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Abstract—In a mixed-traffic environment, where autonomous
vehicles (AVs) and human-driven vehicles are operating side by
side, cooperative driving can become a useful tool to facilitate safe
coordination. Unlike AVs, human-driven vehicles are difficult to
model and control. Existing literature is largely focused on col-
laboration between AVs considering human vehicles as obstacles
or unconnected and uncontrollable entities. In this paper, we
present a cooperative driving framework that actively influences
human-driven vehicles via advising commands and enables them
to cooperate with AVs to achieve coordinated driving behaviors.
We formulate cooperative driving as a stochastic model predictive
control (sMPC) problem and consider human drivers’ various
stochastic aspects, such as attentiveness and tendency to follow
an advisory action. The solutions to the sMPC provide advisory
for longitudinal actions and lane change to human-driven vehicles
and control commands to autonomous vehicles. With simulation
and human-in-the-loop experimental results, we examine human
drivers’ reactions in complex driving scenarios and demonstrate
the effectiveness of the developed method.

Index Terms—Cooperative driving, connected vehicles, au-
tonomous vehicles, stochastic model predictive control, hybrid
system, mixed integer programming.

I. INTRODUCTION

UTONOMOUS vehicles (AVs) are increasingly making

their way into the transportation systems. AVs are al-
ready a reality due to advances in sensors, computers, and
machine learning algorithms. In terms of safety, efficacy, and
accessibility, AVs have the potential to enhance transportation
efficiency for people all over the world. According to [1], more
than 33 million AVs will be sold worldwide by 2040, with 7.4
million sold in the United States, 14.5 million in China, 5.5
million in European nations, and 6.3 million in other foreign
markets. AVs and human-driven cars are anticipated to coexist
for a long time in the future. As a result, it is critical to explore
how to ensure safety in mixed traffic that includes both AVs
and human-driven cars. Cooperative driving between AVs and
human-driven vehicles can be an effective method to increase
transportation safety and efficiency.
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A. Problem Statement

In this paper, we examine cooperative driving between AVs
and human-driven vehicles in a connected environment. We
envision a human-driven vehicle that can communicate with
other vehicles and offer guidance to its driver. Such a vehicle
is referred to as an intelligent human-driven vehicle (IHV).
An [HV features an integrated copilot that monitors the states
of the human driver and issues advising directives to affect
the human driver’s actions. It can also sense its surroundings
and exchange information with nearby connected vehicles
via vehicle-to-vehicle (v2v) communication. We also consider
unconnected and uncontrollable vehicles in the surroundings,
which are called obstacle vehicles (OBS).

The THV dynamics is a sophisticated hybrid system de-
pendent on the human driver’s condition and actions. Human
states must be properly assessed for optimal coordination
between an IHV and AVs. Furthermore, the predicted human
behavior must be communicated between the coordinating ve-
hicles before being included into an optimal decision-making
problem. In this paper, we introduce a framework for assessing
and applying human state information into cooperative driving
to influence the behavior of the human driver in the IHV and
design the control inputs for the AVs.

B. Contributions

Modeling an THV is a difficult subject since it is dependent
on the human driving style. We suggest modeling the IHV as
a discrete system that shifts between distinct dynamics depen-
dent on the condition of the human driver. To generate control
inputs and advisory commands for the AVs and the IHV, we
employ discrete hybrid stochastic automata (DHSA) [2] as a
tool to formulate their interactions and develop a stochastic
model predictive control (sMPC) approach. In [3]-[5], we
outline the optimization of cooperative driving between an
IHV and an AV. In [6] we explore a three-vehicle merging
scenario and assess the performance with simulations and
experiments. In these prior efforts, we consider a fixed number
of vehicles and a specific lane merging scenario and focus
on the longitudinal states of the vehicles. Thus, only the
longitudinal control commands are designed to achieve a safe
gap for merging. While our previous work is effective in
creating gaps for merging, it lacks generality with respect to
the number of vehicles involved and does not consider lateral
advising, such as lane change.

Building on [3]-[6], in this paper we construct a multi-
vehicle, multi-lane lane-changing cooperative driving frame-
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work to accommodate more complex driving scenarios and
an arbitrary number of vehicles. The generation of safe and
efficient lane-changing and merging behaviors becomes more
complicated to model than in the previous work. We introduce
discrete lane states to indicate vehicles on different lanes,
and develop logical conditions consisting of both lane states
and longitudinal states to achieve coordination. Behaviors of
vehicles in adjacent lanes are considered and predicted to
produce both longitudinal and lateral control inputs for the
AVs and advisory commands for the IHVs. We also consider
surrounding unconnected and uncontrollable vehicles, making
the formulation applicable to more realistic road scenarios.

In this formulation, we model the human driver with two
stochastic human states: the driver’s attentiveness and the
probability of following advisory commands. These stochastic
states are estimated online using machine learning techniques.
We employ a residual network (ResNet-50) to detect distracted
driving behaviors by recognizing various characteristics in
video frames to evaluate the probability of human atten-
tiveness. We use a Hidden Markov Model (HMM)-based
probability model to recognize the human driver’s behaviors
and then compare them to previously recommended advisory
to estimate the driver’s tendency to follow advisory commands.

We conduct a sensitivity analysis to assess the perfor-
mance of our approach with respect to varying errors in the
transition probabilities of the human states. The sensitivity
analysis demonstrates robustness of our method against such
errors. To evaluate the effectiveness of our formulation, we
design and conduct simulations and human-in-the-loop (HITL)
experiments in an emergency driving scenario. The HITL
experiments demonstrate that our method enhances safety
by reducing the number of collision events in a complex
emergency driving scenario.

The main contributions of the paper are summarized below.

1) We develop a cooperative driving framework to address
multi-lane, multi-vehicle scenarios with a multi-state
human driver model, which significantly improves our
previous work [3]-[6]. This framework also consid-
ers unconnected and uncontrollable obstacle vehicles.
The framework provides optimal longitudinal and lane
change inputs and advising commands to coordinate the
AVs and the IHVs, making it capable of addressing
complex vehicle coordination problems.

2) We conduct a sensitivity analysis to reveal the impact
of parameter errors on the system performance.

3) We perform HITL experiments in a complex emergency-
stopping scenario and demonstrate the effectiveness of
our formulation.

The rest of this paper is organized as follows. We discuss
related work in Section II. A review of the DHSA method
is presented in Section III. The vehicle dynamic models are
described in Section IV. The formulation of vehicle coordi-
nation is developed in Section V. In Section VI, we present
the sSMPC for vehicle coordination. We assess the feasibility
of our formulation through simulation results in Section VII
and evaluate the effectiveness using HITL experiments in
Section VIII. Section IX presents the concluding remarks and
future work.

II. RELATED WORK

In this section, we discuss recent research in the field of
autonomous vehicles to accommodate human-driven vehicles
in mixed traffic.

A. Human driver modeling for autonomous vehicles

Appropriate modeling of stochastic components in human
actions is critical to facilitate cooperative driving. In the past
decade, researchers have worked on human driver modeling
for applications in driving assistance systems. In [7], the
authors model the interaction between the driver and the
vehicle in an assistance driving system using hidden mode
stochastic hybrid systems. Furthermore, by tracking both
human behavior and vehicle state, they improve decision-
making and infer the human condition. Partially observable
Markov decision processes (POMDPs) are utilized in [8] to
establish a unified framework describing machine dynamics
and human behavior in HITL control of semi-autonomous
vehicles. The authors of [9] simulate the human driver’s lateral
tracking reaction while taking physical limits and numerous
driver variables into account. These characteristics distinguish
human drivers and serve to identify human control behavior
for vehicle control. A human driver path following model
is explored in [10] as a blend of perception, decision, and
execution models. Reference [11] offers a driver model based
on human subject driving simulator experiments for both
lateral and longitudinal motions. They can identify distinct
driving behaviors for the human driver model by identifying
driver model parameters. The authors of [12] introduce a
model for human speed prediction combining a first-principle
approach with a Gaussian process (GP) machine learning
model and implement it in a chance-constrained MPC strategy
for AV, which enhances vehicle safety and efficiency in mixed
traffic and outperforms traditional MPC methods. The driver’s
mental state, the context or circumstance in which the vehicle
is in, and the surrounding environment are analyzed in [13]
to forecast human driving behavior over long time horizons.
In [14] the authors use transfer learning in conjunction with a
convolutional neural network to generate a model for driving
behavior recognition where the sample size is relatively small.

Although [7], [8] model a human driver as a hybrid system
and consider stochasticity of human drivers, they are applica-
ble only to a single vehicle and do not consider applications in
connected vehicles. References [9]-[12] explore different ap-
proaches of human driver modeling for specific driving tasks,
such as longitudinal and lateral tracking. References [13], [14]
develop different methods for human driver modeling based
on discrete human states. In this paper, we also make use of
discrete human states to model human-driven vehicles.

B. Human driver and AV interaction

The design of an autonomous vehicle is a challenging task.
With human-driven vehicles co-existing in the environment,
the problem becomes more complex. When the system is
unpredictable owing to human interaction or road circum-
stances, [15] formulates risk-bounded mobility strategies for
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AVs using a chance-constrained POMDP. In [16] the authors
consider modeling the interaction of a human-driven vehicle
with an AV in a game theoretic interaction model. The
authors determine how closely a human follows the game-
theoretic interaction model by defining the influence between
the human and the robot as unobserved latent variables. The
authors of [17] develop a lane-changing decision model for
autonomous vehicles (AVs) that accounts for surrounding
vehicles and trajectory planning using a multi-player dynamic
game model to enhance safety and efficiency in mixed traffic
scenarios. Reference [18] explores the evolving characteristics
of trust levels of human drivers on AVs and their impact
on driving behaviors. In [19], the authors explore the effect
of aggressive driving by human drivers on AVs in a mixed
traffic flow. The question that how AVs impact the behavior
of human-driven cars is investigated in [20]. They employ
planned interactions to affect human behavior to save fuel
consumption and trip time. Reference [21] examines how the
existence of AVs in mixed traffic influences the car following
model of human drivers.

In summary, [15]-[17] model the stochastic human-AV
interaction and develop decision models of AVs in different
scenarios. However, the human-driven vehicles are not actively
involved in the coordination. References [18], [19] explore
effects of human drivers and their driving behaviors on AVs
while [20], [21] explore the impact of AVs on human driver
behaviors. Coordination of these two types of vehicles is not
considered.

Fuzzy control has been utilized to address autonomous vehi-
cle decision-making in mixed traffic scenarios. Reference [22]
develops and tests a system that detects an approaching vehicle
at an intersection and uses fuzzy logic to design the maneuver
of the AV at the intersection. In [23], the authors explore risk-
aware fuzzy control of AV enabling it to identify potential
collision, assess its level of risk, and reduce the associated
risks by speed reduction or stopping the AV if necessary.
Reference [24] introduces a fuzzy control approach to design
automated longitudinal vehicle control for adaptive cruise con-
trollers. In [25], the authors present the effect of uncertainty
on the driver lane change model and develop a novel lane
change model incorporating dynamic vehicle characteristics
and fuzzy factors. Fuzzy controls are typically applied to
unknown system dynamics and modify the outputs based on
a rule set. In this paper, the vehicles are connected and their
dynamic models are assumed known. MPC controllers work
well in this case where the system dynamics are available.

C. Connected autonomous vehicles in mixed traffic

As AV technology moves towards a connected environ-
ment, recent research focus has mostly been on designing
coordination between connected AVs (CAVs). The authors
of [26] use multi-agent reinforcement learning to model CAV
lane-changing decision-making in a mixed-traffic highway
situation. In [27], the authors create a ramp inflow coordination
and merging control model for hybrid automatic driving. Their
methodology uses game theory to optimize both safety and
efficiency under various scenarios in order to discover the

best strategy. Reference [28] examines the control of linked
AVs to respond appropriately to unpredictable human-driven
vehicle motions. Reference [29] proposes a control strategy
for a freeway merging scenario with a dedicated CAV lane
and a human-driven vehicle lane, aiming to enhance fuel
economy and improve traffic efficiency. The trajectories of
CAVs are optimized to allow seamless merging into available
gaps in traffic. Reference [30] finds that optimal AV foresight,
vehicle density, and AV-to-HV ratio are key to maximizing
traffic flow and avoiding congestion in a mixed traffic scenario.
Reference [31] uses a cellular automaton model and finds that
CAVs improve traffic parameters such as velocity, flow, and
critical density, reducing congestion significantly compared to
human-driven vehicles. Reference [32] explores a controller
role for CAVs by synchronizing the speed and alignment of
CAVs and acting as platoon leaders to guide the human drivers
and regulate mixed traffic at intersections.

To summarize, [26]-[29] have focused on modeling coordi-
nation between CAVs in a mixed traffic scenario considering
human drivers’ stochasticity. References [30], [31] examine
the effect of CAVs on the traffic flow.

Existing literature has mainly focused on human-AV in-
teraction, human-driver reaction modeling, and the effects of
human drivers in CAV coordination in mixed traffic. In these
studies, human-driven vehicles are considered unconnected
and uncontrollable entities and the AVs are designed to adapt
to surrounding human-driven vehicles but without actively
involving the human-driven vehicles in cooperative driving.
In [20], [32], human drivers are influenced by AV maneuvers
to regulate the traffic flow. Our work, on the contrary, is
focused on human-AV cooperative driving in a connected
environment where a human driver is actively influenced by
advisory commands. To the best of our knowledge, we are
the first to explore and develop solutions to this challenging
cooperative driving problem.

III. REVIEW OF DHSA

A hybrid system contains both continuous and discrete
states and inputs. Modeling such a system with stochasticity
is challenging. Introduced in [2], DHSA is a popular mathe-
matical tool to formulate discrete hybrid stochastic systems.
In [33], [34], DHSA is used to model the hybrid nature of a
vehicle system. In our problem, there are continuous vehicle
states such as its position and velocity, and discrete states such
as vehicle’s lane, human driver’s attentiveness, and tendency
to follow advisory. Due to the hybrid nature of the combined
driver-vehicle system, we choose to employ DHSA to model
the vehicle dynamics. In this section, we present a brief review
of DHSA from [2].

A DHSA consists of four components: a switched affine
system (SAS), an event generator (EG), a mode selector (MS),
and a stochastic finite state machine (sFSM). The system’s
propagation model is defined with the SAS

Xeppr = AiXe, + Bigue, + fiy (D

where k € Zo4 is the discrete time index of the system.
The continuous states are denoted by x. € R, where n,
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is the number of continuous states. The continuous inputs
are denoted by u. € R™¢, where m. is the number of con-
tinuous inputs to the system. The system switches between
different modes defined by iy € I £ {1,2,---,s}. Based on
the current mode of the system #; the dynamics is defined
with {A;,B;, fi}ic;, which are constant matrices of suitable
dimensions.

The EG produces binary event signals &, based on the
continuous states and inputs, defined as

8ek = fEG(xck7uck) (2

where &,, € {0,1}" and n, is the number of generated binary
event signals. The event generation function frg : Rt —
{0,1}" is given by

[fho(xesue) = 1] ¢ [Hixe +Jiuc+KI < 0] 3)

in which H, € R"%*" J, € R"*™Mc and K, € R™ are constant
matrices defining linear threshold conditions. The superscript
j denotes the j”* row. The EG function triggers an event based
on the continuous states and inputs.

The MS is defined by a Boolean function fys :
{0, 1} +mpte s [ where nyp, is the number of binary states
and my, is the number of binary inputs. It takes the binary
states, binary inputs and binary event signals as inputs and
selects the mode i; for (1). It can be defined as

ik = fus(Xp,, up, , Oe,) “4)

where x;, € {0,1}" is the vector of binary states and u) €
{0,1}™ is the vector of binary inputs.

The sFSM is a Boolean function frgy : {0, 1}2%+m+ne
[0,1] satisfying

PlXb,, = %] = frsm(Xoy, upy > Ocy, Xp) (5)

where p[-] denotes the probability of a transition. The state

machine measures the probability of the next discrete state

taking a certain value based on the current binary states, binary

inputs, binary event signals, and the current discrete state.
An illustration of DHSA is shown in Fig. 1.

T

Py, = 2] = fsrsm (Toy, Upy, Oey s )

sFSM

l 8

ik = fars(Togs Wby s Ocy,)

ey, = fEG(Teys Ucy,)

i MS EG

Ty = Ai oy ¥ Biytie, + fiy,
i € {1,...,s} B

Ue
SAS

Fig. 1. Discrete hybrid stochastic automata (DHSA) [2].

IV. VEHICLE DYNAMICS
A. Vehicle dynamics of IHV

We model the IHV dynamics as a DHSA reviewed in
Section III. The states of the human driver are considered
discrete states. Based on the discrete states, the IHV dynamics
switch between several models. The IHV dynamics are defined
in the same manner as the SAS in the DHSA. We use the sSFSM
and MS of the DHSA to model the human state transition
events in the IHV.

The set of potential human states is denoted by one hot
encoded vector Sg = [s},s7,...,5%] " € Z" where s{,s7,...,5 €
{0, 1} represent discrete human states and n is the total number
of possible states. Only one element in S is 1, while the rest
are zeros. Each non-zero s};, where i € {1,---,n}, represents a
specific combination of behavioral aspects of the human driver
being considered.

Let the binary variable u? € {0, 1} define the advisory status
of the IHV for the time step k. If the advisory is on then uf =1,
otherwise u® = 0. We focus on two characteristics of human
driver behavior in particular: the human driver’s advisory
following state denoted by xP € {0,1} and the attentiveness
state denoted by a; € {0,1}. The human driver’s advisory
following state xf =1 indicates that the driver is following
the advisory and xf = 0 indicates that the human driver is
not following the advisory and rather driving on his/her own
will. The attentiveness state a; = 1 when the human driver is
attentive and a; = 0 otherwise. Considering xf and ay, there
can be four human states in total :

1) distracted (a; = 0) and not following (xf = 0)

2) distracted (a; = 0) and following (x¥ =1)

3) attentive (a; = 1) and not following (x¥ =

4) attentive (a; = 1) and following (xf =1)
Human drivers tend to behave similarly while distracted,
regardless of whether they follow directions or not. As a result,

we combine the four states into Sy = [s},s7,s7] defined as

0)

si=16 (a=0)A=0V1), 6)
si=le(@=1)Ax =0), (7)
si=le(@=1)AE=1). (8)

In (6), the ‘distracted following’ state and the ‘distracted not
following’ state are considered the same state. Depending on
the current human state, the dynamics of the IHV is given by

sp=1=x = A+ Buf, )
Vg1 = ufs (10)
st =1= 2 = A+ Byl (11)
Vgt = Ul (12)
si= 1=l = A + By, (13)
Yirr = Ay + (1= A)ug, (14)

where the longitudinal position and velocity with respect to the
origin are represented by x!' € R? and Aj, and By, are matrices
of suitable dimensions that define the IHV dynamics, the state
¥ holds the input applied from the previous step to account
for the delay, uz € R is the human input when the human is
distracted, uZ € R is the human input when the human is not
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distracted (attentive), and uf € R is the advisory commands
for the THV. The lateral lane state of the vehicles is discussed
with the lane advisory constraints in subsection IV-A2.

The human inputs can be estimated using different methods.
One approach is to employ an HMM-based probabilistic
transition model to predict the human driver’s future actions,
as presented in [6]. For this paper, we predict the human inputs
ug and uZ as a trajectory using the method presented in [4].

In (13) and (14) where 52 = 1, the human attempts to
obey a provided advisory control. There is a delay when the
human driver attempts to implement an advisory directive. As
a result, rather than being applied to the vehicle immediately,
the advising command is carried out gradually by the human
driver. More delays may occur as a result of computational,
transmission, and notification delays of the advised commands.
To account for these delay effects, we employ a first-order
system of the form (14). When we set the longitudinal reaction
constant A in (14) to 0, the driver applies the advised control
command u¢ exactly at the (k+1)™ step, i.e., with one step
delay. It is anticipated that the calculation, announcement, and
driver tracking of the advisory directives is completed in this
one step delay. As A increases to 1, the driver’s response to
the advisory action u{ is further slowed down. Thus, 4 € [0,1)
represents how fast the human in the IHV is adapting to the
advisory action u after it is announced. We can modify (14)
to accommodate longer delays. The first-order delay model
can be replaced by other human actuation dynamics, such as
the second-order dynamics in [9], [35].

Define )ZZ = [xfj; ¥¢]. We rewrite the dynamics (9)—(14) as

Sll/td
Kx
—h o Ah 0\ _ Bh Bh Bh 0 Skyk
xk+‘_<o o) %1 2T asa)
3.,a
SiUk
%
. Ap 0\ B, B, B, 0 ZI%
_<0 o)xk+(1 Al (1—1)) g U9
4
2k

where z} = slu, 72 = s3y¢, 7 = stull, and 7} = sjug. Based
on zi, z7, 7, z, and the initial conditions x2, we obtain the
solution to xﬁ and y{ as:

k—1 k—1 k-1
_ Ako_h k—j—1p =1 k—j—1p =2 k—j—1p =3
A=A+ Y AT B+ Y AT B+ Y AT Bz,
i=0 j=0 j=0

j
(16)

W=z +A5 +5_+(1-)7 . (17)

The THV dynamics are subject to constraints that are
categorized into four categories: 1) state constraints, 2) lane
advisory constraints, 3) human state transition constraints, and
4) chance constraints.

1) State constraints: The new variables z,i,z,%,z,f and 22
and their relationships with the states and inputs lead to state

constraints. The state and input limits are also included in
these constraints. These constraints are formulated as

2 < Mysh, 7 > myst, (18)
Z,lcguz—mu(l—s}(), z,lczui—Mu(l—s,l), (19)
2 < Mysy, 72> mysi, (20)
G <-m(l=s5p), T2y -M(1-5), @D
5 < Mus, 3> must, (22)
A< -m(-). F2d-M0-5) @3
2 < Mysi, 7> mys;, (24)
Z<ug—my(1—5)), Z>uf—M,(1-s3). (25

Here the upper and lower bounds of the input acceleration are
denoted by M,, and m, respectively.

Any state limits of the IHV can be enforced by the following
constraints:

<M, X =m, (26)

for some upper limit M and lower limit m.

2) Lane advisory constraints: To model the lateral state and
control of the vehicles, we introduce a discrete lane state for
each vehicle. Let L; € Z, be a discrete variable denoting the
lane index for vehicle v. Let n; be the total number of lanes
in the road. Then L} € {1,2,---,n;}. For example, L, = 1 and
L; = n; mean that vehicle v is on the leftmost and rightmost
lane, respectively.

When a vehicle performs a lane change to an adjacent lane,
it may take a number of time steps to complete, i.e., the lane
change is not instantaneous. Suppose that it takes f¥ € Z.
discrete time steps to complete the lane change. Let F) =
{k—=f"+1,k—f"+2,--- k}. We introduce a] € {1,2,--- ,n;}
as the advised lane index for vehicle v at time step k and design
the following constraints to accommodate non-instantaneous
lane changes:

ay—Liy <M1+ (Ly—Liyy)) Vg € F, (27)
ag =L > M1+ (Ly—Lyy)) Yge Y, (28)
ay—Liy <M(1—(Ly—Li.y)) Vg € Fy, (29)
ag—Li > —M(1—(Ly—Lyy)) Yge . (30)

From these constraints, we see that for a lane change to
complete at the (k+ 1)th step, ie., L] — Ly, = =£l, the
condition a; =L i1 Vg € I}/, must be satisfied. That is, before
completing the lane change, the vehicle must be advised for
J" steps to switch to lane L; . During these [ steps, the
vehicle transitions from lane Lj to L;_ ;.

3) Human state transition constraints: We consider human
state transitions from s}; to si 41 as stochastic events. To
model these transitions, we define one hot encoded variable
=l e}, .. ,tfz}, where n is the number of discrete human
states. Here, each element 7/ € {0,1}, V p € {1,2,....7n2},
indicates an event of transitioning from s}; =1— si =1
when uf =1 (advising on) where i, j € {1,2,...,n}. Similarly,
we define one hot encoded 7, = [f,l,f,g,...,fgz], where each
element 7;, € {0,1}, V pe{1,2,... ,n’}, indicates an event of

Authorized licensed use limited to: Oklahoma State University. Downloaded on August 25,2025 at 16:45:37 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TVT.2025.3584022

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY

ugzl,tl

LD
n

Attentive
Not
Following

<30

Attentive
Following

uf =1 &2

Fig. 2. Stochastic finite state machine for human state transitions. The blue
transitions indicate the transitions for uf =1 and the red transitions indicate
the transitions for uf =0.

transitioning from 52 =1— si 41 =1 when uf =0 (advising
off) where i,j € {1,2,...,n}.

The transitions in our system where n = 3 are illustrated as
an sFSM in Fig. 2. The total number of possible transitions
is 18. Among these transitions, the transitions that are not
possible to occur have probabilities of 0, which are not shown
in the sFSM. In total, there are 15 transitions.

Following the human state transition from the sFSM, each
transition from s{ to s, for uf =1 is encoded by the
binary event t,f . Therefore, the event t,f takes place only when
st =i, =uf = 1. This is similar to the MS function in
the DHSA. These transitions are converted to the following
inequality constraints:

shosituf <2+1f, 31
tf <si, (32)

f <sl., (33)

tf <up. (34)

Similarly, each transition from s;'( to si 4 when uf =0 is en-
coded by the binary event 7 and the event 7/’ takes place only
when s} = s,{ +1 = (1—uf)=1. This transition is formulated
using the following inequalities:

Sy bsh—ub <147 (35)
i <sp, (36)

< St 37

< (1—up). (38)

Each event pair {t/,7}, Vp € {1,2,...,3%} produces con-
straints similar to (31)—(38). Since only one event occurs in

the k" time step, it follows that
2 _ _ 2
R S e 7 A SRR e (39)

The transition probability of an event t,f is denoted by
P(t]) = P(sj,, = 1|si = 1,uf = 1). Similarly the transition

probability of an event 7 is denoted by P(i) = P(s],, =
1|st = 1,uf = 0). These transition probabilities indicate the
human’s driving pattern and level of compliance, which can
be estimated based on prior driving data. For simulation and
experimental demonstrations, we have chosen the transition
probabilities given in Appendix A.

4) Chance constraints: Chance constraints are used to
eliminate from the set of potential solutions any trajectories
that only happen with a small probability. The potential
human state transition events in our formulation are 7; =

1 n? 7l
[tk R A 7

-
are P = [P[t,g] P[t,t’z] P ... P[fl?z] - Following
[2], the probability of the state trajectory is

[]?2} and the transition probabilities

T TOT
- |~ (40)
K1 T¢_

where K is the look-ahead window in the MPC. Here, m; is
the dot product of the potential human state transitions T
with probabilities of those transitions. At step k, m; indicates
the likelihood of taking the transition described by 7;. The
probability of the whole T trajectory, m(T), is given by

K—1
n(T) =n(To,T1,.... o) = [ | 7 (41)

k=0

Then the chance constraint is formulated as
n(T) > p, 42)

with p € [0,1] being a probability bound. This chance con-
straint (42) enforces that T realizes with at least p probability.
For a look ahead window of K, the decision variables for
each THV are summarized as
G=wz 2B Ll s e C LR . T
where i € {1,2,...,n"} is the IHV index for total number of
IHVs being n. wf = [uf, u{ ,, -, u,x_,] and all the
other decision variables are defined similarly. The continuous
variables are uf, i}(, i%, iz, and ii while the rest are binary.

B. Vehicle dynamics of AV

We consider a linear dynamic model of an AV

Xp =Ax;+ By, (43)

where the longitudinal position and velocity with respect to
the origin are represented by x; € R?, A, and B, are matrices
of suitable dimensions that define the AV dynamics, and u” €
R is the input (acceleration) to the AV. Based on the initial
conditions x;, we obtain the solution to x; as

k=1
X =Axg+ Y AT B (44)
j=0
The AV is a comparatively simple system that is directly
controlled by the control inputs. Unlike the IHVs the AVs

only have state limit constraints and lane advisory constraints.
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The state limit constraints enforce respective state limits for
each AV:

<M, >m (45)

for some upper limit M and lower limit m.

Similar to the IHV, each AV has the discrete lane state Lz S
{1,2...,n;} for vehicle v and the advising lane index a; €
{1,2...,n;}. Each AV has similar lane advisory constraints
to (27)-(30).

For a look ahead window of K, the independent decision
variables for AV are B = [u} Ly a;] where j € {1,2,...,n"}
is the AV index for total number of AVs being n” and uj =
[uf, wup,y, -, u,, ;| and all other decision variables
are defined similarly.

C. Dynamics of OBS

The OBS is an unconnected and uncontrollable vehicle. We
assume that the current position and velocity of the OBS are
available. We consider a similar dynamic model of the OBS
to the AVs:

Xe1 = AoXg + Bouly, (46)

where the longitudinal position and velocity with respect to the
origin are represented by x} € R?, A, and B, are matrices of
suitable dimensions that deﬁne the OBS dynamics, and u° € R
is the input (acceleration) to the OBS.

V. VEHICLE COORDINATION

We address the coordination of AVs and IHVs in a driving
scenario illustrated in Fig. 3. The number of IHVs is n” and
the number of AVs is n”. We consider an OBS in the scenario
that suddenly stops in its lane. The main objective of all the
connected vehicles is to safely maneuver around the OBS.
Here, the AVs can be directly controlled via control inputs.
Adpvisory instructions can influence the driver’s actions which
change the IHV’s motion. The OBS is uncontrollable and the
connected vehicles have the position and velocity information
of the OBS.

We next present state and control constraints between adja-
cent vehicles and develop the coordination algorithm to find
optimal advisory instructions and autonomous controls for the
IHV and the AVs, respectively.

Fig. 3. A five-vehicle coordination scenario with 1 IHV, 3 AVs, and 1 OBS.

A. Coordinating constraints

To model the lateral coordination between vehicles, we
consider the relative lane position between any two vehicles,
say vl and v2. Define a two-dimensional integer vector
/"2 € {0,1}**! to indicate the relative lane states between
vl and v2. If they are in the same lane, /}'"? = [1 0]". If they

are in adjacent lanes, /"> = [0 1]". Otherwise [J!"> =[0 0] "
For the same-lane vehicles, the constraint [/ =[1 0]"
be enforced by the following inequalities
L =L <0+M(1 -1}, (47)
L' —L?>0-M(1-4}?), (48)
lv1v2+lv1v2 < 17 (49)

where [}¥? and ;7 are the 1st and 2nd element of [}1*?,
respectivély, and M is sufficiently large. These two constraints
ensure that when vl and v2 are in the same lane meaning
L' — L}? =0, the value of IJ}? is 1.

For vehicles in adjacent lanes, there are two possibilities:
L'—L1? =1 or L}' — L) = —1. For this discontinuity,
we introduce another two-dimensional binary vector oy 2 ¢
{0,1}>*! and define the following inequalities

L' —L?>e—-M(1—of}?), (50)
L' L2 <1+e+M(1-o}?), (51)
L —LV2 < —e+M(1—-a5}?), (52)
L >—l—g-M(1-o3}?), (53)
v1v2_|_a;1v2 \2/1]:2, (54)

where ai”lkvz and Océ’}k"z are the Ist and 2nd element of Ot,‘(’l"z
and € is a small number. These inequalities ensure that if LV1
LZ =1, then a}? =1 and if L' —Lj? = —1, then o5 ?* = 1.
Alsoif ' =L > Tor L)' — LZ2 —1, then o} = oc“,:2 0.
Particularly, (54) ensures that l;}kvz =1 only When vl and v2
are in adjacent lanes.

Based on the relative lane states, the longitudinal maneuvers
between the vehicles are designed. The goal of the vehicles
in the same lanes is to achieve a safe cruising distance
between the consecutive vehicles while the goal of the vehicles
in adjacent lanes is to achieve a safe merging distance in
this emergency stopping scenario. Let d; be the longitudinal
distance threshold for the same-lane vehicles and d, be the
longitudinal distance threshold for the adjacent-lane vehicles.
The safe distance d is calculated as

d=[dy da] ;" (55)

Thus, if the vehicles are in the same lane, d = dj; if the vehicles
are in adjacent lanes d = d,;; if the vehicles are at least two
lanes apart, d = 0.

To model the longitudinal coordination of the vehicles, we
introduce two binary variables b}* and b3y* and consider
the following constraints

X —x% < —d+MbjY, (56)
-2 >d- Mbgl,:z, (57)
bVIV2+bV1VZ (58)
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where x; denotes the longitudinal position and M is suffi-
ciently lairge When byy? =0 and by}* = 1, (56) becomes
x{l = x% < —d and (57) becomes x¥1k —x|% > d—M, which
holds trivially. Slmllarly, when b"l"2 =1 and b"l"2 0, (57)
becomes xﬁlk —xl P d and (56) becomes xl & —xl XS —d+M,
which holds trivially. Thus, when b"l"2 —i—bvm =1, |
x1k| > d. When bV1V2 = bV]V2 1, d—M < xfk xLZk <
—d+M.
For same lane vehicle pairs (i.e., [HV1-AV1, AV2-AV3 in
Fig. 3), we enforce the condition \xk X 1| > d by requiring
by +

bvle

NW<2 V>l (59)

This condition in conjunction with (56), (57), and (58) ensures
that b}'/2 + by¥* =1 for the same lane vehicles, which means
they maintain the safe distance d between them. It should be
noted that this constraint may not be satisfied for the initial
two time steps due to the computational delay and delay in
human reaction.

Adjacent lane vehicles do not need to maintain a safe
distance from the vehicles in the other lane until it is time
to merge. To reduce the time to reach the merging condition
between the adjacent lane pairs (e.g., IHV1-AV2, IHVI-AV3,
AV1-AV2 in Fig. 3), we introduce a cost function to minimize
by 4+ b5172 (among other objectives) in the objective function.

For all the vehicles, it is also necessary to model when to
change lanes. For a vehicle to change lanes, it must meet the
safe distance threshold from vehicles in the adjacent lanes. To
ensure this, we introduce the following constraints:

B+ < 1+[1— (' =LY )], (60)
bYl,f2+b"1V2<1+[ +(@t -, 61)
DI+ < 11— <va I2CEY) RN ()
B+ < T+ [1+ (L2 - L3 ) (63)

From these constraints, we see that when the lane change takes
place, ie., L;' —Lj}, = =1, the condition by}* +b5}* <1
must be satlsﬁed The inequalities (60)—(63) together w1th (58)
enforce that the lane change happens when by}? +byl? = 1
which means that the safe distance d is achieved.

B. Decision variables

We consider an MPC with a look ahead window of K steps.
The shared decision variables for each coordinating pair are

: vIv2 _ lpvIv2 vlv2 vlv2 v2vl v1v2 v2vl
summarized as ¥} o = [by} £ by 1 l12 o o],
viv2 V1 V1 v1v
where by~ = e blk+17 : b1k+I( 1], and the

other decision variables are defined similarly. For each neigh-
boring pair, the two vehicles have shared coordinating decision
variables. Let A; be the set of adjacent vehicles to vehicle
i. Then the full set of shared variables for vehicle i are

= [y'y?...] where ji,j»,... are distinct elements of
A;. The collection of all the % for all the vehicles in the
scenario forms the total coordinating decision variable I7.
The decision variables for all the AVs, IHVs, and coor-
dinating pairs form the total decision variable denoted by

I/
ek:{(xklaalga"'aa/l:laﬁklvﬁkza“'aﬁ/:lrark}'

C. Cost function design

The cost function can be designed based on user preferences
and the coordination scenario. For our example, we take into
account five objectives in the cost function:

1) Minimize the control inputs to the AV and IHV based
on their respective weights. This is a quadratic function
of O;

2) Maximize the probability of the stochastic events and
human input stochasticity. This is a linear function of
Ok

3) Minimize by x + by so that safe distance can be reached
quickly. This is a linear function of 6;

4) Minimize the number of lane changes.
quadratic function of 6.

5) Minimize the duration of vehicles in the right lane,
encouraging early lane changes. This is a linear function
of (-)k.

The objective function of the MPC is the sum of the afore-
mentioned five functions, which can be represented as

J(6) =

where Q € R"*™ and ¢ € R"™ are the designed objective
weights for n, total decision variables. The J(6;) in (64)
is optimized subject to the constraints formulated from the
vehicle dynamics in Section IV and the coordination of the
vehicles in Section V.

The weights are important factors in designing the best
vehicle maneuver as they determine the balance between
different objectives and map the control input according to
the preferred driving behavior of the user. Like many design
problems, these weights are user-defined parameters. Finding
an optimal set of weights is of interest but beyond the scope of
the paper. Techniques such as inverse reinforcement learning
and imitation learning can be leveraged to search for optimal
weights given desired user behaviors. In our simulations
and experiments, we manually tune the weights to generate
reasonable maneuvers and then fix them for evaluation.

This is a

6, 06 +c' 6, (64)

VI. INCORPORATING UNCERTAINTY IN HUMAN’S INITIAL
STATE

The human state is a stochastic parameter and may not be
determined with full certainty. We can only estimate the human
state to a probability. In the initial step k = 0, the probability
of a human driver following P(x5 = 1) and the probability of
a human driver’s attentiveness P(ap = 1) are estimated. The
P(xB =1) is estimated from the driver’s pedal data whereas
P(ag =1) is estimated from the real-time video of the driver’s
physical actions. A detailed explanation of the estimation
method is provided in our previous work [4]. To estimate the
driver’s tendency of following advisory commands, we adopt a
HMM-based probability model to identify the human driver’s
actions and then compare them with prior advised actions.
Furthermore, we use a residual network (ResNet-50) that
recognizes distracted driving behaviors by detecting distinct
features from video frames and estimates the probability
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of human attentiveness. We assume that the two estimated
probabilities are independent, resulting in

P(sy) = P(ap = 0), (65)
P(s3) = P(ag = 1)P(x§ = 0), (66)
P(s3) = P(ag = 1)P(xE = 1). (67)

To tackle the stochasticity of the human state, we consider
three sets of optimization variables that correspond to three
possible human states. If the human is in s', s, or s° state,
the optimized decision variables are denoted by Bkl, 9,(2 and 9,?,
respectively. We formulate a combined weighted optimization
problem based on the probabilities of each state from (65) to
(67) and solve the following optimization

J(le’ 9k27 9](3) = Esk ((ek)TQek + CT9k>

min
1 g2 g3
6,02.6]

=P(s}) ((61)7 00! +cTo})
+P(s}) ((62)7 Q02+ 67)

(68)

+P(D) (0D +cT8))  (69)
s.t. P(s}))Gy s_lekl < P(s})gk Gy (70)
k™ k™
P(st)Gx| ,_ OF <P(st)e|, (71)
k™ k™
PG, 6 <P, . (72)
k™ k™
U Y’ i
uj = |uy = |uy , (73)
uf s}(—l uf si:l ME si:l

where G0, < g, denotes the accumulated constraints formu-
lating the dynamics and coordination of the vehicles. The con-
straint (73) ensures that the control inputs to be implemented
on the AV and the IHV in the next time step are the same
for the three possible states. This is the final SMPC problem
which is formulated as a mixed integer optimization problem.

The sMPC solution includes the control inputs to the AVs
and the advisory commands conveyed to the IHVs for the
next K time steps. The optimal control input for the next
time step is applied to the AVs and the optimal advisory
commands are announced to the IHVs. At the next time
step, the optimization is repeated with the new human state
estimates and initial conditions and calculates the optimal
input for the next K time steps again. The sMPC solution
provides high-level coordinating plans and actions, which are
expected to integrate with low-level high-frequency motion
planners and controllers.

VII. SIMULATION RESULTS

In this section, we present simulation results and a sensi-
tivity analysis to assess robustness of our approach. A double
integrator model is used to simulate vehicle dynamics. The
SMPC optimization is solved based on the vehicle states,
human input prediction, and human state probability to provide
the input for the AV and the advisory command for the IHV.
For all simulations, the look-ahead window is K = 10 time

steps, and each time step is 0.8 seconds. The safe merging
distance is d; = 10m and d, = 15m. The initial velocity of all
the vehicles except OBS is set at 14m/s. We have conducted
preliminary experiments and observed that average human
drivers take 3 steps to change lanes. Thus, we set f¥ = 3.

We have also conducted an experiment to assess the effect
of A in (14). The experimental result is presented in Sec-
tion VIII-C. From that experiment, we observe that the use of
a tuned A for a specific driver can improve the performance
of the algorithm. However, tuning A for each driver requires
dedicated experiments and collection of sufficient driving data.
As we shall see in Section VIII-B, setting A = 0 produces satis-
factory results in the considered emergency stopping scenario.
Thus, we choose A = 0 for the simulations and experiments.

The simulations were run in Python on a PC equipped with
an Intel(R) Core i9-14900F CPU @ 2.00GHz, 32GB RAM,
and an NVIDIA GeForce RTX 4070 Ti SUPER graphics card.
To solve the SMPC optimization, we use the Gurobi solver
[36]. The computational time for the optimization varies in
different scenarios and is below 0.5 sec on average.

A. Emergency stopping simulation

In this section, we present the simulation results of the
emergency-stopping scenario shown in Fig. 4 to assess the
effectiveness of our formulation. The OBS is simulated to
suddenly stop on the right lane of the road. The connected IHV
and AVs coordinate to avoid the OBS and maneuver safely in
this emergency scenario.

Fig. 4. The simulated emergency stopping scenario: the initial distances and
lane configuration.

One set of simulation results is presented in Fig. 5, which
shows the simulated coordination maneuvers of the vehicles in
the considered scenario. Fig. 5(a) shows the positions and the
velocities of each vehicle at each time instant, where dashed
and solid lines indicate that the vehicle is in the right and
the left lanes, respectively, Fig. 5(b) shows which lane each
vehicle is in at each time instant, and Fig. 5(c) illustrates the
longitudinal and lane advising commands for the THV. From
the longitudinal advising of the IHV in (c), we observe that
the IHV is advised to slow down initially to avoid collision
with the OBS. From the lane advising of the IHV, the human
driver is advised to change lane for the initial 3 time steps. The
subplot (b) illustrates that at the 4th time step, the IHV shifts
lanes and moves to the left lane after the lane change advisory.
After that, as shown in (c), the IHV is advised to speed up in
the longitudinal advising. The AV maneuvers are shown in the
subplot (a). AV2 and AV3 are in the left lane so they speed
up and create adequate gaps for the other vehicles. Since AV1
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is in the right lane, it slows down first and then changes the
lane. After changing lanes at the 4th time step, it maintains the
speed. The coordinating behaviors of the vehicles demonstrate
that our method is able to produce proper and effective control
inputs and lane change commands in this emergency stopping
scenario.
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Fig. 5. Simulation results for the emergency stopping scenario. (a) The
longitudinal positions and velocities of the vehicles where the dashed line
indicates vehicles on the right lane and the solid line indicates vehicles on
the left lane. (b) The discrete lane state of the vehicles, and ¢) Longitudinal and
lane advising to the IHV. Upwards, downward arrows, and no arrow indicate
‘speed-up’, ‘slow-down’, and ‘keep speed’ advising actions, respectively.

B. Sensitivity analysis

Our algorithm requires the transition probabilities of the
stochastic events. Such probabilities are never known exactly.
We conduct a sensitivity analysis to assess the effect of
these parameters. This analysis measures how the accuracy of
the transition probabilities affects the optimization outcomes
for cooperative driving. We focus on a vehicle coordination
scenario involving 3 AVs and 1 IHV without the OBS, as
shown in Fig. 6. Their initial speed is 14m/s.

Fig. 6. Initial relative positions of the vehicles for the sensitivity analysis.

We consider multiple setups where the assumed human tran-
sition probabilities have errors and are different from the true
transition probabilities. We compare the performance with the
setup where the transition probabilities are correctly known.
We especially examine the control inputs to the different

vehicles. Specifically, we consider the transition probability
table in Table I below.

TABLE I
HUMAN STATE TRANSITION PROBABILITIES

v
=
1=}
Il
—
Z
v
=
L
Il
—
Z
v
=
1=}

Il
—_
Z

11c+ 1f+ i+
uB=11si =11 Peh)=01 T PZ)=0.1 | P(f)=038
s =1 [ P(t)=0.1 [ P})=0.1 | P(x)=0.8
;=1 Pe)=01 1 P)=P, | P())=P,
B=0]s=1] PGH=05] P@E)=05] PFE)=0
s=1 ][ PF)=05 ] P{#R)=05 P(i;) =0
=1 PEH=05] PFE)=05 PE)=0

We vary P, and P, in the following five setups:

1) P,=0.1 and P, =0.8,

2) P,=0.275 and P, = 0.625,

3) P,=0.45 and P, =0.45,

4) P, =0.625 and P, = 0.275,

5) P,=0.8 and P, =0.1.
We consider the true human model as Setup 1 and the
assumed human model for the optimization as Setup 2-5 with
increasing error in the transition probabilities P, and P,. We
conduct 50 Monte Carlo simulations to assess the performance
of the optimization and compare it with the optimization
results assuming the accurate transition model (Setup 1). In
particular, for each setup 2-5, we compare the optimized
inputs to different vehicles and calculate the input RMSE (root
mean squared error) as

Irmse = (74)

where I is the optimized input for the correct transition
model (i.e., Setup 1), I; is the optimized input for an incorrect
transition model (i.e., Setup 2-5) at the K" time step, and
Iryse is the input RMSE over the total merging time 7.

Fig. 7 shows the boxplot of the input RMSE of the four
vehicles over the 50 Monte Carlo simulations for varying
errors in the transition probabilities. The input RMSE statistics
of the THV are similar for different setups because human
action always follows the true transition model. However, from
the statistics of the AVs, we observe that the input RMSE
is low for Setups 2 and 3. If the transition probabilities are
significantly different from the true model, such as in Setups
4 and 5, the input RMSE increases significantly in magnitude.
Thus, the optimized inputs are reasonably close to the case
with the true transition model if P, and P, are set close to their
true values. This is because the AVs design their optimized
maneuvers considering the human driver’s stochastic transition
probabilities. In addition, the decision to advise the human
driver or not is the deciding factor for the optimal AV inputs.
Because this decision is discrete, it can tolerate a certain level
of inaccuracy in the transition parameters.

VIII. EXPERIMENTAL RESULTS
A. Overview of the cooperative driving platform

The cooperative driving testbed comprises of 1) an IHV
which consists of a driving simulator and a user interface in
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Fig. 7. Boxplots of RMSE of input velocities for different vehicles from 50
Monte Carlo simulations with different P, and P, (Setups 2-5). The RMSE
is obtained by comparing the velocities from Setup 2-5 (inaccurate models)
to the velocities in Setup 1 (true model). The horizontal axis corresponds to
Setup 2-5.
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Fig. 8. The cooperative driving simulation testbed.

the form of a copilot, and 2) multiple AVs and OBS running in
the driving simulator. As shown in Fig. 8, the driving simulator
includes a Logitech G290 driving force suit, which includes a
steering wheel, pedals, a gear shifter, and three interconnected
monitors for in-vehicle viewing, as well as an additional
monitor for data control and observations. The Carnetsoft
driving simulator [37] offers an open platform and features
a road map database, a script language, an interface to other
devices, and user-friendly configuration tools. This driving
simulator enables the control of vehicles and the retrieval of

their data.

Equipped with a visual display that features a circular chart
showing the current speed and advised speed, a speaker, a
camera, and a microphone, a user interface is implemented
using a Raspberry Pi 4B that manages the interface and
communication functions, and an NVIDIA Jetson Nano that
performs machine learning and computational tasks.

In the experiment, the distraction detection inference model
is executed on the Jetson Nano, while the sSsMPC model and
the driving action recognition model run on a remote desktop
computer specified in the simulation results section VII. The
computational time for the optimization in the experiments is
below 0.8 sec on average including the communication time.
The Raspberry Pi acts as a back-end component that receives
vehicle data from the driving simulator. It communicates with
the Jetson Nano to query the driver’s attentiveness and with
the remote computer for inputs and outputs. The Raspberry Pi
sends control commands back to the simulator for the AVs and
provides advice to the human driver through both audio and
visual cues. A detailed description of the simulation testbed
can be found in [38].

B. Human-in-the-loop emergency stopping experiments

To measure the effectiveness of our developed method,
we conduct HITL experiments with human driver volunteers
having proficient driving experience. We design three setups
for the experiments to simulate varying levels of vehicle coor-
dination and assess the humans’ performance under different
conditions in the emergency stopping scenario. These setups
are designed as follows.

« Setup 1 (collaboration-on and advising-on): In this setup,
the system considers the AVs and the IHV as connected
vehicles and generates optimal longitudinal and lane
inputs for the AVs and the optimal longitudinal and
lane advisory for the IHVs considering the human’s state
estimation and transition model. This setup simulates the
scenario where the AVs and the IHV collaborate with
direct control inputs and advisory directives to guide
the human driver. We use the human state transition
probabilities from Table III in Appendix A where the
probability of transitioning to the attentive-following state
P(s},, = 1) is high when the human driver is advised.

« Setup 2 (collaboration-on and advising-off): In this setup,
the system considers the AVs and the IHV as connected
vehicles but turns off the advisory inputs to the IHV.
The IHV is considered a non-collaborative but connected
vehicle. The system generates optimal longitudinal and
lane inputs for the surrounding AVs. This setup simulates
a scenario where the IHV provides no advisory to the
driver but the surrounding vehicles collaborate with each
other to maneuver around the non-collaborative IHV. We
use the human state transition probabilities from Table IV
in Appendix A where the probability of transitioning to
the attentive-not-following state P(s% 41 = 1) is high.

« Setup 3 (collaboration-off and advising-off): In this setup,
the system considers the AVs and the IHV as unconnected
vehicles. Like Setup 2, the IHV does not provide any
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advisory commands. The surrounding AVs do not collab-
orate to modify the maneuvers but rather keep a constant
speed and change lanes at a certain time if it is necessary
to avoid the OBS. This setup simulates a scenario where
none of the vehicles collaborate and the IHV provides no
advisory to guide the driver. We consider this setup as a
baseline method and compare the performance of Setup
1 and 2 with this setup.

The three setups are tested with 5 different drivers, each
driver repeating each setup 5 times. There are a total of 25 tests
for each setup. The AV inputs and the IHV advisory commands
are updated every 0.8 seconds based on the optimization from
sMPC. In Setup 1, when given an advising command, the copi-
lot announces ‘speed up’, ‘slow down’, or ‘keep’ to influence
the human to speed up, slow down, or keep speed, respectively.
Also, the copilot announces ‘change lane’ to influence the
human to change lanes. As the purpose of this experiment is
to test an emergency scenario, the experiment is specifically
designed such that participants have little preconception of
the experiment conditions. The obstacle vehicle either appears
suddenly or comes to a stop suddenly at a random time. The
volunteers were unaware of the setup of the experiment so
they had no prior knowledge of how the coordination would
happen.

We consider one experiment a success if the vehicles avoid
the obstacle without collisions in that experiment. In Fig. 9,
we show a successful experiment trial for the three setups.
From Fig. 9, the difference between the three setups can be
analyzed. The human driver is advised in Setup 1 whereas
Setup 2 does not announce the advising (see Fig. 9(i)(c) and
(ii)(c)). In both setups, the AVs collaborate with the human
driver to avoid the stopped OBS. Comparing Setup 1 and 2,
we see that both setups are capable of avoiding the OBS. In
Setup 2 even though the advisory is turned off, the AVs were
able to collaborate, considering the non-following state of the
IHV. Setup 3 does not have vehicle collaboration and the IHV
does not have any advisory. The AVs have a constant speed
while the IHV merge to the left lane at the 3rd time step and
then slows down slightly (see Fig. 9(iii)(a)). This successful
merge in Setup 3 is one of the very few successful attempts.

Table II shows the number of collisions between the vehicles
for the three setups. With Setup 1, there were no collisions
between the IHV and the OBS while there were two collisions
for Setup 2 and five collisions for Setup 3. Between the
IHV and the AVs, there were no collisions for both Setup
1 and Setup 2 while there were collisions for Setup 3. This
indicates that the coordination in Setup 1 and 2 is effective in
reducing the chances of collisions whether the advising is on
or off. However, turning on the advisory (Setup 1) is the most
effective in reducing collisions.

The overall performance of the three setups over the 25
experiments is shown in Fig. 10, where the data from the
successful experiments for each setup are averaged. From
Fig. 10(a), the median distances between the IHV and the
OBS in the three setups indicate that on average, Setup 1 has
the largest distance of merging. The variances indicate that
Setup 1 has the lowest variation of the distances among all the
setups, which suggests more consistent performance offered
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Fig. 9. One set of the HITL experimental results for the three setups.
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TABLE 11

EMERGENCY STOPPING EXPERIMENTS: COLLISIONS
Collisions Setup 1 Setup 2 Setup 3
between IHV-OBS 0 2 5
between IHV-AV1 0 0 1
between IHV-AV2 0 0 1
between IHV-AV3 0 0 0
Total 0 2 7

[ Overall success rate | 100% [ 92% (23/25) | 72% (18/25) |
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Fig. 10. Boxplots of (a) the distance between the IHV and the obstacle at the
time of merging, (b) the number of time steps that the IHV takes to merge,
and (c) the minimum distance between any adjacent vehicles (including OBS)
in the same lane in the emergency stopping experiments.

by the proposed cooperative driving method. From Fig. 10(b),
the medians of the numbers of time steps taken to complete
the merge in the three setups indicate that Setup 1 initiates
the merge faster than the other setups. Due to the advisory
directives, the IHV in Setup 1 mostly changes lanes at time
step 3. Overall, Setup 1 produces safer maneuvers and enables
a human driver to respond faster in this emergency-stopping
scenario. Fig. 10(c) shows the minimum distances between
any adjacent vehicles in the same lane. The median of Setup
1 is the highest, followed by Setup 2 and 3, which indicates
that the coordination method helps reduce the chances of close
merges between the vehicles.

These experimental statistics validate the performance of the
developed method in relevant driving scenarios with multiple
vehicles and indicate that cooperative driving with advisory
can enable faster reaction of the human driver and reduce the
chances of collisions. We have also conducted experiments
with /¥ =0, i.e., assuming instantaneous lane changes. Since
drivers take time to switch lanes, we observed more collisions
for Setup 1 and Setup 2. Thus, the lane advisory constraints
in (27)—(30) effectively reduce the chances of collisions in this
emergency stopping scenario.

C. Effect of A in the emergency stopping scenario

To analyze the effect of the longitudinal reaction constant
A in (14), we have conducted an experiment to optimize A,
where the human driver’s responses to advisory commands
were collected. Specifically, we advised a driver to cruise at
a specified speed. After the driver was at a steady speed,
he/she was advised to ‘speed up’ or ‘slow down’ with a
specific step input advisory. We conducted this experiment for
a range of control input advisories and collected the vehicle’s
data. Using these data, we computed a A, that minimizes the
squared error between the IHV’s velocity predicted from (14)
and the recorded IHV’s velocity for all the advisories. For
the participating driver, the optimized A was obtained as
A =0.414.

For the same driver, we conducted the emergency stopping
experiment in Setup 1 with A = A, and with A = 0. The driver
repeats the experiment 10 times for each A. The number of
collisions between the vehicles for the two A settings was
zero, which indicates that with the advisory, both settings were
successful in avoiding collisions. It also implies that the IHV’s
lateral motion plays the most vital role in avoiding collisions
in this scenario.

In Fig. 11, we compare the two A settings over the 10
experiments in terms of the merging distance between the IHV
and the OBS, the number of time steps that the IHV takes
to merge, and the minimum distances between any adjacent
vehicle pair in the same lane. We observe from Fig. 11(a)
that the median merging distance is higher for A = A, than
for A =0. Fig. 11(b) indicates that setting A = A, allows the
merges to initiate one time step faster than setting A = 0.
Overall, using the optimized A, improves the performance of
the algorithm. In Fig. 11(c), even though the median is higher
for A =0, the minimum and the first quartile are higher for
A = A, which suggests that setting A = A, can reduce closer
merges and thus enhance safety in the experiments.

IX. CONCLUSIONS AND FUTURE WORK

We present an sMPC formulation for cooperative driving
between AVs and IHVs considering the longitudinal and lateral
lane states. This formulation incorporates human states, such
as attentiveness and the tendency to obey advising directions,
while coordinating the motion of IHVs and AVs for optimal
maneuvers. The sSMPC approach accounts for the stochasticity
of human actions to provide optimal AV inputs and advisory
instructions for the IHVs. This formulation is capable of gen-
erating optimal decisions on the longitudinal and lane control
for both AVs and IHVs. Using simulations and experiments
in an emergency stopping scenario, we demonstrate that the
formulation is effective in reducing the number of collisions
and enabling earlier response from the human driver. Our
future work involves optimal weight tuning of the objective
functions and speeding up the optimization with machine
learning and distributed computation.
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