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Fig. 1: GPT-driven data caching with LLM-dCache: we expose cache operations as callable API tools to GPT, enabling it to

read and update cache data dynamically to respond to user queries. On a large-scale Copilot platform with hundreds of GPTs

and terabytes of imagery, LLM-dCache speeds up task-completion by 1.24× on average across various prompting techniques.

Abstract—As Large Language Models (LLMs) broaden their
capabilities to manage thousands of API calls, they are confronted
with complex data operations across vast datasets with significant
overhead to the underlying system. In this work, we introduce
LLM-dCache to optimize data accesses by treating cache oper-
ations as callable API functions exposed to the tool-augmented
agent. We grant LLMs the autonomy to manage cache decisions
via prompting, seamlessly integrating with existing function-
calling mechanisms. Tested on an industry-scale massively paral-
lel platform that spans hundreds of GPT endpoints and terabytes
of imagery, our method improves Copilot times by an average
of 1.24× across various LLMs and prompting techniques.

Index Terms—Tool-augmented agents, Large Language Models

I. INTRODUCTION

Recent advances in Large Language Models (LLMs) have

enhanced their reasoning capabilities towards solving com-

plex problems, allowing them to manage thousands of tools

and API calls efficiently [1], [2]. These improvements have

unlocked their potential across large-scale systems, including

UI/Web interfaces [3], [4], mobile apps [5], SQL backends [6],

and remote sensing platforms [7]. These uses exemplify

system-level complexity by requiring integration of various

APIs for loading, filtering, processing, and visualizing data

across multiple temporal and spatial dimensions [8].

As Copilots scale, the overhead on the underlying stack

increases, from cloud endpoints to local execution devices [9],

[10], catalyzing a fundamental shift in how we design large-

scale LLM-based systems and software [4], [11]. However,

early system optimizations primarily target simplified queries

or well-defined benchmarks [12] that might not capture nu-

anced task patterns and data dependencies at the system

level [13]. In realistic LLM workloads, data exhibits significant

reusability. Consider an analyst who asks “show me satellite

images around Newport Beach, CA.” with a subsequent prompt

“Now, detect airplanes in this area,” demonstrating a scenario

where data elements are repeatedly accessed.

In this work, we draw inspiration from spatiotemporal

reusability patterns akin to those observed in CPU cache

systems and we introduce LLM-dCache, a GPT-driven caching

strategy to optimize LLM data access patterns. Our key

intuition lies in a novel design choice to seamlessly integrate

cache management as one of the LLM tools, facilitating a fully

GPT-driven plug-and-play approach compatible with existing

function-calling mechanisms with minimal overhead. Evalu-

ated on a large-scale geospatial platform [13], LLM-dCache

achieves latency reductions across various agents. We hope

these findings motivate further exploration into empowering

LLMs with other system level optimizations.
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II. RELATED WORK

Model-level LLM optimization: several works aim to

enhance LLM efficiency via model design improvements, such

as quantization [14], pruning [15], KV token caching [16], or

token compression [17]. Despite these advances, as motivated

in [11], these techniques might have limitation in scenarios

involving immutable black-box LLM models within cloud-

based systems, where direct modifications to models and their

inference mechanisms are limited [18]. We therefore focus on

design optimizations at the system level [19], [20], which are

especially important in large-scale Copilot platforms.

Application-level LLM optimization: methodologies such

as MemGPT [19] and “model-as-a-resource” caching [21]

align with our motivation. We also note advancements from

the open-source community, with LangChain now supporting

prompt-caching [22]. Similarly, drawing from hardware design

and parallel computing, recent methods [11], [12], [20] explore

parallel execution strategies. While these methods offer ben-

efits for parallel or repeating tasks, they overlook the critical

aspect of data locality, as they assume task chains with short-

horizons [11] or template-based question-answer pairs with

simplistic task interdependencies [12].

III. METHODOLOGY

Our goal is to design and assess LLM-dCache on realistic

data patterns in large-scale cloud-first Copilot systems.

Cache operations: We aim to explore GPT’s ability to

understand when to read and use caching to execute a given

task, as well as whether GPT is able to effectively implement

a cache update policy autonomously. To allow GPT to handle

system-level decisions via in-context prompting, we therefore

define the operation of loading cache data as a tool in GPT

function calling, i.e., exposing its function definition in the

GPT API call alongside other tool descriptions. Upon receiv-

ing a user query, GPT is informed of the current cache contents

and decides whether to execute the cache loading tool.

Similarly, we experiment with an entirely prompt-based

implementation of cache updating. We succinctly describe the

update policy to GPT and furnish it with this round’s load

operations and cache contents in JSON format, then query

GPT to return the updated cache state. We opt for the Least

Recently Used (LRU) scheme as our primary cache update

strategy, while we ablate other schemes.

Framing caching functions as GPT tools streamlines our

implementation and makes it platform-agnostic. The cache

read and update operations become part of GPT’s decision-

making process, thus requiring minimal changes. Additionally,

granting the LLM autonomy over cache decisions allows our

method to handle cache misses: upon a failed function call,

the LLM is prompted to reassess its tool sequence, just as it

would any other tool-selection missteps where the API return-

message indicates a failure. This abstraction, simulating a

main memory read after a cache-hit scenario and managed

entirely at the LLM level, effectively positions the LLM as

a memory controller. Such dynamic adaptability is key to

rectifying inaccuracies in tool selection in real-time.

LLM-dCache prompting

As a Compiler handling geospatial data, you

have access to the following tools [..]

Tools:

- load_db(..images from database..)

- read_cache(..images from local cache..)

- ...

Given the user query, the cache content, and

the examples below, complete the task [..]

User Query: {question}
Cache: {cache content}

------

Example 1:

Query: Plot the xview1 images from 2022

Cache: {,}
Thought: The user asks for the xview1-2022

imagery. The cache is empty [..]

Action: To complete the task I will call

load_db(xview1-2022), then [..]

Answer: ..

------

Example 2:

Query: Show fair1m and xview1 imgs from 2022

Cache: {xview1-2022,}
Thought: The user wants both the fair1m-2022

and xview1-2022 images. The cache is already

contains the latter, so [..]

Action: To complete the task I will

first call load_db(fair1m-2022), then

read_cache(xview1-2022), and [..]

Answer: ..

Cache specifications: We represent and retrieve data as key-

value pairs. As we operate on top of geospatial data, we opt

to use the string template dataset-year as cache keys. We find

this temporal granularity to be the most sensible (as opposed

to longitude-latitude coordinates due to the spatial skewness

of data around regions of interest like major cities). We then

store as values the GeoPandas DataFrames containing the

respective yearly imagery metadata – filenames, coordinates,

detections, timestamps, etc. As is common in many geospatial

platforms, the actual image files are not loaded into memory

until needed for specific subsequent operations. As the yearly

GeoPandas DataFrames typically occupy 50-100 MB, so we

find it reasonable to set a cache size limit of 5 entries at a time.

We note that such design choices are likely to be application

specific, and we leave further ablations for future work.

IV. EXPERIMENTAL SETUP

We use GeoLLM-Engine [13], a large-scale parameterizable

LLM engine for geospatial tasks. Designed to capture agentic

performance across hundreds of tools, the platform is equipped

with long-horizon multi-tool LLM operations that require

frequent data retrieval and filtering, a comprehensive suite of

open-source APIs, interactive map UI, RAG, and data retrieval

tools with over 1.1 million satellite images.

Benchmark. We expand the GeoLLM-Engine sampler to

obtain variants of the GeoLLM-Engine-1k dataset. Specif-



TABLE I: LLM-dCache achieves latency reductions across models and prompting techniques with no degradation in overall

agentic performance, as agent metrics are within established variance bounds [20].

Model LLM-dCache
Success Correctness Obj. Det LCC VQA Avg Tokens Avg Time

Speedup ↑
Rate (%) ↑ Rate (%) ↑ F1 (%) ↑ R (%) ↑ Rouge-L ↑ / Task ↓ / Task (s) ↓

GPT-3.5 Turbo

CoT - Zero-Shot
✗ 49.45 38.47 70.68 70.19 56.62 25.23k 6.96 –
✓ 49.40 37.96 69.71 71.23 55.57 25.55k 5.67 1.23 ×

CoT - Few-Shot
✗ 54.42 70.50 89.03 82.19 62.58 30.81k 6.52 –
✓ 54.07 69.61 88.12 81.31 62.08 30.02k 5.29 1.23 ×

ReAct - Zero-Shot
✗ 50.85 70.04 87.94 89.12 61.41 27.09k 7.29
✓ 50.47 68.91 80.42 89.31 60.78 27.65k 5.47 1.33 ×

ReAct - Few-Shot
✗ 63.45 71.06 82.59 92.36 69.35 34.40k 6.64 –
✓ 63.14 69.17 81.19 88.41 65.76 34.86k 5.77 1.15 ×

GPT-4 Turbo

CoT - Zero-Shot
✗ 70.48 82.04 86.34 84.91 69.78 26.81k 6.79 –
✓ 70.08 82.25 87.64 84.42 70.14 26.91k 5.16 1.32 ×

CoT - Few-Shot
✗ 72.89 84.87 83.75 97.29 72.15 28.49k 6.76 –
✓ 72.16 85.48 82.95 99.72 72.72 28.92k 5.09 1.33 ×

ReAct - Zero-Shot
✗ 74.30 85.80 88.49 94.52 72.18 30.51k 6.67 –
✓ 74.70 85.46 89.27 92.89 71.85 30.45k 5.70 1.17 ×

ReAct - Few-Shot
✗ 76.71 85.67 64.49 98.95 74.23 36.62k 6.71 –
✓ 76.28 85.46 65.17 99.50 74.13 36.68k 5.72 1.17 ×

TABLE II: Zero-shot CoT (GPT-3.5 Turbo) runtime shows that overall latency reduction is highly dependent on data reuse

rates. At high reuse, we observe only slight variability among different cache policies.

Cache Policy No Cache LRU LFU RR FIFO

Data Reuse Rate – 0% 20% 40% 60% 80% 80% 80% 80%

Avg Time/Task (s) ↓ 5.81 5.81 5.84 5.62 5.03 4.92 5.16 5.36 5.25

ically, we extend the sampling-rate parameters and we incor-

porate rates that control the likelihood of data reuse. We se-

lectively sample prompts with an 80% probability of requiring

data already present in the cache, constructing a test dataset of

1,000 multi-step prompts (with an overall set of approximately

50,000 tool calls). Additionally, we prepare a mini 500 query

set for ablations. Last, we use the model-checker module

to verify the functional correctness of the generated tasks.

Metrics. For agent performance, we adhere to established

evaluation practices [1], [7], measuring the Success Rate

(proportion of tasks successfully completed), the Correctness

Ratio (proportion of correct tool calls, since an erroneous tool

might not affect successful task completion), and the ROUGE-

L score. We also report performance on the underlying remote

sensing tasks, with F1 and recall for object detection and land

coverage classification (LCC), respectively, and ROUGE for

visual question answering (VQA) [13].

To evaluate cache effectiveness, we report GPT-hits (i.e.,

the LLM correctly utilizes the cache over main memory). We

also track the average number of tokens and time per task,

with an expectation that higher cache reuse (being 5-10×
faster than main memory access) will result in reduced overall

API completion times. To capture latency, we follow [20] by

maintaining a running average per tool operation, discarding

any outliers beyond two standard deviations from the mean.

To avoid congestion and ensure accurate endpoint response

times, we deploy hundreds of GPT instances specifically for

this evaluation, isolated from production traffic.

V. RESULTS

LLM-dCache improves task-completion times across dif-

ferent configurations – GPT-4 and GPT-3.5, with Chain-of-

Thought and ReAct, in both few-shot and zero-shot scenarios

– by 1.24× on average (Table I). Caching does not degrade

the quality of output and functionality of the agent, as agent

metrics are within established variance [20]. Overall, we notice

that gains primarily depend on dataset reusability patterns, not

the choice of model or prompting strategy.

To corroborate this observation, we conduct an ablation with

multiple mini-val subsets, each containing 500 queries but

with varying reusability rates. Table II (top) shows higher

reusability rates correlate with greater latency savings. LRU,

LFU, RR, and FIFO produce no clear latency differences.

We aim to position our exploration within a broader shift

towards empowering LLMs with system-level optimization de-

cisions. To this end, we make the deliberate choice of treating

cache operations as prompt-based GPT tools (e.g., explaining

the LRU scheme via prompts) instead of a direct programmatic

implementation of the logic. In support of this, our ablation

in Table III compares programmatic cache operations with

those driven by GPT. We find that all GPT-driven variants

closely match the fully programmatic approach, which could

be considered an upper-bound in terms of effectiveness and

reliability, with cache “hit” rates consistently around 97% and

similar latency. This demonstrates the versatility and poten-

tial of LLM-guided cache management in lieu of traditional

programmatic solutions. Our hope is that this perspective



TABLE III: GPT-driven cache operations produce performance metrics and latency very similar to programmatic implementation

of caching, demonstrating GPT’s ability to successfully execute system optimization tasks.

Model
Cache Policy Cache Hit Success Correctness Obj. Det LCC VQA Avg Tokens Avg Time
Read Imp. Rate (%) ↑ Rt (%) ↑ Rt (%) ↑ F1 (%) ↑ R (%) ↑ Rouge-L ↑ /Task ↓ / Task (s) ↓

Python Python - 72.49 85.40 85.11 99.46 72.64 28.76k 5.07
GPT-4 Turbo GPT-4 Python 96.59 72.16 85.41 83.00 98.69 72.35 28.73k 5.11

CoT - Few-Shot Python GPT-4 97.73 72.29 84.75 82.79 99.59 72.09 28.64k 5.09
GPT-4 GPT-4 96.16 72.16 85.48 82.95 99.72 72.72 28.92k 5.09

will motivate work for integrating LLMs into other system

design optimizations [23], from execution at the edge [24] to

energy/power optimizations and thermal management [25].

Limitations and future work. Our study focuses on agentic

performance and average latency for cloud-first environments

with extensive use of cloud endpoints. It is meaningful to

include more system performance metrics, such as energy

and power consumption. To this end, we will explore GPT

alternatives that can be run locally, such as Llama-3 and Phi-

3.5. Given that our approach implements cache operations as

callable API tools, we should be able to seamlessly incorporate

this with other non-GPT tool-augmented agents across differ-

ent computational environments. Last, we plan to extend our

evaluation beyond the geospatial domain to a wider range of

orthogonal tasks also considered in recent system-level LLM

optimization papers [10], [11].

VI. CONCLUSION

In this paper, we introduced LLM-dCache, a framework

designed to optimize LLM data access patterns through a

cache mechanism treated as callable API tools. By allow-

ing LLMs to autonomously manage cache operations, we

integrated caching with existing function-calling mechanisms,

enabling improvements in system efficiency across various

models and prompting techniques. Our work underscores the

potential of leveraging LLMs for system-level optimizations

in complex data-intensive environments.
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