
2
0
2
4
 
J
I
N
S
T
 
1
9
 
P
1
0
0
1
7

Published by IOP Publishing for Sissa Medialab

Received: July 4, 2024
Accepted: October 2, 2024

Published: October 15, 2024

The SNEWS 2.0 alert software for the coincident detection
of neutrinos from core-collapse supernovae

M. Kara ,𝑎,∗ S. Torres-Lara,𝑏,∗ A.L. Baxter,𝑐 S. BenZvi,𝑑 M. Colomer Molla,𝑒 A. Habig, 𝑓

J.P. Kneller,𝑔 M. Lai,ℎ R.F. Lang,𝑐 M. Linvill,𝑐 D. Milisavljevic,𝑐 J. Migenda,𝑖 C. Orr,𝑐

K. Scholberg, 𝑗 J. Smolsky,𝑘 J. Tseng,𝑙 C.D. Tunnell,𝑚 J. Vasel𝑛 and A. Sheshukov𝑜,𝑝

𝑎Institute for Astroparticle Physics, Karlsruhe Institute of Technology,
76021 Karlsruhe, Germany

𝑏Department of Physics, University of Houston,
Science and Research Building 1, 3507 Cullen Blvd Room 617, Houston, TX 77204, U.S.A.

𝑐Department of Physics and Astronomy, Purdue University,
525 Northwestern Ave., West Lafayette, IN 47907, U.S.A.

𝑑Department of Physics and Astronomy, University of Rochester,
500 Wilson Blvd., Rochester, NY 14627, U.S.A.

𝑒Université Libre de Bruxelles,
1050 Bruxelles, Belgium
𝑓Department of Physics and Astronomy, University of Minnesota Duluth,
1023 University Dr., Duluth, MN 558012, U.S.A.

𝑔Department of Physics, NC State University,
Raleigh, NC 27695, U.S.A.

ℎDepartment of Physics and Astronomy, University of California Riverside,
Riverside, CA 92521, U.S.A.
𝑖e-Research, King’s College London,
London, U.K.
𝑗Department of Physics, Duke University,
Durham, NC 27708, U.S.A.

𝑘Department of Physics, Massachusetts Institute of Technology,
77 Massachusetts Ave, Cambridge, MA 02139, U.S.A.
𝑙Department of Physics, Oxford University,
Oxford OX1 3RH, U.K.

𝑚Department of Physics and Astronomy, Rice University,
Houston, TX 77005, U.S.A.

𝑛520 S Walnut St #1444, Bloomington, IN 47401, U.S.A.
𝑜Joint Institute for Nuclear Research,
Dubna, Moscow region 141980, Russia

𝑝Institute for Nuclear Research of the Russian Academy of Sciences,
Moscow, 117312, Russia

E-mail: melih.kara@kit.edu, sptorres@cougarnet.uh.edu

∗Corresponding author.

© 2024 The Author(s). Published by IOP Publishing Ltd on behalf of
Sissa Medialab. Original content from this work may be used under the

terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this
work must maintain attribution to the author(s) and the title of the work, journal citation
and DOI.

https://doi.org/10.1088/1748-0221/19/10/P10017

https://orcid.org/0009-0004-5080-9446
mailto:melih.kara@kit.edu
mailto:sptorres@cougarnet.uh.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1748-0221/19/10/P10017


2
0
2
4
 
J
I
N
S
T
 
1
9
 
P
1
0
0
1
7

Abstract: The neutrino signal from the next galactic core-collapse supernova will provide an invaluable
early warning of the explosion. By combining the burst trigger from several neutrino detectors, the
location of the explosion can be triangulated minutes to hours before the optical emission becomes
visible, while also reducing the rate of false-positive triggers. To enable multi-messenger follow-up of
nearby supernovae, the SuperNova Early Warning System 2.0 (SNEWS 2.0) will produce a combined
alert using a global network of neutrino detectors. This paper describes the trigger publishing and
alert formation framework of the SNEWS 2.0 network. The framework is built on the HOPSKOTCH
publish-subscribe system to easily incorporate new detectors into the network, and it implements a
coincidence system to form alerts and estimate a false-positive rate for the combined triggers. The
paper outlines the structure of the SNEWS 2.0 software and the initial testing of coincident signals.

Keywords: Neutrino detectors; Real-time monitoring; Software architectures (event data models,
frameworks and databases); Trigger algorithms

ArXiv ePrint: 2406.17743

https://doi.org/10.48550/arXiv.2406.17743


2
0
2
4
 
J
I
N
S
T
 
1
9
 
P
1
0
0
1
7

Contents

1 SNEWS introduction 1
1.1 SNEWS 1.0 2
1.2 SCiMMA and hop-client 2

2 SNEWS publishing tools 3
2.1 Credentials 3
2.2 Publishing 4
2.3 Subscribing 5
2.4 Remote commands 5
2.5 Retraction and skipped heartbeat warnings 7

3 SNEWS coincidence system 8
3.1 Coincidence data flow 8
3.2 SNEWS operations 10

4 Firedrills 10

5 Conclusion 11

1 SNEWS introduction

The Supernova Early Warning System (SNEWS) is a global network of detectors that aims to provide
early warning of nearby core-collapse supernova (CCSN) explosions. The neutrino signal from a
core-collapse supernova, which significantly increases at the point of explosion, provides a valuable
early warning for such celestial events [1].1 SNEWS aims to quickly distribute the early warnings
across a network of neutrino and dark matter detectors. Each detector is independently sensitive to
CCSN neutrinos. Taken together, the combined signal provides richer information than any single
experiment could achieve alone.

In its original form, SNEWS [2] started in 2001 and has been fully operational since 2005, searching
for a coincident signal between the participating experiments. However, its current implementation
demands a low false alarm rate from its participants and relies on outdated hard-to-maintain code. To
address these limitations, a new version of SNEWS, called SNEWS 2.0, was developed [3]. This new
system not only detects time coincidences between signals sent by different detectors but also provides
a new functionality to combine the signals, such as significance stacking and directionality.

This paper focuses on two Python packages: the SNEWS Publishing Tools (snews_pt), a
client-side library designed to communicate observation messages, and the SNEWS Coincidence
System (snews_cs), a server-side program responsible for monitoring and identifying coincidences
among the received messages. Developed to facilitate user participation, these packages play crucial
roles in managing data interaction and enhancing the efficiency of the SNEWS network.

1Neutrinos are emitted in vast quantities from a star as it collapses, reaching a peak coinciding with the supernova
explosion. This signal precedes the optical visibility of the supernova, making it crucial for early detection.

– 1 –



2
0
2
4
 
J
I
N
S
T
 
1
9
 
P
1
0
0
1
7

1.1 SNEWS 1.0

The original SNEWS network [2] started at a workshop in 1998, where neutrino experimentalists,
supernova theorists, and astronomers sought to exploit the capability of existing detectors to detect
the early galactic CCSN signature provided by neutrinos. Neutrino experiments are sensitive only to
nearby (in the Milky Way) core-collapse SNe, estimated to occur 1.63±0.46 times per century [4].
Given the rarity of such events, individual experiments exercise caution in declaring the detection of
signals, mindful of the significant implications of a potential discovery error.

Human validation at a single experiment might take hours, potentially eliminating the valuable
warning provided by neutrinos. However, the occurrence of signals across multiple experiments
concurrently significantly diminishes the likelihood of false alarms. This allows an automated
coincidence system to issue a prompt alert to the world, maximizing the time dedicated to observing
the electromagnetic fireworks.

This first instance of SNEWS was written in the C programming language using raw network
sockets, with an API and command line client provided so that participating experiments could send
a very simple TCP datagram over unix network sockets to a central server (running at Brookhaven
National Lab) as well as a backup (at INFN Bologna). The datagram contained the time of the
observation and several optional fields that in practice never got used. The server kept track of the
experimental alerts and, if two or more arrived within 10 s, would report that to an email list of
interested parties. Currently, there are nearly 7,000 subscribers to the mailing list, which, given the
fact that a nearby CCSN has not occurred since 1987, might be the lowest-traffic mailing list ever to be
on the Internet. SNEWS came online in a test mode in 2001, and has been fully operational since
July 1, 2005, making it one of the first and longest-running Multi-Messenger Astronomy (MMA)
projects. No CCSN has occurred in our galaxy since that time, nor has SNEWS reported a neutrino
coincidence that would suggest one had. Experiments restrict themselves to less than approximately
one false alarm per week, which results in a Poisson probability of accidental coincidence of less
than the actual SN rate (one per century).

This network continues to operate and will continue to operate until the new SNEWS 2.0 is well
established. However, there are several reasons to upgrade. First, the original code, written 25 years ago
for now obsolete VMS, IRIX, and AIX computers, is hard to port to new experiments. In addition to
maintainability, the current proliferation of MMA projects has changed the community’s perception of
alert publishing. When SNEWS started, one false alarm would have been the death of the project. Now,
people realize that to maximize results, false alarms can be tolerated, provided that confidence levels are
provided so consumers can choose their own appropriate action. Furthermore, with the increased size
of modern experiments, the once statistically intractable problem of using neutrino arrival times to point
back to an area in the sky is now possible, with a similar uncertainty to the LIGO/VIRGO gravitational
wave skymaps [5–7] that enabled the identification of electromagnetic counterparts. Finally, a wide
range of automated follow-up observatories are now active and chasing after gamma-ray bursts, grav-
itational waves, and high-energy neutrinos. Thus, the SNEWS 2.0 effort [3] to address these changes.

1.2 SCiMMA and hop-client

To establish communication with detectors and members of the astronomy community, SNEWS uses
Scalable Cyberinfrastructure to support Multi-Messenger Astrophysics (SCIMMA) [8] architecture,
which provides a scalable data stream backend called HOPSKOTCH along with a Python API hop-client.

– 2 –



2
0
2
4
 
J
I
N
S
T
 
1
9
 
P
1
0
0
1
7

HOPSKOTCH is a cloud-based instance of a Kafka [9] data stream designed to support MMA
initiatives by providing users with low-latency communication through publish and subscribe protocols.
Kafka data streams or channels act as real-time data pipelines, allowing users to distribute their data
across a secure network. For instance, a user can publish a message through a Kafka channel using
the hop-client API, enabling a Python implementation of Kafka channels for publishing (sending)
and subscribing (receiving) data. Users subscribed to that channel will receive the messages posted
there. The hop-client has been an integral tool for the SNEWS 2.0 upgrade [10], thanks to its intuitive
functionality and the continuous support from the SCIMMA developers.

The ensuing sections 2 and 3 provide a detailed overview of the SNEWS Publishing Tools
(snews_pt) and the SNEWS Coincidence System (snews_cs), which are critical software components
designed to enhance the robustness and responsiveness of the SNEWS network. By optimizing
the interactions between detectors and the central server, these tools facilitate rapid and reliable
communication across the global array of neutrino detectors, ensuring that potential supernova alerts
are processed and disseminated with high efficiency and accuracy. This discussion highlights the
operational mechanics and functionalities of snews_pt and snews_cs, underscoring their pivotal
contributions to the multi-messenger astronomy objectives of SNEWS 2.0.

2 SNEWS publishing tools

The SNEWS Publishing Tools, snews_pt, is the Python front-end software designed to enhance the
interaction between detectors and the SNEWS servers. The tools enable detectors to easily publish
observation messages and their data-taking status (referred to as Heartbeats), as well as subscribe to
alerts issued by the server. These alerts are triggered by the SNEWS Coincidence System, snews_cs,
software running on the server described in the next section.

The snews_pt provides flexibility by offering its users a choice of using either a Python API or a
command-line interface. The software encompasses three main functionalities: subscribe to alerts,
publish heartbeats, and transmit observation messages. In addition to these core functionalities, the
software offers utility functions called “commands”, which fall into two distinct categories. The first
category consists of commands designed primarily for developers to facilitate testing. An example
of such a command is a cache_reset request to clean its cache and initiate a fresh start, enhancing
the testing experience. The second category includes commands that provide valuable information
to users such as test_connection to validate connection with the server. Further details on each
functionality and the primary purposes of the existing commands are discussed in 2.4.

The software also includes an “environment” file containing high-level configuration information,
such as precise URL addresses for observation and alert channels deployed for various purposes.
Consequently, users need only specify their intended use of the tools, as the functions can easily
retrieve the necessary information at runtime. Including such a configuration file also enhances the
flexibility for future production scenarios.

2.1 Credentials

Through the HOPSKOTCH system, users can obtain authorized access to specific channels within
the SNEWS network, including read and write permissions. The SNEWS network relies on two
distinct Kafka channels for exchanging messages. The first channel grants write access, allowing
specifically authorized users affiliated with recognized member experiments to securely submit their

– 3 –



2
0
2
4
 
J
I
N
S
T
 
1
9
 
P
1
0
0
1
7

Table 1. Detailed specifications of message arguments for the SNEWS network. This table categorizes each
argument by required or optional status across different message tiers, highlighting how detectors should format
their observational data for submission.

Format Coincidence Significance Timing Heartbeats Retraction
detector
name

str Required Required Required Required Required

initial
neutrino time

str Required - Required - -

machine time str Optional Optional Optional Optional Optional
observation

p-value
float [0,1] Optional Optional Optional - -

p-values for
time bins

list [float] - Required - - -

width of time
bins

float - Required - - -

neutrino time
series

(histograms)

list
[str (int)]

- - Required - -

detector
status

str
(ON|OFF)

- - - Required -

retract latest int - - - - Required

observation messages and heartbeats. The second channel grants read access to users, serving as the
conduit for the transmission of alert messages that prompt users to take necessary actions. This design
enables users to stream their observations into a unified channel while simultaneously subscribing
to incoming alert notifications from the other channel.

The SNEWS Coincidence System is the only participant allowed to read from the first channel and
write to the second. This permission configuration ensures the efficient flow of critical information
within the network.

2.2 Publishing

To facilitate the publication of experimental information, active SNEWS members can interact with the
messages module, using its SNEWSMessageBuilder class. This class provides a flexible method for
constructing and validating messages, enabling users to create messages tailored to various purposes.
Different data tiers are discussed in [3] and are also shown in table 1. snews_pt identifies the
intended tiers based on the provided inputs, ensuring that messages are generated in suitable formats to
accommodate different requirements. Furthermore, the system performs a comprehensive validation
of the message input during construction, promptly identifying incorrectly formatted or missing inputs
and notifying users. This not only secures accurate data processing but also helps prevent server
crashes or stalls, thereby ensuring long-term stability and reliability of the system.

The SNEWSMessageBuilder offers a comprehensive set of recognized arguments, shown in
table 1. The table provides an overview of required and optional arguments for different tiers within

– 4 –



2
0
2
4
 
J
I
N
S
T
 
1
9
 
P
1
0
0
1
7

the SNEWS system.2 The first two columns depict the argument and its anticipated format, while
the subsequent columns categorize these parameters according to distinct message tiers. The rows
detail the fields available to the user in each message tier. Users can also specify if the message
is meant for testing by passing an is_test=True argument. In these cases software skips several
validation steps, such as expecting the neutrino times to be within the last 48 hours, that would
typically apply in real-case scenarios. This feature enables users to test their messages at random
times, enhancing message validation and testing capabilities.

Users can also provide the machine_time information, which indicates the exact International
Organization for Standardization (ISO) time when the data were read by the experiment’s machine.
Additionally, any times provided, such as neutrino time, machine time, and neutrino time series (if
given as strings), need to be in ISO format. If the neutrino time series is not a list of strings, the
software expects a list with nanosecond precision integers from the initial neutrino time. The software
also automatically appends the sent_time information upon execution. This capability allows the
server to interpret latencies between the read and send times of the experiments, providing valuable
insights into the detector’s status and data flow.

Furthermore, the tool exhibits versatility by accepting any additional key-value pairs introduced
by users as metadata. These metadata are directly recorded into the messages. This functionality
provides adaptability and facilitates the transfer of unforeseen yet valuable data.

2.3 Subscribing

snews_pt offers a user-friendly and efficient method for subscribing to the SNEWS alert channel.
Notably, this subscription process is accessible to a wide user base, extending beyond member
experiments to include any individuals or observatories with Kafka credentials. These users can
subscribe and actively monitor the incoming alerts using the Subscriber class, accessible through
the API or the terminal.

The alerts received are not only presented to users for immediate review but are also automatically
stored in a designated local output folder in JSON file format. This storage facilitates subsequent
in-depth investigation and analysis of the alerts received.

For users who seek to respond promptly to issued supernova alerts and take actions based on the
alert information, snews_pt integrates smoothly with follow-up scripts. Upon receiving an alert, the
subscriber quickly generates a JSON file containing the alert’s content. Subsequently, it automatically
triggers the execution of a pre-defined follow-up script, passing the file’s absolute path as an input.
Users can add just two lines to their custom script to read the JSON file’s content as a dictionary,
allowing them to use the information for follow-up tasks. This automated execution of the custom
script creates a fully integrated workflow, enabling users to respond efficiently to supernova alerts
and perform subsequent analyses without the need for manual intervention.

2.4 Remote commands

While the primary functionalities of the snews_pt revolve around subscribing to alerts and broadcasting
observations and heartbeats, the tools also offer a set of remote commands that can prove valuable in

2Due to the evolving nature of the message details, especially for the significance and timing tiers, the specifics provided
in table 1 are subject to change. For the most current and detailed descriptions of the message parameters, readers are
encouraged to consult the online documentation. The online documentation can be accessed at https://snews-publishing-too
ls.readthedocs.io/en/latest/.

– 5 –

https://snews-publishing-tools.readthedocs.io/en/latest/
https://snews-publishing-tools.readthedocs.io/en/latest/


2
0
2
4
 
J
I
N
S
T
 
1
9
 
P
1
0
0
1
7

specific scenarios. These remote commands are formatted as message blobs with key-value pairs and
are recognized as “requests” by the server upon reception. Some of these commands are particularly
designed for development purposes, aiding in easier testing.

Remote commands that are currently available are listed in table 2. The reset_cache command,
allows users to instruct the server to clean its cache memory. This action initiates a new test
environment, preventing potential coincidences with previously submitted messages and ensuring
accurate results during testing.

Table 2. Summary of the currently available remote commands.

Used by Purpose
reset_cache Developers In the testing environment, drop the cache and start fresh.
test_connection All users Confirm that your messages are read by the server.
get_feedback All users Request Email Feedback on Heartbeats from last 24h.

The test_connection command lets users validate their connection to the server. Upon
execution, the function generates a message containing the execution timestamp, detector name, and
a status indicating that the message is being sent (‘‘status’’: ‘‘sending’’), sending it to the
observation channel. Subsequently, the function subscribes to a distinct connection test channel,
anticipating a confirmation message from the server. Upon reception, the server generates a new
message, retaining all details and updating the status to indicate that the message has been received
(‘‘status’’: ‘‘received’’). This modified message is then published to the connection test
channel. snews_pt then compares and validates the received message, establishing a loop between the
observation channel (with user write access) and the connection test channel (with user read access).
This iterative process not only completes the communication loop between the user and the server but
also serves to validate the operational status of the server, confirming its active and functional state.

The get_feedback command lets users request feedback on heartbeats submitted within the last
48 hours. In the server’s ongoing process, heartbeats are retained for a brief period of 48 hours before auto-
matic removal. The functionpromptsusers to input email address(es) to receive the feedback. Upon receiving
the request, the server checks that the provided email address(es) are registered as contacts for the associated
experiment. When the request originates from a recognized address, the server generates a feedback image,
containing essential information such as the latencies and interpreted frequencies, and sends an email to the
recognized email addresses. This feedback not only serves as a tool for users to assess the status of their sys-
tems but also provides insights into latencies, contributing to an understanding of the overall system dynamics.

Figure 1 presents an example feedback image, simulated to illustrate heartbeats registered within
approximately 15 minutes from XENONnT experiment [11]. The top panel visually represents the fre-
quency of the registered heartbeats, with online detector status beats plotted in green and offline status
in red. The mean frequency, along with the one- and three-standard deviation bands, is highlighted for
reference. Additionally, the second panel shows the latency, defined as the time between the user sub-
mitting a heartbeat (sent_time) and the server receiving that message (received_time), providing
insights into the time delays experienced by each experiment for further analysis and optimization.

These remote commands extend the functionality of the snews_pt, providing users with advanced
testing options and ensuring smoother communication with the server during various development tasks.

– 6 –



2
0
2
4
 
J
I
N
S
T
 
1
9
 
P
1
0
0
1
7

Figure 1. A simulated example image illustrating the feedback from the server containing information of several
heartbeats that were registered within about 15 minutes.

2.5 Retraction and skipped heartbeat warnings

snews_pt provides users with the capability to retract previously submitted messages, offering a mech-
anism to rectify errors or refine analyses and mitigate the risk of generating false alarms. This process
mirrors the submission of a new observation message using the MessageBuilder detailed in section 2.2
and presented in table 1. To initiate a retraction, the user simply specifies how many of their most recent
messages they intend to retract. The software interprets this as a retraction request. Subsequently, the
server identifies and removes the latest 𝑁 messages submitted by the requesting experiment from its
cached data. Following this removal, the coincidence logic is re-initialized. If an alert was previously
triggered, an updated message is broadcasted, reflecting the absence of the now-retracted detector in the
system. The system triggers an updated alert even if only a single detector remains after the retraction
of the second detector that originally contributed to the coincidence and triggered the initial alert.

Heartbeats play a crucial role in the overall functionality of the early warning system. Through the
heartbeats, the server running the SNEWS Coincidence System can actively monitor and alert users in
case of a lost connection at any given point. While the server anticipates receiving heartbeats from all
detectors, it does not impose a specific frequency requirement. Once the server accumulates enough
heartbeats, it calculates the heartbeat frequency and assigns a value of 𝜇±𝜎 to the corresponding exper-
iment. With the continuous accumulation of heartbeats, statistical accuracy improves, and the expected
frequency is dynamically updated. With the established frequency, the server anticipates receiving
the next heartbeat within this time interval. The server conducts this verification process every minute,
and if no new heartbeat is registered after the 𝜇 + 3𝜎 time has elapsed, it generates a warning email.
This email includes the collected statistics and is sent to the pre-registered responsible email addresses
associated with that specific experiment. Upon the absence of new heartbeats and the generation of a
warning email, the checks for this particular experiment are temporarily halted. The system resumes the
frequency computation once new heartbeats start accumulating, ensuring that the calculations are based
on the most recent data. This adaptive approach allows the system to adjust to changing conditions
dynamically and provides accurate frequency assessments for effective monitoring and alert handling.

– 7 –



2
0
2
4
 
J
I
N
S
T
 
1
9
 
P
1
0
0
1
7

3 SNEWS coincidence system

The SNEWS Coincidence System, snews_cs, serves as the central communication hub of SNEWS,
processing Coincidence Tier and Heartbeat messages and generating prompt alerts when specific alert
conditions are met. This system was developed using Python, leveraging the Pandas library for data
manipulation and online data storage, SQLite for long-term data storage, and a hop-client API for
seamless integration with the SNEWS SCIMMA broker. This enables the system to receive messages
from participating detectors and distribute alerts to subscribed users through the SNEWS alert broker.
snews_cs contains of two classes, the CacheManager and the CoincidenceDistributor.

The CacheManager class establishes the coincidence cache and organizes data within it. The
primary objective of this class is to store incoming messages in an online cache and determine coincident
instances. Furthermore, this class was designed to effectively handle staggered signals by implementing
coincident subgroups, or subsets of the messages in the cache. To achieve this, the CacheManager
generates subgroups when a new message falls outside the coincidence time range of existing subgroups.
This approach allows for the formation of coincidences between distinct signal sets, facilitating the
identification and potential retraction of any erroneously submitted signals. Incorporating coincident
subgroups enhances the system’s ability to discern genuine coincidences from chance occurrences,
improving accuracy and reliability. Additionally, the CacheManager class incorporates robust checks
to prevent the formation of redundant subgroups, ensuring that the cache is free of superfluous data.

The CoincidenceDistributor class creates a data stream to the SNEWS detectors through the hop
subscription method. This data stream establishes real-time communication between SNEWS and par-
ticipating detectors, where Coincidence Tier messages can be sent to the Coincidence System. During
operation, all incoming messages are passed through an authentication process, where any malformed
messages or messages with missing data are discarded, preventing instabilities during the run time. Fol-
lowing authentication, the contents of each message are validated, confirming that they satisfy the criteria
for inclusion within the coincidence cache. Once validated, messages are passed to the CacheManager,
populating the active coincidence cache. Whenever a new message is processed, the CacheManager is
prompted to check for coincidences. If a coincidence is detected, then an alert message is created and
sent across the network, informing all participating members that a coincident event was observed.

3.1 Coincidence data flow

The Coincidence System processes messages sequentially. Once received, a message is passed through
a quality-checking method, which acts as a redundant filter for the snews_pt’s validation system. This
step is crucial if any detector’s messages are inadvertently transmitted to the server. If a message meets
the standard, it is stored in the cache as a Pandas data-frame object. The cache retains all coincident
messages for 48 hours. If the cache is empty, the incoming message initializes the first sub-group
and establishes the initial neutrino time

(
𝑡𝜈,𝑚

)
. A detector’s neutrino time corresponds to the first

neutrino signal it observes during a supernova flux event. When a subsequent message arrives, its 𝑡𝜈,𝑚
is compared to the current initial neutrino time of a sub-group

(
𝑡𝜈,sg

)
. If the incoming message has a

neutrino time difference > 10 sec, then it is stored in the cache as an initial message for a new sub-group.
Conversely, if the neutrino time difference between 𝑡𝜈,𝑚 and 𝑡𝜈,sg is ≤ 10 sec, the message is assigned to
the sub-group to which it coincides. Finally, if a message arrives with an earlier neutrino time than 𝑡𝜈,sg

and still falls within the coincidence window of the sub-group, it is designated as the new initial message.

– 8 –



2
0
2
4
 
J
I
N
S
T
 
1
9
 
P
1
0
0
1
7

Regarding the alert distribution, once a sub-group accumulates two or more coincident messages,
an alert is dispatched through a public Kafka output channel. As mentioned in section 2.3 snews_pt
provides subscription and publishing methods, enabling the alerts to be published to different Kafka
channels and in different formats. These alerts can be sent to participating detectors, ground-based
telescopes, gravitational wave observatories, and amateur astronomers. Furthermore, the early warning
alerts are distributed through the original SNEWS mailing list and as a GCN alert [12] alert (which is
then picked up by the SNEWS mobile app). A more detailed alert is sent to participating detectors,
informing them of the time window of a supernova search.

Assuming a sub-group continues to receive more coincident messages, a subsequent alert will be
sent whenever a new message is received, updating the alert metrics as new information is received.
An overview of the SNEWS CS data flow is shown in figure 2.

Figure 2. A diagram showing the data flow in the Coincidence System concerning the coincidence tier messages
and heartbeats.

– 9 –



2
0
2
4
 
J
I
N
S
T
 
1
9
 
P
1
0
0
1
7

3.2 SNEWS operations

The SNEWS Coincidence System server exists as an Ubuntu-based Apptainer [13] container running
on a Linux host.

The benefits of containerization are well known; portability, isolation, agility, and ease of
management, to name a few. However, the primary driver in this choice for SNEWS is the ability
to run a global network of distributed, redundant servers simply from a single code base. On the
host, systemd unit files supervise the running processes, restarting them if needed, with custom
supervisory code providing status messaging via Slack. In addition to the supervisory code, the
Zabbix monitoring system is used internally to provide notifications and hardware performance metrics
for the host computer to systems administrators.

Separate production and development containers are run in parallel. The production and
development containers typically run the same code base unless the development container is
testing new code. The primary difference between production and development is which SCiMMA
HOPSKOTCH channel that the instance is subscribed to. In the case of the development container, the
hop client would be subscribed to dedicated testing channels to ensure readiness and availability. The
production container is left to be production worthy and should only alert when necessary.

Currently, a Grafana dashboard is under development to provide useful information at a glance to
researchers and system administrators alike. This dashboard will display data from recently-detected
coincidences and provide comprehensive system latency visualizations from individual detectors to
snews_cs. We intend to provide a web-page that will display coincidences for the general public to view.

4 Firedrills

SNEWS conducts periodic distributed tests called “firedrills” to test that both snews_pt and snews_cs
are operating as intended, to validate the pointing capabilities, and to test system updates.

Since the galactic supernova event rate is extremely low it is of the utmost importance that
SNEWS 2.0 is capable of working under load, making sure that the code is bug-free, host servers are
working as intended, and that the Hop broker allows sending the corresponding data.

For the development team, firedrills allow a wider audience to give feedback on the snews_pt
and the alert protocols of the snews_cs. Furthermore, edge cases, such as staggered coincidences or
updating an alert when the detector retracts a message, are tested during firedrills. Frequent testing
helps participating SNEWS members familiarize themselves with the deployment of snews_pt.

A typical firedrill involves SNEWS members participating in a virtual call to test various alert
scenarios. These scenarios include a simple coincidence, where all detectors register the supernova flux
simultaneously, a staggered coincidence involving a subset of detectors with delayed data transmission,
and a coincidence with retractions and detector updates.

Firedrills provide a crucial learning experience for the development team to enhance the software
and refine the implementation of these systems within SNEWS. Notably, the most significant updates to
both snews_pt and snews_cs were implemented after thorough feedback by the SNEWS community
following a firedrill. For instance, during a firedrill in October 2022, participating SNEWS members
contributed the following improvements: changed the snews_pt logic to exclude testing messages for
detectors; established a proper naming convention for detectors; enabled messages to include time
uncertainty of the neutrino signal; and updated the alert statistics following an update or retraction.

– 10 –



2
0
2
4
 
J
I
N
S
T
 
1
9
 
P
1
0
0
1
7

5 Conclusion

By leveraging a more flexible and versatile code base, SNEWS member experiments can more
easily publish and receive alerts to potential galactic supernovae. SNEWS 2.0 has developed a
Python-based framework based on SCIMMA’s HOPSKOTCH system for communications with
neutrino detectors and the world. This Python framework consists of two parts: snews_pt allows
experiments to communicate their potential supernova alerts, and snews_cs receives those alerts,
forming coincidence alerts if two or more unique signals are within a 10-second window. Once
coincident signals are detected, a prompt alert is published to the MMA community and the public.
This framework implements a wide range of plugins to receive the alert and distribute it in various
required formats, including email, GCN alerts, or directly integrating with snews_pt to feed custom
code back into an experiment or observatory. Each software is designed to be sustainable and scalable,
allowing SNEWS 2.0 to incorporate additional functionalities such as pointing or source significance
stacking. With SNEWS 2.0, the MMA community will receive an alert prompt enough to adapt
the orientation of telescopes and antennas accordingly, assuring the most sensitive detection of the
burst, providing a unique chance to learn about currently un-observed details of the explosion process.
Additionally, the capability to reduce the uncertainty on the start of the burst can significantly aid
the chances to detect gravitational waves from a CCSN [14].

Acknowledgments

This work is supported by the National Science Foundation “Windows on the Universe: The Era
of Multi-Messenger Astrophysics” program: “WoU-MMA: Collaborative Research: Advancing
the SuperNova Early Warning System” through grants 2209449, 2209451, and 2209534 as well as
NSF AST-2206532. We also acknowledge the support from the Science and Technology Facilities
Council (STFC), United Kingdom.

References

[1] K. Scholberg, Supernova Neutrino Detection, Ann. Rev. Nucl. Part. Sci. 62 (2012) 81
[arXiv:1205.6003].

[2] P. Antonioli et al., SNEWS: The Supernova Early Warning System, New J. Phys. 6 (2004) 114
[astro-ph/0406214].

[3] SNEWS collaboration, SNEWS 2.0: a next-generation supernova early warning system for
multi-messenger astronomy, New J. Phys. 23 (2021) 031201 [arXiv:2011.00035].

[4] K. Rozwadowska, F. Vissani and E. Cappellaro, On the rate of core collapse supernovae in the milky way,
New Astron. 83 (2021) 101498 [arXiv:2009.03438].

[5] V. Brdar, M. Lindner and X.-J. Xu, Neutrino astronomy with supernova neutrinos, JCAP 04 (2018) 025
[arXiv:1802.02577].

[6] N.B. Linzer and K. Scholberg, Triangulation Pointing to Core-Collapse Supernovae with Next-Generation
Neutrino Detectors, Phys. Rev. D 100 (2019) 103005 [arXiv:1909.03151].

[7] A. Coleiro et al., Combining neutrino experimental light-curves for pointing to the next galactic
core-collapse supernova, Eur. Phys. J. C 80 (2020) 856 [arXiv:2003.04864].

– 11 –

https://doi.org/10.1146/annurev-nucl-102711-095006
https://doi.org/10.48550/arXiv.1205.6003
https://doi.org/10.1088/1367-2630/6/1/114
https://doi.org/10.48550/arXiv.astro-ph/0406214
https://doi.org/10.1088/1367-2630/abde33
https://doi.org/10.48550/arXiv.2011.00035
https://doi.org/10.1016/j.newast.2020.101498
https://doi.org/10.48550/arXiv.2009.03438
https://doi.org/10.1088/1475-7516/2018/04/025
https://doi.org/10.48550/arXiv.1802.02577
https://doi.org/10.1103/PhysRevD.100.103005
https://doi.org/10.48550/arXiv.1909.03151
https://doi.org/10.1140/epjc/s10052-020-8407-7
https://doi.org/10.48550/arXiv.2003.04864


2
0
2
4
 
J
I
N
S
T
 
1
9
 
P
1
0
0
1
7

[8] Scientific Computing for Multi-Messenger Astrophysics (SCiMMA), Hopskotch: Scimma’s high order
photometry sky optimization tool for calibration headers, (2018).

[9] Apache Software Foundation, Apache kafka, https://kafka.apache.org/.

[10] SCiMMA and SNEWS 2.0 collaborations, Collaborative Experience between Scientific Software Projects
using Agile Scrum Development, Software Pract. Exper. 52 (2022) 2077 [arXiv:2101.07779].

[11] XENON collaboration, The XENONnT dark matter experiment, Eur. Phys. J. C 84 (2024) 784
[arXiv:2402.10446].

[12] GCN Alerts, https://gcn.nasa.gov/.

[13] https://apptainer.org/.

[14] K. Nakamura et al., Multimessenger signals of long-term core-collapse supernova simulations: synergetic
observation strategies, Mon. Not. Roy. Astron. Soc. 461 (2016) 3296 [arXiv:1602.03028].

– 12 –

https://kafka.apache.org/
https://doi.org/10.1002/spe.3120
https://doi.org/10.48550/arXiv.2101.07779
https://doi.org/10.1140/epjc/s10052-024-12982-5
https://doi.org/10.48550/arXiv.2402.10446
https://gcn.nasa.gov/
https://apptainer.org/
https://doi.org/10.1093/mnras/stw1453
https://doi.org/10.48550/arXiv.1602.03028

	SNEWS introduction
	SNEWS 1.0
	SCiMMA and hop-client

	SNEWS publishing tools
	Credentials
	Publishing
	Subscribing
	Remote commands
	Retraction and skipped heartbeat warnings

	SNEWS coincidence system
	Coincidence data flow
	SNEWS operations

	Firedrills
	Conclusion



