
Symposium

Large-Scale Mechanistic Models of Brain Circuits with
Biophysically and Morphologically Detailed Neurons

Salvador Dura-Bernal,1,2 Beatriz Herrera,3 Carmen Lupascu,4 Brianna M. Marsh,5 Daniela Gandolfi,6

Addolorata Marasco,7 Samuel Neymotin,2,8 Armando Romani,9 Sergio Solinas,10 Maxim Bazhenov,5

Etay Hay,11,12 Michele Migliore,4 Michael Reinmann,9 and Anton Arkhipov3
1State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, New York 11203, 2Nathan S. Kline Institute for Psychiatric
Research, Orangeburg, New York 10962, 3Allen Institute, Seattle, Washington 98109, 4Institute of Biophysics, National Research Council/Human Brain
Project, Palermo 90146, Italy, 5University of California San Diego, La Jolla, California 92093, 6Department of Engineering "Enzo Ferrari", University of
Modena and Reggio Emilia, Modena 41125, Italy, 7University of Naples Federico II, Naples 80138, Italy, 8School of Medicine, New York University, New
York 10012, 9Swiss Federal Institute of Technology Lausanne (EPFL)/Blue Brain Project, Lausanne 1015, Switzerland, 10University of Sassari, Sassari
07100, Italy, 11Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada, and 12University of
Toronto, Toronto, Ontario M5S 1A1, Canada

Understanding the brain requires studying its multiscale interactions from molecules to networks. The increasing availability of
large-scale datasets detailing brain circuit composition, connectivity, and activity is transforming neuroscience. However, integrat-
ing and interpreting this data remains challenging. Concurrently, advances in supercomputing and sophisticated modeling tools now
enable the development of highly detailed, large-scale biophysical circuit models. These mechanistic multiscale models offer a
method to systematically integrate experimental data, facilitating investigations into brain structure, function, and disease. This
review, based on a Society for Neuroscience 2024 MiniSymposium, aims to disseminate recent advances in large-scale mechanistic
modeling to the broader community. It highlights (1) examples of current models for various brain regions developed through exper-
imental data integration; (2) their predictive capabilities regarding cellular and circuit mechanisms underlying experimental record-
ings (e.g., membrane voltage, spikes, local-field potential, electroencephalography/magnetoencephalography) and brain function;
and (3) their use in simulating biomarkers for brain diseases like epilepsy, depression, schizophrenia, and Parkinson’s, aiding in
understanding their biophysical underpinnings and developing novel treatments. The review showcases state-of-the-art models cov-
ering hippocampus, somatosensory, visual, motor, auditory cortical, and thalamic circuits across species. These models predict neu-
ral activity at multiple scales and provide insights into the biophysical mechanisms underlying sensation, motor behavior, brain
signals, neural coding, disease, pharmacological interventions, and neural stimulation. Collaboration with experimental neurosci-
entists and clinicians is essential for the development and validation of these models, particularly as datasets grow. Hence, this review
aims to foster interest in detailed brain circuit models, leading to cross-disciplinary collaborations that accelerate brain research.
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compartmental neuron models; network models; simulations

Introduction
Understanding the brain requires studying its multiscale interac-
tions, from molecules to cells to circuits and networks. The neu-
roscience field is undergoing a qualitative change due to new rich
and vast datasets describing the composition, connectivity, and
functional activity of brain circuits across scales [BRAIN
Initiative Cell Census Network (BICCN), 2021; MICrONS
Consortium et al., 2021; Turner et al., 2022; Yao et al., 2023;
Shapson-Coe et al., 2024]. However, integrating and interpreting
this data remains a daunting challenge. Simultaneously, the
accelerating development of supercomputing resources and
sophisticated modeling software tools (reviewed below) is giving
rise to highly detailed and large-scale biophysical circuit models.
Such mechanistic multiscale modeling offers an unparalleled
approach to systematically integrate and interpret experimental
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data and enable investigation of a multitude of questions about
brain structure, function, and disease.

Goal of the minisymposium and review article
This review is based on aminisymposiumwith the same title held
at the Society for Neuroscience 2024 Meeting. The overarching
goal of the review and minisymposium is to disseminate the
recent advances in large-scale mechanistic modeling of brain cir-
cuits to the broader neuroscience community. More specifically,
we aim to communicate (1) examples of large-scale mechanistic
models currently available for different brain regions and
how these were developed by integrating experimental data;
(2) how these models can make predictions about the cellular
and circuit mechanisms underlying experimental recordings
[e.g., membrane voltage, spikes, local-field potential (LFP), elec-
troencephalography (EEG), magnetoencephalography] and
brain function; and (3) how these models can be used to simulate
biomarkers of brain disease and disorders, such as epilepsy,
depression, schizophrenia, or Parkinson’s disease, to unravel
their biophysical underpinnings and help develop and evaluate
novel treatments.

Characteristics, building pipeline, and challenges of these
models
The event and this accompanying review aim to highlight a
specific type of models within computational neuroscience:
large-scale biophysical multiscale mechanistic models of brain cir-
cuits, which typically include (1) the major neuron types with
experimentally constrained cell densities, ratios, and spatial distri-
bution; (2) individual neuron models with multicompartment
morphologies and multiple conductance-based spatially distribu-
ted ion channels (based on the Hodgkin–Huxley formalism and
cable theory), fitted to reproduce cell-type–specific physiological
responses (e.g., F–I curves); and (3) experimentally constrained
synaptic connectivity, including different postsynaptic receptors
with specific kinetics, cell-type–specific local connectivity proper-
ties (e.g., probability of connection and postsynaptic potential
(PSP) amplitude), and external or long-range inputs. This level
of detail makes these models ideally suited for addressing highly
specific mechanistic research questions, which simpler or more
abstract models may not be able to tackle. For example, accurately
predicting how pharmacological manipulation of a specific ion
channel in a specific cell type affects LFP oscillations likely requires
a circuit model that includes that cell type with that ion channel
properly distributed across dendrites, and a population of mor-
phologically detailed neurons with realistic cell density and spatial
distribution to rigorously simulate the LFP signals (Ness et al.,
2018; Rimehaug et al., 2023).

As shown in the following sections on specific models, the
modeling workflow typically follows common steps, with some
variations depending on the project’s needs: (1) Data gathering
and preprocessing stage, where all the relevant parameter values
for the model components described above, ranging from cell
biophysics to long-range inputs, are derived from experiments,
publications, or existing datasets. This may also involve prepro-
cessing to estimate missing values or to convert the data to the
correct units required by the model. (2) Model implementation,
where the appropriate software tools (see below, Ecosystem of
software tools, standards, and platforms) are used to instantiate
cells, connections, and mechanisms in the network model based
on the specifications extracted from the previous step.
Importantly, the components, like cell and synapse models
need to exist—meaning, in practice, leveraging existing

publications or databases or developing such component models
from scratch (Van Geit et al., 2016; Gouwens et al., 2018;
Migliore et al., 2018). Note that a multitude of differing
approaches and algorithms for converting available experimental
data to specific model features can be employed at this stage—
e.g., establishing connectivity based on precalculated probabili-
ties (Billeh et al., 2020; Dura-Bernal et al., 2023a) versus using
algorithmic implementation of synaptic touches followed by
pruning (Reimann et al., 2015). (3) Model fitting and validation
may cover a very broad range of observations, depending primar-
ily on the data available and aims of the project. Most typically,
circuit models are constructed (in the previous steps) based on
in vitro data like cell-type properties, connectivity, etc. and are
optimized and validated based on in vivo data, such as attempt-
ing to reproduce firing patterns or features of signals like LFP or
EEG. (4) Model exploration, the stage at which the model is con-
sidered more or less “final” and one is then investigating how the
model behaves under various conditions and stimuli, how this
behavior is affected by changes in parameters or perturbations,
and how it translates to signals that could be experimentally
recorded. This is the stage where insights about biological mech-
anisms and principles are obtained and predictions might be for-
mulated for potential experimental verification. (5) Model
sharing, a stage that is increasingly recognized as crucial, in
which the model and simulations are shared as computational
resources (rather than simply a publication) leveraging the
emerging standards and tools.

Across all these steps, a set of common challenges is encoun-
tered. The primary among them is missing data—brain circuits
are incredibly complex, and, so far, constraining all aspects of cir-
cuit models by high-quality data remains mostly an aspirational
goal. As such, an important and typical part of the modelers’ job
is to “fill the gaps” in the data using reasonable assumptions and
educated guesses, for example, adapting values from similar
brain regions or species. Another challenge is computational
cost, which is rather high for the models covered here, as they uti-
lize complex biophysical mechanisms and detailed neuronal
morphologies across many thousands of cells—simulation of
one biological second can require hundreds to thousands of
core hours on supercomputers. Yet another important challenge
is the interpretation, that is, connecting what can be observed
or learned from the model with tangible experimental reality.
The model examples below illustrate how researchers approach
these challenges to produce scientifically useful computational
models.

Ecosystem of software tools, standards, and platforms
There is also a large ecosystem of software tools, standards, and
platforms that enables the development, simulation, and analysis
of these large-scale biophysical circuit models. These include simu-
lation engines such asNEURON (Carnevale andHines, 2006; Awile
et al., 2022), Arbor (Akar et al., 2019), MOOSE (Ray and Bhalla,
2008), EDEN (Panagiotou et al., 2022), NEST (10.4249/scholarpe-
dia.1430), and Brian (Stimberg et al., 2019); modeling and analysis
tools such as Brain Modeling Toolkit (BMTK; Dai et al., 2020a)/
Bionet (Gratiy et al., 2018), BBP Neurodamus (Pereira et al.,
2023), BluePyOpt (Van Geit et al., 2016; Reva et al., 2023),
ConnectomeUtilities (Reimann et al., 2023), BlueRecording
(Tharayil et al., 2024), NetPyNE (Dura-Bernal et al., 2019), Brain
Scaffold Builder (De Schepper et al., 2022), pyNeuroML (Gleeson
et al., 2010; Dai et al., 2020b), PyNN (Davison et al., 2009), LFPy
(Hagen et al., 2018), and Human Neocortical Neurosolver
(Neymotin et al., 2020); and standards and platforms such as
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SONATA (Dai et al., 2020b), NeuroML (Sinha et al., 2024), Open
Source Brain (Gleeson et al., 2019), and ModelDB (Hines et al.,
2004; McDougal et al., 2016), among others.

Other modeling approaches
Numerous other modeling approaches exist, each optimally
suited to specific research questions and scales of interest.
These range from smaller scale or simplified circuits with multi-
compartment neurons (Cutsuridis et al., 2010; Sherif et al., 2020;
Medlock et al., 2022; Metzner et al., 2022; Herrera et al., 2023;
Ponzi et al., 2023) to large-scale detailed circuits/networks with
single-compartment or spiking point neurons (Schmidt et al.,
2018; Peron et al., 2020; Marsh et al., 2024) to whole-brain
mean–field models (Demirtaş et al., 2019; Meier et al., 2022;
Cakan et al., 2023; Jirsa et al., 2023). Previous reviews provide
an overview of some of these different modeling approaches
(D’Angelo et al., 2013; Tikidji-Hamburyan et al., 2017; D’Angelo
and Jirsa, 2022; Haufler et al., 2023).

Models showcased in this review and other examples
This publication is not intended to provide a comprehensive
review of this modeling subfield. To illustrate its broadness, we
highlight several relevant circuit models across species and brain
regions that will not be covered in detail here: rat thalamocortical
circuit (Traub et al., 2005), rodent cerebellum (De Schepper et al.,
2022), mouse striatum (Hjorth et al., 2020), mouse somatosen-
sory thalamus and thalamic reticular nucleus (Iavarone et al.,
2023), and human hippocampus epileptic circuitry (Buchin
et al., 2022). Previous reviews and books provide further descrip-
tion of this modeling approach and discussion of its applications

(Einevoll et al., 2019; Poirazi and Papoutsi, 2020; Haufler et al.,
2023; Halnes et al., 2024).

The following section showcases several state-of-the-art
large–scale mechanistic models of brain circuits, which were
presented at the SfN Minisymposium. They cover multiple brain
regions, including hippocampus and somatosensory, visual,
motor, auditory cortical, and thalamic circuits across different
species (Fig. 1; Table 1). These models provide insights into the
biophysical mechanisms underlying sensation and motor beha-
vior; the origins of brain signals such as LFP and EEG; disease
such as depression, epilepsy, and schizophrenia; and the effects
of pharmacological interventions and neural stimulation.

Showcase of models
Model of mouse, rat, and human hippocampus
In this section, we review the implementation pipeline and pre-
liminary results on the intrinsic activity properties of a full-scale
computational model of the rat hippocampus CA1 area (450,000
cells), using data-driven constraints on cell location, electrophys-
iological properties, and connectivity (Fig. 1), and implemented
in NEURON (Romani et al., 2024).

Morphological reconstructions and electrophysiological
recordings allowed us to reproduce in great details the morphoe-
lectrical properties of several neuron types. At the same time, the
wealth of literature data also allowed us to faithfully reconstruct
the connectome and synaptome and validate the different
components of the network model. The main scope of the model
is to link the mechanisms acting at the subcellular scale (e.g.,
synaptic integration and plasticity, local dendritic activity) with
phenomena at cellular and network scales (e.g., oscillations, LFP).

Figure 1. Overview of large-scale mechanistic brain circuit models showcased in this review. Clockwise from top-left: 3D spatial representation of neural circuit models of mouse primary visual
cortex (V1) column (Billeh et al., 2020); rat full hippocampus CA1 (Gandolfi et al., 2022, 2023; Romani et al., 2024); human cortex Layer 2/3 (Guet-McCreight et al., 2024); rat (Halgren et al.,
2023) and human (Marsh et al., 2024) cortical column; macaque primary auditory cortex (A1) column (Dura-Bernal et al., 2023a); full rat nonbarrel somatosensory cortex S1 (Reimann et al.,
2024); and mouse primary motor cortex (M1) column (Dura-Bernal et al., 2023b). See details in the main text.
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The CA1 volume was first defined adapting a publicly available
atlas reconstruction of the hippocampus (Ropireddy et al., 2012);
then it was populated with single-cell models respecting experimen-
tal constraints on cell composition, including 1 type of excitatory
neuron, pyramidal (PY) cell, and 11 types of inhibitory (IN) neu-
rons. Cell positions were determined according to rules describing
how neurites target the different layers (Romani et al., 2024).

The connectome algorithm previously described in Reimann
et al. (Reimann et al., 2015) was used to find all potential synapses
and a pruning procedure to consider experimental data on
bouton density and number of synapses. Synaptic transmission
and electrophysiological neuron/interneuron properties were
those obtained in Ecker et al. (Ecker et al., 2020), implemented
with a double-exponential synaptic transmission model encom-
passing stochastic neurotransmitter release and short-term
plasticity. Electrophysiological properties of neurons and inter-
neurons were based on experimental features extracted from
rat recordings (Migliore et al., 2018), with a full set of morpholog-
ically detailed cells created by cloning a set of 3D reconstructions,
optimizing channel densities/distributions against experimental
traces, and obtaining an ensemble of individual cell models
reproducing the experimentally observed variability in the
response to constant somatic current injections.

This model, implemented with morphologically detailed
neurons, is computationally very expensive but more accurate
in directly reproducing experimental results. For example, it
can be “cut” to reproduce in vitro slice experiments, and extracel-
lular ion concentrations (e.g., K+, CA2+, Mg2+) can be changed to
mimic different in vitro baths or in vivo conditions which can
then impact cellular and synaptic properties (e.g., neuron excit-
ability, release probability, NMDAR block).

Taking advantage of these capabilities, a series of in vitro exper-
iments were reproduced, for example, to test feedforward inhibi-
tion of the Schaffer collaterals (Sasaki et al., 2006) or to study
the influence of acetylcholine at neuronal, synaptic, and network
level (see Romani et al., 2024 for all the citations). Similarly, the
model was used to investigate the onset and maintenance of theta
oscillations in vitro and in vivo (Fig. 2A) and the transmission of a
wide range of oscillations through Schaffer collaterals.

We have also implemented full-scale CA1 models of mouse
(288,000 cells) and human (5,280,000 cells), using single-point

neurons and implemented in NEST. The choice of point-neuron
models and therefore the different simulation environments was
dictated by the trade-off between the computational load and the
characteristics of the simulation (e.g., duration, output to be
mapped, etc.). In particular, mouse and humanmodels were built
to study and compare network and signal propagation proper-
ties, including cells’ oscillation and synchronization along the
transversal and longitudinal directions in response to localized
stimulations in these two systems. Models were implemented
following the pipelines introduced in Gandolfi et al. (2022) for
the mouse and in Gandolfi et al. (2023) for the human CA1.
For both models, individual cells were simulated with a general-
ized integrate-and-fire model (Marasco et al., 2023) able to quan-
titatively reproduce the response of CA1 PY neurons and
interneurons to synaptic inputs (Marasco et al., 2024a). A custom
algorithm to generate an arbitrary number of copies (Marasco
et al., 2024b) was developed to reproduce the full range of exper-
imental variability.

Since the intrinsic properties of a hippocampal CA1 network
cannot be conveniently studied experimentally, the availability of
full-scale networks constrained by experimental data can have a
significant role in understanding how the hippocampus relays
signals to other brain regions under physiological and patholog-
ical conditions.

All models and tools for model building and analysis are
available through the hippocampus facility hub (www.hippo
campushub.eu), the EBRAINS Knowledge Graph (https://search.
kg.ebrains.eu/instances/7fb22b04-5fe1-4f18-b0d0-dc1386f90f83)
for the ratmodel, the EBRAINS-Italy infrastructure website (https://
www.ebrains-italy.eu) for the humanmodel, and the EBRAINS live
paper section (https://ebrains.eu/service/live-papers/) for the mouse
model.

Model of the full rat nonbarrel somatosensory cortex
micro- and mesocircuitry
The EPFL BBP team has developed a large-scale, biophysically
detailed model of rat nonbarrel somatosensory regions
(Reimann et al., 2024; Figs. 1, 2B) recreating cellular and subcel-
lular targeting of IN connectivity observed in electron micros-
copy data (Schneider-Mizell et al., 2024), atlas-based geometry,
and local and long-range connectivity and used it to study plas-
ticity, how spike sorting obscures our view into neural coding,
and the structure–function relationship (Santander et al., 2024;
Ecker et al., 2024a,b). Building upon an earlier version of such
a model (Markram et al., 2015), they increased the spatial scale
of the model and enhanced its biological realism. The most
salient improvements were as follows: First is the construction
of realistic synaptic connectivity as the union of two algorithms,
one for local connections up to 750 µm (Reimann et al., 2015)
and another for longer-range connections (Reimann et al.,
2019). Second is the introduction of methods to build a model
inside a standardized voxel atlas (Bolaños-Puchet et al., 2024).
These points allow models of brain regions to be developed sepa-
rately and then easily integrated. Third is improvements in the
methods to compensate for missing extrinsic inputs and to
validate an in vivo-like activity regime.

Furthermore, we outline several examples of the model being
used to investigate specific scientific questions, commenting on
the reasons why biophysically detailed modeling is well suited
to address the topics and the specific modeling and analysis tech-
niques developed to address them. BBP researchers investigated
plasticity at the population level using a biophysically detailed
model of functional plasticity (Ecker et al., 2024a). They found

Table 1. List of repositories and publications for the showcased models

Model Model repository Publication

Rat hippocampus CA1 www.hippocampushub.eu Romani et al., 2024
Rat nonbarrel
somatosensory
cortex (S1)

https://zenodo.org/records/11113043
https://zenodo.org/records/
11108303

Isbister et al., 2024;
Reimann et al., 2024

Mouse primary visual
cortex (V1)

https://portal.brain-map.org/explore/
models/mv1-all-layers

Billeh et al., 2020

Mouse primary motor
cortex (M1)

https://github.com/suny-downstate-
medical-center/S1_Thal_NetPyNE_
Frontiers_2022

Dura-Bernal et al.,
2023b

Macaque auditory
cortex (A1)

https://github.com/
NathanKlineInstitute/Macaque_
auditory_thalamocortical_model_
data

Dura-Bernal et al.,
2023a

Human cortex L2/3
depression
pharmacology

https://github.com/agmccrei/
HumanL23Circuit_a5PAM_
AGM2023

Guet-McCreight et al.,
2024

Human cortex electrical
stimulation

Will be made available after
peer-reviewed publication.

In preparation; Halgren
et al., 2023; Marsh
et al., 2024
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that a model that describes plasticity at the pairwise level can also
lead to realistic results at the population level without additional
stabilizing mechanisms. They further characterized the signa-
tures left in the synaptic weights as a circuit is exposed to
repeated stimuli. Finally, they found ways to predict the
outcome of plasticity based on membership of neurons in struc-
turally or functionally defined groups of neurons. This is a decid-
edly nonlocal view of plasticity that considers neurons beyond
the pair that is directly forming a synaptic connection—
population-dependent plasticity.

The model was also used to investigate the accuracy of spike
sorting algorithms (Laquitaine et al., 2024). The authors applied
the most common algorithms to extracellular potentials calculated
in simulations of population activity and compared their outputs
with the true spiking activity. They found great increases in accu-
racy for the most recently released algorithms over their older

versions but with remaining inaccuracies. They characterized the
biases resulting from the inaccuracies and how they impact the
outcome of common population-level analyses, such as dimen-
sionality reduction of spiking activity and stimulus–response
curves. They found that results based on sorted spike trains cap-
tured most of the trends present on the population level, although
they misrepresent responses of a small number of individual neu-
rons. These results have relevance for the future directions of
improvements to spike sorting. Building the model in a brain atlas
allowed them to embed it in a detailed model of the rat skull and
perform accurate simulations of the EEG signal generated by
somatosensory regions (Tharayil et al., 2024).

Connectivity in the model is based on appositions between
axons and dendrites or somata, a necessary, though not sufficient,
condition for the formation of a synapse. Consequently, the model
could be used to investigate how the morphology of individual

Figure 2. Example simulation outputs of large-scale mechanistic brain circuit models showcased in this review. A, CA3 theta (8 Hz) oscillatory input entrains CA1 to matched theta oscillation
across different scales of circuit. Top-left, Schema showing the in silico experimental setup. Top-right and bottom, Full circuit model LFP recordings from stratum PY neurons and corresponding
spectrogram (Romani et al., 2024). B, Layer-wise population responses to single whisker deflection closely match in vivo millisecond dynamics and response amplitudes. Top, Spiking activity for
each layer-wise E and I population for a 2.5 s section of the 10 whisker deflection test protocol. Bottom, Spatiotemporal evolution of the trial-averaged stimulus response in flat space (Isbister
et al., 2024). C, Neural response in the V1 mouse model to a drifting grating stimulus. Top, The raster plot of neural activity, with neurons grouped by layer and type. Bottom, The firing rate at
preferred direction of the grating, by population, compared with the biophysical model, point-neuron (GLIF) model, and experimental in vivo recordings (Billeh et al., 2020). D, M1 cell type- and
layer-specific firing dynamics during quiet wakefulness and movement. Left, The raster plot of activity transitioning from quiet to movement; spike count histogram for excitatory populations;
and an example model (blue) and experiment (black) PT5B somatic membrane voltage. Top-right, M1 simulated L5 LFP signals during quiet and movement. Bottom-right, Neural manifold
(UMAP low-dimensional representation) of the 10 ms binned mean firing rates of the 16 populations during quiet and movement (Dura-Bernal et al., 2023b). E, Left, Simulated EEG from human
cortical microcircuits in health and depression (major depressive disorder) and under application of alpha5-PAM pharmacology for depression. Top-right, Power spectral density of simulated EEG
in the different conditions. Bottom-right, Simulated alpha (8–12 Hz) power in health and depression and under different doses of the pharmacology (Guet-McCreight et al., 2024). F, Top and
bottom-left, Probability of spiking as a function of horizontal distance from the center of the electrode array for each cell type and cortical layer in the rat cortical column. Average (solid line) cell
spiking probability and 95% confidence intervals (shaded region) for each cell reconstruction were calculated for soma locations across the entire X-Z plane of the corresponding cortical layer.
Activation probabilities were calculated for 150 mA anodal and 75 mA cathodal stimulation currents over a 200 ms stimulation period. Bottom-right, A raster plot displaying network behavior
during and after stimulation in one trial of the microcircuit simulation across all rat cortical columns at maximum applied current. Each cell within the microcircuit has its own coordinate on the y
axis. Each dot is an action potential. Green dots indicate spikes that are directly triggered by electrical stimulation (occurs during first 5 ms). Blue dots indicate spikes triggered via synaptic input
(Halgren et al., 2023).
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neurons constrains the possible wiring of the connectome. They
found a highly nonrandom higher-order structure emerging
in the connectome (Reimann et al., 2024). Such structure is
equally—or even more strongly—present in biologically measured
cellular connectomes, such asDrosophila, the worm, and electron-
microscopic reconstructions of the cortex, but it cannot be cap-
tured by more simplified models of synaptic connectivity (Egas-
Santander et al., 2024), highlighting that neuronmorphology plays
an important role in constraining a connectome. Egas-Santander
et al. (2024) further explored the role of such complexity, asking
the question whether it is relevant for the function of a cortical cir-
cuit using simulations of connectomes that enhance or reduce
specific nonrandom trends. They defined a measure of connec-
tome complexity as the distance of degree distributions between
a network and its randomized control and measured it in subnet-
works of the model centered around individual neurons. They
found a great diversity of the metric across subnetworks with dis-
tinct functional consequences. Specifically, high complexity sub-
networks promote neurons acting as parts of a reliable, but less
efficient, population code, predominately in input layers.
Conversely, low complexity parts promote neurons spiking more
independently of the population, thus enhancing the efficiency
of the neural code. Parts of these predictions were already testable
using an electron-microscopic reconstruction of a cortical connec-
tome with coregistered functional data and thus confirmed.

Model of the mouse primary visual cortex
The Allen Institute developed and shared publicly a detailed data-
driven model of the mouse primary visual cortex (V1; Billeh et al.,
2020), comprising ∼230,000 neurons and 17 cell classes repre-
sented by 112 unique cell models from the Allen Cell Types
Database (Gouwens et al., 2018), illustrated schematically in
Figure 1. The model’s core features multicompartment neuron
models with somatic Hodgkin–Huxley dynamics and passive den-
drites. As we mention below, this level of biophysically detailed
description is useful for capturing electrical signals like LFP,
whereas its role in reproducing the biological spiking dynamics
of the network remains to be understood. Surrounding the core
column is an annulus of leaky-integrate-and-fire neurons to avoid
boundary artifacts. Layers 2/3 to 6 (L2/3–6) are composed of an
excitatory population and three IN populations (PV, parvalbumin;
SST, somatostatin; and Htr3a neurons), while L1 only includes
Htr3a interneurons. The visual stimulus in the form of movies is
conveyed via a filter-basedmodel of the thalamic lateral geniculate
nucleus, projecting to V1 cells (Fig. 2C).

Recurrent connectivity was established from the Allen Institute
data (Seeman et al., 2018) and available literature, constraining the
following features: connection probability as a function of dis-
tance, magnitude of synaptic weights (based on the experimentally
recorded PSP and PSC distributions), synaptic delays, synaptic
kinetics, and dendritic targeting rules. Excitatory-to-excitatory
(E-to-E) connections followed “like-to-like” rules within and
across layers, i.e., cells preferring similar stimuli were preferentially
connected. After incorporating this information, a layer-by-layer
optimization procedure determined the final synaptic strengths
within constraints imposed by data.

Comparing simulations ofmultiplemodel versions with in vivo
electrophysiology recordings (Siegle et al., 2021) suggested synap-
tic organization rules that supported the observed computational
properties of the circuit, such as orientation and direction selectiv-
ity. These included the like-to-like rules for synaptic weights of all
cell classes, in addition to E-to-E like-to-like connection probabil-
ities. Another rule involved the dependence of the recurrent E-to-E

weights on the alignment of source neurons’ receptive fields with
the target neurons’ preferred direction and response phase, which
was concurrently demonstrated experimentally (Rossi et al., 2020).
Additionally, a spatially asymmetrical weight organization in the
V1 circuit compensated for the asymmetry of cortical magnifica-
tion in the vertical versus horizontal directions.

Recent studies have utilized thismodel to investigate the under-
lyingmechanisms of visually evoked LFPs and current source den-
sities (CSDs; Rimehaug et al., 2023, 2024). According to Rimehaug
et al. (Rimehaug et al., 2023), adjusting the synaptic weights to rep-
licate the observed population firing rates did not significantly
impact the LFP and CSD sink/source patterns. In contrast, the
placement of the synapses along the neurons significantly
impacted the CSD sink/source patterns while having a minimal
impact on the population firing rates. Importantly, adding feed-
back from a higher cortical area to the V1 model was necessary
to reproduce the CSD pattern fully. Building on these findings
and using the mouse V1 model as a benchmark, Rimehaug et al.
(Rimehaug et al., 2024) proposed a laminar population analysis
method for elucidating the population contributions to LFP/CSD.

While the biophysically detailed V1 model provides valuable
insights into the origin of LFPs/CSDs, its point-neuron model var-
iant might be better suited for studying circuit mechanisms under-
lying cell responses (Billeh et al., 2020), due to much lower
computational cost. The V1 point-neuron model consists of 111
unique generalized leaky-integrate-and-fire neuron models repre-
senting 17 cell classes with the same network graph as the detailed
mouse V1 model. Several studies have taken advantage of its com-
putational benefits, investigating topics ranging from the circuit
mechanisms underlying visual flow (Galván Fraile et al., 2024)
and optogenetic perturbations (Cai et al., 2020) to its visual process-
ing capabilities for improving AI applications (Chen et al., 2022).

Both variants of the mouse V1 model are freely available at
https://portal.brain-map.org/explore/models/mv1-all-layers. They
use the BMTK (https://alleninstitute.github.io/bmtk/; Dai et al.,
2020a), which facilitates simulations with NEURON and NEST
and supports Python, and the SONATA format (https://github.
com/AllenInstitute/sonata; Dai et al., 2020b) for saving the model
and simulation outputs.

Model of mouse primary motor cortex circuits
The primary motor cortex (M1) plays a central role in motor
control. Despite this, efforts to model M1 circuitry in detail
have been limited, particularly compared with other sensory cor-
tical regions. Computational neuroscientists at State University
of New York (SUNY) Downstate, in close collaboration with
experimentalists, developed a detailed biophysical model of M1
circuits (Dura-Bernal et al., 2023b) by integrating experimental
data on neuronal physiology, morphology, laminar density, cell-
type distribution, dendritic distribution of synapses, and local
and long-range synaptic connectivity (Fig. 1). The model simu-
lated a cylindric cortical volume with over 10,000 neurons and
30 million synapses, including the major classes of excitatory
and inhibitory cell types [see Neymotin et al. (2016b) for details
on the corticospinal neuron model]. The M1 circuit model was
validated by reproducing mouse M1 in vivo cell-type and layer-
specific firing rates across different behavioral states (Fig. 2D)
and experimental conditions (Schiemann et al., 2015). Themodel
was developed using the NetPyNE tool (http://netpyne.org) and
is available via GitHub and ModelDB.

The goal of the M1 model was to gain insights into the cellular
and circuit mechanisms underpinning sensorimotor neural activ-
ity, function, and behavior (Dura-Bernal et al., 2023b). Movement
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behavior was simulated by altering long-range and neuromodula-
tory inputs. The model captured the effects of experimental
manipulations like noradrenaline receptor blockade and motor
thalamus inactivation, offering multiscale mechanistic hypotheses
for the observed behavioral deficits (Schiemann et al., 2015). LFP
oscillations emerged spontaneously at physiological frequencies
such as delta, beta, and gamma and exhibited behavior-related
alterations consistent with in vivo data. Analysis of the M1
simulations generated multiple testable predictions: (1) a link
between a decrease in noradrenaline-driven HCN current in PY
tract (PT)-projecting corticospinal cells and impaired motor
response, (2) a PV-mediated switching mechanism between
intratelencephalic- and PT-predominant activity associated with
behavior, (3) the cell-type–specific presynaptic inputs driving L5
populations for different behaviors, and (4) the cell-type–specific
sources of LFP delta and gamma oscillations.

The authors generated low-dimensional neural manifolds
(Gallego et al., 2017) associated with different behaviors and
manipulations in the simulated data (Dura-Bernal et al.,
2023b). They now aim to characterize the different cell types
and circuit mechanisms underlying these latent dynamics
(Baravalle et al., 2024). The M1 model is also being utilized to
study the effect of channelopathies in Layer 5 PY neurons and
their role in neurodevelopmental disorders such as epilepsy
(Leitner et al., 2024). Additionally, the M1 model, or an earlier
version, has also been used to study neuronal avalanches
(Sivagnanam et al., 2020), dystonia (Neymotin et al., 2016a),
Parkinson’s disease (Doherty et al., 2024), and transcranial mag-
netic stimulation (Yu et al., 2024).

The latest M1 model version has been extended to include
thalamic circuits and interconnected with a NetPyNE implemen-
tation of the (Markram et al., 2015) BBP S1 model (Borges et al.,
2022; Moreira et al., 2022). The NetPyNE S1 model was
expanded by incorporating thalamic circuits [VPL/VPM, PO,
thalamic relay nucleus (TRN)] and corticothalamocortical
connectivity (Borges et al., 2022; available via GitHub).

Model of macaque auditory cortical and thalamic circuits
Researchers from the Nathan Kline Institute for Psychiatric
Research and SUNY Downstate developed an experimentally
grounded detailed mechanistic model of the macaque auditory
thalamocortical circuits, including A1, medial geniculate body
(MGB), and TRN (Dura-Bernal et al., 2023a), with the goal of bet-
ter understanding oscillations, their mechanisms and role in audi-
tory function and disease. The A1 model simulates a cortical
column with over 12,000 neurons and 25 million synapses
(Fig. 1), incorporating data on cell-type–specific neuron densities,
morphology, and connectivity across six cortical layers (four types
of excitatory neurons; four types of interneurons; six types of
synaptic receptors). A1 was reciprocally connected to the MGB
thalamus, which includes interneurons and core and matrix layer
and cell-type–specific projections to A1. Inputs to the thalamus
were generated through a phenomenological model of cochlea
and inferior colliculus, enabling naturalistic auditory inputs, i.e.,
the same input sounds used during animal experiments. The
model simulated realistic measures across scales, including physi-
ological firing rates, LFP, CSD, and EEG signals (Mackey et al.,
2024). Simulated spontaneous activity and responses to auditory
stimuli were tuned to reproduce macaque in vivo experimental
recordings (Neymotin et al., 2022). The model’s highly detailed
cell-specific connectivity patterns, and constraints on cellular
dynamics, were selected in order to allow accurate linkage of neu-
rophysiological recordings to the underlying cell-type- and layer-

specific dynamics that generate them. The authors demonstrated
this by identifying the major population contributing to an LFP/
CSD oscillatory event and unraveling the presynaptic input spikes
causing the dendritic synaptic currents captured in the LFP/CSD
signal, leading to a circuit-level hypothesis of the source of the
recorded LFP neural oscillation. The macaque auditory thalamo-
cortical model was developed using NetPyNE and is available
via GitHub and ModelDB.

This multiscale model is now being used to study the specific
cellular and circuit mechanisms underlying multiple auditory
EEG biomarkers associated with schizophrenia, including 1/f
slope and broadband gamma power of resting-state activity,
the 40 Hz auditory steady-state response, mismatch negativity,
and the P300 event-related potential component (McElroy
et al., 2023). Each of these biomarkers is hypothesized to originate
from dynamic interactions between specific subpopulations of
neurons, again justifying the relatively high level of biophysical
detail used to build the model. Since the model generates neuro-
electric signals comparable with those recorded in vivo, the model
developers have also begun using the model to investigate and
optimize a novel electrode designed for improving the resolution
and localization of neuroelectric signals recorded for brain
machine interface applications (Abrego et al., 2023).

Testing new pharmacology for depression using detailed
models of human cortical microcircuits
Recent years have seen the advent of detailed models of human
cortical microcircuits in health and mental disorders such as
depression or schizophrenia (Yao et al., 2022; Rosanally et al.,
2024), which integrated the increasing human data of neuronal
firing (Gouwens et al., 2018; Moradi Chameh et al., 2021) and
synaptic properties (Obermayer et al., 2018; Seeman et al.,
2018; Peng et al., 2019) together with postmortem data of altered
neuronal mechanisms (Hashimoto et al., 2003). These detailed
microcircuit models enable linking altered cellular and circuit
mechanisms to impaired function (Yao et al., 2022) and bio-
markers in clinically relevant brain signals such as EEG (Mazza
et al., 2023; Rosanally et al., 2024), which is currently not possible
to do in living humans. Another emerging application is the
utilization of the detailed depression microcircuit models
for testing new pharmacology and dose prediction in silico
(Guet-McCreight et al., 2024; Figs. 1, 2E).

The depression microcircuit models implemented reduced
SST interneuron inhibition as indicated by reduced expression
in SST interneurons (Seney et al., 2015) in the postmortem brain
tissue from depression patients (Seney et al., 2015). SST interneu-
rons play an important role in maintaining baseline cortical
firing (Gentet et al., 2012) via a lateral “blanket of inhibition”
on PY neurons (Silberberg and Markram, 2007; Karnani et al.,
2014; Obermayer et al., 2018), so that a reduced inhibition in
depression would lead to increased baseline firing (noise) and
thus reduced signal-to-noise ratio of cortical processing
(Northoff and Sibille, 2014). This was demonstrated by detailed
microcircuit models (Yao et al., 2022) and supported by studies
that silenced SST interneurons in rodents (Fee et al., 2021).

The biophysical detail of the microcircuit models enables
simulating the EEG resulting from the neuronal activity using
NEURON (Carnevale and Hines, 2006) with LFPy (Hagen
et al., 2018). The detailed models reproduced key properties of
resting-state human EEG such as peak power in theta (4–8 Hz)
and alpha (8–12 Hz) frequency bands. This provided a validation
of the model, since these EEG properties were not explicitly
constrained for but emerged from the model’s physiological
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firing, synaptic, and connectivity properties (Mazza et al., 2023).
Importantly, these depression microcircuit models enabled iden-
tifying EEG biomarkers of reduced SST interneuron inhibition,
which can serve to stratify depression patients who may benefit
from new treatments targeting this mechanism.

A recent study applied the detailed microcircuit models to test
in silico such new targeted pharmacology treatment for depression
(Guet-McCreight et al., 2024). The pharmacology is a selective
positive allosteric modulator of α5-GABAA receptors (α5-PAM)
on PY neuron apical dendrites, which boosts the SST interneuron
inhibition pathway and yields improved procognitive and antide-
pressant effects in rodents (Prevot et al., 2019) but remains to be
tested and translated to humans. To facilitate the translation
process, the study modeled the modulation of inhibition by the
pharmacology as measured in single human PY neurons in vitro
and integrated the effects into the detailed human microcircuit
models (Guet-McCreight et al., 2024). Simulating pharmacology
application on the microcircuits indicated that it would effectively
recover EEG profile to a healthy level and recover cortical function
as exemplified by signal detection metrics. The study systemati-
cally characterized the relationship between α5-PAM dose and
EEG features, identifying biomarkers that could be used for mon-
itoring treatment efficacy.

Future directions may include a more systematic dose predic-
tion given EEG biomarkers of depression severity in terms of SST
interneuron inhibition loss, with the aid of machine learning
trained and validated on the ground-truth simulated data.
Detailed microcircuit models are thus becoming relevant for
clinical applications in mental health, by providing diagnostic
biomarkers and facilitating translation of new treatments.

Effects of electrical stimulation in cortical circuits across
species
Electrical brain stimulation is becoming increasingly useful to
probe the workings of the brain and to treat a variety of neuro-
psychiatric disorders. However, determining the effects of electri-
cal stimulation on individual neurons and neuronal circuits is a
complex problem. Even when experimental data on individual
neurons are available, this data is most often from rodent sources;
determining the effects of stimulation on human neurons is
an even more elusive task. To address this problem, researchers
Marsh, Wilson, Halgren, and Bazhenov aimed to combine phys-
ics, biology, and computer science to simulate the effect of elec-
trical stimulation on individual neurons, depending on their
type, orientation, and location within the brain. Specifically,
they used morphological reconstructions of cortical pyramidal
(PY) neurons and inhibitory interneurons (IN) across multiple
cortical layers from rats, mice, and humans (Fig. 1). These neu-
ron reconstructions were individually subjected to a range of cur-
rents from a (simulated) square cortical electrode (or array of
electrodes), and average activation probabilities were calculated
across a range of horizontal and vertical distances from the elec-
trode. This approach allowed to compare response probabilities
across cell types, layers, and species; importantly, it could be
done very quickly and over a large combination of possible stim-
ulation parameters for any given cell type (Halgren et al., 2023;
Komarov et al., 2019). Finally, the estimated cell responses prob-
abilities were integrated into a cortical network model to analyze
interaction and propagation of spiking activity as a result of elec-
trical stimulation (Fig. 2F).

To illustrate the level of detail and complexity of this study, its
modeling methods are briefly summarized. Morphological neu-
ron reconstructions across three species (rat, mouse, and human)

were collected from NeuroMorpho (Ascoli et al., 2007) (neuro-
morpho.org) and the Allen Institute Cell Atlas (brain-map.org).
Cells taken from the Allen Institute (here including all human
cells, all mouse IN cells, and mouse excitatory Layer 2/3 cells)
were labeled only as spiny versus aspiny; here spiny cells were
labeled as PY and aspiny as IN (Costa and Müller, 2015).
Individual reconstructions were subjected to a computational
simulation of single pulse anodal and cathodal current from a
square surface electrode. Cells were shifted in 2D plane under
the electrode: ±1 mm horizontally and within respective biolog-
ical layer bounds vertically. Cell response probability was calcu-
lated, using the activating function approach (Rattay, 2013), as
the probability of the activated segment of an axon (i.e., axonal seg-
ment where effective current exceeds a given threshold) to contain
a node of Ranvier. Species-specific layer depths (Mohan et al.,
2015; Durand et al., 2016; Narayanan et al., 2017) and distances
between nodes of Ranvier (Uzman and Nogueira-Graf, 1957;
Arancibia-Cárcamo et al., 2017) were used. Rodent cells were stim-
ulated by a small electrode with up to ±500 μA, while human cells
were stimulated by a large electrode with up to ±1.5 mA.
Species-specific network connectivity was constructed based on
Campagnola et al. (2022) and Halgren et al. (2023), including
seven columns of PY and IN cells across five (rodent) or six
(human) layers. Cell activation probabilities for each species (rat,
mouse, and human) were then input to the network model, and
network activity was allowed to propagate.

Preliminary results showed that cell response probability for a
given stimulation strength decreased with increasing layer depth
and species size, as well as generally stronger responses to anodal
than cathodal stimulation of the same strength. While rat and
human neurons show similar response magnitudes between their
respective PY and IN cells, mouse PY neurons show a signifi-
cantly stronger response than mouse IN neurons. Furthermore,
mouse PY L2/3 neurons showed the weakest response among
PY layers, where rat and human response strength followed
logically from distance to electrode (L2/3, L4, L5, L6). Rat neuron
reconstructions simulated with human parameters (cortical
depths, current amplitudes, etc.) further provided a more reason-
able estimate of the responses of human neurons, as determined
by multilevel model statistical analysis. Network models using
these response probabilities show marked differences between
rat and mouse models, and rat cells can again be used under
human conditions as the closest predictive model.

This study suggests that much more accessible rat cells can be
used to accurately predict human cell response probabilities
under a variety of experimental conditions. This approach could
further be used by experimental scientists to test species-specific
hypotheses in silico to select the appropriate subset of parameters
for the expensive (and time-consuming) in vivo work. This
project both builds new knowledge of cross-species cell response
probabilities and contributes to tool building for more informed
and efficient experimental protocols.

Conclusion
Recent availability of brain data and advances in supercomputing
and modeling tools have yielded mechanistic brain circuit
models with an unprecedented level of detail and spatial scale.
We emphasize that close collaboration with experimental neuro-
scientists and clinicians has been, and will remain, essential for
the development and validation of such models, particularly as
datasets grow in size and complexity. Below we highlight several
promising future directions.
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We are particularly excited about the prospect of integrating
themassive new genomics and transcriptomics data, for example,
on different brain cell types (BRAIN Initiative Cell Census
Network (BICCN), 2021; Yao et al., 2023). We believe mechanis-
tic models will be essential for linking these molecular-level data-
sets to brain function, cognition, and behavior. Furthermore,
integrating these mechanistic circuit models with other modeling
approaches will be pivotal in answering complex neuroscience
questions. This is already happening, for example, through inte-
gration or interaction with whole-brain network models (Meier
et al., 2022; Bragin et al., 2023), machine learningmodels and anal-
ysis methods (Chen et al., 2022; Dura-Bernal et al., 2023b), and
functional/task-driven/robotics models (Dura-Bernal et al., 2016;
Vannucci et al., 2020; Pimentel et al., 2021; Haşegan et al., 2022).

Large-scale mechanistic models hold promise in unraveling the
multiscale interactions within brain circuits, crucial for under-
standing the biological mechanisms underlying various brain dis-
eases and disorders. They are already being applied to gain insights
into conditions like depression (Mazza et al., 2023), schizophrenia
(Sherif et al., 2020; Metzner et al., 2022; McElroy et al., 2023), epi-
lepsy (Lytton et al., 2017; Buchin et al., 2022), autism, Parkinson’s
disease (Cutsuridis, 2019), dystonia (Neymotin et al., 2016a), and
chronic pain (Medlock et al., 2022), among others, potentially
leading to the development of targeted treatments, for example,
through gene editing therapy (Deverman et al., 2018; Ingusci
et al., 2019) and neural stimulation devices (Polanía et al., 2018;
Krauss et al., 2020; Roeder et al., 2024).

In sum, these models offer an unparalleled approach to inte-
grate and interpret experimental findings across virtually all
brain regions, scales (molecular, cellular, circuit, system), brain
functions (sensory perception, motor behavior, learning, etc.),
recorded signals (intracellular voltage, spikes, LFP, EEG, fMRI,
etc.), and brain diseases and disorders. Consequently, these
models are of interest to the broad neuroscience community,
including experimental, clinical, and computational neuroscien-
tists, as well as students and educators. We hope this review will
help foster increased adoption of biophysically and morpholog-
ically detailed models of brain circuits leading to increased cross-
disciplinary collaborations to accelerate brain research.
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