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Abstract. Many geodynamical models are formulated in

terms of the Stokes equations that are then coupled to other

equations. For the numerical solution of the Stokes equa-

tions, geodynamics codes over the past decades have used

essentially every finite element that has ever been proposed

for the solution of this equation, on both triangular/tetra-

hedral (“simplex”) and quadrilaterals/hexahedral (“hyper-

cube”) meshes. However, in many and perhaps most cases,

the specific choice of element does not seem to have been

the result of careful benchmarking efforts but based on im-

plementation efficiency or the implementers’ background.

In a first part of this paper (Thieulot and Bangerth, 2022),

we have provided a comprehensive comparison of the accu-

racy and efficiency of the most widely used hypercube el-

ements for the Stokes equations. We have done so using a

number of benchmarks that illustrate “typical” geodynamic

situations, specifically taking into account spatially variable

viscosities. Our findings there showed that only Taylor–

Hood-type elements with either continuous (Q2×Q1) or dis-

continuous (Q2 × P21) pressure are able to adequately and

efficiently approximate the solution of the Stokes equations.

In this, the second part of this work, we extend the com-

parison to simplex meshes. In particular, we compare trian-

gular Taylor–Hood elements against the MINI element and

one often referred to as the “Crouzeix–Raviart” element. We

compare these choices against the accuracy obtained on hy-

percube Taylor–Hood elements with approximately the same

computational cost. Our results show that, like on hyper-

cubes, the Taylor–Hood element is substantially more accu-

rate and efficient than the other choices. Our results also in-

dicate that hypercube meshes yield slightly more accurate re-

sults than simplex meshes but that the difference is relatively

small and likely unimportant given that hypercube meshes

often lead to slightly denser (and consequently more expen-

sive) matrices.

1 Introduction

Over the past decades, a large number of geodynamics sim-

ulation codes have been built on the finite element method.

In the specific context of mantle convection and long-term

dynamics simulators, the key component of many models

that needs to be solved is the Stokes equations for which fi-

nite element methods are well suited but which leaves many

choices still to be made: (1) should the element choice be

of Taylor–Hood type (where the polynomial degree used for

the velocity is chosen one higher than that for the pressure) or

a stabilized equal-order element combination, or any of the

nonconforming elements? (2) Should the reference cell for

the underlying mesh be simplices (triangles or tetrahedra) or

hypercubes (quadrilaterals or hexahedra)?

In an earlier part of this work (see Thieulot and Bangerth,

2022), we have extensively compared different hypercube

choices for the finite element combination used to discretize

the Stokes equations in the context of models that are rele-

vant to geodynamic applications. Our conclusions there were

that the lowest-order Taylor–Hood-type element (denoted by

Q2 × Q1 on quadrilaterals or Q2 × P21 if one uses a dis-

continuous pressure element that then leads to local mass

conservation) is the only one that produces accurate results

in all circumstances. This conclusion is notwithstanding the

fact that these elements are not cheap, owing to their higher-

order shape functions and the consequent large number of
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entries in the system matrix. Yet, all other choices we have

compared there – specifically, the stabilized Q1 ×Q1 and the

unstable Q1 × P0 combinations – were too inaccurate, were

too unstable, and had too much difficulty representing the

hydrostatic pressure component to be competitive. Of course

these other choices are widely used in many existing codes,

making studies such as Thieulot and Bangerth (2022) useful

to inform what the next generation of codes should build on.

At the same time, in Thieulot and Bangerth (2022) we did

not investigate whether simplex or hypercube meshes are bet-

ter suited to the task. Historically, geodynamics has largely

settled on the use of quadrilateral or hexahedral (“hyper-

cube”) elements – somewhat separate from the rest of the fi-

nite element world that has traditionally predominantly used

triangular or tetrahedral (“simplex”) meshes. The reasons for

this deviation are likely rooted in the fact that the geometries

of the domains used in geodynamics are largely rather sim-

ple: rectangles and boxes, along with circles, spheres, and

shells. These geometries present no difficulties in meshing

with hypercube cells, whereas the complex geometries fre-

quently used in solid and fluid mechanics can often only rea-

sonably be meshed using mesh generators that create simplex

meshes. Still, one could of course also use simplex meshes in

geodynamics, and in fact many codes have done so over the

past decades; see, for example, Barr and Houseman (1996)

(BASIL code, P2 ×P1), Dabrowski et al. (2008) (MILAMIN

code, P +
2 × P21), Tommasi et al. (2009) (FORGE2005 soft-

ware, P +
1 ×P1), Davies et al. (2011) (Fluidity code, P2×P1),

Chertova et al. (2014) (SEPRAN, P2×P1), Paczkowski et al.

(2014) (COMSOL, P2 × P1), de Montserrat et al. (2019)

(LaCoDe, P +
2 × P21), Jones et al. (2021) (FEniCS project,

P2 × P1), and Ilangovan et al. (2024) (HyTeG framework,

P2 × P1). It is, therefore, a reasonable question of whether it

would result in more accurate simulations for the same com-

putational cost or less costly simulations at the same accu-

racy.

We are not aware of systematic comparisons between the

two choices of reference cell – simplex or hypercube – in

the geodynamics literature. Perhaps surprisingly, there is also

not a large body of literature on the topic in other disciplines,

nor is there a strong oral “lore” in the scientific computing

community about which of the two approaches is better. In

our search for past work, we have found a modestly infor-

mative recent publication that clearly illustrates the bene-

fits of quadratic over linear elements but only a weak pref-

erence for triangles/tetrahedra over quadrilaterals/hexahedra

(Schneider et al., 2022). That publication also contains ref-

erences to other, earlier studies in the same direction; it is

worth also pointing out Terrel et al. (2012) as another exam-

ple of a study that compares different elements, though not in

great depth and not for applications relevant in geodynamics.

On the other hand, while discretization accuracy matters, so

does solver speed. In this regard, modern solver techniques

intended to better utilize the power of CPUs over the limita-

tions of memory latency, specifically matrix-free approaches,

heavily build on the fact that shape functions on hypercube

cells can be written as a tensor product of 1D functions and

so are naturally more suited to hypercube cells (Kronbichler

and Kormann, 2019; Munch et al., 2023).

Regardless of which reference element is better suited, us-

ing simplex meshes also opens up a number of other possibil-

ities. Specifically, the number of stable Stokes element com-

binations for triangles and tetrahedra is substantially larger

than it is for quadrilaterals and hexahedra, owing to decades

of research on “nonconforming” elements – i.e., finite ele-

ment choices whose basis functions are not continuous but

have a sufficient number of structural properties (such as be-

ing continuous at edge midpoints) that it is not necessary

to add specific stabilization terms to the weak formulation

of the Stokes equations.1 Examples of such nonconform-

ing elements include the Brezzi–Douglas–Marini (BDM) el-

ement (Brezzi et al., 1985) and the Crouzeix–Raviart non-

conforming P1 element2 (Braess, 2007). Nonconforming el-

ements have of course also been developed for hypercube

meshes – see, e.g., the Rannacher–Turek element (Rannacher

and Turek, 1992) or the DSSY element (Douglas et al.,

1999). However, in contrast to their relatives defined on sim-

plex meshes, they have not found widespread use and are less

often implemented in widely used finite element libraries.

Thus, nonconforming elements are generally only considered

viable choices on simplex meshes.

In practice, however, nonconforming elements have never

found much use in the geodynamics community. As a con-

sequence, while we consider them viable alternatives (and

potential targets for future studies), we will not include any

nonconforming elements in this work (see also Sect. 3.3).

We end this overview by mentioning that while we have

not found much literature that quantitatively compares ref-

erence cell and element choices, the book by Gresho and

Sani (2000) contains an extensive and excellent overview

of the many available choices for the Stokes equations in

Sects. 3.13.2 to 3.13.6, covering more than 150 pages. Ta-

bles 3.13-1 to 3.13-4, along with lengthy comments through-

out the section, provide arguments that lead the authors of

that book to favor hypercube cells over simplex cells and

to favor Taylor–Hood-type elements over others, based on

qualitative arguments and references to the literature from

the 1970s, 1980s, and 1990s – opinions that we share, based

on the results of this paper and of Thieulot and Bangerth

(2022). Yet, the authors also state that the question is not at

all trivial, is not settled, and is in need of systematic quanti-

1Stability despite a lack of continuity for nonconforming ele-

ments is in contrast to the “discontinuous Galerkin (dG)” approach

in which shape functions are entirely discontinuous and the prob-

lem is regularized by introducing penalty terms that ensure that the

jumps between cells in the discrete solution are not too large.
2The “nonconforming Crouzeix–Raviart element” must not be

confused with the P+
2

× P21 element we will discuss below and

that is often also called the “Crouzeix–Raviart element”.
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tative comparisons. In any case, both the book and the litera-

ture cited therein exclusively consider the isoviscous Stokes

equations which typically has a much smoother solution than

the ones we find in geodynamic applications with their highly

variable viscosity coefficient. As a consequence, we believe

that the comparisons we provide here are useful not only be-

cause they are quantitative, but also because they are spe-

cific to the kinds of applications we typically encounter in

our discipline. We should also mention the paper by Pelletier

et al. (1989) that contains qualitative comparisons between

Taylor–Hood elements with continuous and discontinuous

pressures and that advocates for the use of discontinuous

pressure elements. However, we consider its interpretation

difficult in today’s context because the meshes used there are

quite coarse, and we think it likely that their recommenda-

tions are perhaps no longer as applicable to today’s much

finer meshes as they were in the historical context nearly

40 years ago when the paper was written.

Goals of this paper

Given the setting described above, our goal in this contribu-

tion is to compare finite element choices on simplex and hy-

percube meshes both qualitatively and quantitatively. For hy-

percube meshes, our previous work in Thieulot and Bangerth

(2022) has already indicated that only the Taylor–Hood vari-

ants Q2 × Q1 or Q2 × P21 are reasonable choices, whereas

equal-order elements are not. Based on this observation, we

then pose the following two questions for the current work:

1. What is the best choice of finite element on simplex

meshes?

2. How does the best choice of finite element on simplex

meshes compare to the choice of the Q2 × Q1 or Q2 ×
P21 element on hypercube meshes?

For our numerical comparisons, we will consider both the

accuracy and computational cost of a finite element as a func-

tion of the mesh size (or number of unknowns) as a criterion.

The elements we will consider for simplex meshes include

the P2 ×P1 Taylor–Hood-type element, the P2 ×P0 element

(the cheapest stable element with discontinuous pressure),

the MINI element P +
1 × P1, and the “Crouzeix–Raviart” el-

ement P +
2 × P21.

Outline of the paper

In the remainder of this paper, we will first briefly state the

equations we seek to solve (Sect. 2). In Sect. 3 we will then

discuss the finite elements one can choose on simplex meshes

for the discretization of the Stokes equations, along with a

description of the elements we do and do not compare in

this work. Section 4 then provides a numerical comparison

of these elements using a series of benchmarks that illustrate

how solutions of geodynamic models often behave. We con-

clude in Sect. 5.

2 The governing equations

As in the first part of this work, we will here be concerned

with the accurate numerical solution of the incompressible

Stokes equations:

2' · [2··(u)] +'p = Ãg, (1)

2' ·u = 0, (2)

where · is the viscosity, Ã the density, and g the gravity vec-

tor, and we will denote by ·(·) the symmetric gradient oper-

ator defined by ·(u) = 1
2
('u+'u

T ). � ¢ R
d , d = 2 or 3 is

the domain of interest. Both the viscosity · and the density Ã

will, in typical applications, be spatially variable; the vari-

ability is often introduced through nonlinear dependencies

on the strain rate ·(u) and/or the pressure p, but the exact

reasons are not of relevance to us here: the important point is

that these coefficients may vary strongly and on short length

scales.

In actual applications, the equations above will be com-

pleted by appropriate boundary conditions and will be aug-

mented by additional and often time-dependent equations,

such as ones that describe the evolution of the temperature

field or of the composition of rocks (see, for example, Schu-

bert et al., 2001; Turcotte and Schubert, 2012). This coupling

is also not of interest to us here, nor is the fact the “true”

equations in geodynamics are often compressible – in most

cases, the equations above will have to be solved as a “sub-

problem” to what one really wants to do, and the efficiency of

a discretization of these equations then translates to a lower

bound for the efficiency of solving the outer problem.

3 Discretization

3.1 Elements and element combinations

The finite element discretization of the Stokes equations is

complicated by the fact that one cannot choose the piece-

wise polynomial spaces for velocity and pressure indepen-

dently. Rather, to obtain a stable discretization, the pair of

spaces needs to satisfy a compatibility condition known as

the Ladyzhenskaya–Babuška–Brezzi (LBB) or inf-sup con-

dition (Braess, 2007; John, 2016); the condition, in essence,

states that the velocity space must be sufficiently large com-

pared to the pressure space. A common, stable choice is

the “Taylor–Hood” space (Taylor and Hood, 1973) that uses

piecewise quadratic elements for the velocity and piecewise

linear elements for the pressure.3

3Strictly speaking, Taylor and Hood (1973) did not propose what

is today commonly implied by the term “Taylor–Hood” element:

they proposed an eight-node serendipity space on quadrilaterals for

the velocity components and the usual four-node, continuous bilin-

ear space for the pressure. Nonetheless, in today’s common usage

of the term, a “Taylor–Hood element” is one in which the velocity
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Figure 1. A graphical representation of the elements and their degrees of freedom we consider herein. Filled dots indicate locations where

velocity degrees are defined, whereas open circles indicate where pressure degrees of freedom are defined. The figure does not reflect whether

the shape function associated with a degree of freedom is continuous across cell boundaries.

Gresho and Sani, 2000).6 It has a discontinuous pres-

sure, leading to local mass conservation. The relatively

large pressure space requires the augmentation of the

P2 velocity space by bubble functions to guarantee sta-

bility, but – just like in the case of the P +
1 × P1 space

above – the bubble degrees of freedom can be removed

by static elimination.

This element is used in geodynamics in, for example,

Poliakov and Podlachikov (1992) to study the deforma-

tion of the surface above a rising diapir. It is also used

in the MILAMIN code (Dabrowski et al., 2008) and in

LaCoDe (de Montserrat et al., 2019).

The closest analog to this element on hypercube el-

ements is Q2 × P21 used for example in May et al.

(2015).

All of these choices are represented graphically in Fig. 1.

In our numerical results below, we will compare these

choices against the Q2 × Q1 and Q2 × P21 elements on hy-

percube cells, as we have found these to be the best choice in

the first part of this study (Thieulot and Bangerth, 2022).

6Other authors, for example Ern and Guermond (2021, chap-

ter 36), use the term “Crouzeix–Raviart element” for a different,

nonconforming element that is linear but discontinuous, with nodes

at edge mid-points. The confusion originates from the fact that

Crouzeix and Raviart in the 44 pages of Crouzeix and Raviart

(1973) introduced a substantial number of elements, including both

the one mentioned in the main text and the one of this footnote.

3.3 Alternative elements and element combinations

and alternative mappings

There are many more choices one could consider beyond the

ones discussed in the previous section. For example, the fol-

lowing come to mind:

– Nearly all of the elements listed above have ana-

logues with higher polynomial degrees. For example,

the Taylor–Hood element P2 × P1 can be generalized

to Pk+1 × Pk with k > 1; all of these combinations are

known to be stable and at least theoretically result in

higher convergence rates. At the same time – see the dis-

cussion in Sect. 3.2 of Thieulot and Bangerth (2022) –

the lack of regularity of solutions in typical geodynamic

applications makes these choices unattractive: they are

more expensive without delivering higher accuracy be-

cause the solution is not smooth enough to actually al-

low for higher convergence orders. As a consequence,

we will not consider higher polynomial degrees herein

than the ones mentioned previously.

– There are variations in the spaces above in which a

P1 pressure space is enriched by piecewise constants,

yielding the P1+P0 space. The resulting element, when

paired with a sufficiently large velocity space, is then

mass conserving.

– Another variation is to replace a P2 velocity space by a

P1 space on a once-refined mesh. This is commonly re-

ferred to as the “P1isoP2” space (Bercovier and Piron-

neau, 1979). The original intent in developing this el-

ement was to re-use parts of existing implementations,

as well as the robustness of linear elements (for example

the fact that they always attain their minima and maxima

at node points, unlike higher-order shape functions).
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– There are also numerous nonconforming velocity

spaces in which the velocity is not continuous and

which can then be made convergent either through

penalty terms or by requiring structural properties such

as that the velocity is at least continuous at face mid-

points (see Gresho and Sani, 2000, or John, 2016, and

references therein).

While perhaps useful, these alternatives are not widely

used in geodynamics, and we will consequently not con-

sider them herein. Given the conclusions we will come to

in Sect. 5, one can also (retroactively) speculate that at least

the nonconforming elements will not be competitive with the

best elements we will find in the numerical results in Sect. 4.

This is because most of the nonconforming elements were

developed with the specific purpose to scope out how small

one can make elements (in terms of degrees of freedom),

dating back to a time when that was a prime consideration

given how small computer memory was at the time rather

than with the purpose of coming up with accurate and uni-

versally robust elements. Indeed, the “small” elements we

consider herein will prove to be unacceptable for some rea-

son or other below. Of course, whether the speculation that

nonconforming elements are not competitive is in fact true

would make for an interesting topic for follow-up work.

A separate issue we defer to a later study is how the choice

of mapping from the reference cell (triangles or quadrilat-

erals in our 2D examples herein) affects the accuracy. For

elements with quadratic velocity shape functions, it would

not be unreasonable to use quadratic (i.e., “isoparametric”)

mappings resulting in curved edges. In contrast, herein we

only ever use straight-edged elements. Indeed, one could

completely separate the polynomial degree of the mapping

from that of the finite element – for example, ASPECT by

default uses quartic (i.e., “supraparametric”) mappings to ac-

curately resolve curved surfaces (Kronbichler et al., 2012).

It is not entirely clear how the choice of higher-order map-

pings would affect accuracy: practical experience shows that

using higher-order mappings results in smaller errors when

the geometry is curved (and one might conjecture that this

would also be the case if one could resolve internal bound-

aries). At the same time, there remain open theoretical ques-

tions about the stability of the usual Stokes elements when

curved boundaries are used (see for example Chilton and

Suri, 2000). In the end, we believe that the choice of mapping

is orthogonal to the choice of element, as we see no reason

that an element that is not competitive with the best elements

we identify here when using straight edges should become

competitive when using curved edges. Rather, we consider

the current study as a “filter” that allows us to identify which

elements are competitive and which are not; we will then

leave it to a later study to determine how they can be used

with higher-order mappings.

3.4 Computational setup

For the numerical simulations shown in the following sec-

tions, we use the elements mentioned in Sect. 3.2. Because

there is no reason to believe that the elements we choose per-

form differently in three space dimensions, we restrict our

computations to 2D benchmarks because (i) these computa-

tions are substantially cheaper and (ii) it is far easier to ob-

serve convergence rates accurately in 2D: it is possible to

reach much higher mesh resolutions and, consequently, get

more data points in the asymptotic range where errors strictly

follow O(h³) rates, where h is the mesh size and ³ describes

the convergence rate.

The finite element method requires the computations of in-

tegrals, for which we will use quadrature with a number of

points that guarantees exact integration as long as coefficients

are constant. For example, when using the Taylor–Hood ele-

ment with quadratic shape functions, we use a quadrature for-

mula with six quadrature points per triangle, arranged in the

usual fashion of Gauss-type schemes. The result of the finite

element integration is then a matrix for the Stokes system that

is passed to a linear solver. Although advanced linear solvers

are usually preferable for geodynamical codes (e.g., Kron-

bichler et al., 2012; May et al., 2015; Clevenger et al., 2020;

Clevenger and Heister, 2021), we here resort to building the

whole Stokes matrix as a sparse array and use a direct solver

provided via the SciPy package.7 None of the computational

experiments we perform herein presents the problem of a ve-

locity nullspace; consequently, after solving the linear sys-

tem, we normalize the pressure by subtracting a constant so

that the average pressure is zero. All of these steps were im-

plemented in a Python code written for the purposes of this

study.

From the velocity and pressure fields computed via the

procedure described above, we can then compute errors by

subtracting the exact solutions (where known) and apply-

ing appropriate norms. In order to make results compara-

ble to those in Thieulot and Bangerth (2022), we show

these errors as a function of the “mesh size” h. For a spe-

cific cell K , we define its size as hK =
:

2 area(K) for tri-

angles and hK =
:

area(K) for quadrilaterals. As a conse-

quence, the cell sizes hK are the same for a volume subdi-

vided into quadrilaterals and for one in which every quadri-

lateral is then further subdivided into two triangles; when

using corresponding polynomial degrees, these two meshes

generally have the same (or approximately the same) num-

ber of degrees of freedom, and the definitions of hK above

then guarantee comparability of results. In practice, on struc-

tured meshes, all cells have the same hK ; on the unstructured

meshes we will use, they are approximately equal. We there-

fore only report results as a function of h, which we define

as the average value of the hK values.

7https://docs.scipy.org/doc/scipy/reference/generated/scipy.

sparse.linalg.spsolve.html (last access: 13 December 2024)
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Figure 2. Meshes used in this benchmark:(a) an example of a structured quadrilateral mesh. (b) An example of a structured triangular mesh.

(c) An example of an unstructured triangular mesh. (d) An example of the unstructured triangular mesh used for the SolVi benchmark of

Sect. 4.3; note the nodes (and joining edges) aligned on the quarter circle at the bottom left highlighted in red.

Clearly, different elements will have different costs for the

same value of h. However, in practice, the actual cost de-

pends on many specifics of the element choice as well as

the linear solver used; consequently, we present our compar-

isons primarily in terms of the mesh size h rather than the

number of unknowns N or any other measure primarily be-

cause h is what we used before and because theoretical re-

sults about convergence rates that readers are likely familiar

with are typically shown in terms of powers of h. However,

Sect. 4.1 also contains a brief discussion of run times for the

various element choices.

In this study we present results obtained on structured

and unstructured meshes. Structured meshes are obtained by

tessellating the domain with Nx × Ny quadrilaterals (and in

practice setting Ny = Nx for simplicity) as shown in Fig. 2a.

For simplex meshes, these quadrilaterals are then cut along a

diagonal. In order to avoid very anisotropic meshes and po-

tentially problematic cases where three vertices of a triangle

would be on the boundary (see Boffi et al., 2012, or Cioncol-

ini and Boffi, 2019, for reasons to avoid this situation), sim-

plex meshes are built so that we vary the direction of splitting

quadrilaterals as shown in Fig. 2b.

We create unstructured simplex meshes by creating

meshes via the Triangle module, which is a Python wrap-

per around Jonathan Richard Shewchuk’s 2D quality mesh

generator and Delaunay triangulator library (Shewchuk,

1996, 2014) based on a target mesh size (see Fig. 2c). Se-

quences of unstructured meshes are always created de novo

rather than by refinement of the previous mesh, since succes-

sive refinement results in block structured meshes. For the

particular case of the SolVi benchmark in Sect. 4.3, we in-

struct Triangle to place a number of nodes along a quarter

circle to match the discontinuity in the coefficients of the

benchmark (see Fig. 2d).

4 Numerical results

Having so set the scene, let us now turn to quantitative eval-

uations of the performance of the elements discussed in the

previous section. Specifically, in the current section, we will

https://doi.org/10.5194/se-16-457-2025 Solid Earth, 16, 457–476, 2025
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Figure 3. Donea and Huerta benchmark: velocity (a, c) and pressure (b, d) errors as a function of (average) mesh size for structured (a, b)

and unstructured meshes (c, d).

use carefully selected benchmarks that are widely used in the

literature to assess geodynamics software and that we have

already used (at least in parts) in the first part of this paper.

More complete descriptions of the Donea–Huerta, SolCx,

and SolVi benchmarks shown in Sects. 4.1–4.4, along with

visual depictions of their solutions, can be found in the first

part of this work (Thieulot and Bangerth, 2022). We refer the

reader there for more details rather than repeating them here.

The Rayleigh–Taylor benchmark of Sect. 4.5 is outlined in

its own section. We end with a comparison of convergence

rates between the different elements in Sect. 4.6.

4.1 The Donea and Huerta manufactured solution

benchmark

The setup for this benchmark – originally described in Donea

and Huerta (2003) – considers a situation where the solution

is described by smooth polynomials and where the coeffi-

cients in the Stokes equations are all constant. The solution

is driven by a (nonphysical) gravity field. Given the smooth

solution, the different elements ought to all reach their the-

oretically optimal convergence rate. We use this benchmark,

among other reasons, to verify the correctness of our imple-

mentations.

We show results in Fig. 3 that illustrate the accuracy with

which the various discretizations approximate the exact so-

lution. It shows that – on both structured and unstructured

meshes – the discretizations that use piecewise quadratic

polynomials for the velocity and linear polynomials for the

pressure reach their expected velocity error of ‖u2uh‖L2
=

O(h3), whereas the others only achieve ‖u2uh‖L2
= O(h2).

The latter category includes the P2 × P0 discretization that

uses a large number of degrees of freedom for the velocity

but achieves an error only smaller than the P +
1 ×P1 by a fac-

tor despite having a number of degrees of freedom roughly

4 times higher (in 2D); conversely, it has approximately the

same number of degrees of freedom as the P2 ×P1 elements

but an error about 2 orders of magnitude larger on the finest

meshes. The figure also shows that the P2 ×P0 element fares

even worse in approximating the pressure, being substan-

tially less accurate than the far cheaper P +
1 × P1 element (at

least on structured meshes).

The figure also shows that, at least in terms of accuracy

as a function of mesh size h (and consequently number of

unknowns), the best-performing discretization is the P2 ×P1

element and that it produces errors quite close to the Q2×Q1

and Q2 × P21 elements we have found to be best on quadri-

laterals. Finally, the figure shows that at least for some of the

elements, unstructured meshes can lead to errors nearly an

order of magnitude worse than structured meshes with the

same mesh size.

In practice, of course, accuracy is only one indicator of

performance. A different way to measure how well the dif-

ferent elements perform is to measure the time required to

solve a given problem. As a consequence, let us also report

run times for the different benchmarks as a function of the

number of degrees of freedom using a laptop with an Intel
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Core i7-7820HQ CPU run at 2.90 GHz with 32 GB of mem-

ory. We caution that unlike the results obtained in the first

part of the paper (where we used the ASPECT code), the run

times shown here are obtained with a test code written in

Python rather than a production code written in C++.

Figures 4 and 5 show run times for the two dominant oper-

ations – the assembly of the linear system and the solution of

the linear system – as a function of the number of unknowns

and the mesh size h, respectively. The figures show that the

cost of both of these operations is, in essence, a function of

the number of degrees of freedom of an element combina-

tion rather than the specific details of how an element’s shape

functions are defined. As a consequence, the costs of differ-

ent elements only differ by a (modestly sized) constant factor,

rather than leading to different rates. What this also implies

is that if we had shown the results of, say, Fig. 3 as a function

of run time instead of mesh size h, curves would only have

been moved up and down, but they would have retained their

relative convergence rates, and elements shown there with a

higher convergence rate will also have a higher convergence

rate as a function of run time. A secondary observation is that

the run times for the various Taylor–Hood-type elements are

not substantially different from each other; as a consequence,

run time is not a criterion that will help us choose one of these

variants over the others.

Similar observations will hold for the benchmarks in the

following sub-sections, and we will consequently omit com-

parisons of run times there.

4.2 SolCx

SolCx is a substantially more difficult benchmark to solve

since it involves a viscosity that jumps by a factor of 106

along the vertical mid-line of the domain. This results in a

nearly discontinuous pressure as well as a kink in the veloc-

ity along this line. With properly aligned meshes, some ele-

ments can resolve these singularities, though this of course

makes the benchmark not representative of real-world sit-

uations where the locations and directions of jumps in the

viscosity of geodynamic models can typically not be pre-

dicted a priori and may change with time. Elements using

continuous pressures consequently exhibit poor convergence.

This benchmark is widely used in many geodynamical papers

(e.g., Zhong, 1996; Duretz et al., 2011; Kronbichler et al.,

2012; Thielmann et al., 2014; de Montserrat et al., 2019;

Thieulot and Bangerth, 2022).

Figure 6 shows the approximation errors we obtain for this

benchmark. It illustrates the difficulties elements with contin-

uous pressure (such as Q2 ×Q1 and P2 ×P1, specifically as

opposed to Q2 × P21 and P +
2 × P21) have with this bench-

mark: they all only achieve a convergence rate of O(h0.5),

reflecting the lack of regularity in the exact pressure. No-

tably, the convergence rate for elements using a continuous

piecewise linear pressure is even worse than for the P2 × P0

element that uses (discontinuous) piecewise constant pres-

sures.

4.3 SolVi

Of course, the difficulties of the SolCx benchmark of the pre-

vious section are somewhat artificial given that the disconti-

nuity in the viscosity is along a vertical line that is easily

matched by the mesh (if desired). In other words, while the

struggles of elements with continuous pressure are real, the

fact that elements with discontinuous pressures work well on

such meshes could be considered a lucky break because the

jump in viscosity is aligned with the discontinuity of pres-

sures along cell interfaces – at least on structured meshes

with an even number of cells per coordinate direction, as we

use here.

At the same time, this is perhaps not so. Figure 6c and d

already suggest that elements with discontinuous pressure

spaces can adequately resolve the discontinuous pressure

even on unstructured meshes, where the jump in viscosity

in the SolCx benchmark is no longer aligned with cell in-

terfaces. The SolVi benchmark we consider in this section

illustrates this in more detail. It models a situation where the

viscosity inside an inclusion is 1000 times larger than outside

the inclusion and where we make no attempt at resolving this

boundary with the structured mesh – similar to realistic situ-

ations of slab subduction or other cases of large and perhaps

dynamically changing viscosity jumps that cannot practically

be resolved using the meshes in use. The setup is identical to

the one in Thieulot and Bangerth (2022), although here we

only model one quadrant of the problem: the domain is the

unit square (0,1)2, the inclusion is centered on the origin,

and the analytical velocity is prescribed on all sides. Schmid

and Podlachikov (2003) derived a simple analytical solution

for the pressure and velocity fields for this case, which was

subsequently used in many other publications (Deubelbeiss

and Kaus, 2008; Suckale et al., 2010; Duretz et al., 2011;

Kronbichler et al., 2012; Gerya et al., 2013; Thielmann et al.,

2014; de Montserrat et al., 2019).

We show results for the errors in velocity and pressure in

Fig. 7. In the case of structured meshes (Fig. 7a and b), the

figures show that the lack of regularity in the solution, cou-

pled with the fact that the line where this singularity occurs

is not captured by the mesh, leads to a situation where all

elements only obtain the convergence rate allowed by the so-

lution rather than based on their polynomial degrees. Indeed,

the quality of approximation is largely determined simply by

the number of degrees of freedom an element can offer for a

given mesh size h.

For unstructured meshes, we use the modified procedure

shown in Fig. 2d to obtain a triangular mesh whose edges

are aligned with the discontinuity of the viscosity – an ap-

proach that is admittedly artificial and would not be possible

in “real” applications. The corresponding results are shown

in Fig. 7c and d. They show that the alignment of cell edges
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Figure 4. Donea and Huerta benchmark: run time to assemble the linear system (a) and to solve the linear system (b) for the different element

combinations as a function of the number of degrees of freedom on a sequence of meshes.

Figure 5. Donea and Huerta benchmark: run time to assemble the linear system (a) and to solve the linear system (b) for the different

element combinations as a function of the mesh size (which is inversely proportional to the square root of the number of cells) on a sequence

of meshes.

to the discontinuity can recover one order of convergence for

the velocity (from O(h) to O(h2) for all of the elements we

investigated) and up to one order of convergence for the pres-

sure if one uses discontinuous pressure elements. Yet, even

with these aligned meshes, none of the elements achieves its

optimal convergence rate.

A comparison of the curves for the structured meshes

shows that, for this complex situation, the Taylor–Hood ele-

ments Q2×Q1 and P2×P1 fare the best, at least as far as “er-

ror for a given mesh size” is concerned. For the very specific

discontinuity-aligned unstructured meshes, the P +
2 × P21

pair emerges as the overall best with a quadratic pressure er-

ror convergence. The observations from these experiments

also support the assertion in Sect. 3.3 (as well as the con-

clusions of Thieulot and Bangerth, 2022) that higher-order

Taylor–Hood elements (i.e., Qk ×Qk21 or Qk ×P2(k21) on

hypercubes and Pk ×Pk21 or P +
k ×P2k on simplices, in both

cases with k > 2) would not yield better convergence orders

despite their additional cost and are therefore not worth in-

vestigating further for geodynamic applications. This justi-

fies why we do not consider them for this study.

4.4 The sinking block

In the SolCx and SolVi cases, the difficulty is driven by a dis-

continuous coefficient (the viscosity) in the differential oper-

ator of the Stokes equations (Eqs. 1 and 2). In contrast, for

the sinking block benchmark, one considers a situation where

a square part of the domain differs not only in viscosity, but

also in density from the surrounding material – that is, in the

right hand side of the equation. This results in singularities in

the solution at the edges of the inclusion that have a qualita-

tively different behavior than that one observes in the SolCx

and SolVi benchmarks. Similar or identical benchmarks can

be found, for example, in May and Moresi (2008), Gerya

(2019), Thieulot (2011), Mishin et al. (2022), and Schuh-

Senlis et al. (2020). The current benchmark also involves

having to deal with buoyancy forces (that is, a non-trivial

hydrostatic pressure) that are of course the driving force for

many effects in geodynamics and whose resolution is there-

fore important; we have found in the first part of this paper

that dealing with buoyancy presented substantial problems to

the stabilized Q1 × Q1 element.

In the current benchmark, we consider a “sinker” inclusion

that has a density Ãsinker = Ãfluid + ·Ã and viscosity ·sinker =
·7·fluid. Boundary conditions are free slip on all sides, and
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Figure 6. SolCx: velocity (a, c) and pressure (b, d) errors as a function of (average) mesh size for structured (a, b) and unstructured

meshes (c, d).

Figure 7. SolVi: velocity (a, c) and pressure (b, d) L2 errors as a function of (average) mesh size for structured (a, b) and unstructured

meshes (c, d).
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gravity is given by g = 2ey . The domain is the unit square,

and we set Ãfluid = 1 and ·fluid = 1. The sinker is a square

of size 0.25 × 0.25 centered at (xs,ys) = (0,0.75). As ex-

plained in Thieulot and Bangerth (2022), “in a geodynamical

context, this setup could be interpreted as a detached slab

(·Ã > 0) or a plume head (·Ã < 0). As such its viscosity and

density can vary (a cold slab has a higher effective viscosity

than the surrounding mantle, while it is the other way around

for a plume head).”

We consider two cases: (1) the fluid and the sinker den-

sities are as described above (the “full density” case) and

(2) the fluid has zero density and the density of the block

is set to Ãsinker = ·Ã (the “reduced density” case). The two

cases of course lead to the same exact velocity field but differ

in the fact that the pressure field contains a “hydrostatic” (or,

in the current context, “lithostatic”) component only in the

first case, whereas the background fluid (having zero density

Ãfluid) does not contribute to the pressure field in the second

case. Even though the difference between the two cases is

only the addition of a pressure that grows linearly with depth,

the discretized equations may show an element-dependent

behavior. For example, it is clear that resolving a linear pres-

sure with an element that uses piecewise constant pressures

(such as the P2 × P0 element) will incur a substantial accu-

racy penalty; likewise, as shown in Thieulot and Bangerth

(2022), stabilized elements yield different solutions based on

whether or not the hydrostatic pressure is included.

In order to evaluate the accuracy of different elements for

this benchmark, we will make use of the observation shown

in Appendix A.2 of Thieulot (2011): while one can inde-

pendently vary ·fluid, Ãsinker, and ·sinker and measure |vy | in

the middle of the sinker for each combination, the quantity

v7 = |vy |·fluid/·Ã is found to be a function of only the ratio

·7 = ·sinker/·fluid. At high-enough mesh resolution, all data

points then collapse onto a single line (but this may not be the

case on coarse meshes: different values of the material con-

stants may correspond to the same ·7 but numerically result

in different values of v7). Similarly, the normalized pressure

p7 = p/·ÃgLb measured in the middle of the block is, on

sufficient fine meshes, a function of ·7 only.

We will therefore show figures that report the com-

puted values of v7 and p7 as a function of ·7 for all

six elements. For each ·7, we show data for ·Ã/Ãfluid *
{0.25%,1%,40%}. As mentioned, the values of v7 and p7

obtained with these three density ratios should be the same

but are not the same on coarse meshes; however, this is

only visible in the figures for the P2 × P0 element where

for each ·7 up to three different values of v7 (one for each

value of ·Ã/Ã considered) are apparent. We here restrict our-

selves to structured meshes with resolutions of 162, 322, 642,

and 1282 so that element edges align with the boundary of

the block.

4.4.1 Full density

Figure 8 shows results for all elements and four different

mesh resolutions for the case where we include the lithostatic

pressure in the model. We find that, as we increase the mesh

resolution, all elements but the P2×P0 converge to reference

results obtained with the ASPECT code at 256 × 256 with the

Q2×P21 element. Because the overall pressure is dominated

by the lithostatic component that grows linearly with depth, it

is not surprising that the P2 ×P0 has a hard time approximat-

ing the pressure well; the figures show that this also translates

to a poor approximation of the normalized velocity v7. This

error becomes smaller the larger ·7 becomes since ·7 is a

measure of the ratio of the dynamic to the lithostatic pres-

sure.

4.4.2 Reduced density

In the second case, where the density outside the inclusion

is zero, the lithostatic pressure is absent and we can inves-

tigate both the dimensionless velocity (Fig. 9) and pressure

(Fig. 10) in the middle of the block.

While the figure shows that the P2 × P0 element has re-

covered some of its accuracy in approximating the veloc-

ity, it is unable to provide an accurate approximation of the

pressure. A comparison of the convergence behavior (going

from coarse to fine meshes) shows that the P +
1 ×P1 element

also behaves pretty poorly. The remaining elements are all

of Taylor–Hood type; of these, the P2 × P1 element with

continuous pressure is substantially more accurate than the

P +
2 × P21 element with discontinuous pressure.

4.5 Rayleigh–Taylor wave benchmark

As a final comparison, we have also carried out the

buoyancy-driven Rayleigh–Taylor wave instability bench-

mark found, for example, in Gerya (2019), Deubelbeiss and

Kaus (2008), and Thieulot (2011) and for which an analytical

solution of the initial growth rate can be found in Ramberg

(1968). The benchmark consists of a two-layer system in a

box of size Lx ×Ly driven by gravity. A layer of fluid 1 (with

viscosity and density ·1 and Ã1 and thickness h1 = Ly/2)

overlies a layer of fluid 2 (with viscosity and density ·2 and

Ã2 and thickness h2 = Ly/2). The interface between the two

layers is disturbed by a sinusoidal displacement character-

ized by its amplitude 1 = 0.01 and wavelength » = Lx/2.

No-slip boundary conditions are imposed on the top and the

bottom of the domain, while free slip is imposed on the sides.

Gravity is set to g = 2ey . We use a mesh that is slightly dis-

torted so as to accommodate the sinusoidal interface; how-

ever, we use straight element edges in keeping with the other

benchmarks solved in this contribution. In our experiments,

we specifically choose Lx = Ly = 1.

The non-horizontal interface in the setup leads to diapiric

growth (illustrated in Fig. 11) whose initial vertical veloc-
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Figure 8. The sinking block benchmark with full densities: normalized velocity v7 in the middle of the block (obtained for three density

ratios ·Ã/Ãfluid) as a function of viscosity ratio ·7. Each panel corresponds to a different mesh resolution. For the P2 ×P0 element, some of

the data points fall outside of the range of the plots. (See the main text for an explanation of the scattered red dots for the P2 × P0 element.)

For reference, we also show results obtained with ASPECT on a 256 × 256 mesh.

Figure 9. The sinking block benchmark with reduced densities: normalized velocity v7 as a function of viscosity ratio ·7 for various

resolutions.
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Figure 10. The sinking block benchmark with reduced densities: normalized pressure p7 in the middle of the block as a function of viscosity

ratio ·7 for various resolutions. For the P2 ×P0, P+
2

×P21, and Q2 ×P21 elements with their discontinuous pressure spaces, we show p7 at

several slightly displaced points (xs ±·x,ys ±·y). For the P+
2

×P21 and Q2 ×P21 elements the difference is not visible at high resolution,

and values for the P2 ×P0 element (red dots) fall outside the range shown here at low resolution and still show substantial differences at high

resolution.

Figure 11. Rayleigh–Taylor wave benchmark. The figure shows the

two layers and the velocity field that results from their unequal den-

sities, as obtained on a 64 × 64 mesh using Q2 ×Q1 elements, with

·2 = 102.

ity v, at points where it is maximal, can be shown to satisfy

the analytic relationship v = 21K
Ã12Ã2

2·2
h2g, with K being

a dimensionless growth factor that depends on Ç1, Ç2, ·1,

and ·2 (see Gerya, 2019). Instead of targeting a specific node

in the domain, we evaluate v by taking the maximum vertical

velocity |vy | in the domain.

We then solve this benchmark with ·1 = 1, Ã1 = 1.1, and

Ã2 = 1, and we vary ·2 between 1022 and 102 and compu-

tationally determine the vertical growth velocity at the initial

time for all six element pairs and for various resolutions.

We show results in Fig. 12. We find that all elements but

the P2 × P0 perform as expected for the range of explored

viscosity values ·2: the obtained velocities fall on the analyt-

ical dashed line, with fairly little variation between element

combinations that is only visible on the coarsest mesh. On the

other hand, the results obtained with the P2×P0 combination

are far from the exact values; we find that with increasing res-

olution, obtained velocities get closer to the analytical values

(especially for ·2 > 1), but even at a resolution of 256 × 256

elements, v is more than a factor 2 off for ·2 = 0.01. This be-

havior is consistent with what we have found for the sinking

block benchmark in Sect. 4.4.

In order to elucidate the underlying reasons, we have re-

run this experiment with reduced densities (see Sect. 4.4)

where we choose Ã1 = 0.1 and Ã2 = 0; in other words, we

have subtracted a constant from the densities in both layers

since flow is only driven by density differences, not densities

themselves. This results in a different pressure field but the

same velocity. We find that in this case the obtained veloc-

ities for the P2 × P0 converge much faster to the analytical

ones over the entire range of viscosities, as shown in Fig. 13.

This is again in line with the observations for the sinking

block benchmark and also matches our findings in Thieu-

lot and Bangerth (2022) that constant-pressure elements per-
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Figure 12. Rayleigh–Taylor wave benchmark. For each of the six element combinations considered in this paper, we show the maximum

(absolute) vertical velocity |vy | as a function of viscosity ·2 for several different mesh resolutions.

form poorly in buoyancy-driven flow experiments where the

lithostatic pressure is dominant.

4.6 A quantitative comparison of convergence rates

For three of the benchmarks shown in the previous sub-

sections, an analytic solution is available that allowed us

to compute errors. For these cases, we can also compute

error rates in the L2 norm, namely ‖u 2 uh‖L2
? h³ and

‖p2ph‖L2
? h³ . Generally, for Taylor–Hood-type elements

with polynomial degree k for the velocity, one would expect

³ = k + 1 and ³ = k if the solution is smooth, but not all

elements always achieve this rate and the rate is also lim-

ited by the smoothness of the solution – see the discussion in

Sects. 3.1 and 3.2 of Thieulot and Bangerth (2022).

We summarize the rates we observe in our computations in

Table 2, along with the optimal rate one would expect theo-

retically for each of these elements. The table illustrates that

in cases where the solution is smooth, the Taylor–Hood-type

elements achieve a higher order of convergence and, conse-

quently, will be asymptotically more efficient than the other

elements. (In practice, the results of the previous sections as

well as the first part of this paper show that the Taylor–Hood-

type elements are already more efficient for rather coarse

meshes.) This observation will apply to the large parts of

the domain in geodynamics simulations where the viscosity

varies smoothly. The second observation one can draw from

the table is that for cases where the solution is not smooth be-

cause the viscosity or density is discontinuous, all discretiza-

tions take a hit (unless the mesh is aligned with the disconti-

nuity) and convergence rates are limited by the regularity of

the solution.

We end this section by noting that we also computed so-

lutions to the SolKz benchmark (Zhong, 1996) that, like the

Donea–Huerta benchmark, has a smooth solution and that
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Table 2. Observed convergence rates for the three benchmarks for which an analytic solution is available, along with the theoretically

predicted optimal convergence rate for each of the elements assuming a sufficiently smooth solution. Each entry in the table consists of a pair

³ and ³ of convergence rates for the L2 norms of the error in the velocity and pressure. “struct.”: structured meshes; “unstruct.”: unstructured

meshes (for simplex elements only). Note that the optimal pressure convergence rate for the MINI element P+
1

× P1 depends on the type

of mesh; on general meshes, standard finite element theory predicts it to be 1 but in certain conditions can be up to 1.5 as observed for the

Donea–Huerta benchmark (see Cioncolini and Boffi, 2019, and John, 2016, p.157, for experimental evidence and Eichel et al., 2011, for an

earlier theoretical investigation).

Optimal Donea–Huerta SolCx SolVi

struct. unstruct. struct. unstruct. struct. unstruct.

Hypercube Q2 × Q1 3/2 3/2 – 3/0.5 – 1/0.5 –

elements Q2 × P21 3/2 3/2 – 3/2 – 1/0.5 –

Simplex P+
1

× P1 2/1 2/1.5 2/1 2/0.5 2/0.5 1/0.5 2/0.5

elements P2 × P1 3/2 3/2 3/2 3/0.5 3/0.5 1/0.5 2/0.5

P2 × P0 2/1 2/1 2/1 2/1 2/1 1/0.5 2/1

P+
2

× P21 3/2 3/2 3/2 3/2 3/2 1/0.5 2/1.5

Figure 13. Rayleigh–Taylor wave benchmark. We show the maxi-

mum (absolute) vertical velocity |vy | as a function of viscosity ·2

for several different mesh resolutions for the P2×P0 element. Com-

pared with the bottom-left panel in Fig. 12, we here use reduced

densities, as explained in the main text.

has been widely used in the community for similar purposes

(Duretz et al., 2011; Kronbichler et al., 2012; Gerya et al.,

2013; de Montserrat et al., 2019). The results are very sim-

ilar to those of the Donea–Huerta case. We have also run

the benchmark described in John (2016, p. 752), with results

matching those provided there. In both cases, the results con-

firm the correctness of our implementation but do not provide

any insight not already available from the benchmarks shown

above; we have consequently chosen not to show these re-

sults in this contribution.

Finally, in the first part of this paper, we followed our re-

sults on benchmarks with a more concrete geodynamic ap-

plication. The observations there reinforced the conclusions

we had drawn based on benchmarks. Based on the results of

the current paper, we see no reason to believe that solving the

same application again with triangular meshes would result

in any different outcomes than reported there, and we conse-

quently omit it here.

5 Conclusions

Historically as well as recently, geodynamics codes that

solve the Stokes equations have based their numerical meth-

ods on a wide variety of finite element discretizations –

nearly every element ever invented has been used in some

geodynamics code or other. This diversity of approaches may

not always have been motivated by careful considerations of

what the best method is but also by human elements such

as what the implementer was familiar with or felt feasible

to implement. At the same time, today’s finite element dis-

cretization libraries upon which most new codes are built

support a broad range of elements, both low and high order,

and as a consequence, evidence-based decisions about which

element to use are now both possible and called for. As a

consequence, comparative studies such as the current one for

simplex elements and the first part of our work in Thieulot

and Bangerth (2022) for hypercube elements are both useful

and necessary.

Having compared a number of possible finite element

choices for the Stokes equations using a carefully selected set

of benchmarks, we can summarize our findings as follows.

– The P +
1 ×P1 element is not accurate enough. Although

appealing on paper because of its stability and small

number of unknowns, the P +
1 × P1 element is also the

least accurate one in most benchmarks.

– The P2 × P0 element can not accurately represent the

lithostatic pressure. Similarly, the P2 × P0 element is

appealing because of its small pressure space and the

fact that it is mass conservative due to the discontinu-

ous pressure. At the same time, the low-order pressure

does not allow the velocity to reach the optimal con-

vergence rate, and using a piecewise constant pressure

simply does not result in sufficient accuracy for appli-

cations in which an accurate representation of the litho-
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static pressure field is important – e.g., for problems

with pressure-dependent rheologies.

– Only Taylor–Hood elements are accurate and robust. As

a consequence of these considerations, only the Taylor–

Hood-type elements P2 × P1 and P +
2 × P21 are truly

competitive across all applications we have considered.

This is in line with the conclusions of the first part of

this work (Thieulot and Bangerth, 2022) where we have

found that on hypercube cells, only the Q2 × Q1 and

Q2 ×P21 elements are consistently able to provide suf-

ficient accuracy across benchmarks. This is despite the

non-trivial costs of these elements due to their large

number of velocity degrees of freedom, in particular

in 3D, and consequent large number of nonzero entries

in system matrices – apparently this is a price one needs

to pay for consistently high accuracy.

– It is not obvious which of the Taylor–Hood variants is

better. Comparing between the two Taylor–Hood-like

elements on triangles, the P2 × P1 element provides

a substantially better pressure approximation than the

P +
2 ×P21 element for smooth solutions; in other cases,

the difference is marginal, and in yet other cases the dis-

continuous pressure elements are substantially better. In

essence, the difference is not universally large enough

either way to recommend one over the other based on

accuracy alone. The same is true when considering run

times: all of the Taylor–Hood-type elements take about

the same time in the assembly of the matrix and in the

solution of the linear system; run time is consequently

not a criterion to choose one Taylor–Hood variant over

another. On the other hand, if local mass conservation

is important, or if one wanted to use a linear solver that

can exploit the block diagonal structure of the pressure

mass matrix of the P +
2 ×P21 combination, then this el-

ement may have a benefit over the P2 × P1 element.

– Per degree of freedom, hypercube elements are slightly

more accurate than the corresponding simplex ele-

ments. Comparing between the Taylor–Hood-type ele-

ments on simplex and hypercube meshes, the P2 × P1

element is typically less accurate than its counterpart

Q2 × Q1. Likewise, the P +
2 × P21 element is typically

less accurate than its counterpart Q2 × P21 for smooth

solutions. In neither case are the differences very large,

however.

These conclusions conform with the results of the first part

of this study: at the end of the day, only Taylor–Hood-type

elements are consistently able to provide reliable and robust

accuracy in geodynamic applications, not because they are

inherently superior but because all of the other choices fail

on one benchmark or other in a way that make them unsuit-

able for the task. It is reassuring that this conclusion is the

same for simplex and hypercube elements as this hints at the

universality of the properties of finite element families, re-

gardless of the choice of reference cell.

The comparisons we have made also support another con-

clusion: while triangular and tetrahedral meshes have right-

fully been dominant in engineering applications for their

ability to mesh complex geometries (and perhaps situations

in which coefficients jump at predictable locations), they are

generally slightly less accurate than the corresponding finite

element on quadrilateral and hexahedral cells. Taking into ac-

count that they typically lead to matrices with fewer entries,

one can speculate that per unit computational cost, their per-

formance in terms of error as a function of computational

work is roughly comparable to that of hypercube cells. But,

given that geodynamic applications oftentimes do not need

complex geometries, this also implies that simplex meshes

and elements offer no specific benefit over hypercubes and

that there is no reason to abandon the common practice in

the field to build codes based on hypercube cells.
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