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Abstract—Noisy Intermediate-Scale Quantum (NISQ) comput-
ers currently available have a few thousand qubits, and could
potentially solve combinatorial optimization problems efficiently.
However, the sizes of the problems that could be solved are
limited by the number of qubits, their connectivity, high noise,
and short coherence times. In this work, we propose hybrid
quantum-classical algorithms based on the divide and conquer
paradigm for solving larger Maximum Independent Set (MIS)
and Maximum Weighted Independent Set (MWIS) problems
on graphs than would otherwise be possible on NISQ devices.
The machines include D-Wave Quantum Annealers and QuEra
Quantum Computers with Neutral Atoms. Our algorithms are
designed for separable graphs, which are classes of graphs
with good vertex separators; these include planar graphs, fi-
nite element meshes with good aspect ratios, nearest neighbor
graphs, and certain classes of geometrically defined graphs. The
algorithms recursively employ vertex separators to create a col-
lection of small subgraphs, from which NISQ computers obtain
disjoint maximal independent sets, which are then augmented
by independent vertices from the separators. We demonstrate
competitive results compared to the classical Luby’s algorithm,
and KaMIS, a state-of-the-art classical MIS solver, on graphs
with several thousand vertices. These divide and conquer-based
algorithms are also well-suited for distributed quantum computer
architectures.

Index Terms—Maximum Independent Set, Divide and Con-
quer, Quantum Annealing, Quantum Computing with Neutral
Atoms, Vertex Separators

I. INTRODUCTION

We describe divide-and-conquer (DC)-based quantum al-
gorithms to compute heuristic solutions of the Maximum
Independent Set (MIS) and Maximum Weighted Independent
Set (MWIS) problems on graphs with several thousands of
vertices. Since problems of these sizes do not fit on current
NISQ computers, we employ the DC framework to partition
the graphs (recursively) into roughly equal-sized components
of small enough sizes by finding vertex separators, and then
solve each subproblem on quantum computers. This approach
is effective for separable graphs, which are graphs in which a
small set of vertices could be removed to obtain two discon-
nected subgraphs with roughly equal numbers of vertices.

Current NISQ quantum computer systems are limited by
low qubit counts and high error rates, and are thus unable to
solve large optimization problems whose sizes are beyond the
capability of classical computers. Scaling the size of quantum
computers is a challenge because qubit coherence times, gate
fidelities, and processor yield rates deteriorate with increasing
qubit counts. A distributed quantum computer architecture that
brings together several smaller quantum processors represents
an alternative approach to solving larger problems. However,
performing remote qubit operations across quantum proces-
sors is more demanding in terms of time and fidelity than
doing such operations within a quantum processor. The DC-
based algorithms described here are also eminently suited for
distributed quantum computer architectures.

We report results from two types of quantum computers
for the MIS problem: D-Wave Quantum Annealers and QuEra
Quantum Computer with Neutral Atoms. Quantum Annealers
implement annealing algorithms to solve optimization prob-
lems by using quantum tunneling from a manifold of high-
energy states to ground or near-ground states. D-Wave Quan-
tum Annealers specifically minimize the energy of Ising Mod-
els and equivalently, solve Quadratic Unconstrained Binary
Optimization (QUBO) problems. On the other hand, QuEra
Quantum Computers with Neutral Atoms use the Rydberg
blockade effect to solve MIS Problems on unit disk graphs.
For gate-based quantum computers, Quantum Approximate
Optimization Algorithm [1], Quantum Imaginary Time Evolu-
tion [2], Quantum Random Access Optimization [3] and many
more [4] have been proposed, but their implementations are
hamstrung by the limited size, connectivity and coherence time
of the devices available today.

Given a graph G = (V,E), an independent set in G is a
subset of its vertices where no two vertices in the set are joined
by an edge. The MIS problem is to find an independent set
with the maximum cardinality, and it is NP-hard [5] to solve
exactly or even approximately. When there are weights on the
vertices, the MWIS problem is to find an independent set of
vertices with the maximum sum of weights, and it is also
NP-hard. Hence all algorithms discussed in this paper find
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heuristic solutions to the MIS and MWIS problems.
The MIS problem is closely related to the Minimum Vertex

Cover (MVC) and Maximum Clique (MC) problems. A vertex
set I is an MIS of G if and only if it is a maximum
clique in the complement graph Ḡ. Furthermore, a minimum
vertex cover of G can be obtained from the set of vertices
V \ I . These three problems have applications in diverse
areas including constructing virtual backbones from ad hoc
wireless networks [6], covering problems via clique partition
[7], matching molecular structures using clique detection [8],
macromolecular docking [9], and analyzing genome mapping
data [10]. Many exact and heuristic algorithms have been
proposed to solve MIS problems: clique enumeration [11],
[12], simulated annealing [13], [14], genetic algorithms [15]
and more.

Due to the infeasibility of solving MIS problems, we turn
to solvers that find a maximal independent set, a set of
independent vertices that is contained in no larger independent
set. Luby’s algorithm [16] is a randomized parallel algorithm
for finding such an independent set in polylogarithmic time.
However, it is not designed to maximize the cardinality of the
independent set. The Karlsruhe Maximum Independent Sets
(KaMIS) [17] package is a state-of-the-art software library for
solving unweighted and weighted MIS instances on classical
computers, and it will be described in Section III. Apart
from finding a maximal independent set, KaMIS also attempts
to maximize the set cardinalities and weights in a heuristic
manner. We will compare cardinalities or weights computed
by our algorithms with those obtained by Luby’s algorithm
and KaMIS.

The paper is structured as follows. Section II includes the
technical background on D-Wave Quantum Annealers and
QuEra Quantum Computers with Neutral Atoms. In Section III
we introduce the QUBO model for MIS problems, describe our
divide and conquer MIS and MWIS algorithms based on vertex
separators, and discuss earlier quantum algorithms for MIS
and other combinatorial optimization problems. In Section IV,
we describe two classical MIS algorithms: KaMIS represents
the state of the art among practical algorithms, while Luby’s
algorithm represents a significant theoretical contribution. In
Section V we compare our algorithms to Luby’s algorithm and
KaMIS using both D-Wave and QuEra quantum computers,
and in Section VI we conclude with future research directions.

II. BACKGROUND

A. Separable Graphs and Unit Disk Graphs

A vertex separator in a graph G = (V,E) is a subset of
vertices S whose removal from G leads to two subgraphs such
that no edge in G joins a vertex in the first subgraph to a vertex
in the second subgraph. k-way separators are a generalization
of separators to a higher number of subgraphs. For simplicity
of implementations, we fix k = 2 for the remainder of the
paper. We look for balanced separators, such that the larger
subgraph has no more than αn vertices, where n is the number
of vertices in G, and α is a constant such that 1/2 ≤ α < 1.
A subset of vertices S is a separator if and only if any path

between a vertex in the first subgraph and a vertex in the
second subgraph must include at least one vertex from S. A
class of graphs satisfies an nc-separator property for c < 1, if
every graph G with n vertices from the class has a balanced
separator S with at most O(nc) vertices, and each resulting
subgraph also satisfies such a property with respect to the
number of its vertices.

Planar graphs are graphs that can be drawn in the plane such
that their edges do not cross, and they have n1/2-separators.
Many graphs embeddable in three dimensions (such as fi-
nite element meshes with good aspect ratios) have n2/3-
separators [18]. It is NP-Hard to find MIS on planar graphs
with maximum vertex degree of 3 [19] or of large girth [20],
although polynomial-time approximation algorithms exist for
any approximation ratio c < 1 [21]. Nearest neighbor graphs
embeddable in three dimensions also have small separators,
and many graphs with small separators can be characterized
geometrically [22]. Although Erdös-Rényi random graphs do
not have small vertex separators, many graphs that occur in
scientific and engineering domains do. We consider graphs
with small separators in this paper, and will refer to them as
separable graphs.

We could also consider edge separators, which would be a
subset of edges such that its removal from the graph would
disconnect the graph into two or more connected subgraphs.
Small edge separators would be useful in solving other graph
problems by the divide and conquer approach described here,
but we leave that for future work.

QuEra quantum computers naturally compute maximum in-
dependent sets in unit disk graphs, and hence we discuss them
now. The vertices of a unit disk graph can be put in one-to-one
correspondence with a set of circles that have equal radii, such
that two vertices are joined by an edge if the circles intersect
or are tangent to each other. Unit disk graphs are not planar,
nor do they belong to the class of perfect graphs. Computing
the disk representation of a unit disk graph is NP-hard. Unit
disk graphs possess separators with O(

√
m+ n log n) vertices

(where m is the number of edges in G), and the separator
vertices can be chosen to lie along a line [23]. Solving MIS
problems exactly on UDGs is NP-hard [24]. Marathe et al. [25]
have designed 3-approximation algorithms for such problems.
However, unless the disk representation of these graphs is
given, the algorithm has a high time complexity of O(n4),
and is not practical for graphs with thousands of vertices.

B. D-Wave Quantum Annealer

Adiabatic Quantum Computation (AQC) [26], [27] is a
quantum computing model that can be used to solve opti-
mization problems. It relies on the Adiabatic Theorem [28]
to find the ground states of problem Hamiltonians, which is
often beyond the capabilities of today’s quantum computers.
Quantum Annealing (QA) [29]–[31], however, serves as an
intermediate step towards AQC. It is a heuristic algorithm for
finding approximate solutions to the following Ising problem:

min
s

E(s) =
∑
i

hisi +
∑
i,j

Jijsisj , si ∈ {−1, 1}. (1)
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QA can be considered as a quantum analog of the classical
thermal/simulated annealing [13], where the disorder is in-
troduced quantum mechanically instead of thermally. The D-
Wave Quantum Annealer is a physical implementation of the
QA algorithm and the latest Advantage System 6.4 features
more than 5600 qubits. However, qubits in the annealers are
connected sparsely using the Pegasus topology [32] with a
maximum degree of 15. Thus, it requires general Ising Models
to be minor-embedded on the Quantum Annealer [33], [34].
In this work, we use the software minorminer [35] for the
embedding task.

By mapping xi to 1+si
2 in Eq 1, one can obtain the

formulation for the Quadratic Unconstrained Binary Optimiza-
tion(QUBO) problem:

min
x

Q(x) =
∑
i

hixi +
∑
i,j

Jijxixj , xi ∈ {0, 1}. (2)

The general QUBO minimization problems are NP-hard [36].
Many combinatorial optimization problems have been formu-
lated as QUBOs [37]–[40], including the MIS problem, which
we will describe in Section III-A.

C. QuEra Quantum Computer with Neutral Atoms

QuEra Quantum Computers place atoms on a 2D plane
using optical tweezers [41], [42], each of which is initialized
to the ground state |0⟩. The system is then evolved under the
Hamiltonian [43]

H =
∑
v

(Ωvσ
x
v −∆vnv) +

∑
v<w

V (|x̄v − x̄w|)nvnw, (3)

where Ωv and ∆v are the Rabi frequency and laser detuning
at atom v. Also, nv = |1⟩v ⟨1| is the number operator at site
v, and V (x) = C/x6 with C being the constant interaction
strength. σx

v is set to |0⟩ ⟨1|+ |1⟩ ⟨0| which induces quantum
tunneling between spin configurations and x̄v encodes the
position of atom x. At the end of the simulation, atoms will
try to enter excited state |1⟩ with the constraint that two atoms
within the Rydberg blockade radius cannot be excited at the
same time. This is analogous to solving the MIS problem
on unit disk graphs. MIS problems on arbitrary graphs can
be transformed to equivalent unit disk graph instances with
at most quadratic overhead in the number of qubits [44].
However, since QuEra’s Aquila device currently supports only
up to 256 atoms, we restrict ourselves to native unit disk
graphs in the experiments.

III. METHODS

A. QUBO for the Maximum Independent Set Problem

Recall that in the MWIS problem, given a graph G =
(V,E,w), where w ∈ Rn

+ is the vector of vertex weights, we
want to find an independent set I which has the maximum sum

of weights
∑

u∈I wu. The MWIS problem can be formulated
as an integer program:

max
w

n∑
i=1

wixi

s.t. xixj = 0, ∀(i, j) ∈ E

xi ∈ {0, 1}, i = 1, . . . , n.

(4)

We can convert Eq 4 to the QUBO formulation in Eq 2 as
follows:

Q(x1, . . . , xn) = −
∑
i∈V

wixi +
∑

(i,j)∈E

Jijxixj , (5)

where (x1, . . . , xn) ∈ {0, 1}n. The variable xi = 1 if and
only if vertex i is included in the independent set. It has been
shown that if Jij > min{wi, wj}, for all (i, j) ∈ E, then the
independent set corresponding to argmin

(x1,...,xn)

Q(x1, . . . , xn) has

maximum weight [45]. Eq 5 can then be rewritten as:

Q(x1, . . . , xn) = −
∑
i∈V

wixi + p
∑

(i,j)∈E

min {wi, wj}xixj ,

(6)
with p as the tunable penalty coefficient. Although p > 1
guarantees the correctness of the QUBO formulation, its value
has a significant effect on the solution qualities on quantum
computers, as we will discuss in Section V-B2.

B. Divide-and-Conquer Algorithm

Algorithm 1 provides the pseudo-code for the algorithm
that solves MWIS problems on D-Wave and QuEra quantum
computers. We treat unweighted instances as a special case
of MWIS where each vertex has a weight of one. The input
graph is recursively partitioned via vertex separators until the
number of vertices is smaller than some pre-defined constant,
C. Each subproblem is then solved via QUBO reformulation
on D-Wave or natively on QuEra. To reduce the number
of accesses to quantum computers, when the problem size
is too small (fewer than 15 vertices), we solve the MIS
problem using exact, classical algorithms. For subproblems
solved on quantum computers, we request N solution samples
each time. Instead of selecting only the sample with lowest
energy (D-Wave) or solution cardinality (QuEra), we collect
the best α% of all samples, repair all of them by removing
adjacent vertices such that the remaining set is independent,
and then greedily improve each sample. Finally, we pick the
solution with the highest weight. This process has shown to
greatly improve the MIS solution qualities with linear-time
computational overhead.

Assuming we can find balanced separators for graph G =
(V,E) at each level and use a constant number of samples for
post-processing, the recursion tree will have a height of log n.
At each level, each vertex will be processed once therefore
the total overhead is O(n log n).
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Algorithm 1 MIS Solver using Quantum Computers

function SOLVE MIS(G = {V,E}, N , α, C)
// N dictates the total number of samples from quantum

computers and C is the cutoff for subproblems
if n ≤ 15 then

I ← Exact Maximum Independent Set(G)
else if n ≤ C then

I ← Solve MIS Quantum(G, N , α)
else

A,B, S ← Find Graph Separator(G)
IA ← Solve MIS(A, N , α, C)
IB ← Solve MIS(B, N , α, C)
for (v, u) in E, v ∈ S and u ∈ IA ∪ IB do

S = S \ {v}
IS ← Solve MIS(S, N , α, C)
I ← IA ∪ IB ∪ IS
I ← MIS Greedy Improvement(I , G)

return I

function SOLVE MIS QUANTUM(G = {V,E}, N , α)
Reformulate MIS on G to a QUBO Q by Eq 6
Itotal ← N samples from solving Q on quantum com-

puters
Ibest ← ∅
for I in lowest α% of Itotal in terms of energy do

I ← Repair Quantum Solution(I , G)
I ← MIS Greedy Improvement(I , G)
if weight(I) ≥ weight(Ibest) then

Ibest = I

return Ibest

function REPAIR QUANTUM SOLUTION(I , G = (V,E))
if I is an independent set of G then

return I
else

while I is not an independent set of G do
Remove v from I where v = argmax

v∈I
deg(v)

return I

function MIS GREEDY IMPROVEMENT(I , G = (V,E))
Sort V in descending order of weights
for v in V do

if (v, u) /∈ E, ∀u ∈ I then
I = I ∪ {v}

return I

C. Previous Quantum Solvers for MIS

Now we turn to previous solutions of MIS problems on
quantum computers.

The DC paradigm works well for solving combinatorial
optimization problems on certain classes of graphs called
separable graphs. See the discussion in Sec. II-A for more
details.

Tomesh et al. [46] have proposed a DC approach for solving
combinatorial optimization problems on distributed quantum

architectures. They use a QAOA formulation in which in each
iteration they solve a variational optimization subproblem on
each processor. The subproblems are obtained by partitioning
the circuit on a gate-model quantum computer. This approach
involves an exponential number of operations on the cut
qubits on different processors on which the constraints of the
combinatorial optimization problem are imposed. They have
described such an approach for the MIS problem in which
they employ edge separators to divide the graph into smaller
subgraphs.

The divide and conquer approach we have proposed for
MIS here has similarities as well as significant differences
with the QAOA approach of Tomesh et al. Both approaches
employ the divide and conquer paradigm, but we use the more
natural vertex separators for MIS rather than edge separators
employed by Tomesh et al. Our approach is capable of
computing maximal (rather than maximum) independent sets
by computing an independent set in each subgraph, and then
augmenting these with additional vertices from the separators.
The advantage of this solution is that the communication
operation among the quantum processors is simple. However,
it may be extended to do more involved local exchange
operations to potentially increase the size of the maximal
independent set.

We solve larger MIS instances on current quantum com-
puters than earlier authors, including Tomesh et al. Here the
subproblems are solved using a quantum processor, and the
partial solutions are augmented with additional vertices from
the small-sized vertex separators using a classical algorithm.
We have implemented our algorithm on a quantum annealer
and a neutral atom quantum processor. We compare our
algorithm against one of the state-of-the-art classical MIS
solvers, which we will discuss in the next section, and show
that our hybrid quantum-classical algorithm finds independent
sets of comparable sizes.

D. Divide and Conquer for Other Combinatorial Problems on
Quantum Computers

Now we discuss how divide and conquer approaches have
been used to solve other combinatorial problems on quantum
computers. For MaxCut problems, [47] solves them by decom-
posing graphs using edge partitions and obtains near-optimal
solutions on 29-vertex graphs using QAOA over exact simu-
lations. Similarly, [48] first partitions the graph into disjoint
components that have vertices no larger than available qubits
and solves MaxCut using QAOA for each subgraph. Each
subgraph is then contracted into a single vertex with edges
between them indicating the number of cuts. The merging
step can then be formulated as a new MaxCut problem where
vertices in each subgraph are allowed to change signs together
in order to improve the global solutions while preserving the
local solution objective. For 2000-vertex regular and Erdös-
Rényi graphs, the algorithm is able to generate solutions over
85% of those from a semi-definite programming solver and
bounds in [49]. [50] separates the graph into three disjoint
components V1, V2,K where K are computed with max-flow

90

Authorized licensed use limited to: Purdue University. Downloaded on August 25,2025 at 17:50:19 UTC from IEEE Xplore.  Restrictions apply. 



algorithms. The smaller sets between V1 and V2 (assuming
it is V1 without loss of generality) are then removed from
the graph and new weights for the edges in V2 ∪ K are
adjusted such that optimal objective for the smaller problem
remains same as the original problem, which requires solving
2|K| instances of MaxCut of size |V2|. The new graph can
then be decomposed again until the size is small enough for
quantum computers. The authors apply this method for 100-
vertex 3-regular graph and achieve 90 % approximation ratio
on simulators as well as non-trivial improvement over random
solutions on Quantinuum trapped-ion quantum computer H1-
1.

Other than MaxCut, [51] uses quantum backtracking for
tree search algorithms where the backtracking algorithm re-
cursively explores possible assignments and simplifies the
subproblem along the way. For some special cases, the authors
prove polynomial speedup over classical algorithms, though no
experimental results are provided. [52] clusters vertices defined
by general QUBOs via community detection and each cluster
is then reformulated as a Polynomial Unconstrained Binary
Optimization (PUBO) problem whose degree is bounded by
|Bc|, the cardinality of the boundary vertices belonging to
community c. It is able to reduce qubit counts by 40%
for solving MaxCut on 3-regular graphs. However, solving
PUBOs on either QA or gate-based quantum computers re-
quires quadratization of higher-order terms, which may incur
additional qubit overhead in real-world experiments.

On QuEra quantum computers, [43] and [44] discuss hard-
ware implementations, while [53] experiments with nine-point
grid graph with up to 289 vertices, achieving superlinear
speedup over classical simulated annealing (SA) on the hard-
est instances. For D-Wave Quantum Annealers (QA), [54]
presents the first results of solving MIS problems using QAs
on arbitrary graphs. QA is able to find optimal solutions on
graphs up to 40 vertices, but struggles to do so with larger
graphs (even with 50 and 60 vertices). [55] formulates the
wireless network scheduling problem as a MIS problem and
demonstrates the potential advantage of QA over SA on graphs
up to 30 vertices. [56] employs the DBK (Decomposition,
Bounds, K-core) algorithm to reduce the problem size and is
able to exactly solve the Maximum Clique problem on graphs
with 120 vertices and 6395 edges. Since the DBK algorithm
is exact, pre-processing time may scale superpolynomially in
the problem size, especially on denser graphs. For gate-based
quantum computers, Quantum Approximate Optimization Al-
gorithm and its variants have been proposed to solve MIS
and related problems on graphs [1], [57]. However, due to
the small number of qubits, sparse connectivity and low qubit
coherence times, experimental results on actual gate-based
quantum computers remain scarce.

IV. CLASSICAL SOLVERS FOR MIS

Since we compare the divide-and-conquer-based quantum
algorithms we have developed with two classical algorithms
for MIS, we discuss the latter now. Many classical solvers
have been developed for MIS problems, including Luby’s

algorithm [16], KaMIS [17], [58], Intel-TreeSearch [59] and
Learning what to Defer [60].

We consider Luby’s algorithm, a randomized parallel algo-
rithm for solving unweighted MIS, and KaMIS, a state-of-the-
art software package for solving both unweighted (using the
ReduMIS function to be described later) and weighted MIS
problems (using Weighted Local Search).

In Luby’s algorithm, each vertex v first marks itself with
probability 1/(2d(v)) unless it has a degree of zero, in which
case it is immediately placed in the solution set. In an iteration,
each marked vertex v notifies its neighbors of its current
degree. If a marked vertex v receives a message from a marked
neighbor with a higher degree, it unmarks itself. Otherwise, v
notifies all neighbors about its intention to join the independent
set. If v receives a message from a neighbor u that u is already
in the independent set, no action is taken, and a new iteration
begins. Luby’s algorithm terminates in O(log n) iterations with
probability greater than (1− 1

n ).
ReduMIS consists of two components: reduction and evo-

lution. During the reduction steps, the algorithm aims to find
a reduced graph (or kernel graph K) from the original graph
G such that any MIS found on K can be converted into an
MIS for G. The algorithm applies multiple reduction rules
sequentially and keeps track of a solution size offset γ such
that |MIS(K)|+γ is the solution size for G. For example, any
vertex v of degree one (a pendant vertex) is in every MIS,
and therefore v and its neighbors u can be removed from
G. Additionally, for a degree two vertex v and its disjoint
neighbors u and w, either v or {u,w} are in every MIS. The
vertices v, u and w can then be safely contracted to a single
vertex. Other reduction rules are discussed in Section 4.1 in
[17].

The second component - evolution - uses an evolutionary al-
gorithm to obtain an MIS once the kernel graphs are obtained.
The algorithm starts with a population of maximal indepen-
dent sets from greedy algorithms and evolves them until no
improvement can be made. At each round, two independent
sets are selected from the population which then exchange
blocks of vertices through vertex separators. Let I1 and I2 be
selected from the population, and let (S, V1, V2) denote the
separator and two disjoint subgraphs of G. We can create two
new independent sets O1, O2 from (V1 ∩ I1) ∪ (V2 ∩ I2) and
(V1 ∩ I2)∪ (V2 ∩ I1). Since they are not necessarily maximal,
O1 and O2 are improved further by additional iterations of
local search [61].

Instead of returning after performing the evolutionary al-
gorithm on K, ReduMIS selects an independent set of the
highest cardinality from the population, removes λ vertices
with the smallest degrees and their neighbors from K to obtain
a new kernel graph K ′, and re-runs the algorithm for K ′. (The
intent is that the vertices removed will be added to the new
independent set computed from the new graph.) The intuition
behind this is that the smallest-degree vertices are more likely
to belong to an MIS than higher-degree vertices. The process
iterates until no more reductions can be found. Typically, λ is
set to |V |/10 in ReduMIS. A pseudo-code for the algorithm
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is provided in Algorithm 2.

Algorithm 2 ReduMIS

function KAMIS SOLVE MIS(G = (V,E))
global S ← ∅
ReduMIS(G, 0)
Covert S back to a MIS for G and obtain SG

return SG

function REDUMIS(G = (V,E), γ)
if G is not reducible or time limit hits then

return
else

Compute a kernel graph K of G with a solution
offset θ

I∗ ← Evo MIS(K)
if |I∗|+ θ + γ > |S| then

Update S

U ← λ smallest-degree vertices in I∗

N(U)← neighbors of U in K
K ′ ← K[V \ (U ∪N(U)]
ReduMIS(K ′, γ + θ + |U |)

return
function EVO MIS(K = (V,E))

Greedily generate N maximal independent sets of K as
the initial population P

I1, I2 ← two largest independent sets from P
O1, O2 ← Block Swap(K, I1, I2)
Improve O1, O2 by local search
Evict smaller independent sets from P to make room

for O1, O2

I∗ = independent set from P with highest cardinality
return I∗

function BLOCK SWAP(G = (V,E), I1, I2)
Compute a 2-way vertex separator V = V1 ∪ V2 ∪ S
O1 ← (V1 ∩ I1) ∪ (V2 ∩ I2)
O2 ← (V1 ∩ I2) ∪ (V2 ∩ I1)
return O1, O2

KaMIS Weighted Local Search follows the same strategy
as ReduMIS - reduce first and solve second. A similar set of
reduction rules are defined in [58]. For example, if a vertex
v and its neighbors N(v) in the current solution I satisfy the
condition w(N(v) ∩ I) < w(v), then v can be swapped in
place of its neighbors. After reducing the graph, KaMIS uses
the hybrid iterated local search (HILS) heuristic [62] to find
the independent set.

V. RESULTS

A. Effects of Subproblem Cutoff on Solution Qualities

We expect the independent set sizes from Algorithm 1 to
increase as we enlarge the cutoff C and reduce the number of
recursion steps. In Figure 1, we run Algorithm 1 on four graphs
with varying cutoff sizes using simulated annealing [13]
implemented in dwave-neal and compare the weights of the
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Fig. 1: Weights of independent sets obtained from Algorithm 1
using various cutoff values C.

independent sets obtained from our algorithm to those of
KaMIS. It is clear that larger cutoffs yield better solutions,
and the growth rate decreases near the end due to the moderate
sizes of the test graphs. We use a cutoff of C = 200 for our
experiments on the D-Wave Quantum Annealer.

B. Results on D-Wave Quantum Annealer

We benchmark Algorithm 1 on the D-Wave Quantum An-
nealer Advantage System 6.4. Our test graphs are graphs with
small balanced separators, as described in Section II-A, and
are planar graphs or three-dimensional meshes downloaded
from the SuiteSparse [63] collection.

Solution qualities of D-Wave Quantum Annealers are af-
fected by several parameters, including annealing time and
the penalty coefficient in Eq 6. However, finding the best
parameters are usually as hard as solving the optimization
problem itself [64]. In the next two Subsections we provide
empirical support for our choices of these two parameters.

1) Setting Annealing Time: For optimization problems,
longer annealing time generally leads to higher probability of
success [65]. In Figure 2, we investigate the effects of varying
annealing times for subgraphs from the following graphs in
SuiteSparse: cegb3024, lock1074, lock2232 and man 5976.
The penalty coefficient in Eq 6 is set to 2.0 and the embedding
stays constant. We confirm, empirically, that longer annealing
time yields samples with lower energy, and in turn, better
cardinalities or weights. Therefore, we set the annealing time
to be 50 µs in our experiments.

2) Setting the Penalty Coefficient: Since the QUBO energy
in Eq 6 is dependent on the penalty coefficients, we probe the
effects of different penalty coefficients using independent set
weights instead of sample energy. After we collect samples
from QPUs, each sample is repaired as described in the
previous section using Algorithm 1. We compare weights
of independent sets against penalty coefficients in Figure 3.
Though no penalty coefficient works best for all instances, we
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Fig. 2: Effects of different annealing times on D-Wave sam-
pling qualities. For each annealing time, we called D-Wave
QPU 20 times requesting 100 samples each. The error bars
are bootstrap standard deviations of sample energy averaged
over QPU calls.
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Fig. 3: Effects of penalty coefficients on D-Wave sample
qualities. For each penalty coefficient, we called D-Wave QPU
20 times requesting 100 samples each. The error bars are
bootstrap standard deviations of sample energy averaged over
QPU calls.

observe that 2.0 is a good starting value that works well in
most cases, and it is used in our experiments.

3) Experimental Results: We benchmark Algorithm 1 on 13
unweighted graphs, described in Table I. Results are obtained
using simulated annealing and D-Wave Quantum Annealer
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Fig. 4: Comparison of independent set cardinalities obtained
from Algorithm 1 using simulated annealing, D-Wave Quan-
tum Annealer, KaMIS and Luby’s Algorithm. The y-axis
tracks the ratios of solution cardinalities of different solvers
against KaMIS, which is treated as the baseline. For KaMIS
and Luby’s algorithm, we run the programs ten times with
different seeds and report the best results found.

Advantage System 6.4. The cutoff C is set to 200 vertices and
the separators are computed using KaHIP [66]. One thousand
samples are collected from D-Wave over ten QPU calls for
each subproblem, and α is set to ten when determining the best
sample to return. Additionally, before pruning the samples,
we run steepest descent on each sample until local minima
are reached, and indicate these results as D-Wave with post-
processing (PP) in Figure 4. The solutions from QUBO solvers
are then compared with KaMIS and Luby’s algorithm. We are
able to outperform Luby’s Algorithm consistently and obtain
independent sets with cardinalities higher than 95% of those
obtained using KaMIS.

To generate weighted instances, we take the same graphs
listed in Table I, and randomly assign integers from one
to hundred to each vertex. The benchmark is presented in
Figure 5. The solution qualities drop slightly compared to the
unweighted instances due to the additional ruggedness in the
energy landscapes introduced by non-uniform vertex weights.

To measure runtime, we divide our algorithm into four com-
ponents: separator computation with KaHIP, embedding com-
putation, D-Wave sampling and post-processing (PP). D-Wave
sampling time includes both annealing time and programming
time. In Table II, we compare the runtime for solving MWIS
instances using KaMIS and Algorithm 1 with D-Wave. The
KaMIS algorithm relies heavily on graph reductions to solve
MIS problems on smaller kernel graphs using fewer iterations,
and this is the reason for its faster runtimes. For ukerbe1 and
grid2 dual, KaMIS is able to find a significantly smaller kernel
graph than other instances, and the algorithm terminates in one
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TABLE I: Statistics for graphs used in the experiments from SuiteSparse. Graphs are sorted in increasing order of |E| with
planar graphs at the top. For each problem we report its number of vertices, number of edges, maximum degree (∆), average
degree, standard deviation in the degree and source.

Name Planar |V | |E| ∆ Avg Deg Deg Std Source
ukerbe1 dual Y 1866 3538 4 3.79 0.41 2D finite element problem

plsk1919 Y 1919 4831 6 5.03 1.16 Platzman skew-symmetric finite difference three ocean model
ukerbe1 Y 5981 7852 8 2.63 0.97 2D finite element problem

grid2 dual Y 3136 6112 4 3.90 0.31 2D finite element problem
crack Y 10240 30380 9 5.93 1.89 2D finite element problem

Alemdar N 6245 18168 9 5.82 2.36 finite element problem from Bulent Alemdar
lock1074 N 1074 25275 95 47.07 15.88 finite element from Lockheed gyro problem
cegb3306 N 3306 35847 53 21.67 11.25 2D finite element problem
cegb3024 N 3024 38426 67 25.41 9.37 finite element from 2D reactor core section
lock2232 N 2232 39072 47 35.01 11.20 finite element from Lockheed tower problem
lock3491 N 3491 78514 112 44.98 12.88 finite element from Lockheed cross-cone problem
bcsstk28 N 4410 107307 93 48.67 9.68 Solid element model (MSC Nastran)

man 5976 N 5976 109582 50 36.67 10.92 finite element problem from Manteuffel
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Fig. 5: Comparison of independent set weights obtained from
Algorithm 1 using simulated annealing, D-Wave Quantum
Annealer, and KaMIS. For KaMIS, we run the program ten
times with different seeds and report the best results found.

iteration. It is worth noting that the time taken for solving
MWIS instances on D-Wave, once embedded, is constant
regardless the sizes of the problems. It is also observed that
the time to embed the graphs on the Pegasus topology of
the D-Wave Quantum Annealer is fairly large relative to the
other steps. This can be avoided by embedding the complete
graph on the D-Wave in every instance, but it would drastically
reduce the size of the subgraphs that could be solved.

C. Results on QuEra Quantum Computer

We use nine-point grid graphs with m rows and n columns
to benchmark Algorithm 3 and randomly remove p% vertices
from it. We confine test cases to such graphs in order to ensure
that any subgraph obtained from vertex separators are also
unit disk graphs, therefore eliminating potential embedding
overheads. Figure 6 is one such example with m = n = 16
and p = 20. The nine-point grid graphs are then embedded
on a square lattice which can be easily prepared on QuEra

TABLE II: Runtime (in seconds) for solving MWIS instances
using KaMIS and Algorithm 1 on D-Wave Quantum Annealer.

Name KaMIS Separator Embedding D-Wave PP
ukerbe1 dual 9.85 2.74 4.43 4.88 5.2

plsk1919 11.74 3.77 7.97 4.83 5.13
ukerbe1 0.11 7.32 15.05 11.63 12.32

grid2 dual 0.12 4.9 12.11 5.74 13.47
crack 7.64 25.91 71.59 20.52 22.64

Alemdar 60.28 13 49.65 11.23 24.53
lock1074 8.18 11.14 214.98 2.6 1.39
cegb3306 2.31 12.42 135.98 6.85 5.96
cegb3024 26.05 20.95 216.7 5.69 5.82
lock2232 5.55 17.1 187.19 5.55 2.94
lock3491 8.94 31 595.22 6.44 6.15
bcsstk28 11.57 57.07 759.4 9.41 6.04

man 5976 50.6 62.8 738.14 11.18 9.84

Quantum Computers. Due to the unique geometric constraints
of the chip where atoms are required to be placed at least 4 µm
apart on a 76 µm and 75 µm square, instead of finding vertex
separators using KaHIP as described in Section IV, we resort
to using vertical (a column) or horizontal (a row) separators
on the square lattice where the grid graphs are embedded.
Algorithm 3 describes our updated algorithm. One notable
change from Algorithm 1 is that cutoffs are defined in terms
of sizes for both dimensions of the grid graphs G = (m,n, p).
For a cutoff D, we use the quantum computer to solve MIS
problems on G if m ≤ D and n ≤ D.

Since our QuEra access lacks the ability to set the parame-
ters Ω and ∆ individually for each site as described in Eq 3,
we can only benchmark our algorithm for unweighted MIS
instances. For each subgraph, we request 200 samples from the
device and only count ones without defects in the pre-sequence
(in other words, samples whose initialization is correct). α
is set to 100 due to the smaller sample counts. Algorithm 3
requires the same post-processing time as Algorithm 1 as the
removed vertices in the nine-point grid graphs are randomly
chosen which ensures balanced separators at each level. The
test instances are described in Table III and results are pre-
sented in Figure 7. In all the instances, the quantum algorithm
on QuEra computes weights for MIS that are higher than
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Algorithm 3 MIS Solver using QuEra

function SOLVE MIS(G = (m,n, p), N , α, D)
// D is the cutoff for number of vertices in both dimen-

sions and α the number of samples for post-processing.
if m ≤ D & n ≤ D then

I ← Solve MIS Quantum(G, N , α)
else

A,B, S ← Find Grid Separator(G)
IA ← Solve MIS(A, N , α, D)
IB ← Solve MIS(B, N , α, D)
for (v, u) in E, v ∈ S and u ∈ IA ∪ IB do

S = S \ {v}
IS ← Solve MIS(S, N , α, D)
I ← IA ∪ IB ∪ IS
I ← MIS Greedy Improvement(I , G)

return I

function FIND GRID SEPARATOR(G = (m,n, p))
if m ≥ n then

S ← set of vertices on the
⌈
m
2

⌉
-th row

A← set of vertices above S
B ← set of vertices below S

else
S ← set of vertices on the

⌈
n
2

⌉
-th column

A← set of vertices on the left of S
B ← set of vertices on the right of S

return A,B,S

85% of the weights obtained from KaMIS. We also note
that the denser the graph, the worse the hybrid algorithm
performs. This can be attributed to the increasing number of
MIS solutions in dense graphs, i.e., MIS degeneracy, which
proves to be challenging to solve [53], [67].

TABLE III: Statistics for nine-point grid graphs with holes
used in the experiments, including number of vertices, number
of edges, maximum degree, average degree, and standard
deviation in the degree.

m n p Planar |V | |E| ∆ Avg Deg Deg Std
32 32 0.3 Y 307 338 6 2.20 1.29
32 32 0.5 N 512 980 7 3.83 1.52
32 32 0.8 N 819 2484 8 6.07 1.38
32 48 0.3 Y 460 530 6 2.30 1.27
32 48 0.5 N 768 1464 8 3.81 1.47
32 48 0.8 N 1228 3760 8 6.12 1.31
48 48 0.3 N 691 826 6 2.39 1.38
48 48 0.5 N 1152 2203 8 3.82 1.48
48 48 0.8 N 1843 5695 8 6.18 1.27

VI. DISCUSSION

In this paper, we propose a hybrid quantum-classical al-
gorithm based on divide and conquer to leverage the com-
putational capabilities of different quantum computers for
solving large-scale Maximum Independent Set and Maximum
Weighted Independent Set problems. Our method focuses on
separable graphs, i.e., classes of graphs with small vertex

(a) Original (b) With holes

Fig. 6: An example 16x16 nine-point grid graph with 20%
vertices randomly removed.
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Fig. 7: Cardinalities of independent sets obtained from Algo-
rithm 3 using QuEra Quantum Computer, KaMIS and Luby’s
Algorithm on nine-point grid graphs with holes. For KaMIS
and Luby’s algorithm, we run the programs ten times with
different seeds and report the best results found.

separators. We report results from planar and finite element
meshes, which have provably small separators. The algorithm
exploits vertex separators to efficiently divide the original
problem into balanced subproblems that can be solved on
current quantum computers. The MIS for the entire graph
is obtained from the union of independent sets from the
subgraphs together with independent sets computed from the
separators. We benchmark our algorithms using both the D-
Wave Quantum Annealer and the QuEra Quantum Computer
with Neutral Atoms on graphs with up to 10,240 vertices
and compute solutions comparable to those obtained from
KaMIS, a state-of-the-art classical MIS solver. Furthermore,
we demonstrate the scalability of our algorithms (Figure 1)
which enables them to take advantage of new NISQ hardware
with higher qubit counts, connectivity and coherence times.
As we employ such hybrid algorithms in the NISQ-era,
new generations of quantum hardware may finally bring the
capabilities of solving classically intractable problems with
potential quantum speed-up [4], [53].
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Future research includes applying the vertex separator-
based divide and conquer framework to other graph problems,
including Maximum k-Colorable Subgraph and Minimum
Dominating Set. Another interesting extension of this work is
to graph problems where the use of edge-separators to obtain
small subproblems is advantageous. In Section IV, we also
mention algorithms for gate-based quantum computers which
we have not implemented yet.
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