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The COVID-19 pandemic has prompted an unprecedented global effort to understand
and mitigate the spread of the SARS-CoV-2 virus. In this study, we present a
comprehensive analysis of COVID-19 in Western New York (WNY), integrating
individual patient-level genomic sequencing data with a spatially informed agent-based
disease Susceptible-Exposed-Infectious-Recovered (SEIR) computational model.
The integration of genomic and spatial data enables a multi-faceted exploration of
the factors influencing the transmission patterns of COVID-19, including genetic
variations in the viral genomes, population density, and movement dynamics in
New York State (NYS). Our genomic analyses provide insights into the genetic
heterogeneity of SARS-CoV-2 within a single lineage, at region-specific resolutions,
while our population analyses provide models for SARS-CoV-2 lineage transmission.
Together, our findings shed light on localized dynamics of the pandemic, revealing
potential cross-county transmission networks. This interdisciplinary approach,
bridging genomics and spatial modeling, contributes to a more comprehensive
understanding of COVID-19 dynamics. The results of this study have implications
for future public health strategies, including guiding targeted interventions and
resource allocations to control the spread of similar viruses.

KEYWORDS

SARS-CoV-2, next-generation genome sequencing, spatial SEIR model, SARS-CoV-2
transmission dynamics, New York State

1 Introduction

The global impact of the COVID-19 pandemic has been profound, necessitating an
unprecedented global response to understand, manage, and mitigate the spread of the SARS-
CoV-2 virus (Vallée, 2023; Sawicka et al., 2022). The novel coronavirus has traversed borders
and affected communities on a scale that demands comprehensive research and innovative
strategies for public health management (Miyah et al., 2022). Amidst this global challenge, a
critical aspect that emerged is the importance of understanding and addressing local
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transmission dynamics (Foraker et al.,, 2021). While the broader
picture of the pandemic is crucial, the intricacies of how the virus
spreads within specific localities are essential for effective public health
interventions. Local transmission dynamics not only shape the
trajectory of the pandemic but also influence the efficacy of control
measures and resource allocation (Emanuel et al., 2020; Wurmb et al.,
2020). For this analysis, we have focused on the Western region of
New York State (WNY), which is characterized by both metropolitan
and rural communities with varying population densities. We sought
to unravel the unique regional factors influencing COVID-19
transmission within these communities.

To develop a comprehensive understanding of COVID-19
dynamics, we employed a layered approach that combines detailed
genomic analysis of SARS-CoV-2 lineages with spatially informed SEIR
models (Jiang et al., 2022). Our genomic sequencing analysis allowed
us to investigate the diversity and evolution of SARS-CoV-2 lineages
within NYS. Characterizing viral genetic variations at the individual
patient level revealed significant heterogeneity of viral genomes at the
sub-lineage level within and between geographic regions. Our SEIR
models build on genomic and geographic data to provide a dynamic
framework for simulating disease spread based on population
movements and epidemiological parameters. In these models, agents
(synthetic individuals) occupy Susceptible, Exposed, Infectious, and
Recovered states (Kong et al., 2022; Shankar et al., 2021). For our
model, we first established regional commuter dynamics using state-
wide traffic data, followed by more granular census-tract estimations
across different social networks (i.e., home, work, and school). Our
spatially aware modeling strategy allowed us to simulate and analyze
potential transmission patterns between distinct areas around WNY,
accounting for local factors such as population density and commuter
movement between neighboring areas (Wong et al., 2023).

Thus, the combination of SEIR models and genomic analysis not
only enhances our ability to predict and understand the spread of
COVID-19, but also provides a unique perspective on how viral
genetic variations may contribute to regional differences in
transmission dynamics. Our approach offers a robust framework for
unraveling the intricate interplay between population-level movement
dynamics and viral evolution in the context of the ongoing pandemic.

2 Materials and methods

2.1 SARS-CoV-2 patient sequencing data
and regional analysis

SARS-CoV-2 viral genomes were accessed and downloaded from
the GISAID database for 2020-2022, and filtered to New York,
United States and Ontario, Canada (Bogner et al., 2006; Khare et al.,
2021). The collection date, county, and lineages provided in the GISAID
metadata text files were aggregated using the R programming language
and plotted using the packages ggplot2 (Wickham, 2016), lubridate
(Grolemund and Wickham, 2011), and tidyverse. For the complete
GISAID dataset for the spatial analysis of Ontario and New York State,
GISAID EPI_SET ID EPI_SET_231204fx 10.55876/gis8.231204fx. For
the B.1.1.7 analysis, GISAID EPI_SET ID EPI_SET_231204bh 10.55876/
¢is8.231204bh. For the BA.2.12.1 analysis, the GISAID EPI_SET ID is
EPI_SET 231204dh 10.55876/gis8.231204dh. County-level per 100,000
resident normalizations were based on the 2020 census data.
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2.2 SARS-CoV-2 economic development
region rank-correlation coefficients and
UMAP reduction

GISAID metadata from 2020 to 2022 were downloaded and
filtered for New York State and Ontario, Canada. Location
information was post-processed to group by Economic Development
Region (EDR). The metadata was then collapsed by Date Collection,
EDR, and Summation for each Pango Lineage designation. Next, for
each EDR, we calculated the relative abundance ranking for each
lineage and correlated each EDR with all other EDRs. The resulting
similarity matrix was next visualized in R. Uniform manifold
approximation and projection (UMAP) analysis was performed using
the R package UWOT on the sample counts for each lineage, for each
EDR, grouped by year. The local neighbor’s parameter was set to n_
neighbors =2. The dimension reduction results were visualized using
the R package ggplot2.

2.3 Genomic clustering and phylogenetic
analysis using the Jaccard metric

Variant profiles for each viral genome were compared using the
bedtools Jaccard function (Quinlan and Hall, 2010). The Jaccard
statistic is a similarity coefficient defined as the intersection size divided
by the size of the union of two sets (in this case, the variant profiles for
each sample being compared). The resulting similarity matrix was input
into the R pheatmap package for hierarchical clustering and annotated
by the county of origin. For phylogenetic analysis, consensus genomes
were aligned using the command line version of the MAFFT multiple
sequencing alignment algorithm (Katoh et al., 2019). The resulting
alignment was then input into the FastTree algorithm, inferring
maximum-likelihood phylogeny using the jukes-cantor distance model
of nucleotide evolution, generating a newick formatted phylogenetic
tree (Price et al,, 2010). The R packages TreelO (Wang et al., 2020) and
ggtree (Yu, 2020) were used for data visualization, with the Pango
lineage metadata as data overlays (Rambaut et al., 2020). For BA.2.12.1
sublineage analysis, sample-to-sample distances were derived from the
phylogenetic tree, and used as input into k-means clustering with k=4.

2.4 NYS thruway datasets and traffic info

NYS Thruway data was accessed via the data.ny.gov browser
(Authority, N. Y. S. T, 2020). Data records for 2019 thruway usage were
accessed, and entries from the database that did not correspond to the
main-line thruway were removed. Entrance and Exit points were
aggregated over time, and the subsequent contact matrix was plotted
in R following log normalized z-scoring.

2.5 Spatial susceptible-exposed-infections-
recovered model

Using agent-based modeling (Crooks et al., 2019), we have built a
spatial SEIR model at the individual population level for WNY to
demonstrate how commuter activity could lead to the diffusion of
SARS-CoV-2. To build the model, three steps were involved: first, the
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creation of a synthetic population and its corresponding social networks;
second, building of an agent-based SEIR model using the synthetic
population; and lastly, analysis of the simulation results. The model logic
and full details of the model are provided along with the source code
and data needed to replicate the results. It is available at https://figshare.
com/articles/software/2_Agent-based_SEIR_model/24711945.

For the first step, the synthetic population and its social networks
were created by following the method previously reported by Jiang
etal. (2022) using census data, which are taken as input parameters to
initialize the agents of the SEIR model. Specifically, we used datasets
from the US Census for home and work locations and the
U.S. Environmental Protection Agency (EPA) for school locations (U.S
Census Bureau, 2022). Within the synthetic population, individuals are
either children (i.e., ages <18) or adults (i.e., ages >18). Our model
assumes children of school age go to their closest schools or daycares
or stay at home with their parents, while adults commute to work or
stay home. The work commute information for adults is consistent
with the U.S. Census Bureau’s Longitudinal Employer-Household
Dynamics (LEHD) Origin-Destination Employment Statistics
(LODES) data. Then, we constructed social networks (i.e., home, work,
and education). These were created based on the small-world network
principle (Newman and Watts, 1999), where the synthetic individuals
are connected based on living in the same household and working in
the same workplace or attending the same daycare/education institute.
Small-world networks are created for people whose workplace has
more than 5 people, where the number 5 is chosen to indicate the size
of the core social group with 5 people based on the work of Dunbar
(1998), which still holds in current society (West et al., 2020; Tamarit
etal., 2022). To mimic the core social group of 5 people, k=4, which
means one person can be connected to 4 people to make up a 5 people
social group; p is set as 0.3, which indicates the probability of adding a
new edge for each edge, to enable us to have a variation on edges,
allowing for some agents to have more or fewer connections.

The rationale for these networks is that an individual might go to
work, become exposed to COVID-19, and then go home and infect
family members who in turn go to a school and infect students at
school, propagating the viral infection through the network. It should
be noted that the size of the social networks can be adjusted within the
synthetic population code. Interested readers can use the provided
code to explore the effects of network sizes.

After the synthetic population and its social networks were built,
step two involved the creation of the agent-based model. Parameters
related to the lineages (e.g., RO, incubation, and recovery period) are
used for the initialization of heterogenous agents. Specifically, the
model assumes a basic reproductive number (i.e., R0) as 3; while 7 to
14 days for the incubation period and 4 to 14 for the recovery period
(Achaiah et al., 2020; Wu et al,, 2022). Then, SEIR statuses are
integrated into the agents to represent their health status. In this
model, a time step represents 8 hours, where 1day is divided into 3
time periods, which are characterized as being at home (i.e., either
sleeping or getting up), at work (i.e., at work or educational site) and
at home (i.e., back at home from work or educational site). The agents
interact (i.e., spread the disease or get infected) through their social
networks at each time step. In this model, we consider agents who
have a work social network as commuters. When these agents are at
work, they will only interact with agents in their work (or school)
social network. While agents are at home, they only interact with
members from the same household social network. If there is one
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commuter in the household, the rest of the members of the household
have the potential to be infected by the commuter. We should note
that all models are simplifications of reality, and, in this model,
we chose not to model infections on public transport or outside of
home and work for simplicity, but also due to the limited available data
(e.g., lack of frequency of public transport, and its capacity). However,
we feel that home and work dynamics are sufficient in this example
model as these are where most people spend most of their time.
We note that this model can be modified with additional input data.
The model has been programmed to track the overall SEIR dynamics
each day (i.e., every 3-time steps) and generates a dataset comprising
infectious agents’ information every 10days (i.e., 30-time steps)
during the simulation, which is then analyzed in step 3 (as we will
discuss in Section 4).

3 Results

3.1 Statewide variation of major
SARS-CoV-2 lineages over time

Our goal was to establish whether there were regional differences
in the SARS-CoV-2 lineages circulating across NYS. We analyzed the
lineage distributions across 10 Economic Development Regions
(EDR) in NYS and Ontario, Canada (Supplementary Figure 1). To
assess broad differences at either end of NYS, we tracked reported
caseloads by lineage and location in the WNY and New York City
(NYC) areas over 2020, 2021, and 2022 (Figure 1). We also included
the Canadian providence of Ontario (OCA) in our analysis due to the
proximity and large commuter population between the southern
portion of Ontario (Niagara Falls, Ontario and Fort Erie, Ontario to
Buffalo, New York and Niagara Falls, New York; Authority,
B. A. F. E. P. B, 2023). Data for the eight EDRs between WNY and
NYC are shown in Supplementary Figures 2-4. For each week through
the pandemic, we present a histogram representing the proportion of
each lineage observed in a given region. Lineages selected for graphical
display were chosen due to distinct regional patterns and for overall
abundance across NYS. Lineages not reaching a proportion greater
than ~1% were combined as “Other” and are shown in grey in the
histograms (Figure 1; Supplementary Figures 2-4). The details of all
lineages, including those not shown in the histograms, are reported in
Supplementary Tables 2-4.

In 2020, we observed distinct lineages between Ontario and NYS
(Figure 1A; Supplementary Figure 2). Early in 2020, all three regions
(OCA, WNY, NYS) were high in the B.1 lineage (yellow), but very
shortly after regionally specific lineage profiles began to emerge, likely
driven by the strong lock-down measures of the early pandemic in
combination with evolution of the virus. Early in the pandemic,
lineages B.1.422 (light green) and B.1.1.181 (light blue) were uniquely
detected in Ontario, along with B.1.1 (purple) which also had some
presence in NYC. Later, Ontario saw increased levels of B.1.1,
B.1.1.121(orange) and B.1.1.417 (dark red), while WNY showed
increased levels of B.1.2 (pink), and uniquely elevated levels of
B.1.1.513 (dark green). Conversely, New York City was dominated by
B.1 through the summer, with some B.1.1 and B.1.2, but had little to
no cases of either B1.1.181 or B.1.422. Toward August and September
of 2020, Western New York saw increased levels of B.1.349 (indigo)
compared to Ontario and NYC (Figure 1A). Conversely, lineages
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FIGURE 1
Lineage distribution of SARS-CoV-2 across geographic regions. Lineage distributions by percentage of total cases within region per week across
Ontario, Canada, Western New York, and New York City. (A) 2020 proportions by week (March — December). (B) 2021 proportions by week (January—
December). (C) 2022 proportions by week (January — December). The “Other” category represents the collection of lineages present with <1% of the
total lineages and lacking discrete regional patterning.

B.1.1.434 (tan), B.1.369 (chartreuse), and B.1.409 (maroon) were
specific to New York City (with the Mid-Hudson region also
predominantly B.1.1.434). Interestingly, the Capital Region shared
elements of Western New York and New York City profiles
(Supplementary Figure 2). These data thus highlight the distinct
regional differences at opposite ends of NYS during 2020 (Figure 1A).

Late 2020 through early 2021 saw the introduction of major
variants of concern to the U.S. Our data indicates that the introduction
of Alpha (B.1.1.7; pale blue) replaced the regional differences across
NYS (Supplementary Figure 3) and in Ontario, although the timing
of its dominance varied by region. In Ontario, B.1.1.7 was subsequently
replaced by Delta-based lineages B.1.617.2 (pale grey) and then AY.74
(navy) by June 2021, which did not see widespread transmission in
NYS (Figure 1B; Supplementary Figure 3). In NYS, B.1.526 (Iota
variant; black) saw strong regional effects, with very little transmission
in WNY, Finger Lakes (FL), Central New York (CNY), and OCA,
while seeing upwards of 25% in Mohawk Valley (MV), NYC, Capital
Region (CR), Mid-Hudson (MH), and Long Island (LI; Figure 1B;
Supplementary Figure 3). More heterogeneity is seen in NYS following
the introduction of Delta and its various AY offshoots; AY.103
(orange) and AY.25 (magenta) were not present in OCA, but seen
across NYS (Figure 1B; Supplementary Figure 2). Lastly, BA.1
(Omicron variant; green) appeared in late 2021. However, cases of this
variant were primarily seen in NYC, MH, and LI, with Omicron
variant BA.1.1 dominating in WNY and OCA (Figure 1B;
Supplementary Figure 3). These results suggest that regionally specific
lineages were circulating in NYS, and these regional differences were
maintained throughout the pandemic, even after the introduction of
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primary variants of concern (Alpha and Delta) at the beginning of
2021. In 2022, the Omicron lineage dominated all surveyed regions,
and the lineage distributions appear more similar across NYS and
Ontario. Nonetheless, regional differences in the proportion and
timing of distinct sub-lineages persisted. In OCA, a much higher
proportion of BA.2 (dark teal) was observed and for longer than in
NYS. BA.2.3 (yellow), BA.2.65 (light blue), BA.2.9 (navy) were
observed in higher proportions in OCA than in NYS; BA.2.9 was not
detected in WNY, Southern Tier (ST), FL, CNY, MH, and North
Country (NG; Figure 1C; Supplementary Figure 4).

We analyzed lineage data from each EDR spanning 2020-2022
using rank-correlation coefficient analysis (Figure 2). For each EDR,
we correlated the relative rankings to all other EDRs and OCA. In
2020, we observed a negative correlation (shades of red) between
OCA and all NYS regions (Figure 2B). Conversely, there were higher
correlations (shades of blue) between the geographically close regions
within NYS, i.e., between MV, CNY, FL, and NC regions, and between
downstate MH, NYC, and LI regions (Figure 2B). In 2021, following
decreased lockdown restrictions, the correlation between lineages
circulating increased between most NYS EDRs, though OCA was still
displaying unique distributions (Figure 2C). Finally, by 2022 we saw a
dramatic normalization of the lineages circulating across all EDRs,
including OCA (Figure 2D). To further support our rank-correlation
analysis, for each EDR, we analyzed lineage distributions using
uniform manifold approximation and projection (UMAP) dimension-
reduction (Supplementary Figure 5). Like our rank-correlation
coefficient analysis, in 2020 we saw increased dispersion in the UMAP
analysis (Supplementary Figure 5A), as compared to 2021 and 2022
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Geographic economic development regions and lineage correlations. (A) New York State county grouping into EDR regions. Not shown OCA. (B) EDR
Rank-Correlation Coefficient matrix for 2020. (C) EDR Rank-Correlation Coefficient matrix for 2021. (D) EDR Rank-Correlation Coefficient matrix for

2022. All correlations using the Pearson correlation coefficient.

(Supplementary Figures 5B,C). For both analyses, it is important to
note that the number of viral genomes sequenced decreased rapidly
in the latter half of 2022, resulting in sparse coverage for several EDRs
including MV, NC, and LI which may explain slightly lower
correlations to other EDRs.

3.2 Spatial and temporal modeling of
SARS-CoV-2 nucleotide polymorphisms

Based on our findings that there were strong regional relationships
on the spread of SARS-CoV-2 lineages across New York State, we next
sought to quantify whether we could detect nucleotide level differences
in samples belonging to the same variant-of-concern lineage within a
single-county in WNY. We first evaluated Alpha (B.1.1.7) in Erie
County (WNY) as a proof-of-principle analysis. B.1.1.7 was first
introduced in NYS in early December 2020, likely because of air travel
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between the United Kingdom and one of the New York City Airports
(Alpert et al., 2021). Our temporal analysis of genomic lineages
indicated that B.1.1.7 was also introduced in WNY with similar timing
(Figure 1; Figure 3A). At the same time, spatiotemporal analysis of
case numbers per county indicates that B.1.1.7 spread up the Hudson
Valley and across NYS over a six-month period (Figure 3A).
We posited that the B.1.1.7 detected in Erie County then was due to
multiple introductions, which could be determined by distinct
nucleotide polymorphisms within the genomes of sequenced viruses.
To test this, we evaluated 200 B.1.1.7 samples collected in Erie County,
New York, between March 2021 and May 2021, and assessed the
similarities between viral genomes (Figure 3B). We found several
distinct patterns of mutations present in B.1.1.7, lending support to
our hypothesis of multiple introductions of B.1.1.7 in Erie County
(Figure 3C).

Encouraged by the analysis of B.1.1.7, we next theorized that there
would exist larger mutational differences within a lineage between
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major metropolitan regions. We next selected Omicron BA.2.12.1 for
in-depth analysis due to its high virulence and immune evasion
potential, as well as robust sample counts across NYS (Figure 4A; Cao
etal., 2022, Beheshti Namdar and Keikha, 2022). Unlike in the case of
B.1.1.7, we saw earlier introduction of BA.2.12.1 to Monroe (FL EDR)
and Onondaga (CNY EDR) Counties, where it quickly spread and
became dominant in the Central and Western portion of NYS, in
addition to the Capital Region, the Hudson Valley and into NYC and
Long Island (Figure 4A). Intriguingly, phylogenetic analysis of 2,737
samples from Erie County (WNY), Monroe County (FL), Onondaga
County (CNY), and Westchester County (MH) revealed distinct
genomic groupings between the different geographically located
regions (Figure 4B). Each branch on the phylogenetic tree is
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dominated by a single color, representing a distinct county. Of the
samples profiled, each county demonstrates distinct genomic profiles
for BA.2.12.1, further supporting the notion that tracking lineages at
the nucleotide level reveals distinct region-specific alterations that are
otherwise hidden by broad lineage designations (Figures 4B,C). To
further elucidate the spatial-temporal distribution of these distinct
lineages, samples were grouped using kmeans clustering (k=4;
Figure 4C), and each cluster distribution was plotted over time
(Supplementary Figure 6). Cluster 1 was first detected in Monroe and
Onondaga County, while C4 was first seen in Onondaga. Conversely,
C2 and C3 appeared across several counties. These results, taken with
our analysis of Erie County B.1.1.7, highlight nuanced differences of
lineages circulating at the genetic level with regional patterning.
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3.3 Establishing broad travel patterns using
transit dataset

We next examined regional travel patterns, as population
movement plays a pivotal role in the spread of infectious diseases. To
establish a general model for large-scale population travel patterns,
we leveraged NYS Thruway vehicle traffic data as a proxy to quantify
travel behavior, which may connect distinct regions across NYS
(Authority, N. Y. S. T, 2020). The main-line NYS Thruway spans
426 miles and runs from the WNY region (exit 50) to NYC (exit 15)
with extensions into the North Country EDR (Figure 5A). We detect
distinct commuter corridors linking different EDRs (Figure 5B). For
example, the Capital District Region (Exits 23-26) shows an increased
frequency of travel with the Mid-Hudson (Exits 16-21). (Figure 5B).
Alternatively, exits 45-47 are a hub between the rest of the Western
New York region (Exits 48-50) and the rest of the Finger Lakes and
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Central New York (Figure 5B). Furthermore, specific entrance points,
like exit 50, show increased travel that spans the length of the thruway,
representing travelers traversing the full extent of the NYS Thruway
(Figure 5B). Although these data represent pre-pandemic travel from
2019, we predicted that the travel trends would have remained the same
after the onset of COVID-19, even with overall reductions in travel.
Notably, these commuter corridors were consistent with our lineage
correlation analysis in 2020, where specific regions showed increased
correlations in lineages circulating early in the pandemic (Figure 2B).

3.4 Agent-based disease SEIR modelling
While the NYS Thruway data helped establish broad regional

travel dynamics, we sought to create a more finely tuned model of
population-level movement dynamics within WNY. To accomplish
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this task, utilizing an agent-based SEIR model (described in more
detail in the methods section), we simulated how a single SARS-
CoV-2 lineage spreads through space and time based on individuals’
(i.e., agents’) social networks in the WNY Area (Figure 6A;
Supplementary Figure 7). The purpose of the model is to demonstrate
how commuter activity could lead to the diffusion of SARS-CoV-2 in
WNY. To test our hypothesis that commuter activity promotes the
pattern of diffusion of SARS-CoV-2 in WNY, we evaluated our SEIR
model. We simulated the spread of a lineage for 50 days (i.e., 150-time
steps) in the Western New York Area. To start the simulation, two
agents from Erie County were selected as infected, and then the model
was run. Figure 6B shows the overall SEIR dynamics based on the
average results from 10 runs of the agent-based model, specifically, the
line plot illustrates the average SEIR dynamics, while the shaded area
represents the variances among the multiple runs. As expected SEIR
dynamics is greatly influenced based on different RO parameters
(Figures 6C,D). To understand how commuting impacts the spread of
the disease, we first analyzed the commuting patterns in WNY. If
we focus on Erie County first, neighboring counties (Niagara and
Monroe) have the bulk of intra-county commuters (Figure 7A).
Niagara County residents mainly commuted to Erie County
(Figure 7B), while Monroe County served as a major hub for
commuters to several different regions, including Erie County,
Ontario County, Wayne County, and Niagara County (Figure 7C). The
overall inter-connected regional commutes are summarized in
Figure 7D. These data suggest that regional transfer of SARS-CoV-2
lineages is likely in the Western New York region due to daily
commuter activity connecting these communities.

For the SEIR model, we aggregated the results at the census tract
level and conducted a set of spatial-temporal analyses to demonstrate
the diffusion of SARS-CoV-2 led by commuters in WNY (Figure 8).
Within 20days post-introduction within Erie County, our model
results reveal that several census tracts over 50 kilometers away in
Monroe County saw signs of infection (Figures 8C,I). After 30 and
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40days, there was widespread infection across most counties in the
Western New York, Southern Tier, and Finger Lakes regions, with a
gradient of diffusion around the original infected census tract
(Figures 8D-K). Finally, by day 50, our model suggested that all regions
in WNY would harbor cases of the lineage introduced into our model,
with an increase in cases forming a corridor between Erie County and
Monroe County (Figures 8F,M,G,N). These results are consistent with
our hypothesis that there is strong regional interconnectedness that
would facilitate spread from Erie County and Monroe County
metropolitan regions over a relatively brief period, and this spread is
likely driven largely by commuter dynamics. We note that the
simulation results are similar to the real-life diffusion of BA.2.12.1
across WNY in 2022 (Figure 4). In addition, we visually compared the
model-generated disease spread map to the distribution of BA.1.1
(Omicron) cases in Western New York (Supplementary Figure 8).
We chose a single lineage to visualize, representing a single RO value,
that originated in Erie County, as in our simulation. BA.1.1 spread
through the WNY area during early 2022, a period of easing
restrictions and return to normal activities, making it consistent with
our simulation model. BA.1.1 spread quickly from Erie County into
Niagara County, consistent with commuter patterns, and was detected
in Genesee County within a few weeks. Our model captured a similar
spread pattern, where the simulated results are in qualitative agreement
with empirically derived disease distribution, which aligns with our
current purpose as a proof of concept (Axtell and Epstein, 1994).

4 Discussion

4.1 Regional monitoring for understanding
SARS-CoV-2 evolution

In this study, we established region-specific mutational patterns
in patient sequencing data of SARS-CoV-2 at the sub-lineage level.
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Furthermore, we evaluated regional traffic and commuter patterns and
their implications on the genetic diversity and spatial transmission of
COVID-19 in New York State. Through location-aware agent-based
modeling, we highlighted cross-county interactions that likely
influence lineages circulating at the local level. It is our hope that these
analyses will contribute to policymakers’ decisions during future
outbreaks and support the benefits of local and regional monitoring
of patient-level viral genomes.

New York State is made up of several dense urban metropolitan
centers like New York City, the Capital Region, Utica, Syracuse,
Rochester, and Buffalo, with nearly 20 million people as of 2022 (U.S
Census Bureau, 2022). In between these dense urban centers are rural
communities that our analysis reveals serve as commuting hubs for
neighboring counties. Focusing our analysis on Western New York,
our SEIR model suggests the ability of SARS-CoV-2 to diffuse across
these rural communities, leading to the transmission from one
metropolitan region to another (e.g., Rochester, NY to Buffalo, NY).
While our model did not incorporate vaccination rates, it is worth
noting that rural counties between Erie and Monroe tend to have
lower percentages of people who have finished the complete course of
vaccinations and also tend to be less likely to have the updated booster
formulations (Health, N. Y. S. D. O, 2023). At the same time, there is
dearth these
(Supplementary Figures 2-4, 9). Therefore, our models can help

a of genomic sequencing in regions
predict diffusion patterns of infectious agents into these areas of
the state.

As with all models, there are several limitations and thus areas
of further work. First, the synthetic population only captures basic
patterns of life, in the sense our agents only go to work, educational
sites or home, where they have the potential to be exposed or
infected. Future work could explore other types of activities such
as meeting friends, going shopping, etc. at a finer temporal scale.
This could be informed by data from other sources (e.g., SafeGraph
or the National Household Travel Survey). However, to achieve
this, it requires altering the agent behavior based on what
motivates people to carry out different activities, which is beyond
the scope of this work. Furthermore, our model did not
incorporate detailed demographic information, such as people
aged over 65 who are retired and stay at home but remain
vulnerable to the SARS-CoV-2. Such

be extracted from the American Community Survey. We do note

information could

that ~60% of seniors are in the workforce. Furthermore, those
agents who are retired are connected to others via the various
social networks we use in the model. Another area of further work
for our model is to quantitatively assess disease dynamics that the
model produces with actual COVID-19 infection rates from the
Centers for Disease Control and Prevention (CDC), to tune the
model to mimic the effects of lockdowns and other interventions
to inform planning scenarios for future pandemics. These
limitations notwithstanding, the model presented in this paper
captures basic disease dynamics and helps predict diffusion
patterns of infectious agents in specific geographic locations,
which could provide the foundation for researchers to explore the
next pandemic utilizing agent-based modeling and synthetic
population with social networks.

Our genetic analysis of SARS-CoV-2 samples across NYS
uncovered regional differences in the genetic backgrounds within
specific lineages. We note that lineage profiles became more
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homogeneous as masking, distancing, and travel restriction policies
were relaxed through 2021 and especially 2022 (Figure 2B;
Supplementary Figure 5). Together, these observations indicate the
importance and utility of targeted, regional public health policies.
Furthermore, while significant resources were invested into regional
sequencing hubs, a disproportionate amount of sequencing data was
generated downstate in the New York City compared to more rural
counties, like the Southern Tier and the North Country
(Supplementary Figure 9). Our analysis demonstrates that even within
a single SARS-CoV-2 lineage (like B.1.1.7), distinct genetic diversity
exists that could lead to changes in transmission rates at the local level.
Due to this, continued investment in the infrastructure needed for
sample acquisition and monitoring in rural communities outside of
dense urban centers is critical for the ongoing COVID-19 pandemic
and future outbreaks of both novel and known infectious diseases.

Despite the prevalence of SARS-CoV-2 infections, sample
collection and sequencing of patient-derived samples have decreased
since the height of the pandemic. The widespread availability of
at-home diagnostic tools has reduced collection rates (Rader et al.,
2022). Furthermore, many pandemic monitoring groups have adopted
wastewater-based approaches (Karthikeyan et al., 2022; Segelhurst
et al., 2023; Wilder et al., 2021). While wastewater serves as a viable
tool for measuring overall infection rates, and deconvolution
techniques indicate relative proportions of lineages, broad monitoring
through wastewater introduces a gap in data for localities without
municipal treatment facilities, although, recent analysis suggests the
feasibility of the method for rural communities (Conway et al., 2023).
Alternative methods such as SEIR modeling used in this study could
serve as potential surrogate strategies. Indeed, recent surveys of
residents of New York State indicate that over 70% of SARS-CoV-2
infections are diagnosed exclusively by at-home tests, further
reinforcing the benefit of computational models such as ours (Mitchell
etal., 2023).

In conclusion, our study sheds light on the intricate dynamics of
the COVID-19 pandemic within the Western region of New York
State, emphasizing the importance of understanding local
transmission dynamics alongside the broader global perspective.
Combining spatially informed SEIR models and detailed genomic
analysis of SARS-CoV-2 lineages provides a comprehensive approach
to understanding regional transmission networks. Our analysis of
statewide SARS-CoV-2 lineages over time reveals distinct regional
differences, especially early in the pandemic. Furthermore, our
investigation of single nucleotide polymorphisms within specific VOC
lineages exposed localized genomic alterations typically obscured by
aggregation into broad lineage designations, which can be leveraged
for genomic epidemiology to monitor and understand infection
spread. Our findings thus underscore the benefits of regional
monitoring, genetic diversity analysis, and spatial modeling. As the
pandemic continues to evolve, we hope this integrative analysis offers
valuable insights for policymakers and health officials to implement
targeted interventions and allocate resources efficiently and effectively.
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