unforgeability, the adversary can query honest users’
showing messages. Each query access, however, is split into two steps:
first the adversary obtains an honest 7iey, then it adaptively chooses both
the predicate ¢ it wants the honest user to show and the nonce it wants
to be tied to the message, and gets Tpyp in response.
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One challenge to securely instantiate our generic construction is to balance the
strength of O. Notably, if O reveals too much information about sk, the KVAC
would be insecure; in contrast, if it reveals too little, the oNIP would be insecure.

Achieving anonymity. Anonymity of our SAAC construction follows from
anonymity of KVAC and obliviousness of oNIP, with the following modifications
made to the definitions.

e Obliviousness of oNIP. To satisfy our simulation-based definition of SAAC
anonymity, we require a simulation-based obliviousness definition. However,
in our instantiations, we are able to show obliviousness only when honest
users request proofs for valid statements; specifically, (pk, Tkey) must be in the
language induced by the relation Ry. Hence, we require an extra property of
KVAC which ensures that even under a malicious issuer, if the user obtains
a credential and does not abort, it should be able to produce a valid 7y, (in
the sense that (pk, Tikey) is in the induced language).

o  Anonymity of KVAC. Similar to anonymity of SAAC , we require that both
during issuance and during showing, the only information leaked to the adver-
sary is that the relevant predicate ¢ is satisfied by the attributes m. For
showing, the adversary chooses the predicate ¢ and the value nonce adap-
tively, after obtaining the key-dependent value Tiey.

We refer the readers to Sect. 4 for the formalization of KVAC and oNIP required
and our generic construction.

INSTANTIATION FROM BBS. Our first SAAC instantiation is inspired by the
KVAC by Barki et al. [6], which builds upon an algebraic message authentication
code (MAC) based on BBS/BBS+ signatures [3,12,41]. The scheme is based
on a pairing-free group G of prime order p and generator GG. The secret and
public keys are 2 € Z, and X = zG, respectively. A credential for attributes
me Zf; is of the form (A € G,e € Z,, s € Z,,) such that A = (z + )~ 1C, where
C=G+ Zle m;H; + sHy,1 and Hy, ..., Hy.1 are public parameters. To show,
the holder rerandomizes A, B = C—eA, and C into A, B, C and proves knowledge
of the underlying attributes with a valid credential via CDL proofs [15]. To verify
the showing message, one uses the secret key x to check that (G, X, A, B) form a
valid Diffie-Hellman tuple. By giving an oNIP for this relation (adapting Orru et
al. [37]), we turn this KVAC into SAAC. Note that our oNIP is zero-knowledge
with respect to the restricted DDH oracle rDDH(z, -) which checks that its input
(A, B) satisfies A = B.?

In order to use Barki et al.’s KVAC, however, we need to show that it satisfies
our required (stronger) security notions. Specifically, recall that our unforgeabil-
ity notions allows the adversary to (1) query the restricted DDH oracle embedded
with the secret key and (2) view showing messages of honest users (in the man-
ner described above). We show that this stronger version of unforgeability holds

3 This oracle is exactly the key-dependent verification.
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in the ROM under the Gap-¢-SDH assumption. This “gap” assumption is nec-
essary for simulating the restricted DDH oracle. Note that Barki et al. already
require Gap-¢-SDH to simulate the verification oracle.

The efficiency of the resulting SAAC is comparable to that of Barki et al.’s
KVAC (see Table1). For more details on this instantiation, we refer the readers
to Sect.5.1.

INSTANTIATION FROM DDH. Sacrificing some efficiency (see Table 1), our sec-
ond SAAC instantiation completely removes the dependency on a gap q-type
assumption and only relies on the much more standard DDH assumption. Our
starting point is the KVAC scheme introduced by Chase, Meiklejohn, and
Zaverucha [23], building upon an algebraic MAC. We then give a corresponding
oNIP protocol for the algebraic relation induced by the key-dependent verifica-
tion. Similar to the BBS-based instantiation, the zero-knowledge of this oNIP
is proved with respect to a simulator with access to an oracle, which we denote
Osverppn (and will define later on in Sect.5.2), that essentially runs the key-
dependent verification of this KVAC with the embedded secret key.

This KVAC was already known to be provably secure but under a weaker
definition not suitable for our generic construction. To address this gap, we made
the following contributions (and refer the readers to Sect. 5.2 for more details):

1. We revisited the unforgeability of the underlying MAC and gave a new proof
(albeit using similar techniques) for the security against adversaries who have
access to the oracle OsyerppH instead of the verification oracle. Additionally,
this new security still implies the standard UFCMVA security of MACs.

2. Building on the unforgeability of the MAC, we showed unforgeability of the
resulting KVAC scheme in the ROM. As we require unforgeability against
adversaries who can see honest users’ showings, there were several technical
difficulties to overcome. Mainly, the reduction (to unforgeability of the alge-
braic MAC) needs to be constructed so that it can simulate the honest users’
showings correctly, but still extract a valid MAC forgery from the adversary.

3. We gave a more efficient blind issuance protocol. In particular, our issuer’s
communication is independent of the number of attributes compared to the
one sketched in [23] which contains a linear number of group elements.

2 Preliminaries

NOTATIONS. We use A as the security parameter. We denote [n..m] = {n,n +

1,...,m} for any n < m € Z and [n] = [1..n] for any n € N. We denote vectors
using bold-sized letters (e.g., v, H). If u = (uy,...,u,) and v = (v1,...,Vm),
then ul|v := (u1,...,Up,v1,...,0y). Denote x < a as assigning value a to a vari-

able z. Denote a <—s S as uniformly sampling a from a finite set S. We denote
y <s A(x) as running a (probabilistic) algorithm A on input = with fresh random-
ness and [A(z)] as the set of possible outputs of A; (y1,y2) <s (A(z1) = B(z2))
denotes a pair of interactive algorithms A, B with inputs x1, 2 and outputs y1, y2
respectively. We often use the words messages and attributes interchangably.
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Table 1. Comparison of group-based KVAC, AC, and BSA schemes and our high-
lighted SAAC instantiations. The number of attributes is £. Showing size depends on
the number of disclosed attributes and is given as a close-to-tight upper-bound. Denote
G and Z, as the sizes of group elements and scalars, respectively. All security analyses
assume the ROM. *: Showing requires two rounds of communication with the helper
server (helper interactions can be batched). This is “multi-show” in the sense that the
user does not have to re-prove that their attributes satisfy an issuance predicate, which
may be expensive, to compute a showing (in contrast to, e.g., ACL). t : Only BBS is
pairing-based and Gi denotes the size of a source group element. {: The DDH-based
version is less efficient.

Security
Publicly |Multi-| Credential | Showing Unforge- .
Scheme Verifiable | Show Size Size ability Anonymity
CMZ14 [23] No Yes 6 |, ((§e++22)§}z,, %%1\1/[{ i/ DDH
BBDT 3G Gap- .
16 [6] No Yes | 2G + 2Z, L+ ¢-SDH Statistical
» -
KVAC,gg [14] No Yes ¢+1)G L iGl)Z ¢-SCDHI | Statistical
P
pnCMZ [38] No Yes 2G +((§€++22)§;Zp ASI]\D/ILJ'_ Statistical
uBBS [38] No Yes | 16+1Z, | ii)zp Ail\D/IJ Statistical
MBS+25 [35] No Yes (¢ +2)G 2G GGM Statistical
ACL [4] Yes No | 2€+6Z, | i%)z DL+AGM| DDH
P
SAACggs . 3G Gap- .
Sec. 5.1 Yes Yes 1G + 2Z, L (£+8)Z ¢-SDH Statistical
P
SAACppH * (f aF 6)@ aF
(Sec. 5.2) Yes Yes 4G (4¢ + 11)Z, DDH DDH
BBS [41]' Yes | Yes |1Gy + 1%, +(£Zf’§)z ¢-SDH | Statistical
P

GROUP PARAMETER GENERATOR. A group parameter generator is a probabilis-
tic polynomial time algorithm GGen taking as input 1* and outputting a cyclic
group G of @(A\)-bit prime order p with a generator G. We assume that stan-
dard group operations in G can be performed in polynomial time in A and adopt
additive notation (i.e., A + B for applying group operation on A, B € G).

CRYPTOGRAPHIC ASSUMPTIONS. In Fig. 2, we define games for Decisional Diffie-
Hellman (DDH), Discrete Logarithm (DL), and a pairing-free analog of the g-
Strong Diffie-Hellman assumption [11] augmented with a restricted DDH oracle.
Denote the advantage of an adversary A against these assumptions as

Ady 2k (@rPPID-SPI (4 3y :— Pr[(DL/(g, rDDH)-SDH)Zgen(A) = 1] ,
Advidh (A, X) = |PrDDHZcen o (A) = 1] — Pr[DDHZ,, 1 (A) = 1]].

RELATIONS AND NON-INTERACTIVE PROOFS. Let R € X x W be a relation and
Lr = {z € X|Fw € W : (z,w) € R} denotes its induced language. A non-
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Game DLé‘Gen()\): Game (q, O)—SDH{;“G&“(}\)
par = (p,G,G) <$ GGen(1*); X <$G par = (p, G, G) < GGen(1); z <$ Z,,
@ <8 Alpar, X) (e, 2) 8 ACCTE) (par, (27 G)icgy))

return zG = X

return (Z = (z +€) 'G)
Game DDHZ,, ,()\):

A
par = (p, G,G) <$ GGen(1") Oracle rDDH(par, z, X, (A, B))
©, Y,z <$Lp; Zo — wyG; Z1 < 2G return zA = B
b s A(par, G, yG, Zp) / X is unused.
return b’

Fig. 2. Games DDH, DL, and (¢, O)-SDH, and a definition of the oracle rDDH.

interactive zero-knowledge (NIZK) proof system for a relation R is a tuple of algo-
rithms (NIZK.Prove'| NIZK.Ver") with access to a random oracle H : {0,1}* — R
with the following syntax:

o T s NIZK.ProveH(x7 w): outputs a proof m on input (x,w) € R.
e 0/1 — NIZK.Ver(z, 7): verifies a proof 7 for statement z.

We require a NIZK to be correct, sound, zero-knowledge, and optionally straight-
line extractable knowledge-sound for a relaxed relation R 2 R. We refer to the
full version for formal security definitions of NIZKs.

3 Server-Aided Anonymous Credentials

In this section, we introduce Server-Aided Anonymous Credentials (SAAC), with
the syntax and security definitions given in Sects. 3.1 and 3.2, respectively. SAAC
allow a user to obtain a credential for its attributes through a (blind) issuance
protocol and to anonymously show that it owns a credential for attributes which
satisfies some specified predicate. However, in contrast to anonymous credentials
(AC), the user may request the issuer to help produce helper information which
to be used to produce a publicly-verifiable showing message. This is modeled
as an unlinkable helper protocol independent of the predicate specified during
showing. Users may then ask for several pieces of helper information ahead of
time and spend them later during showing.

3.1 Syntax

A server-aided anonymous credential scheme SAAC = SAAC[®, M| defined with
respect to a predicate class family @ = {iﬁpa,}pa,‘l and an attribute space M =
{Mpar }par consists of the following algorithms.

4 Alternatively, one can define the scheme with respect to two classes of predicates Pies
and Pshow Which model predicates accepted during issuance and showing. Here, we
define our SAAC syntax with respect to a single class of predicates @ = Pjss U Pshow
covering both issuance and showing predicate classes. For our constructions, we
consider the class of selective disclosure predicates for both issuance and showing.
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e par «s SAAC.Setup(1?, 1¢) outputs public parameters par which defines the
attribute space M = M., and a corresponding class of predicates @ = ®,,.
For succinctness, we will abuse the notation and omit the subscript par.

(sk, pk) «<—s SAAC.KeyGen(par) outputs the secret and public key pair.

(L,0) «s(SAAC.Iss(par,sk,¢) = SAAC.U(par,pk,m,$)) is an interactive

protocol between the issuer and the user where at the end, the user obtains

a credential o for its vector of attributes m € M?, which satisfies a predi-

cate ¢ € @ (i.e., p(m) = 1). We consider a round-optimal issuance protocol

consisting of the following algorithms:

- (p,st") «<s SAAC.Uq (par, pk,m, ¢) outputs a protocol message and a
state.

— imsg <s SAAC.Iss(par, sk, i, ®) outputs issuer’s message imsg, and if the
issuer aborts, we say that imsg = 1.

— 0 «<sSAAC.Uy(st¥,imsg) outputs a credential o for the attributes m.

o (L,aux) <s{SAAC.Helper(par,sk) = SAAC.ObtHelp(par,pk,m,o)) is a r-
round protocol where the user interacts with the issuer to obtain a helper
information aux. Formally, the protocol execution is of the following format:

(umsg,,st") «s SAAC.ObtHelp, (par, pk, m, o) ,
(hmsg;, ,st") < SAAC.Helper, (par, sk, umsg; ) ,

(umsg;, st) «<s SAAC.ObtHelp, (st*,hmsg,_;) ,
(hmsg;, st") <—s SAAC.Helper, (st", umsg,) ,

aux <s SAAC.ObtHelp,.,; (st hmsg,) .

} fori=2,...,r

7 «s SAAC.Show(par, pk, m, o, aux, ¢, nonce) outputs a showing 7 of the cre-
dential o issued for attributes m such that ¢(m) = 1.
e 0/1 < SAAC.SVer(par, pk, 7, ¢, nonce) outputs a bit.

In the showing and verification algorithms, we allow the showing message 7 to be
bound to some additional value nonce (which in some cases is the token identifier
or a nonce chosen by the verifier). We do not require a credential verification
algorithm, since the credential itself might not be publicly verifiable, and a secret
key credential verification is not required for our security properties.

CORRECTNESS. A SAAC scheme is n-correct if for any A\, £ = £()\) € N, any
par € [SAAC.Setup(1*,1%)], any (sk, pk) € [SAAC.KeyGen(par)], any attributes
m e MZ,,, any nonce € {0, 1}*, and any predicates ¢, ¢’ € ®pa, such that ¢(m) =

par»
¢'(m) = 1, the following experiment returns 1 with probability at least 1 —n(\).
(L, o) «s(SAAC.Iss(par, sk, ¢) = SAAC.U(par, pk,m, ¢))>
(L, aux) <—s (SAAC.Helper (par, sk) = SAAC.ObtHelp(par, pk, m, o))
7 «<s SAAC.Show(par, pk, m, 7, aux, ¢’, nonce)
return SAAC.SVer(par, pk, 7, ¢, nonce) .
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3.2 Security Definitions

We consider two main security notions for anonymous credentials: unforgeability
and anonymity. At the end of the section, we define an additional security notion,
denoted integrity, and discuss its importance.

UNFORGEABILITY. A SAAC scheme is unforgeable if there exists an extractor
Ext = (Extsetup, Extiss) such that

1. The distribution of par from the setup algorithm and Extset,, are indistin-
guishable, i.e., for any adversary A, the following advantage is bounded

Advgir/;igzjés;t(A, \) := |Pr[A(par) = 1|par «—s SAAC.Setup(1*,1%)]—
Pr[A(par) = 1|(par, td) «s Extserup(17, 19)]| .

2. Denote the advantage of any adversary A in the unforgeability game, defined
in Fig. 3 with respect to Ext (more discussion on the game below), as

AdVgQ\fAC,Ext(Av A) = Pr[UNFg‘AAC,Ext()‘) =1].

We now discuss in more detail our unforgeability game. First, the game generates
public parameters par and a trapdoor td using the extractor along with the secret
and public keys (sk, pk). Then, it runs the adversary A (acting as a malicious
user) which can arbitrarily interleave the execution of the following oracles.

Issuance oracle Iss. The adversary A can request a credential to be issued
via the blind issuance protocol modeled with Iss. In this oracle, the game
extracts the underlying attributes m using Extjss. The game keeps track of
the attributes of which a credential has been issued so far.

Helper oracles Help,,...,Help,. The adversary can run multiple helper pro-
tocol sessions with the issuer, with each identified with the session ID sid.
New user oracle NewUsr. The adversary can request generation of a credential
for attributes m satisfying the predicate ¢ for honest users. The adversary do
not see the credential ogq generated from this oracle, but can identify them

in SH with a credential ID cid.

Showing oracle SH. The adversary specifies the credential ID cid (which links
to meqg and ogqg) along with the predicate ¢ and a value nonce. Then, the
game will compute 7 by running (1) the helper protocol with the honest user
(using Mg and o¢qg) and (2) the showing algorithm Show using the helper
information aux obtained from the protocol, the predicate ¢, and the given
value nonce. The tuple (¢, nonce, 7) is recorded by the game.

Finally, A wins the game if one of the following occurs:

e During issuance, the issuer does not abort *and* the extractor extracts
attributes m that do not satisfy the predicate ¢ specified at issuance.
This prevents adversaries who try to request credentials for unauthorized
attributes.
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Game UNFQAC,Ext (A):

Oracle NewUsr(cid, m, ¢):

MsgQ, PfQ, Z1, ..., Z,,C « Jswin < 0
(par, td) <8 Extserp(1™, 1%)

(sk, pk) <% SAAC.KeyGen(par)

(¢", nonce”, ")

g AlssHelpy,... Help, NewUsr,SH (par, pk)

if (SAAC.SVer(par,pk, 7", ", nonce”) = 1) A
(Vm € MsgQ : ¢"(m) = 0) A
((¢", nonce™, ") ¢ PfQ)
then return 1
return win

Oracle Iss(p, ¢) :

imsg «$ SAAC.lss(par, sk, u, ¢)

if imsg = 1 then abort

m «— Extiss(td, p1, ¢)

if (m) =0 v m = 1 then win < 1

if cide C v ¢(m) =0 then abort
C—Cu{cid};mgg — m
ocid <3 (SAAC.Iss(par, sk, ¢)

= SAAC.U (par, pk,m, ¢))
return closed

Oracle SH(cid, ¢, nonce):

if cid ¢ C then abort
(L, aux) «<3$ (SAAC.Helper (par, sk)
= SAAC.ObtHelp (par, pk, mid, ocid))
7 «$ SAAC.Show(par, pk, m 4, Ocid, aux, ¢, nonce)
PfQ « PfQ U {(¢, nonce, 1)}
return 7

Oracle Help, (sid,umsg;): [/ j=1,...,r

if Sid¢l—1,...,1-j,1 Vv sidel'j
then abort
I; « Z; v {sid}

// A wins if it can request

if j =1 then //Forj:r,st:fd:L

/| credentials for non-authorized attributes
MsgQ — MsgQ U {m }

return imsg

(hmsg;;, stgd) <8 SAAC.Helper, (par, sk, umsg ;)
else (hmsg;, st:i"d) «$ SAAC.Helper; (st:i”d, umsg; )

return hmsg;

Fig. 3. Unforgeability game for SAAC = SAAC[®, M]. We assume that all the predi-
cates output by A are in &.

e They output a tuple (¢*, nonce*, 7*) of which the game considers a forgery if
(1) 7* is valid with respect to the predicate ¢* and the value nonce*, (2) ¢*
is not satisfied by any of the extracted attributes, and (3) they do not replay
honest users’ showing messages.

Below, we discuss the design choices for our unforgeability definition.

On the adversary winning if the extractor fails. We require this winning
condition for two important reasons:

The extracted attributes should satisfy the predicate. Consider a similar game
where the issuance oracle aborts if the extracted attributes do not satisfy the
predicate. It is possible that a SAAC is secure with respect to an extractor
that always aborts. In particular, the adversary will not get any credential,
so the security only prevents key-only attacks. Hence, we cannot simply allow
the game nor the issuer oracle to abort when the extraction fails.

Credentials should only be granted for authorized attributes. Consider the game
that only extracts and record the attributes into MsgQ without aborting. One
could construct a SAAC scheme where the issuer algorithm ignores the pred-
icate and always computes imsg. An adversary can then request credentials
for unauthorized attributes, a scenario which should not be allowed.
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On the (non-)requirement of the helper interaction. Our unforgeability
notion only aims to prevent malicious holders from showing credentials that do
not correspond to their attributes, and does not prevent a situation where a user
is able to show a credential without helper interaction. In a way, we view SAAC
as a relaxed notion of multi-show AC where the helper protocol helps us achieve
public verification, as a consequence standard AC satisfies SAAC notion. We
note that our instantiations require at least one helper interaction to output a
publicly verifiable showing message.

The NewUsr and SH oracles model adversaries who can obtain showing mes-
sages of honest users. This is to provide a non-malleability guarantee where
the adversary cannot forge by modifying previous showing messages of honest
users. This scenario is also considered by the unforgeability of Privacy-Enhancing
Attribute-Based Signatures (PABS) from [16] and the extractability security of
KVAC given in [38], but not in the original KVAC unforgeability definition [23].

Honest users reusing aux. As mentioned in the overview, it is possible that
the helper information aux is reused at the cost of anonymity. However, we
assume that honest users do not reuse the helper information and do not consider
an adversary who forges a showing by forcing honest users to reuse a helper
information aux. One may argue that (a) such situation can occur given a bug
in the system or (b) honest users might not care about their anonymity. However,
we see (a) as an implementation problem. For (b), such users could instead use
the more convenient (and efficient) non-anonymous credentials systems.

Adversary’s power over the honest users. We consider adversaries who can
see only the final showing message 7 of honest users. We leave the consideration
of a stronger model of adversaries (e.g., one that can view the transcript between
the user and the helper or intercept user’s messages) for future work.

ANoNyYMITY. No adversary can distinguish between interactions with an honest
user and interactions with a simulator Sim. In particular, a SAAC is anonymous
if there exists a simulator Sim = (Simsetup, Simy, SiMoptH, SiMshow) such that

1. The distribution of par from the setup algorithm and Simsey,, are indistin-
guishable, i.e., for any adversary A, the following advantage is bounded

Advgirngéﬁfn(A, \) := |Pr[A(par) = 1|par «<s SAAC.Setup(1*,1%)]—
Pr[A(par) = 1|(par, td) <s Simserup(1*,19)]] .

2. The advantage of A, denoted Advgxac sim(A, A) and defined as follows, in the
anonymity game described in Fig. 4 with respect to Sim, is bounded

‘Pr[Anon?AAC,Sim,O(A) =1] - Pr[AnonéAAC,Sim,l()‘) =1].

For readability, we give more detail on our anonymity game below. The adver-
sary (acting as a malicious issuer) will first receive both the public parameters
par and the trapdoor td generated by the simulator and will do the following:
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Game Anoné\AC,Sim,b()‘): Oracle ObtH; (sid) :

init < 0;Z1,...,Zr41, HP <« & if sid € Z; then abort

(par, td) «$ Simseup (17, 1%) I, — I; U {sid}

(pk, m, @, st4) < A(par, td) 1;‘ j=1then Jb=0 """"""""""°7 T
if ¢(m) = 0 then return 1 'L_ (umsgy, stig) ¥ SAAC.Obthelp, (par, pk, m., o) |
(o) M} 0-o LT T

-------------- :_ (umsgy , stsiq) <35 Simopen (td, pk) |

______________ return umsg;

('Ts_g’_sff‘_)ff_““_(s_tf_"_“_) Oracle ObtH; (sid, hmsg, ;) : f/ j=2,...,r+1
17 S SAAC.Us(st" imsg) | // b =0 if sid¢ Z1,...,7; 1 v side T, then abort
U_<—_$_S;’n_u(_st_5,,_m_|r;15_g) Jb=1 I; < I; v {sid}

______________________________________ 1
if 0 = | then return 1 if1<j<rthen /=0

b s AOPUHL: - OBty 1 SH g/ (umsg;;, stsia) < SAAC.ObtHelp; (stsia, hmsg;_, )
return umsg;
if j =r+1 then

auxgg <$ SAAC.Otheij(stsid, hmsgj,l)

Oracle SH(sid, ¢, nonce) :
if ¢(m) =0 v sid ¢ HP then abort
HP «— HP \ {sid} lifl<j<rthen Jb=1 1

|
|

’ I

return b |
I

I

I

// Each auxgq is used ‘only once’. (umsg, stsia) <3 SimoptH (Steid, hmsg; ;)

|
|
|
|
return umsg; |
|
if j =r+1 then I

I

I

auxsig <% SimoptH (Stsid, hmsg; )

if j =7+ 1 then HP «— HP U {sid}
if j=r+1 A auxgq = L then abort

return 7

return closed

Fig. 4. Anonymity game for SAAC = SAAC[®, M], parameterized with a simulator Sim
and a bit b. We denote case b = 0 in the dashed boxes and case b = 1, denoted in the
dashed and highlighted boxes. When querying the oracle SH, the adversary specifies a
helper information auxsq via input sid. We assume all predicates output by A are in @.

Determine pk,m, ¢: The adversary determines its (possibly malicious) public
key pk, the attributes m, and the issuance predicate (;3 for which the honest
user will use to request a credential. The user (or the simulator) then computes
a protocol message 1 and sends them to the adversary.

Finish credential issuance: The adversary sends imsg which lets the honest
user derive a credential o or abort. The simulator needs to correctly simulate
the abort as well.

The adversary then outputs a guess b’ after interacting with the following oracles.

Obtain-help oracles ObtH;,... ObtH, 1: The adversary forces the user hold-
ing o to request a helper information. In these oracles, the adversary would
interact with either (a) the honest user, who knows the attributes m and the
credential o, or (b) the simulator, who knows neither the attributes nor the
credential. At the end, the honest user will either abort or receive a helper
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information auxsjqg tied to the session ID sid. On the other hand, the simulator
would only need to simulate the abort correctly.

Showing oracle SH: The adversary specifies a helper information (via sid), a
predicate ¢, and a value nonce, such that the honest user computes 7 via
SAAC.Show using the helper information auxgq, the attributes m satisfying
¢ and the credential o. Fach helper information is restricted to be used only
once. In contrast, the simulator only takes as input the trapdoor td, the public
key pk, and the predicate ¢.

We stress that, in oracle SH, the simulator does not depend on the helper infor-
mation auxsg nor the attributes and credential of the honest user. This captures
the fact that the helper protocol sessions and the final showing messages are
unlinkable, as the simulator is independent of the session ID sid.

Moreover, although we stated the anonymity game with respect to a single
honest user, the multi-user/session security, where the adversary interacts with
multiple credential holders, is also defined and proved in the full version.

INTEGRITY. In the full version, we consider an additional security property,
denoted integrity, which ensures that a malicious issuer cannot convince a user
that they have been issued a valid credential and helper information, when in
fact, these cannot be used to create a valid showing for some adversarially-
chosen (valid) predicate. This protects against a scenario where a user does not
immediately compute a showing and check that it is valid, perhaps because they
do not yet know the predicate that they want to show the credential for. We
show that a weak notion of integrity follows from correctness and anonymity.

Remark 3.1 (Revocation). We do not consider revocation of credentials in this
work and see it as an interesting open problem. A possible (and not-so-efficient)
approach is to have the issuer to maintain a public list of allowed user identities
(which will be one of the users’ attributes), and at showing time, the user addi-
tionally shows with a predicate saying their attributes contains an identity on
this public list.

4 Generic Construction from Keyed-Verification
Anonymous Credentials

In this section, we introduce our building blocks, keyed-verification anonymous
credentials (KVAC) and oblivious proof issuance protocol (oNIP), in Sect. 4.1,
and give a generic construction of SAAC in Sect. 4.2.

4.1 Building Blocks

In this subsection, we give the syntax and definitions related to our building
blocks and point out several distinctions from prior works. These include (1)
global parameters generator, (2) syntax for relations and languages for oNIP,
(3) KVAC syntax and definitions, and (4) oNIP syntax and definitions.
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GLOBAL PARAMETERS GENERATOR. Inspired by the formalization in [16], we
define global parameters generator Gen(1*), a probabilistic algorithm which gen-
erates public parameters par,. Note that par, are shared by both of our building
blocks KVAC and oNIP. In practice, an example for Gen is a group parameters
generator GGen which outputs a group description (p, G,G). In our instantia-
tions, the underlying building blocks KVAC and oNIP may require the global
parameters to be generated with some trapdoor td,, used to simulate components
of both building blocks in the security proofs. In that case, we need a simulator
Simgen Which returns (par,, td,) such that par, is indistinguishable from Gen.

SYNTAX ON RELATIONS FOR OBLIVIOUS PROOF ISSUANCE. Particularly for this
section, we use a similar syntax for relations and languages from [37]. In [37],
a relation R contains tuples of the form ((X,Y,Z),z), denoting X the state-
ment, x the witness, Y an argument and Z an augmented statement. In our
case, a relation contains tuples ((X,Y),z) and we instead call Y an aug-
mented statement, containing both (Y, Z) in their syntax. We denote the rela-
tion Core(R) := {(X,2)|3Y : ((X,Y),z) € R} and the induced language
Lr = {(X,Y)|3z : (X,Y),2) € R}. The membership (X,z) € Core(R) can
be efficiently checked.

KEYED-VERIFICATION ANONYMOUS CREDENTIALS. A keyed-verification anony-
mous credential (KVAC) scheme KVAC = KVAC[Gen, &, M|, defined with respect
to Gen, a predicate family @ and an attribute space M, consists of the following
algorithms.

e pargyac <s KVAC.Setup(1°, par,) takes as input par, and outputs public
parameters pargyac defining the an attribute space M = M, and a
predicate class @ = Ppar, .. We assume that pargyac contains par,.

(sk, pk) <s KVAC.KeyGen(parkyac) outputs the secret/public key pair.
(L, ) s (KVAC.Iss(parkyac; sk, @) = KVAC.U(parkyac; Pk, m, ¢)) is a round-
optimal protocol with similar syntax to SAAC’s issuance (see Sect. 3.1).

o T = (Tkey; Toub) <3 KVAC.Show(pargyac, pk, m, o, ¢, nonce) outputs a showing
message 7. The showing algorithm is split into the two algorithms.

(Tkey, st) «—s KVAC.Showyey (pargyac, Pk, m, o) outputs a state st and a key-
dependent showing message Tiey-

Toub < KVAC.Showp,p (st, ¢, nonce) outputs a message Tpup showing the
credential o issued for attributes m such that ¢(m) = 1.

o 0/1 « KVAC.SVer(pargyac; sk, Pk, (Tkey, Tpub), @, Nonce) outputs a bit. Similar
to showing, verification also splits into key-dependent and public verification
as follows. The output bit is determined by by A b.

— by «— KVAC.SVeryey (pargyacs Sk, Tkey) verifies i, using sk.
— by «— KVAC.SVeryup(parkyac, PK, Tkey, Tpub, @, nonce) verifies Tiey and Tpyp.

One distinction from prior works’ syntax is the split in showing and verification
algorithms into key-dependent and public parts. In the showing algorithm, the
showing message Tpup is bound to an additional value nonce (which in some cases
can be a token identifier or a nonce chosen by the verifier). For our generic SAAC
construction, we require that 7y, is independent of the predicate ¢ and nonce.
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This syntax is applicable to some existing KVAC schemes (e.g., [6,23]), but not
for some others [35] where the predicate-dependent parts of the showing mes-
sage require the secret key to verify. The key-dependent verification algorithm
KVAC.SVery,, induces a relation

parkvac = (parg7 ) A
RV,parg i= { (((Parkvac: PK); Tkey), sk) : (sk, pk) € [KVAC.KeyGen(parkyac)] A
KVAC.SVerye (paryac, sk, Tkey) = 1

The relation contains a statement ((paryyac, Pk), Tkey) and a witness sk such that
paryac contains par,, (sk,pk) can be generated from KVAC.KeyGen(parkyac),
and Ty, is valid with respect to sk. Checking (sk, pk) € [KVAC.KeyGen(pargyac)]
can be done efficiently, e.g., interpreting sk as random coins used to generate pk.
We denote £V7pa,g as the induced language of Rv,par_q-

Then, we require a KVAC scheme to satisfy the following properties. We
refer the readers to the full version for the standard definitions of parameter
indistinguishability for various algorithms and the n-correctness property which
is defined similarly to that of SAAC’s (without the helper). Later on in Sect. 5,
we modify some existing KVAC schemes to fit to our definitions.

Unforgeability. Let O(par,, sk, (parkyac; Pk),-) be an oracle embedded with
par, parkyac sk, pk, and taking a to-be-determined input. A KVAC scheme is
O-unforgeable if there exists an extractor Ext = (Extsetup, Extiss) such that

1. The distribution of pargyac from KVAC.Setup(par,) and Extser,p(par,) for
par, <s Gen(1*) are indistinguishable.

2. The following advantage of A in the unforgeability game, defined in Fig. 5
with respect to the oracle O and the extractor Ext, is bounded.
AquKr{;AC,Ext,O(A’ A) = Pr[UNFéVAC,Ext,O(A’ A) =1].

The KVAC unforgeability game is defined similarly to SAAC unforgeability
with the following exceptions: no helper oracle is involved, the adversary can
query the oracle O which parameterized the game, and the adversary can
request honest users’ showing messages adaptively by first querying SHyey
and then SHyu, with a predicate ¢ and a value nonce. The adversary’s goal
is still to forge a valid (¢*, nonce*, 7*) for a predicate ¢* not satisfied by any
extracted attributes and without replaying honest users’ showings.
Compared to the original KVAC unforgeability in [23], we rely on an extractor
instead of having the adversary reveals the attributes, but we do not give the
adversary access to a verification oracle. Compared to the extractability defi-
nition of KVAC in [38], we do not require an extractor for the final forgery. In
their game, the issuer oracle also extracts the underlying attributes; however,
the game aborts if they do not satisfy the predicate, instead of allowing the
adversary to win (as in our case).

Anonymity. A KVAC scheme is anonymous if there exists a simulator Simge,
which generates par, indistinguishable from Gen and a simulator Sim =
(Simsetup, Simy, Simspew) such that

1. The distribution of parkyac from KVAC.Setup(par,) and Simset,p(par,) for
par, <s Gen(1*) are indistinguishable.
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Game UNFRAVAC,Ext,o(A)i

Oracle NewUsr(cid, m, ¢):

MsgQ, PfQ, C, S <« J; sctr, win < 0

(sk, pk) <8 KVAC.KeyGen(paryyac)

(7", ¢", nonce”) «$

(Vm € MsgQ : ¢"(m) = 0) A
((¢", nonce”, ) ¢ PfQ) then
return 1
return win

Oracle Iss(p, ¢) :

par, «<$ Gen(1>‘); (Parkyac, td) < ExtSeLup(lz, par,)

Iss,NewUsr,SH, ., ,SH O (par ,sk, (par, ,pk),-)
AT key = Fpub> 9 KVAC (Parkvac, Pk)

if (KVAC.SVer(pargyac, sk, pk, 77, ¢", nonce™) = 1) A

imsg <% KVAC.Iss(parkyacs sk, i, ¢)
if imsg = | then abort
m «— Extss(td, u, ¢)
if m=1 v ¢(m) =0 then
win — 1 / A wins if it can request
/| credentials for non-authorized attributes
MsgQ « MsgQ u {m }

return imsg

ifcideC v ¢(m) =0 then
return |

C « Cu {cd};

ocia < (KVAC.lIss (parkyac, sk, ¢)
= KVAC.U (paryac, Pk, m, ¢))

return closed

Oracle SHyey/(cid):

Mcd < M

if cid ¢ C then abort
sctr «<— sctr + 1
(Tkey,scth Stoctr) <8
KVAC.Showiey (paryyacs Pk, M cid, Ocid)
return (sctr, Tiey,sctr)

Oracle SHpp(sid, ¢, nonce):

if side S v sid > sctr then abort
S« Su {sid}

Tpub <5 KVAC.Showpyp (Stsid, ¢, nonce)
T < (Tkey,sid> Tpub)

PfQ < PfQ u {(¢, nonce, 7)}

return 7,

A .
Game AnonKVAC,SimGen,Sim,b(’\)'

Oracle SHyey():

sctr — 0; S «—

(palrg7 tdg) «$ SimGen(l)‘)

(pargyac, tdkvac) <3 SimSetup(lzv Parg)
d «— (tdg,tdKVAc)

(pk,m, &, sta) <3 A(pargyac, td)

if d;(m) = 0 then return 1

Jb=0
/b:l

1f o = 1 then return 1
b/ <—$ASHk€Y’SHPUb(5th)

’
return b

Jb=0

sctr « sctr + 1
ey sersStsar) fb=0" """ 77777 K
‘ 3% KVAC.Showiey (parkyac, Pk, m a) !

Jb=1
return (sctr, Tiey,sctr)

Oracle SHpp(sid, ¢, nonce):

if (m) =0 v side S v sid > sctr
then abort
S — Su{sid}

\Tpub 8 KVAC.Showpp (Stsid, ¢, nonce)] Jb=0

‘Tpub «$ S|m5how( ‘pub”, stsia, ¢, nonce)] // b=1

return 7,

Fig. 5. Unforgeability and anonymity game for KVAC = KVAC[Gen, ®, M] on the top
and bottom, respectively. We note that both the adversary and the simulator are given
access to the global trapdoor td, and KVAC trapdoor tdkvac. We assume that all the
predicates output by A are in &.
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2. No adversary can distinguish between interactions with an honest user
and interactions with the simulator Sim. The advantage of A’s in the
anonymity game in Fig.5 is AdVRYAC Sime., .sim (A, A) 1=
‘Pr[AnonkAVAC,SimGen,Sim,O(/\) =1] - Pr[AnonJI?VAC,SimGen,Sim,l()‘) =1]].

The anonymity game of KVAC’s is similar to that of SAAC’s without the
helper, except that we split the showing oracle into SHye, and SHp,p. This
allows the adversary to adaptively choose the predicate ¢ and value nonce
depending on Tyey. Compared to the anonymity definition in [23], our defini-
tion incorporates blind issuance and considers maliciously generated key.

Integrity of issued credentials. No adversary can force the honest user to
output an invalid showing message even when the public key pk is adversar-
ially chosen and the public parameters pargyac are sampled with a trapdoor
using the simulator Simge, and Sim (defined in the anonymity definition).

integ

Denote the integrity advantage of A as Adviyac sime...sim (As A) 1=

(par,, tdg) «s Simgen(1*)
(parKVAOtdKVAC) s Simserup (17, par,)
pr|0F LA (pk, m, $, st) s A(pargyac, (tdg»tdKVAc))
(Pk, Tkey) ¢ ﬁv,parg if ¢(m) =0 then abort
(L,0) «s{A(st) = KVAC.U(pargyac, pk, m, ¢)>
(

Tkey, St) «<—s KVAC.Showyey (pargyac, Pk, m, o)

Validity of key generation with respect to Ext: For any A, £ = £(\) € N, par €
[Gen(1%)], (Parkyac, td) € [Extsetwp (17, par,)] and ((paryyac: PK); Tiey) € Lv.par, ,
for any sk that corresponds to pk (i.e., (sk,pk) € [KVAC.KeyGen(parKVAC)]i,
we have ((paryac, PK); Tkey), k) € Ry par,- This property ensures that for any
Tkey that is valid for some secret key sk which corresponds to the public key
pk, it should also be valid for any other secret key sk’ corresponding to pk.
This property is satisfied if the secret key is unique for each public key.

OBLIVIOUS ISSUANCE OF NON-INTERACTIVE PROOFS. An oblivious issuance of
non-interactive proofs oNIP = oNIP[Gen, R] defined with respect to Gen and a
family of relations R = {Rpar, }par, consists of the following algorithms.

e pargyp <5 oNIP.Setup(par,) outputs public parameters par,yp. The input
par, defines the relation R = R,[,a,g7 omitting subscript par, when clear from
the context. We also assume that pargyp contains par,.

o (L, m)«s{oNIP.Iss(par,yp,z, X) = oNIP.U(paroyp, X,Y)) is a r-round
interactive protocol starting with the user algorithm oNIP.U; and concluding
with oNIP.U,.,1 outputting the proof 7.

e 0/1 < oNIP.Ver(paryyp, (X,Y), ) outputs a bit.

Our syntax deviates from [37] in that the user algorithm does not output an
augmented statement Z, but the user takes as input the augmented statement
Y (which we think of as (Y, Z) in their work). We require oNIP to satisfy the
following properties, but unlike [37], unforgeability is not required for our generic
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construction. We refer the readers to the full version for the standard definitions
of nm-correctness, parameter-indistinguishability, and soundness.

Zero-knowledge. Let O(parg, z, X, -) be a deterministic oracle embedded with
par, (which defines Rpa,g), and statement and witness X,z and taking in
a to-be-determined input. An oNIP is O-Zero-knowledge if there exists a
simulator Sim = (Simsetp, Simiss), such that no adversary can distinguish
between an honest issuer using the witness x from a simulator who does
not know the witness. Unconventionally, our simulator Sim is assisted by
the oracle O embedded with z, modeling witness-dependent computation
that is not efficiently simulatable (e.g., checking if a rerandomized state-
ment is in the language). The advantage of A in the ZK game in Fig.6 is
AdVilr(\uP,Sim,o(A’ A) = |Pr[ZKoANIP,Sim,O,O(/\) =1] - Pr[ZK:}\IIP,Sim,O,I()‘) =1]|.

Obliviousness for valid statements. An oNIP is oblivious for valid statements
if there exists a simulator Simge, generating par, indistinguishable from Gen
and a simulator Sim = (Simsetup, Simy, Simpy) such that

1. The distribution of pargyp from oNIP.Setup(par,) and Simset,p(par,) for
par, «<s Gen(1*) are indistinguishable.

2. The adversary A, given the simulation trapdoor, cannot distinguish
between an honest user who obtains the proof from the issuance proto-
col and a simulator who simulates the proof independent of the protocol.
Importantly, the simulator only gets the ‘core’ statement X but not the
‘augmented’ statement Ygq during the protocol. The advantage of A in
the obliviousness game in Fig.6 is defined as AdvgﬁrpﬁsimGemSim(A, A) =
PrOBLVhip imge, 5im.0(A) = 1] = POBLVghip simeen sim,1 (A) = 1]

Our obliviousness definition is simulation-based instead of the definition
in [37]. Further, it only applies for statements in the language and not any
statements.

4.2 Construction

We construct below a SAAC scheme SAAC = SAAC[Gen,KVAC,oNIP] for
predicate family ¢ and attribute space M, using KVAC = KVAC[Gen, $, M|
and oNIP = oNIP[Gen,Ry] for the relation family Ry defined by the
KVAC.SVery,, algorithm. The main idea is to replace the key-dependent veri-
fication KVAC.SVery., with a proof generated from oNIP.

Setup: SAAC.Setup(1?) : par, «s Gen(17), pargyac <3 KVAC.Setup(1¢, par,),
and pargyp < oNIP.Setup(par,). Return par = (pargyac; Paronip)
Key generation and Issuance: These are defined exactly as those of KVAC.
Helper protocol: (SAAC.Helper(par,sk) = SAAC.ObtHelp(par,pk,o)) is
defined as follows:
e First, SAAC.ObtHelp runs (7key, st) <—s KVAC.Showyey (pargyacs Pk, m, o).
e Then, SAAC.Helper and SAAC.ObtHelp run the protocol (L,my) «s
(oNIP.lIss(pargyip, sk, (parkyac; Pk)) =
oNIP.U(parenip; (Parkvacs PK), Tkey))-
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Game ZK:ll\llP,Sim,O,b()‘): Oracle Iss;(sid,umsg;) :  /j=1,....,r
init « 0;Zy,..., Iy — & if sid¢ Z1,...,Z; 1 v side Z; v init =0
par, «$ Gen(l’\) then abort

______________ Ij «— Zj U {Sld}
|paroN|P <% oNIP.Setup(par, ) i/ b=0 if j = 1 then

'(ParoNvatd) =8 S'mSetur’(Parg)' /=1 (hmsg17 stgd) <3 oNIP.Iss1 (pargyp, z, umsg,) / b= 0

b s AI\uT Jssp,.. Issy ar el e,
(Paranie) ! (hmsg , stsia) <—$S|miipa g5 % )(td X,umsg,) // b= 1I

returnd L oo

Oracle IniT(X, &):

if init =1 v (X, %) ¢ Core(R) then

abort

(@) X,-
'(hmsg],sts,d) 8 Sim_ (parg o (sts.d7 umng)' Jb=1
init- L3 X X522 = b

return hmsg;

return closed

Game OBLV\p simc,,,,sim 5 (V) Oracle Uy (sid, Yaig)

init <« 0;Z4,...,Zr41, P < & if sideZ; v init =0 v (X, Ysq) ¢ ‘CRparg then
(pary,tdg) < Simgen(17) abort

(Paronip, tdonip) < Simsetup (Par ) Ty < Ty v {sid}

d < (tdg, tdonip) [ (umsgy , steg) <5 ONIP.Uy (pargyp, X, Yaa) |/ b =0
b s ANTUL o Ure PR (par o td st a) (Jn:sél_, s_ts;)_;gsjnqu_(t_d_)z) Jb=1

U
return b

~ return umsg;
Oracle INIT(X):

Oracle U;(sid,imsg;) / j=2,...,7+1
ifsid¢ Zy,...,Z;_1 v sideZ;

if init = 1 then abort

init < 1; X « X then abort

return closed Z; « I; u {sid}

Oracle Pf(sid): if j <r+1 then

ifsid¢ Ty, ... Tro1 v side P (Im—ws—g; stia) < oNIP.U _(S_ts;ﬂ»_";‘s_gj_) /o=
then abort ::::::::::::::::::__

PPt [(umsg  sta) <5 Simy (staa, imsg; )}/ b = 1

oo T 1
N 2 fhen i eise

I I
: return m <3 Simp¢(td, X, Ysa) :
I I

|7r5,d «$ oNIP.U; (stsig, imsg;; )| Jb=0

/b= |7r5,d <3 Simy (stsid, |mng)| Jb=1

else abort

return closed

Fig. 6. Zero-knowledge and obliviousness games of oNIP = oNIP[Gen, R] on the top
and bottom, respectively. The ZK game is parameterized by the simulator Sim with
access to the oracle O. As with the KVAC’s anonymity definition, both the adversary
and the simulator in OBLV game are given access to the global trapdoor td, and oNIP
trapdoor tdonip. Crucially, the OBLV simulator gets the ‘core’ statement X but not
the ‘augmented’ statement Y during the protocol.




314 R. Chairattana-Apirom et al.

e Finally, SAAC.ObtHelp returns aux = (7ey, 7y, st).

Show: SAAC.Show(par, pk, m, o, aux = (Tkey, Tv, St), ¢, nonce): computes Tpyp <8
KVAC.Showpb(st, ¢, (my, nonce)) and returns m = (Tkey, Tpub, Tv)-

Verify: SAAC.SVer(par, pk, ™ = (Tiey, Tpub, Tv); @, nonce): returns by A by where
e by — oNIP.Ver(par, (parxyac, Pk), Tkey, Tv)
o by — KVAC.SVerpp(par, pk, (Tkey, Tpub)s @ (v, nonce))

The following theorem then establishes the properties of our generic SAAC
construction. Correctness follows from the correctness of both building blocks.
We refer to the overview Sect. 1.1 for a proof sketch and to the full version for
the formal proofs and concrete security bounds.

Theorem 4.1. Let £ = £(\) and Gen be a global parameters generator, KVAC
be a keyed-verification anonymous credential, and oNIP be an oblivious proof
issuance protocol for the relation family Ry induced by KVAC.SVerye,. Then, the
server-aided anonymous credential scheme SAAC = SAAC|Gen, KVAC, oNIP] is

e (nkvac + nonip)-correct if KVAC is nxvac-correct and oNIP is nonip-correct.

e Unforgeable if there exists an oracle O such that oNIP is O-zero-knowledge
and sound and KVAC satisfies O-unforgeability and validity of key generation
with respect to the same extractor Ext.

e Anonymous if there exist simulators Simgen, Simonip, Simkyac such that oNIP
1s oblivious with respect to Simgen and Simonip, and KVAC satisfies anonymity
and integrity with respect to Simgen and Simgyac-

5 Instantiations

In this section, we give two SAAC instantiations in pairing-free groups from
two KVAC schemes based on algebraic MACs. In Sect.5.1, we give a scheme
adapting Barki et al.’s KVAC [6] based on BBS-MAC. In Sect. 5.2, we give less
efficient scheme adapting ideas from Chase et al.’s DDH-based KVAC [23]. For
both instantiations, we construct a suitable oNIP protocol.

Both KVACs use three proof systems: Il proving that committed
attributes satisfy an issuance predicate, I, proving correct issuance of creden-
tials, and Il used for showing a credential.® Except for the IT.om which is
instantiated from the Fischlin transform [27,30], II, and IT,,, are obtained by
applying the Fiat-Shamir transform to X-protocols for linear relations [34] (see
the proof system Lin in Fig. 7). Crucially, the prover of I, takes as input a
string nonce which is hashed by H. This is necessary to achieve our stronger
KVAC security and ensure non-malleability of honest users’ showings in our
SAAC instantiations. We refer the full version for more details on these NIZKs.

5 We will refer to them as Heom, I, [T for both instantiations, but note that they
are different proof systems.
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Lin.Prove" (M € G™*™,Y € G"),z € Z,", nonce) Lin.Ver" (M € G™*™,Y € G™), 7, nonce)
r«$Z)"; R — Mr;c — H(M,Y, R, nonce) (c,8) «m

Ss—r+c-x R—Ms-c'Y

return 7 := (c, s) return H(M,Y , R, nonce) = ¢

Fig. 7. NIZK proof system Lin = Lin[H,G] for Rg := {((M,Y),x) : Y = Mx}. The
prover optionally takes an input nonce which will also be hashed by H

5.1 Instantiation from BBS

In this section, we instantiate our SAAC construction with a KVAC based on
the BBS MAC, which can be seen as a variant of Barki et al.’s KVAC [6], and
a corresponding oNIP scheme. Following the syntax in Sect.4.1, we note that
our global parameters generator is exactly the group generator GGen and the
simulator Simge, simply runs GGen and does not output any trapdoor.

BBS-BASED KVAC. We first describe the KVACggs scheme in Fig. 8, which can
be seen as a variant of the KVAC from [6]. The credential for the attributes
m = (m;)f_, is computed as (A := (z + ) 'C,e «$Z,,s «<$7Z,) where x € Z,
is the secret key, C' = G + Ze 1miH; +sHy i, and Hy...,Hyq € G are parts
of the public parameters. To show a credential, a holder can sample 7,1’ «—$7Z,
and compute C « rC, A — 1'rA, and B « r'C — eA. The holder sends to
the issuer (A, B, (), along with a proof of knowledge of e,r,’',m (using CDL
proofs [15]), and the issuer can check that zA = B. To bind a value nonce to the
showing message, the hash computation in I7,,; also takes nonce as an input. We
emphasize that this is crucial for the security of our final SAAC construction.
Our KVAC makes use of proof systems Ilcom,Il,, and Ilp,, for the following
relations (implicitly parameterized by the group description), respectively:

Rcom = {((H,C, w)a (Sam)) :C = 8HE+1 + Zle mle N ¢(m) = ]‘}
Ro :={((X,A,B),x): 2G =X A xA = B}

r"'C + (H priy, (M| s)) = Y A
B=17C—-eA ’

We require Il.om to be straightline-extractable for the relaxed relation ﬁcom which
in addition to statement and witness ((H,C, %), (s,m)) € Rem also accepts
witnesses (s|jm) # 0 such that Og = Zle m;H; + sHy,1. For the relations R,
and Rpyp, we explicitly define the corresponding linear maps as follows: Mg 4 =
C Hppivi - Hprivie 0 0 .
(G’A) and Mgu?{prlv 1o Hpriv g, A = 0 pO ! - pO * é A) We point
out that SVerye, induces the following DLEQ relation (parameterized by par, =
(p, G,G) which we will omit) for which we give a corresponding oNIP protocol.

Raieq := {((X, (A4, B)),z) : X =2G A B =xzA}, (1)

The augmented statement is (fl E), and the core relation Core(Rgieq) contains
public-secret key pairs (X = zG, x) defined by the key generation of KVACggs.
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KVACBBS.Setup(le7 par, = (p, G, G)) KVACggs.U1 (par, X, m € ij, P)
Select Ho, Hi,Hs : {0,1}" — Z, 5«8 Zp;C — sHpyy + Zle m;H;
H = (Hi)fjll s gttt if C + G = 0g then abort
I, < Lin[Hy, G]; My < Lin[Ha, G Tcom — Heom.Prove!'0 (H, C, ), (s, m))
return par = (p, G,G, H,Hgp,Hy, H2) return p := (C, Tcom)
KVACggs.KeyGen(par) KVACggs.Us (imsg = (A, e, m5))
TS Zp; X — G B—G+C—-¢cA
return (sk — x, pk — X) if 17, .Ver't (ME 4,(X,B)),m5) =0
KVACggs.Iss (par, x, 1, 1 = (C, 7com)) then abort
if O+ G =06 V Heom Ver" (H, C, %), Teom) = 0 return o « (A,e,s)

then abort KVACggs.Showyey (par, pk,m, o = (A, e, s))
e $Zy;A— (x+e) ' (G+C);Be—C—eA ey

H - -

T < 115 .Prove™ ((MG,A» (X, B)), ) C —r(G+sHp + Zle m;Hy)
return imsg « (A, e, ms) Acr'rA;B e r'C - eA
KVACgss -SVeriey (par, #, Tey = (4, B)) return Ty, := (4, B)
return A = B KVACggs .Showpu (@1 ,q , nonce)
KVACegsgs - SVerpus (Par, X, Tiey, Tpub; ¢1,a > NONCE) if ¢1,a(m) =0 then abort
parse (;1, B) — They; (6’7 Tpub) < Tpub Hpiv — (Hi)icopr
Hpriv < (Hi)ieperpr Y « G+ {(mi)icr, (Hy)ier)

Y<—G+<(l,(Hi)iEI>
t oy Vert2 (MP® (Y, B
return ITpu,.Ver 2 (( c,Hpm,A’( ,B)),

y (v, B)),

Ho pul
Toub < Ilpup.Prove MY -
pus = o (s, &

(r (ms)ietens>r’s s, €), (¢1,a , nonce))
Tpubs (@1 ,a , NONCE))

return Tpp i= (C‘, Tpub)

Fig. 8. Scheme KVACggs = KVACggs[GGen]. The proof systems Ilcom, 15, o are
NIZKs for Rcom,Ro, Rpub defined in Section 5.1, respectively. States are omitted for
readability — subsequent algorithms can use values defined before (e.g. KVACggs.U2
can use variables from KVACggs.U1). In Showpus, the value nonce is bound to mpub.

The following theorem, proved in the full version, establishes the security
properties of KVACggs. Note that the KVAC unforgeability adversary has access
to a restricted DDH oracle rDDH defined in Fig. 2.

Theorem 5.1. Let GGen be a group generator outputting groups of prime order
p = p(A). Then, KVACggs = KVACpps|GGen] satisfies correctness, anonymity
and integrity of issued credentials in the ROM with respect to the same simulator
Sim, and rDDH-unforgeability in the ROM under (q,rDDH)-SDH assumption
and validity of key generation with respect to the same extractor Ext.

ONIP FOR BBS-BASED INSTANTIATION. Here, we sketch the pro-
tocol oNIPggs = oNIP[GGen, Ryieq] for the family of relations Rgjeq, defined in
Eq. (1), and refer to the full version for the full description. The protocol starts
by the user sending a rerandomized statement (A = A+ 3G, B = B+ X)) to the
issuer. The issuer first checks that (X, (A, B)) is actually in the language Lg,,,-
Then, the two parties interact in a blinded X-protocol to compute an OR-proof
that (1) (X,(A,B)) € Lgry,, or (2) the issuer knows the discrete logarithm of
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public parameters W € G. At the end of the protocol, the user obtains a proof
7 for its statement of choice (A, B). This protocol is similar to a recent blind
signature scheme [22] and the oNIP for Rgieq in [37], except that in their cases
the issuer computes B = x A for the user who sends A. The following theorem
establishes the security properties of oNIPggs with the proof given in the full
version.

Theorem 5.2. Let GGen be a group generator outputting groups of prime order
p = p(A\), tDDH be a restricted DDH oracle, and Simge, be the simulator for
the global parameters generator. Then, oNIPggs = oNIPggs[GGen, Ryieq] satisfies
perfect correctness, soundness in the ROM assuming DL, perfect rDDH-zero-
knowledge, and perfect obliviousness for valid statements with respect to Simgep-

The following corollary follows from Theorems 4.1, 5.1 and 5.2. Although we
do not formally show this, strong integrity of SAACggs follows from the public
key of KVACggs fixing an underlying secret key and soundness of I, ensuring
that the issued credential is valid.

Corollary 5.3. Let SAACggs = SAAC[GGen, KVACggs, oNIPggs] be a SAAC
scheme from KVACggs and oNIPggs according to Theorem 4.1. Then, SAACggs
satisfies correctness, unforgeability in the ROM assuming (q,rDDH)-SDH, and
anonymity in the ROM.

ErrICIENCY. In addition to the concrete sizes in Table 1, we also consider the
computational costs of showing (without the helper) and verification of SAACggs,
which are ¢ + 4 (helper protocol includes 19 and 5 exponentiations for the user
and issuer, resp.) and £ + 12 exponentiations, resp. This is comparable to those
of pairing-based BBS which requires £+ 7 exponentiations for showing and ¢+ 5
exponentiations + 2 pairing evaluations for verification.

5.2 Instantiation from DDH

In this section, we instantiate our generic construction with a DDH-based
KVAC by Chase, Meiklejohn, and Zaverucha’s [23] and a corresponding oNIP
scheme. Following the syntax in Sect.4.1, our global parameters generator,
denoted Genppn(1?), runs (p, G,G) <—s GGen(1), samples H «sG*, and sets
par, = (p, G, G, H). For security of both KVAC and oNIP, we fix the simulator
Simgen which samples H = vG with a trapdoor v «s Ly,

DDH-BASED KVAC. We first introduce the DDH-based KVAC in [23], building
on top of an algebraic MAC where a tag for a vector of attributes (m;)f_; is
(Sws e, Sy, S2) == (U —sG, (z0 + Xty 2im)U, (yo + 3o, yims)U, 2U) with
the secret key containing scalars (:ci)fzo, (yi)fzo, and z. The issuer’s public key
includes (X; = x;H,Y; = y;H)!_, with H being the public parameters. For
blind issuance, a user ElGamal encrypts each of their attributes, and the issuer
homomorphically creates a tag for the user to decrypt.
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To show a credential: the user randomizes the tag as (S), = rS,,Cy =
rSy + r.H,Cy = vSy +r,H,S. = rS,) for r «$Zy ry,7y <sZ,. Then, the
user computes commitments C; = m;U’ + r;G to their attributes. With U’

and (C;)Y_,, the issuer can use their secret key to compute (for example)
V, = zoU’ + Zle z;C; = (zo + Zle x;m)) U + Zle r; X; which is close to
C,, but with added randomness from the blinding. Hence, the user also sends
r,:.= Ele r:X; — ryH (and similarly I',). The issuer checks that Cy + I, = v,
(respectively for y; and Cy, I, Vy). This is the key-dependent part of the verifi-
cation. The user also includes a publicly verifiable proof of knowledge of repre-
sentations of (Ci)le, I, Iy
Our KVACppy, described in Fig. 9, made these changes to their scheme:

1. Public key: In [23], Pedersen commitments of xg,yo, z are included in the
public key, allowing the issuer to prove correct credential issuance. In this
case, the underlying secret key is not uniquely determined (binding is com-
putational), which is insufficient for our SAAC compiler. We instead include
ElGamal ciphertexts of xg,yo (security is not affected) and publish Z = zH
in the clear. For the latter, we noticed that revealing Z does not affect the
underlying MAC’s security, saving us one group element.’

2. Blind Issuance: In [23], users individually encrypt each m;, and let the
issuer computes and sends ciphertexts of S, S,,. We observe that pk contains
X; = x;H,Y; = y;H for i € [{], so the user can compute ciphertexts of
Zle m; X; and Zle m;Y;, while the issuer can still compute ciphertexts of
Sz, Sy. Now, the issuer’s communication is independent of ¢ as it only has to
compute a proof with respect to a smaller witness.

Our KVAC makes use of proof systems Ilcom, I1,, and I, for the relations
Reom» Ros Rpub, Tespectively defined below, respectively.

E, E EI = UZGJU(ED+ ‘?, leZ
(Byo By D, (X0 ()0, 2 = Xy miXy)

o = ]
Reom (g, uy, m = (M4)_1)) i (uszL?ﬂyg: 121.:1 i
Z =zH,r"S, =G,S, =25,
(KEwLEvav Sw, Sz, Eix =1"Ey — (%G, %D + xoH)
R, := E., Ey, Z,cty,cty), t By =1"Ey — (70G, %D + yoH)
(2,20, Y0, 7, ta ty, Vas Vy)) cty = (t2G, to H + 20G)

cty = (t,G, tyH + yoG)

(((ma)ier, (Xa)ioy, (Yo)ioy, Viell]: Co=miSy +1:iH
Rpub = Swa(ci)leapmapy)a : Fx = (Zf:l TZXZ) _TIH
((mi)ie[ﬁ]\h (Ti)f:p Tz, Ty)) Iy = (Zle r;Y;) — ryH

We note that Il is straightline-extractable for a relaxed relation ﬁcom 2 Reom
which also accepts witness (u, = 0,u, = 0, m # 0) where Og = Zle m;X; =

5 Intuitively, this is because (U, zU) is included in every tag anyways.
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KVACpph.Setup(14, par, = (p,G,G, H))

Select Ho, H1,H2 : {0,1}" > Z,,

Iy « Lin[H1, G]; pu < Lin[H2, G]
return par = (p, G, G, H,Hp,H1, H2)
KVACppH.KeyGen(par)

z,
cty — (t2 G, to H + 20G);cty — (t,G,ty H + y0G)
4
pk < (X = (X'i)i:pY = (}/i)izlv

return (sk, pk)
KVACppH.Iss(par, z, 1, 1 = (Ex, Ey, D, Tcom))

2
Yy <$ Zp+1§zvtzvty «$ Zp§5k «— (w,y,z,tz,ty)

£ Z,cty, cty)

KVACpph .Uy (par, pk, m € Z%, )

if Heom Ve (B, By, D, X,Y %), Teom) = 0

then abort

T 82y Yur Yy <8Zp; Sw — TH, S, —1Z
Ey < (v« G,v2D + zoH) + Em)
Ey < r((vGyvyD +yoH) + Ey)

H o
g <« I, .Prove 1((MG,H,Sw,D,Ez,Eyv

S -1
(Ema Ey7 Z, Ctm7Cty))7 (z, T, Y0, T sta,ty, 'sz'Yy))

return (Sy, Bz, Ey, S2, 75)
KVACDDH .SVerkey(par, Sk7 Tkey)

(S;,S;, (Ci)leaczvcyapmvry) “ Tkey

return S:U # 0g A S; =25/

w
ATy +Cq = (z0S,, + Zle z;C;)
ATy +Cy = (yoS., + X 4:Ci)

d,ug,uy <$Zp; D — dG
E, < (up G, uz D + Zle m;X;)
Ey — (uyG,uyD + Zil m;Y;)
Tcom  Heom.Prove™ (E,, Ey, D, X, Y ,9),
)
return p = (El, Ey, D, meom)
KVACpph .Uz (imsg = (Sw, Ex, By, Sz, 7))
if 17, Vet ((Mg,H,Sw,D,Em,Ey’
(Em,Ey,Z,ctm,cty),Tra) =0

then abort
(Ex,0, Ez,1) < Eo; (Ey,0, By,1) < By
Se «— Ez1 —dEz 0;Sy «— Ey1—dEy o
return o «— (Sy, Sz, Sy,5Sz)

(Ug, Uy, m

KVACppH .-Showyey (par, pk, m , o)

vy 8Ly = (ri)i_y <87
! ’ 7 ! ’
(Sw: 8218y, 8,) «r'o
forie[f]: C; — m;S., +rH
Cy — S, + 12 H;Cy « Sy + 7y H
Ly Y0 riXy—raH
Iy < Zf:l riY; —ryH
return (S, 5., (Ci) .1, Cu, Cy, T, Ty)
KVACDDH.ShOWpub((ﬁITa 5 nonce)

KVACppH-SVerpub (Par, Pk, Tieys Tpub, @1,a ; NONCE) forieI:C| — C;—a;S,,

Tpub <= Hpub-P’O"eHz((MgJ?H,s’ XY
(Cictent » (CYier » T, Ty)),

((mi)ictepgsTsTes Ty), (H1,a, nonce))

A b
return [T, . Ver 2((M?;,H,S{,,,X v (Cicrena,

(C'L - a’iS:U)'iEfv Iy, Fy))vﬂ'pubv (¢I,a s nonce))
|ttt hl
|

|

1Oracle Osveron (par, sk, Suw, Sz, (€)1, G Gy)
ireturn S, = 2S5y A (z = 20Sw + Zle z;Cin
1 ]

! Cy = yoSw + Zle y:Ci A Sy # Og !
L

return mpup

Fig. 9. Scheme KVACppn = KVACppr[Genppn] and oracle OsverppH- Heom, o, ITpus are
NIZKs for Rcom,Ro,Rpub defined in Section 5.2, respectively. States are omitted for
readability — subsequent algorithms can use values defined before (e.g. KVACggs.U2
can use variables from KVACggs.U1). In Showpus, the value nonce is bound to mpub.

Zle m;Y;. For R, and Rpyp, let M&H’Sw,D,Ewa and Mgl,l?f,Sw,X,Y be matri-
ces defined by the respective relations described above (omitting the explicit
representation for brevity), analogously to what was done in Sect. 5.1.

The algorithm SVer,e, induces the relation family RppH, parameterized by
par, = (p,G,G, H) (which we omit in the subscript), for which we give a cor-

responding oNIP protocol. Rppn contains statements (pk = (X,Y, Z, cty, cty),
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Tey = (Sws (Ci) el G Cys S.))" and witnesses sk = (x,y, 2, t;, t,), such that

Z =zH,Sy, # 05,5, =25y, Vie [{]: X; = x;H,Y; = y; H

Co = 208w + X 2:Ci, Cy = YoSw + 30, 4iCs (2)
cty = (t.G, t:H + 20G), cty = (t,G, t, H + 1G)

The following theorem, proved in the full version, establishes the security
of KVACppy. In the proof, we first show unforgeability of the underlying MAC
against adversaries with access to Osverppn (defined in Fig. 9), using techniques
similar to [23]. Then, we give a reduction from unforgeability of KVACppn to
that of the MAC. Our main contribution is twofold: (1) A careful rewinding
argument to extract a MAC forgery from the KVAC forgery; and (2) We show
how to simulate showings for an honest user by querying for a tag on a random
(and hidden) set of attributes, and that we still reliably extract a fresh forgery.

Theorem 5.4. Let Genppy be a global parameters generator defined in Sect. 5.2.
Then, KVACppn = KVACppn[Genppn] satisfies correctness, anonymity assuming
DDH and integrity of issued credentials both in the ROM and with respect to the
same simulators Simgen and Simgvac, and OsverppH-unforgeability in the ROM
assuming DDH and validity of key generation with respect to the same extractor
Ext.

ONIP rOrR DDH-BASED INSTANTIATION. We sketch the protocol oNIPppy =
oNIP[GenppH, Rppr] for the family of relations Rppy described in Eq. (2), con-
taining statement pk, an augmented statement 7, and witness sk.

Our oNIPppy construction follows a similar structure to oNIPggs relying on
a blinded OR-proof of either (1) membership of the induced language Lry,, or
(2) knowledge of discrete logarithm of public parameters W. The key difference
lies in the first move, where the user rerandomizes the augmented statement
(S, (CHE_,, ¢, > S%) by computing S, = aS;,, C; = aC} + §; H with random
scalars «, 31,...,0; and uses X,Y in the public key to compute (, = ol +
Zle BiXi, ¢y = aC;+Zf:1 3:Y:, S, = aS,, which still preserves the membership
of the language. The issuer then checks whether the rerandomized statement is
in the language. We refer to the full version for the full protocol description
and the proof of the following theorem, establishing the security properties of
oNIPppH. The proof follows from standard techniques as with oNIPggs, except
that for obliviousness, we inherently requires the global trapdoor v to efficiently
simulate honest users without knowing the augmented statement 7ie,.

Theorem 5.5. Let Genppy be a global parameters generator defined in Sect. 5.2
and Osverppn be the oracle in Fig. 9. Then, oNIPppy = oNIP[Genppn, Rppn] sat-
isfies perfect correctness, soundness in the ROM assuming DL, perfect OsyerppH-
zero-knowledge, and perfect obliviousness for valid statements with respect to the
stmulator Simgen-

" Note that ¢, and Cy represent Cy + I, and Cy + Iy and can be computed from the
output 7Tiey of Showyey.
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Finally, the following corollary follows from Theorems 4.1, 5.4 and 5.5. Sim-
ilar to SAACggs, strong integrity of SAACppy follows from the structure of
KVACpph’s public key and soundness of I1,.

Corollary 5.6. Let SAACDDH = SAAC[GeI"IDDH, KVACDDH, ON|PDDH] be a SAAC
scheme from KVACppn and oNIPppy according to Theorem 4.1. Then, SAACppny
satisfies correctness, unforgeability, and anonymity (both in the ROM and assum-
ing DDH).

EFFICIENCY. The computational costs of showing (without the helper) and ver-
ification of SAACppy are 4¢ + 2 (helper protocol includes 18¢ + 47 and 6¢ + 15
exponentiations for the user and issuer, resp.) and 11¢+ 22 exponentiations, resp.

6 Conclusion

This paper introduced the SAAC model and gave two efficient instantiations. We
emphasize that despite the requirement of the helper interaction, SAAC is not as
restrictive as it may seem to be. This is because (1) the helper information can
be requested ahead of time and can be spent later without any additional online
interaction, and (2) the helper protocol is independent of the showing predicate.

We envision that each user would obtain an upper bound B pieces of helper
information at regular time increments (e.g., the number of times one uses a
digital ID per week, which need not be large). Since the showing predicate and
disclosed attributes can be decided later on, and the helper information is very
small in size, the space requirements for this are not significant.

In a real-world setting, timing or counting attacks may compromise
anonymity if our system is used carelessly. For example, if users always request
helper information immediately before showing a credential, then linking helper
interactions to showings becomes possible. Or, in a setting where the helper
server can identify users, if User-A interacts with the helper 99 times, and User-
B interacts only once, then a verifier who sees 2 different showings can be sure
that they interacted with user A in one of the interactions. Implementing the
system to hide usage patterns (e.g., as discussed earlier) should prevent these
attacks.

Our BBS-based instantiation improves considerably upon the state of the art
for pairing-free ACs: it is multi-show, the helper interaction is lightweight, and
it is provably secure in the ROM. This is in contrast to, e.g., ACL [4], which
requires re-proving a (potentially expensive) issuance predicate for each showing,
and is only proved secure in the AGM via an involved security proof [29].
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