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On-demand population of Andreev levels by their ionization in the presence of Coulomb blockade
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A mechanism to deterministically prepare a nanowire Josephson junction in an odd parity state is proposed.
The mechanism involves population of two Andreev levels by a resonant microwave drive breaking a Cooper
pair, and a subsequent ionization of one of the levels by the same drive. Robust preparation of the odd state is
allowed by a residual Coulomb repulsion in the junction. A similar resonant process can also be used to prepare
the junction in the even state. Our theory explains a recent experiment [J. J. Wesdorp et al., Phys. Rev. Lett. 131,
117001 (2023)].
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I. INTRODUCTION

Andreev bound states are subgap supercurrent-carrying
fermionic states localized in a weak link between supercon-
ducting leads. Every Andreev level accommodates different
many-body configurations: it can be occupied by 0, 1 (with
spin up or down), or 2 quasiparticles. Recent experiments with
semiconducting nanowire Josephson junctions [1,2] (as well
as with atomic point contacts [3,4]) managed to reveal these
different configurations by probing microwave responses of
the weak link. This opens a pathway for using an Andreev
level as a qubit. The even parity states form a basis for an
Andreev pair qubit [5]. Another approach is to use as a qubit
the spin of a single quasiparticle trapped on the level [6,7].
Both the Andreev spin and the Andreev pair qubits were
realized experimentally [4,8–10].

To use Andreev levels as qubits, one needs to be able to
initialize them in a given parity state. This task is simple for
the application of the level as a pair qubit. Indeed, suppose
the Andreev level of energy E1 is “poisoned” by an unde-
sired quasiparticle (which may come, e.g., from the residual
quasiparticle density in the leads [11–13]). Then, it is suffi-
cient to apply a microwave tone of frequency h̄ω > � − E1

to “evaporate” this quasiparticle from the weak link into the
leads [14,15] (here � is the superconducting gap in the leads).

The situation is more complicated if the desired parity
is odd. The naïve approach to the preparation of the odd
state would be to irradiate the junction with microwaves
of frequency h̄ω > � + E1. The latter condition allows the
drive to break a Cooper pair putting one quasiparticle on
the Andreev level and a second one into the continuum in the
superconducting leads. This process brings the weak link to
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the odd parity sector. However, since the frequency of the
drive also exceeds (� − E1)/h̄, the same drive will be capable
of evaporating the quasiparticle from the level bringing the
weak link back to the even parity state. The outlined initializa-
tion protocol thus unavoidably has a probabilistic character. Is
it possible to deterministically prepare the Andreev level in a
state with a single quasiparticle?

Here, we answer this question affirmatively, and propose
a mechanism by which an Andreev level can be determin-
istically prepared in a state with a single quasiparticle. The
mechanism relies on having at least two levels in the weak
link (we denote their energies as E1 and E2), and on Coulomb
repulsion between quasiparticles populating the levels. Its
essence is summarized in Fig. 1. Suppose a drive of frequency
(E1 + E2)/h̄ is applied to the junction. Such a resonant drive
can break a Cooper pair populating each of the levels with a
single quasiparticle. Under the right conditions on E1,2 and �,
the same drive would then ionize the quasiparticle from the
upper level, while leaving the quasiparticle in the lower level
intact. An odd state would thus be prepared.

Crucially, preparation of the odd state relies on the residual
Coulomb interaction in the weak link. Without the interaction,
the drive would continue adding quasiparticles to the Andreev
levels, and would continuously change the parity state of the
junction. The Coulomb repulsion makes the process of the
Cooper pair breaking off-resonant for the junction in the odd
state, see the dashed box in Fig. 1(b). Therefore, the quasipar-
ticle addition automatically ceases once the junction reaches
the desired state with a single quasiparticle.

We develop a phenomenological theory of the described
mechanism of the odd-state preparation. Our theory addresses
how the inverse preparation time γ depends on the power
of the applied drive. Additionally, we show that a resonant
two-photon processes can also be used to clear the junction
of quasiparticles, i.e., initialize the junction in the even state.
As an illustration, we compute the parameters entering our
phenomenological theory in a simple microscopic model, in
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(a)

(b)

FIG. 1. Deterministic population of an Andreev level with a sin-
gle quasiparticle. (a) A drive applied to the weak link breaks a Cooper
pair leaving one quasiparticle in the Andreev level and ejecting
another one to the superconducting leads. (b) Details of a resonant
two-photon process preparing the weak link in the odd-parity state.
The link hosts two Andreev levels of energies E1 and E2, E2 > E1.
The frequency of the drive tone is h̄ω = E1 + E2. Absorption of the
first drive photon breaks a Cooper pair populating the two Andreev
levels. Absorption of a second photon ejects the quasiparticle from
the upper level into the leads (� is the gap in the leads). Further addi-
tion of quasiparticles is blocked by the Coulomb repulsion of strength
U . As discussed in the text, a conceptually similar two-photon reso-
nant process can be used to ionize the trapped quasiparticle bringing
the weak link from the odd state into the even state.

which the weak link is treated as a quantum dot hosting two
levels.

Our theory provides an explanation for a recent experiment
with a nanowire junction [16]. There, a strong microwave
drive resonant with a transition in the even parity sector was
found to change the junction parity from even to odd. This is
surprising because the absorption of a microwave photon has
to preserve the total fermion parity of the system. We explain
this observation with our odd-state preparation mechanism;
the conservation of the total parity is ensured by an addition
of an extra quasiparticle to one of the leads, see Fig. 1(a).
The measured dependence of the preparation rate on the drive
power is consistent with our results. Another, more restrictive
mechanism relying on the presence of a hot photon bath was
proposed in Ref. [17]. Our approach avoids strong assump-
tions of Ref. [17] about the electromagnetic environment of
the junction, and sheds light on the unexplained trends ob-
served in the experiment [16].

A. Summary of results

We consider a weak link hosting two Andreev levels with
energies E1 < E2 < � [see Fig. 1(b)]. For simplicity, we as-
sume that both levels are spin-degenerate (the role of the level
splitting due to the spin-orbit coupling is discussed in Sec. V).

(a) (b)

FIG. 2. (a) Summary of conditions on the energies of the two
Andreev levels under which the deterministic preparation of the odd-
parity [Eqs. (1) and (2)] and even-parity [Eq. (8)] states are possible.
(b) The dependence of the preparation rate of the odd-parity state γ

(i.e., the inverse time needed to prepare the state) on the drive power
P. The drive is applied at resonance with the transition |01, 02〉 →
|11, 12〉, i.e., h̄ω = E1 + E2. When the matrix element of the drive �

is small compared to the transition linewidth κ , the rate scales as P2.
At higher powers, the scaling is linear, γ ∝ P. At the highest power,
the rate saturates to a constant due to drive-induced broadening of
the transition, see Eq. (6). The power dependence of the preparation
rate of the even-parity state is qualitatively similar.

We label the many-body states of the system as |n1,m2〉,
where n,m ∈ {0, 1, 2} determine the number of quasiparticles
in the first and the second levels, respectively [18]. The ground
state in the even and odd parity sectors are, respectively,
|01, 02〉 and |11, 02〉.

Assume that the weak link is initially in the even-parity
ground state, |01, 02〉. Irradiation of the link by a continuous
microwave tone at frequency ω = (E1 + E2)/h̄ deterministi-
cally brings it to the odd-parity ground state [see Fig. 1(b)].
The mechanism works in the following way. While the link is
still in the even state, the drive coherently transfers population
from |01, 02〉 to a state |11, 12〉. The system thus exhibits Rabi
oscillations between these two states. If the frequency of the
drive is large enough,

h̄ω = E1 + E2 > � − E2, (1)

then the same drive that induces the Rabi oscillations is also
capable of evaporating the quasiparticle from the upper An-
dreev level. Therefore, over a sufficiently long time period, the
quasiparticle gets ejected from the weak link; the system ends
up in a state with a single quasiparticle in the lower level and
another quasiparticle lost in the continuum. The odd ground
state |11, 02〉 is thus prepared.

In addition to inequality (1), deterministic preparation of
the odd state relies on the fulfillment of two conditions. The
first one stems from the requirement that the drive should
not be able to ionize the quasiparticle remaining in the lower
Andreev level. This condition reads

h̄ω = E1 + E2 < � − E1. (2)

Conditions (1) and (2) restrict the range of E1 and E2 for which
the resonant quasiparticle generation is possible, as illustrated
in Fig. 2(a). In what follows, we assume that conditions (1)
and (2) are fulfilled.

Another requirement is that residual Coulomb interaction
has to be present in the weak link. Without interaction, the
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action of the drive does not “switch off” when the junction
reaches the odd state. The drive continues to add and evapo-
rate quasiparticles, and eventually brings the system back to
the even parity state [the respective processes are illustrated
in Fig. 1(b) in a dashed box]. Coulomb interaction shifts
the transition frequencies in the odd sector, making the drive
off-resonant for a state with a single quasiparticle, |11, 02〉.
The odd ground state is thus stabilized. We assume that the
Coulomb interaction is sufficiently weak such that—except
for lifting the spectral degeneracy—its influence on energetics
can be neglected [e.g., the influence on inequalities (1) and
(2)].

The inverse time needed to prepare the odd-parity ground
state γ depends on the power P of the applied drive. To
estimate γ , we note that the preparation is mediated by the
interplay of the drive-induced transitions between |01, 02〉 and
|11, 12〉, and the ionization of a quasiparticle from the second
level. At a relatively low power of the drive, the former pro-
cess is much quicker than the latter. Indeed, the frequency of
Rabi oscillations is determined by the drive matrix element �,

�R = 2�, (3)

and thus is ∝ √
P (with a proportionality coefficient de-

termined by the coupling between the weak link and the
transmission line delivering the drive). By contrast, ionization
of the second level happens with a rate that scales quadrati-
cally with �,

γion = �2

γs
∝ P (4)

(frequency scale γs characterizes the coupling between the
higher Andreev level and the continuum due to the presence
of the drive; its physical meaning will be clarified shortly).
For � � γs, the ionization occurs over many periods of Rabi
oscillations. Because, on average, the system spends half of
the time in the state |11, 12〉, we find the following expression
for the rate γ of the odd state preparation:

γ = 1
2γion ∝ P, (5)

where γion is given by Eq. (4).
Equations (4) and (5) show that the rate of the odd state

preparation increases with power. This trend, however, breaks
down at � ∼ γs when the Rabi frequency becomes compara-
ble to γion. In fact, at higher powers, the rate ceases to change
and saturates at γ ∼ γs. To understand this saturation, note
that ionization transitions broaden the second level effectively
spreading it over energy interval of width γion, cf. Eq. (4).
This broadening results in density of final states ∼1/γion for
the transition from |01, 02〉 under the action of the drive. The
corresponding transition rate can be calculated by Fermi’s
Golden rule,

γ = 2π�2 1

πγion/2
= 4γs ∝ const. (6)

Here, we used � for the transition matrix element in the first
equality and Eq. (4) for γion. A detailed derivation of Eq. (6)
is presented in Sec. II A.

In the above, we disregarded the possibility of the quasi-
particle recombination, |11, 12〉 → |01, 02〉. Recombination

strongly affects the low-power tail of the dependence of γ on
P; it renders γ ∝ P2 when � � κ , where κ is the recombi-
nation rate. This can be shown in the following way. To start
with, we note that at � � κ , one can estimate the population
p11 of |11, 12〉 from the generation-recombination balance.
Recombination happens with a rate κ , whereas the generation
rate can be estimated as �2/κ . Therefore, p11 ∼ �2/κ2. The
odd parity state is reached if the generation process of a pair
|11, 12〉 is followed by the ionization of a quasiparticle from
the second level. Because the latter process happens with a
rate γion, we can estimate the overall rate of the odd state
preparation as γ ∼ γionp11. Combining the expression for p11

with Eq. (4), we find

γ = 4�4

γsκ2
∝ P2. (7)

The specific numeric coefficient follows from the detailed
calculation described in Sec. II B.

The power dependence of the odd state preparation rate is
summarized in Fig. 2(b). In Ref. [16], the fit of the observed
power-dependence of the odd state preparation rate by γ ∝ Pα

(performed in a limited interval of P) resulted in α = 1.5. This
falls between the predictions of Eqs. (5) and (7).

A similar resonant two-photon process can also be used to
ionize a quasiparticle from an Andreev level, i.e., to prepare
the system in the even ground state. This requires driving
the junction at frequency ω = (E2 − E1)/h̄. Absorption of the
first photon excites the quasiparticle from level E1 to level E2.
Then, absorption of the second photon promotes the quasipar-
ticle from E2 into the continuum. The latter process is possible
only if

h̄ω = E2 − E1 > � − E2 (8)

[see Fig. 2(a)]. The energetic constraints for preparation of
the even state are more loose than those for the preparation of
the odd state. In particular, deterministic ionization is possible
even in the absence of Coulomb interaction. We note that the
dependence of even state preparation rate γ̃ on the drive power
is qualitatively similar to that of the odd state preparation. It
crosses over from γ̃ ∝ P2 at low powers, to γ̃ ∝ P at interme-
diate powers, to saturation at a certain value γ̃ = 4γ̃s at high
powers.

Finally, let us comment on the role of nonequilibrium
quasiparticles ubiquitous in superconducting devices [19–21].
Such quasiparticles stochastically “poison” the weak link, and
the parity of the latter randomly changes between being even
and odd in the absence of the microwave drive. In Sec. II E,
we show that even in the presence of stochastic switching, the
desired parity state can be prepared with a high fidelity by
applying a sufficiently strong drive.

Interestingly though, there is a limit on how close the
fidelity can approach unity in the high-power regime. For
concreteness, let us focus on the preparation of the even state.
In this case, the maximal attainable fidelity is limited by the
saturation of the rate with the increase of power [see discus-
sion after Eq. (8)]. Accordingly, for the maximal probability
of the even state pmax

e we get

1 − pmax
e ∼ 	eo

γ̃s
, (9)
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where 	eo is the rate of transitions from even to odd parity due
to the quasiparticle poisoning rate. The counterpart of Eq. (9)
to the odd-state preparation includes the additional restriction
coming from requirements on the strength of Coulomb inter-
action, cf. Eq. (38).

In Sec. III, we illustrate our phenomenological theory by
considering a concrete microscopic model of the weak link.
We evaluate the phenomenological parameters and show how
they depend on the phase bias across the link.

II. PHENOMENOLOGICAL MODEL

In this section, we present a phenomenological theory of
deterministic odd-state preparation. Within its framework, we
derive the dependence of the inverse preparation time on the
power of the applied resonant drive, as well as on the detuning
of the drive from resonance. The developed theory is also
suitable to describe a similar process used to prepare the even
state, as we show in Sec. II D.

A. Preparation of the odd state

To describe the mechanism of the odd state preparation,
we assume that the weak link hosts two Andreev levels with
energies E1 < E2 < �. We consider the system initialized
in an even state |01, 02〉. To populate the lowest level with
a quasiparticle, one applies a drive at the frequency ω =
(E1 + E2)/h̄, as explained in introduction [also see Fig. 1(b)].
The drive couples the state |01, 02〉 to an excited state |11, 12〉.
It further couples the excited state to a continuum of states,
in which one quasiparticle occupies the lower Andreev level
and the second quasiparticle has energy above the supercon-
ducting gap. We denote such states as |11, 02, 1c〉, where c
label the states with E > �. We assume that the quasiparticle
with above-the-gap energy never returns to the weak link.
In this sense, state |11, 02, 1c〉 describes the weak link in
the odd ground state. The outlined mechanism works only if
conditions (1) and (2) are fulfilled, and also there is a residual
Coulomb interaction in the weak link (see discussion below).
We assume that all of these requirements are satisfied.

We describe the system with a Hamiltonian

H = H0 + Hdrive(t ). (10)

Here H0 is the static part, in which we account for two discrete
many-body states |01, 02〉 and |11, 12〉, as well as continuum
of the high-energy excitations |11, 02, 1c〉:

H0 = (E1 + E2)|11, 12〉〈11, 12|
+

∑
c

(E1 + Ec)|11, 02, 1c〉〈11, 02, 1c|, (11)

where c labels single-particle states with Ec > �; we take
the energy of the state |01, 02〉 to be zero. Term Hdrive(t )
in Eq. (10) describes the drive applied to the junction. We

consider Hdrive(t ) of the form

Hdrive(t ) = h̄�e−iωt |11, 12〉〈01, 02| + h̄�e−iωt

×
∑
c

αc|11, 02, 1c〉〈11, 12| + H.c., (12)

where � is the drive amplitude. Dimensionless numbers αc

characterize the strength of coupling to the continuum states.
In the above, we assume that the frequency of the drive ω is
close to the transition frequency between the discrete states,
ω ∼ (E1 + E2)/h̄. Because of that, we include only the res-
onant terms in Hdrive(t ), and dispense with the off-resonant
ones such as eiωt |11, 12〉〈01, 02|. This is justified provided
h̄|�| � E1 + E2.

In Eq. (12), we also neglected terms describing transition
|11, 02, 1c〉 → |21, 12, 1c〉. This is justified only in the pres-
ence of a sufficiently strong Coulomb interaction. Indeed,
without the interaction, the frequency of the latter transition,
ω = (E1 + E2)/h̄, would coincide with that of |01, 02〉 →
|11, 12〉. Therefore, the drive applied at this frequency would
be capable not only of changing parity from even to odd,
but also of reversing it back [see Fig. 1(b)]. Coulomb re-
pulsion offsets the frequency of the transition |11, 02, 1c〉 →
|21, 12, 1c〉 to (E1 + E2 +U )/h̄, whereU is the strength of re-
pulsion. Therefore, the latter transition becomes off-resonant
with the drive applied at ω = (E1 + E2)/h̄. Then, as long as
the drive power is not too strong, |�| � U/h̄, the odd-to-even
parity switching does not occur.

To compute the rate of the odd-state preparation, we con-
sider the system initialized in the even-parity ground state,
|01, 02〉, and solve the time-dependent Schrödinger equa-
tion for the Hamiltonian (10). In this way, we obtain the
probability to find the system in the odd state w(t ) as a func-
tion of time. To begin with, we parametrize the wave function
as

|
(t )〉 = 
00(t )eiωt |01, 02〉 + 
11(t )|11, 11〉
+

∑
c


c(t )e
−iωt |11, 02, 1c〉, (13)

where 
00(0) = 1, 
11(0) = 
c(0) = 0 at t = 0. The desired
probability to find the system in the odd state at time t is
given by w(t ) = ∑

c |
c(t )|2. Practically though, it is more
convenient to express w(t ) as

w(t ) = 1 − |
00(t )|2 − |
11(t )|2 (14)

(whose equivalence to the initial definition follows from the
probability conservation), and then focus on finding probabil-
ities |
00(t )|2 and |
11(t )|2.

The time-dependent Schrödinger equation for |
(t )〉 re-
sults in the following system of equations for amplitudes

i(t ):

i
̇00 = ω
00 + ��
11 + iδ(t ), (15a)

i
̇11 = E1 + E2

h̄

11 + �
00 + ��

∑
c

α�
c
c, (15b)

i
̇c =
(
E1 + Ec

h̄
− ω

)

c + �αc � 
11. (15c)
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The δ function accounts for the initial conditions. In the fre-
quency domain, system (15) reduces to a system of algebraic
equations which can be readily solved. By finding the solution
and converting it back into the time domain, we obtain


00(t ) =
∫

dω′

2π

ie−iω′t

ω′ + i0 − ω − 
�(ω′)/h̄
, (16)

where


�(ω′)
h̄

= |�|2
ω′ + i0 − (E1 + E2)/h̄ − 
c(ω′)/h̄

(17)

and


c(ω′)
h̄

=
∑
c

|�|2|αc|2
ω′ + i0 − (E1 + Ec)/h̄ + ω

. (18)

Self-energy functions 
�(ω) and 
c(ω′) describe, respec-
tively, the drive-mediated coupling between states |01, 02〉
and |11, 12〉, and the coupling of |11, 12〉 to the continuum.
Expression for 
11(t ) can be found in a similar way.

Computing the integral in Eq. (16) requires the knowledge
of the self-energy function 
�(ω′). To evaluate this function,
in Eq. (17), we neglect the variation of 
c(ω′) with ω′, and
treat 
c(ω′) as a constant (complex) number. This approxi-
mation is justified as long as h̄� � �. Indeed, 
c(ω′) varies
with ω′ on a scale set by the superconducting gap in the leads
�. At the same time, the integral in Eq. (16) is determined
by frequencies ω′ in a narrow vicinity ∼h̄� of ω′ = (E1 +
E2)/h̄. This allows us to change 
c(ω′) → 
c([E1 + E2]/h̄)
in Eq. (17). In the following, we suppress the argument and
use a shortened notation 
c ≡ 
c([E1 + E2]/h̄).

To proceed, we decompose 
c in its real and imaginary
parts:


c = Re 
c + i Im 
c. (19)

The real part describes the ac-Stark shift of the second level
under the influence of the drive (see Appendix C for a detailed
discussion). The imaginary part of 
c describes the ionization
processes, i.e., the transitions from |11, 12〉 into the odd state
(with an extra quasiparticle in the continuum). We express the
imaginary part of the self-energy as

Im 
c

h̄
= −π |�|2

∑
c

|αc|2δ
(

ω − Ec − E2

h̄

)
= −|�|2

2γs
.

(20)

Parameter γs here is determined by the density of states in the
continuum ν(E2 + ω), as well as by the coupling αc of the
upper Andreev level to these states:

γ −1
s = h̄ ν(E2 + h̄ω)|αc|2. (21)

The physical significance of γs will become apparent shortly
[see the discussion around Eqs. (27) and (28) and Fig. 2(b)].
The ionization rate is given by

γion = −2 Im 
c/h̄ = |�|2
γs

. (22)

It scales linearly with the drive power P, γion ∝ |�|2 ∝ P.
We now use the derived equations to obtain the probability

w(t ) of finding the system in the odd state in the case of

the drive applied at resonance, h̄ω = E1 + E2 + Re 
c [the
last term accounts for the ac Stark shift, see Appendix C for
details]. Computing the integral in Eq. (16), we find

|
00(t )|2 = e−t |�|2
2γs

∣∣∣∣ s + i |�|2
4γs

2s
e−ist + (s → −s)

∣∣∣∣2

, (23)

where

s ≡ s(�) =
√

|�|2 − |�|4
16γ 2

s

. (24)

A similar calculation for |
11|2 yields

|
11|2 = e−t |�|2
2γs |�|2 sin2(st )/s2. (25)

The use of the above results in Eq. (14) shows that the prob-
ability w(t ) of finding the system in the odd state grows
monotonically with time, approaching unity at t → +∞.
We can represent the result as 1 − w(t ) = ∑

i ci exp(−λit ),
where Re λi > 0 for all i. We define the rate of the preparation
of the odd state γ as the smallest decrement Re λi. We find for
the rate

γ = Re

[ |�|2
2γs

−
√

|�|4
4γ 2

s

− 4|�|2
]
. (26)

If the amplitude of the drive is small, |�| < 4γs, then the
second term under the bracket in Eq. (26) is purely imaginary
and thus drops out. As a result, we obtain

γ (|�| < 4γs) = |�|2
2γs

. (27)

Since |�|2 ∝ P, the odd-state preparation rate scales linearly
with the power of the drive.

Notice that, up to a factor of 1/2, γ coincides with the
ionization rate of the upper Andreev level, cf. Eqs. (22) and
(27). This feature reflects the character of the dynamics at low
drive amplitudes, |�| < 4γs. The latter condition defines the
“underdamped” regime of the dynamics; in it, the system un-
dergoes Rabi oscillations between states |01, 02〉 and |11, 12〉,
see Eq. (23). In the course of oscillations, the system spends a
half of the time in a state |11, 12〉, which can be ionized by a
drive. This is why γ = γion/2.

Increasing the drive amplitude above |�| = 4γs brings the
dynamics into an “overdamped” regime, which is character-
ized by the absence of Rabi oscillations. In this regime, the
second term in the square brackets of Eq. (26) is real leading
to

γ (|�| > 4γs) = |�|2
2γs

−
√

|�|4
4γ 2

s

− 4|�|2. (28)

Equations (27) and (28) show that dependence of γ on |�|
is nonanalytic, with a cusp at |�| = 4γs. In fact, the prepara-
tion rate reaches its maximum value at the cusp, γmax = 8γs.
Further increase of the drive amplitude leads to a gradual
decrease in γ . Interestingly, the preparation rate saturates at
a power-independent value γ = 4γs in the limit of high drive
power, |�| 
 γs [see the discussion around Eq. (6) for the
qualitative explanation of the saturation].
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We note that for typical experimental parameters γs/2π is
at least of the order of a few GHz (see Sec. III). Achieving
the Rabi rate |�| ∼ γs would most likely require drive power
higher than that accessible in experiments. Therefore, prac-
tically, γs should not be a limiting factor for the odd-state
preparation rate γ .

B. Effects of quasiparticle recombination in the resonant case

In the previous section, we neglected the quasiparticle re-
combination, i.e., relaxation from |11, 12〉 to |01, 02〉. This led
to the conclusion that the rate of the odd state preparation
scales as ∝ P at the lowest drive powers P. However, the linear
trend breaks down in the presence of recombination. If the
recombination rate κ exceeds the drive amplitude, |�| � κ ,
then no Rabi oscillations develop; the population transfer from
|01, 02〉 to |11, 12〉 becomes suppressed. This results in the
suppression of the odd-state preparation rate at low powers
to ∝ P2, as we now show [22].

To begin with, we neglect the ionization of the upper
Andreev level. In that case, the dynamics of the system can
be described with a two-level Bloch equation for the den-
sity matrix. According to this equation, the system reaches
a steady state in which the probabilities of the states |01, 02〉
and |11, 12〉—p00 and p11, respectively—are related by

p11 = |�|2
|�|2 + κ2/4

p00. (29)

In the absence of ionization, the total probability of states
|01, 02〉 and |11, 12〉 is conserved, p00 + p11 = 1. Ionization
leads to the decay of the probability which signifies the tran-
sition to the odd state. Since ionization is only possible from
state |11, 12〉, the decay can be described with the rate equation

d

dt
(p00 + p11) = −γionp11, (30)

where γion is given by Eq. (22). The probability to find the
system in the odd state at time t can be expressed as w(t ) =
1 − p00(t ) − p11(t ). Combining Eqs. (29) and (30) we find
w(t ) = 1 − e−γ t . Here the inverse odd-state preparation time
γ is given by

γ = γion

2

|�|2
|�|2 + κ2/8

= |�|2
2γs

|�|2
|�|2 + κ2/8

, (31)

where we used Eq. (22) for the ionization rate γion [note that
the denominator in Eq. (31) is different from that in Eq. (29)].
For low drive amplitudes, |�| � κ , this expression reduces to

γ = 4|�|4
γsκ2

∝ P2. (32)

For |�| 
 κ , from Eq. (31) we recover Eq. (27), in which
γ ∝ P.

C. Effects of detuning

The described process of the odd-state preparation has a
resonant character, i.e., it is the most effective when the drive
frequency ω = (E1 + E2 + Re 
c)/h̄. Detuning of ω from the
transition frequency rapidly suppresses the preparation rate.
To describe the suppression, we focus on the case γion �

κ, |�|. The generalization of Eq. (29) to the case of the drive
detuned from the transition by δω reads

p11 = |�|2
|�|2 + δω2 + κ2/4

p00. (33)

Using this relation in conjunction with Eq. (30), we find for
the inverse odd-state preparation time:

γ = |�|2
2γs

|�|2
|�|2 + δω2/2 + κ2/8

. (34)

Similar to the previously considered resonant case [Sec. II B],
the preparation rate crosses over from γ ∝ P2 at small drive
power to γ ∝ P at higher drive power. However, the detuning
shifts the position of the crossover to a higher drive amplitude,
|�| ∼ √

κ2 + 4δω2 instead of |�| ∼ κ .

D. Preparation of the even state

In the above we described how driving can be used to
deterministically prepare the weak link in an odd state. A
similar process can be used to prepare the system in the even
state. To explain this, let us assume that the weak link is
initialized in the odd state |11, 02〉, and a drive of frequency
ω = (E2 − E1)/h̄ is applied. Absorption of a first drive photon
promotes the quasiparticle from the first Andreev level to the
second one. If the second level is sufficiently close to the
continuum edge, see Eq. (8), then an absorption of a second
photon ionizes the quasiparticle, bringing the weak link to an
even state |01, 02〉 (with one quasiparticle in the continuum).
In contrast to the preparation of the odd state, the preparation
of the even state does not rely on the presence of residual
Coulomb interaction in the weak link. This is because the odd-
parity transition at ω = (E2 − E1)/h̄ is generally not resonant
with any of the transitions in the even parity sector.

The preparation of the even state can be described with the
help of a phenomenological theory similar to the theory in
Secs. II A–II C. In particular, the dependence of the inverse
preparation time on the drive amplitude is given by Eqs. (5),
(28), (31), and (34), in full similarity to the preparation of
the odd state. The only difference is in the value of the phe-
nomenological parameters |�|, γs, and κ . To highlight that
these parameters are different for the even-state preparation,
in what follows we label them by |�̃|, γ̃s, and κ̃ . As a re-
minder, coupling strength |�̃| gives the Rabi frequency for
the transition |11, 02〉 → |01, 12〉. Parameter γ̃s determines the
ionization rate of the second Andreev level, γion = |�̃|2/γ̃s.
Expression for γ̃s is similar to Eq. (21),

γ̃ −1
s = h̄ ν(E2 + h̄ω)|̃αc|2. (35)

The only difference comes from the difference in frequency ω.
Here, ω = (E2 − E1)/h̄ while ω = (E1 + E2)/h̄ in Eq. (21).
α̃c is the dimensionless coupling at the former frequency. κ̃

gives the rate of a quasiparticle relaxation from the second
level into the first level, |01, 12〉 → |11, 02〉 (as a reminder, for
the odd state preparation κ denoted the rate of quasiparticle
recombination, |11, 12〉 → |01, 02〉).
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E. Role of quasiparticle poisoning

So far, we focused on the idealized case in which the parity
state of the weak link is stable in the absence of driving. In
this case, driving allows for the deterministic preparation of
a desired parity state, as we explained. However, in recent
experiments it was observed that the parity stochastically
switches between even and odd; this was attributed to poi-
soning by the nonequilibrium quasiparticles [9,23–25]. In the
presence of stochastic parity switching, ideal deterministic
preparation of the parity state is impossible. The fidelity of
the state preparation is determined by how the preparation rate
γ compares to the parity switching rate, as we demonstrate
below.

Let us denote the parity switching rates in the absence of
the drive as 	eo and 	oe for the even-to-odd and odd-to-even
transitions, respectively. For concreteness, we first focus on
the preparation of the odd state. In this case, application of the
resonant drive [in a way described in Sec. II A] changes the
rate of the even-to-odd switching from 	eo to 	eo + γ [see
Eq. (31) for γ ]. At the same time, the rate of odd-to-even
switching remains unchanged, as long as the drive power is
not too large. In these conditions, the steady state probability
of finding the system in the odd parity is given by

po = 	eo + γ

	eo + γ + 	oe
; (36)

the even state probability is pe = 1 − po. If γ 
 	oe, 	eo,
then po becomes close to unity, po ≈ 1 − 	oe/γ . A relation
similar to Eq. (36) with o ↔ e and γ ↔ γ̃ holds for the even
state preparation.

It appears from Eq. (36) that increasing the drive power
should bring the odd state probability po closer and closer to
unity (since γ increases with the drive power). This trend,
however, breaks down in the high-power regime. As it was
shown in Sec. II A, in this regime (|�| 
 γs) the even-to-odd
rate saturates at a value γ ∼ γs. This puts an upper limit on
the fidelity of the odd state preparation,

1 − pmax
o ∼ 	oe

γs
, (37)

where 	oe is the rate of transitions from odd parity to even
parity due to quasiparticle poisoning. A similar limit holds
for the preparation of the even state. We note that the limit
imposed by Eq. (37) is loose and is unlikely to be reached
experimentally (see comment at the end of Sec. II A).

In the case of the odd-state preparation, Coulomb interac-
tion puts an additional limit on the achievable fidelity. Recall
that to change the parity from even to odd, one drives the
transition |01, 02〉 → |11, 12〉. The same drive evaporates a
quasiparticle from the upper level bringing the system into
the odd-parity ground state, |11, 02〉. For a sufficiently weak
drive, the production of quasiparticles by the drive stops at this
stage, thanks to the Coulomb blockade (see Fig. 1). We note,
however, that a high-amplitude drive can break through the
Coulomb blockade resulting in a transition |11, 02〉 → |21, 12〉
(even though it is detuned from resonance by an amount δω =
U/h̄ determined by the interaction strength). A subsequent
evaporation of a quasiparticle from |21, 12〉 and recombination
of the remaining two quasiparticles reverts the state back to

|01, 02〉. Thus, the breakdown of the Coulomb blockade by the
strong drive compromises the odd-state preparation fidelity.

Quantitatively, the described effect can be taken
into the account in Eq. (36) by replacing 	oe with
	oe + |�|2γion/[2(U/h̄)2]. Here, for |�| � U/h̄, factor
|�|2/[2(U/h̄)2] determines the probability to find the system
in state |21, 12〉 (assuming it starts in the odd state) and
γion is the rate of quasiparticle evaporation from state
|21, 12〉 [26]. With this replacement, it is apparent that when
|�| ∼ U/h̄ the fidelity of the odd state preparation becomes
poor, 1 − po ∼ 1/2. The fidelity is also poor when |�| = 0.
Therefore, the maximal fidelity is achieved at an intermediate
drive strength. Explicitly we find

1 − pmax
o = (8	oeγs)1/2

U/h̄
, (38)

which is achieved at drive amplitude

|�opt| = (2	oeγs)1/4(U/h̄)1/2. (39)

In deriving Eqs. (38) and (39) we assumed 	oe = 	eo for sim-
plicity, and we also assumed (	oeγs)1/2 � U/h̄. According to
Eq. (38), the maximum achievable fidelity increases with the
increase of the interaction strength U , until the quasiparticle
poisoning becomes the main constraint and the maximum
fidelity is given by Eq. (37). This emphasizes that the interac-
tion is instrumental for preparing the odd ground state with a
high fidelity (in contrast to the preparation of the even ground
state).

Which of the two restrictions [cf. Eqs. (37) and (38)] limits
the fidelity of the odd state preparation in practice depends on
the comparison between 	oe, γs, and U/h̄. This comparison is
sensitive to microscopic details of the system.

F. Discussion of the experiment

The main predictions of our theory are consistent with a
recent experimental work [16].

A striking observation of Ref. [16] is that a high-power
drive, resonant with a transition in a given parity sector,
brings the system into an opposite parity sector. In particular,
driving the weak link at the frequency of the even parity
transition ( fe = 29.72 GHz) brought it to the odd state. This
is in agreement with our parity preparation mechanism [see
Sec. II A]. According to our theory, residual Coulomb in-
teraction is required for the preparation of the odd state.
Signatures of Coulomb interaction in microwave experi-
ments with nanowire junctions were indeed recently reported
[27–29]. Using two-tone spectra measured in Ref. [16] we can
estimate U ∼ 10 GHz. This number coincides with the values
reported in Ref. [29].

The work [16] also reports the dependence of parity prepa-
ration rates on the power of the applied drive. An attempt to fit
the dependence with Pα resulted in exponent α between 1 and
2. Our theory predicts a crossover between γ ∝ P2 and γ ∝ P
with the increase of power. This implies that the experimental
data likely belongs to the crossover regime. According to our
theory, the crossover happens when the Rabi rate compares
to the linewidth, |�| ∼ κ (unfortunately, κ and |�| were not
independently measured in Ref. [16]).
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FIG. 3. Schematic of our microscopic model. Quantum dot hosts
two levels while each lead hosts two transport channels. The levels
in the dot are tunnel coupled to the channels in the leads. In the
main text, we consider a simplified situation in which the first level
in the dot is only coupled to the first channel in each lead and,
correspondingly, the second level is coupled to the second channel.
The generic situation is considered in Appendix B.

Due to the quasiparticle poisoning, the parity preparation
achieved in the experiment [16] was not ideal. However, it
was observed that the fidelity increases with the drive power
P reaching close-to-unity values at high P (specifically, 0.89
for the odd state preparation and 0.94 for the even state
preparation). This observation is consistent with our theory,
cf. Eq. (36).

III. MICROSCOPIC MODEL

In this section, we present a minimal microscopic model
allowing one to evaluate the rates of preparation of the odd and
even states, and find the dependence of these rates on relevant
parameters such as the phase bias ϕ across the junction.

We consider a weak link between the two superconduct-
ing leads which hosts two transport channels. The simplest
and commonly used model describing such a configuration is
that of a short junction. In this model, the two channels are
independent of one another, and each gives rise to a single,
spin-degenerate Andreev level. For our purposes, however, the
short junction model is insufficient. Indeed, our mechanism
relies on a process in which a drive either breaks a Cooper pair
into two quasiparticles belonging to different levels (odd state
preparation), or transfers a quasiparticle between the levels
(even state preparation). Since the channels are independent
in the short junction model, neither of these processes is
allowed. The independence of channels stems from neglect-
ing the dwell time τdw of a quasiparticle in the junction. To
quantify the state preparation rates, we take a short dwell time
τdw � h̄/� into the account.

A model that allows for a systematic account of the finite
dwell time is that of a quantum dot tunnel-coupled to two su-
perconducting leads (see Fig. 3). The many-body Hamiltonian
of the system is given by

H = Hqd + Hsc + Htun + Hdrive(t ). (40)

Here Hqd describes the levels on the dot:

Hqd = c†ε̂0τzc + HC, (41)

where c = (c1,↑, c2,↑, c†
1,↓, c†

2,↓)T and cα,σ is the annihilation
operator of an electron in the level α = 1 or 2 on the dot,
with spin σ =↑ or ↓. Matrix ε̂0 = diag{ε1, ε2} contains the
energies of the two levels (computed with respect to the Fermi

level). We assume the levels to be spin-degenerate. We denote
the Pauli matrices in the Nambu space by τ j with j ∈ {x, y, z}.
In the considered limit of short dwell time, the specific values
ε1 and ε2 will not be consequential for our results (assuming
εα � �). HC in Eq. (41) describes the Coulomb interaction;
we leave this term unspecified for the moment. We assume
that the Coulomb interaction is well-screened so that it plays
only a residual role: it provides a mismatch between transition
frequencies in the even and odd parity sectors (see Fig. 1 and
Sec. III C).

Term Hsc in Eq. (40) is the Hamiltonian of the supercon-
ducting leads. Focusing on two transport channels in each
lead, we consider Hsc given by the following expression:

Hsc =
∑
i=R,L

∑
ξ

ψ
†
i,ξ (ξτz + �τx )ψi,ξ , (42)

where ψi,ξ = (ψi,ξ ,1,↑, ψi,ξ ,2,↑, ψ
†
i,ξ ,1,↓, ψ

†
i,ξ ,2,↓)T . Operator

ψi,ξ ,β,σ annihilates an electron with spin σ in the lead i = R
or L. Index β ∈ {1, 2} differentiates the two channels, whereas
ξ labels states in a given channel by their respective normal-
state energies; ξ = 0 corresponds to the Fermi level.

The tunnel-coupling between the quantum dot and the
leads is described in Eq. (40) by

Htun = 1√
L

∑
i=R,L

∑
ξ

c†τze
iϕiτz/2t̂iψi,ξ + H.c., (43)

where L is the normalization length for a channel, and ϕi is the
superconducting phase in the lead i. We fix the gauge in which
ϕL = ϕ and ϕR = 0. In Eq. (43), t̂i is a 2 × 2 matrix composed
of tunneling amplitudes ti,αβ between channel β in the lead i
and level α on the quantum dot. For simplicity, we assume
ti,αβ to be diagonal (see Appendix B for the discussion of the
general case). It is convenient to characterize the tunneling
between the dot and the leads by the respective normal-state
tunneling rates 	i,α/h̄ = πν0[t̂it̂

†
i ]αα/h̄, where ν0 is the den-

sity of states in a given channel of a normal metal [we note
that 	i,α have the units of energy]. The characteristic scale
	/h̄ of the rates 	i,α/h̄ is related to the electron dwell time in
the junction, τdw = h̄/	.

Finally, the term Hdrive(t ) in Eq. (40) describes the mi-
crowave drive. We assume throughout this section the driving
is performed by applying an ac voltage to the gate, see Fig. 1.
The respective term in the Hamiltonian is

Hdrive(t ) = cos(ωt )E0c
†d̂τzc, (44)

where E0 is the amplitude of the electric field at the dot, and
the dipole moment d̂ is a 2 × 2 matrix acting in the subspace
of levels on the dot. In Sec. IV, we also discuss the case of the
current drive, in which the ac voltage is applied between the
superconducting leads.

A. Static case

To start with, we assume that the driving is absent and find
the energy spectrum and the corresponding wave functions of
the Hamiltonian (40). With the Coulomb repulsion neglected,
this amounts to solving the system of the Bogoliubov-de

184508-8



ON-DEMAND POPULATION OF ANDREEV LEVELS BY … PHYSICAL REVIEW B 110, 184508 (2024)

Gennes (BdG) equations (see Sec. III C for a discussion of
the Coulomb interaction effects). The BdG equations read

(ξτz + �τx )
i,ξ + 1√
L

τze
−i ϕiτz

2 t̂†
i C = E
i,ξ , (45a)

ε̂0τzC + 1√
L

∑
i=R,L

∑
ξ

τze
i ϕiτz

2 t̂i
i,ξ = EC, (45b)

where C and 
i,ξ are the components of the wave function
in the dot and in the ith lead, respectively. To solve this
system, we express 
i,ξ is terms ofC with the help of the first
equation, and then substitute the result in the second equation.
Then, upon performing the integration over ξ , we arrive to the
following equation for C:

E

(
1 +

∑
i=R,L 	̂i√

�2 − E2

)
C = ε̂0τzC + γ̂C, (46)

where

γ̂ = �√
�2 − E2

∑
i=R,L

(
0 	̂ieiϕi

	̂ie−iϕi 0

)
τ

(47)

(subscript τ indicates that the matrix acts in the Nambu space).
In these equations, 	̂i/h̄ = πν0t̂it̂

†
i /h̄ is the diagonal matrix of

the tunneling rates introduced earlier.
Equation (46) allows one to find the spectrum of the An-

dreev levels and the respective wave functions for arbitrary
�/	. Since we are interested in the regime of a short dwell
time, we focus on the case of �/	 � 1. Under this condition,
one can dispense with 1 in the brackets on the left hand side
of Eq. (46), and with the first term on the right hand side [we
assume that |ε̂0| � �]. Then, Eq. (46) simplifies to

�
∑
i=R,L

(
0 	̂ieiϕi

	̂ie−iϕi 0

)
τ

C = E
∑
i=R,L

	̂iC. (48)

By assumption, matrices 	̂i are diagonal, which means that
Eq. (48) can be separately solved for each channel α ∈ {1, 2}.
This yields

Eα (ϕ) = �

√
1 − Tα sin2(ϕ/2), (49)

where

Tα = 4	R,α	L,α

	2
α

, 	α = 	R,α + 	L,α. (50)

Corrections to Eq. (49) in �/	 remain small as long as the
phase is sufficiently removed from zero, |ϕ| � �/	 [30],
which we assume in the following. These corrections are
irrelevant for the described parity polarization effect.

The components of the wave functions on the dot are given
by

Cα,+ = Nα (ϕ)√
2

(
1

e−izα (ϕ)

)
τ

,

e−izα (ϕ) = �

Eα (ϕ)

	L,αe−iϕ + 	R,α

	α

. (51)

Here factor Nα (ϕ) satisfies [31]

N 2
α (ϕ) =

√
�2 − E2

α (ϕ)

	α

. (52)

This factor describes spreading of the wave function from the
dot into the leads. The spreading increases with the increase of
	α , or when the energy of the level approaches the continuum,
ϕ → 0.

Equation (51) gives a solution of the BdG equations with
the positive energy (as indicated by a + subscript). We will
also need a respective negative energy solution with E =
−Eα (ϕ). Its wave function is given by Cα,− = τzCα,+.

An example of the phase-dependence of the Andreev level
energies is shown in Fig. 4. The red stripe depicts an interval
of phases in which the deterministic preparation of the even
state is possible, cf. condition (8). A more narrow blue stripe
shows an interval of phases in which the odd-state preparation
is allowed by conditions (1) and (2).

B. Dynamics

Next, we assume that a drive is applied to the gate adjacent
to the quantum dot, see Eq. (44). We consider two cases: either
the drive frequency is resonant with a transition in the even
sector, h̄ω = E1(ϕ) + E2(ϕ), or with a transition in the odd
sector, h̄ω = E2(ϕ) − E1(ϕ). For both of these cases, we eval-
uate the coupling � ≡ �(ϕ) entering the phenomenological
theory, cf. Eq. (12). We also compute the rate of ionization of
the Andreev levels γion ≡ γion(ϕ), cf. Eq. (22).

1. Evaluation of the coupling �(ϕ)

We start by computing the coupling � for the even transi-
tion at h̄ω = E1 + E2. It can be expressed as a matrix element
of the drive operator:

h̄� = E0√
2
C†

2,+d̂τzC1,−, (53)

where Cα,± are given by Eq. (51). Substituting these expres-
sions, we find for the magnitude of the coupling:

h̄|�|
E0|d12| =

[(
�2 − E2

1

)(
�2 − E2

2

)] 1
4

√
2 	1	2

∣∣∣∣ cos

(
z1 − z2

2

)∣∣∣∣, (54)

where we suppressed the phase arguments of Eα and zα [zα is
defined in Eq. (51)]. Coupling �̃ for the odd state transition at
h̄ω = E2 − E1 can be obtained in the same way. We find

h̄|�̃|
E0|d12| =

[(
�2 − E2

1

)(
�2 − E2

2

)] 1
4

2
√

	1	2

∣∣∣∣ sin

(
z1 − z2

2

)∣∣∣∣. (55)

In both cases the coupling can be estimated as

|�|, |�̃| ∼ 1

h̄
E0|d12|�

	
. (56)

Here we assumed h̄ω,E1,E2 ∼ � and denoted the charac-
teristic value of the tunneling rate by 	/h̄. The coupling
is attenuated in comparison with the “bare” dipole coupling
E0|d12| by a factor ∼�/	 � 1. This factor originates from
spreading of the wave function from the dot into the leads,
where the electric field produced by the gate is screened.

The phase dependence of couplings � and �̃ is depicted
in Fig. 4. Its character near ϕ = π is of a particular note.
Specifically, one of the two couplings vanishes at ϕ = π due
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FIG. 4. (a) Energies of the Andreev bound states as a function of phase bias ϕ for a two-channel junction with �τdw/h̄ � 1. (b) Coupling
between the junction states due to the drive in even parity sector � and in the odd parity sector �̃. The coupling is normalized by �0 ≡
(E0|d12|/h̄)�/(	1 + 	2). (c) Ionization rate of the second Andreev level by a drive applied at ωe→o = [E1(ϕ) + E2(ϕ)]/h̄ (preparation of the
odd state), and at ωo→e = [E2(ϕ) − E1(ϕ)]/h̄ (preparation of the even state). The red stripe in all three panels depicts a domain of phases in
which preparation of the odd state is possible [cf. Eqs. (1) and (2)]; in the blue stripe, the even state can be prepared [cf. Eq. (8)]. Parameters
are chosen as 	R,2 = 5	L,2, 	L,1 = 1.5	L,2, 	R,1 = 1.8	L,2, 	L,2 = 5�, and |d22|2/|d12|2 = 3.

to destructive particle-hole interference. Which of the two
processes this happens for depends on the relation between
the tunneling rates. If (	1,R − 	1,L )(	2,R − 	2,L ) > 0, then
z1(π ) = z2(π ) = 0 [cf. Eq. (51)] and thus |�̃| = 0, as shown
in Fig. 4. In the opposite case, z1(π ) − z2(π ) = ±π and |�| =
0. This cancellation occurs only in the leading order in the
dwell time.

We note that Eqs. (54) and (55) break down in the vicinity
of zero phase of width δϕ ∼ �/	 � 1, where energies (49)
poorly approximate the exact solution of Eq. (46). There,
Eqs. (54) and (55) underestimate the coupling strength.

2. Evaluation of the ionization rate γion(ϕ)

Next, we compute the rate of ionization of the upper An-
dreev level by the applied drive, cf. Eq. (22). Using Fermi’s
Golden rule, we obtain the following expression for the rate:

γion = 2π

h̄

∑
c

∣∣∣∣〈1c|1

2
E0d̂τz|12〉

∣∣∣∣2

δ(E2 + h̄ω − Ec). (57)

Here |12〉 denotes a state with a quasiparticle in the upper
Andreev level; |1c〉 is a state with a quasiparticle of energy Ec

in the continuum. The sum over the final states can be carried
out by introducing the Green’s function of the system, G(E ).
In fact, the only component of the Green’s function that is
relevant for the evaluation of γion is Gdd, i.e., the component
describing the dot. We find

γion = −2

h̄

E2
0

4
Im〈12|d̂τzGdd(h̄ω + E2)d̂τz|12〉. (58)

In the limit of short dwell time, �/	 � 1, Gdd can be ex-
pressed as [31]

Gdd(E ) = −i
√
E2 − �2

	̂R + 	̂L

1

E − H0
, (59)

where the effective Hamiltonian of the Andreev levels is given
by

H0 = �

	̂R + 	̂L

∑
i=R,L

(
0 	̂ieiϕi

	̂ie−iϕi 0

)
τ

. (60)

Using Eqs. (59) and (60) in Eq. (58), we find

γion = E2
0

2h̄

√
(h̄ω + E2)2 − �2

√
�2 − E2

2

(
|d12|2
	1	2

cos2
( z1−z2

2

)
h̄ω + E2 − E1

+ |d12|2
	1	2

sin2
( z1−z2

2

)
h̄ω + E2 + E1

+ |d22|2
	2

2

1

h̄ω + 2E2

)
. (61)

The square-root factors here reflect the behavior of the local
density of states at the weak link [14,31]. We remind one that
h̄ω = E1 + E2 in the case of the odd state preparation, and
h̄ω = E2 − E1 in the case of the preparation of the even state.
An example of the dependence of γion on phase ϕ is shown in
Fig. 4(c).

Using Eq. (61) we can estimate the rate γion as

γion ∼ 1

h̄
E2

0 |d12|2 �

	2
, (62)

where we made assumptions that h̄ω,E1,E2 ∼ � and |d22| ∼
|d12| and denoted the typical tunneling rate by 	/h̄.

We can combine Eqs. (56) and (62) to estimate the satura-
tion rate γs = |�|2/γion as

γs ∼ �/h̄ (63)

[the estimate is the same for γ̃s].

C. Coulomb interaction

As explained in Sec. I, deterministic preparation of a state
with a single quasiparticle is allowed by a residual Coulomb
interaction in the weak link. The interaction ensures that,
the drive ceases to add more quasiparticles to the Andreev
levels once the odd state is reached, see Fig. 1. The blocking
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happens because interaction detunes the transition frequency
of |11, 02〉 → |21, 12〉 away from that of |01, 02〉 → |11, 12〉
(two frequencies coincide in the absence of interaction). Here
we find the magnitude of the detuning between the transitions,
which we label as U/h̄.

We begin by specifying a concrete form of the interaction
Hamiltonian HC in Eq. (41). For simplicity, we assume that the
interaction is determined by the total number N of electrons
on the dot only [32]:

HC = UC (N − 2)2 = UC (c†τzc)2, (64)

where the charging energy UC = e2/2C is determined by the
capacitance C of the dot.

To findU , we perturbatively compute the corrections to the
energies of the relevant states (i.e., |01, 02〉, |11, 12〉, |11, 02〉,
|21, 12〉) due to the Coulomb interaction assuming 	 
 �.
The general expressions for these corrections are bulky; we
present them in Appendix A. The detuning between the con-
sidered transitions, however, admits a simple representation.
We find

U = −2UC
�2 − E2

1

	2
1

. (65)

Notably, the detuning is small compared to the “bare” value
of the Coulomb repulsion. The weakening of the repulsion
is the result of the extension of the Andreev states into the
leads (where the interaction is well-screened). Another no-
table feature of Eq. (65) is that—in the considered model—U
is determined only by the properties of the channel hosting the
lower Andreev level.

IV. DISCUSSION

A. Driving by phase difference

Above, we considered a microwave drive applied to the
gate adjacent to the weak link. Another commonly used ap-
proach is driving by an ac phase bias across the link. Our
phenomenological theory also applies in this case. Here, we
estimate the parameters |�|, γion, and γs entering it within the
microscopic model of Sec. III.

Let us start with the coupling strength � (we recall that this
parameter directly gives the frequency of Rabi oscillations,
�R = 2�). In direct analogy to a respective estimate for the
gate drive, see Eq. (56), we find

� ∼ 1

h̄
�δϕ

�

	
, (66)

where δϕ is the drive amplitude.
Same as in Eq. (56), the coupling is suppressed by a small

parameter �τdw/h̄. Notably, the ionization rate by the phase
drive does not contain this small factor [14]:

γion ∼ 1

h̄
�(δϕ)2. (67)

This is strikingly different from Eq. (62).
We can use Eqs. (66) and (67) to estimate the saturation

rate γs = �2/γion. We obtain

γs ∼ �

h̄

(
�

	

)2

. (68)

0 π 2π
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FIG. 5. For a final dwell time τdw ∼ h̄/�, preparation of the
odd-parity state can be achieved in a broad range of phase biases
ϕ. This is in contrast to the regime τdw � h̄/� considered in the
main text, where the odd-state preparation is only allowed close
to ϕ = π [see Fig. 4(a)]. (a) Example of an energy spectrum of a
two-channel quantum dot coupled to superconducting leads in the
regime τdw ∼ h̄/� (which is achieved at 	 ∼ �). Red (blue) region
shows an interval of phases in which preparation of the odd (even)
state is allowed. (b) Regime τdw ∼ h̄/� can be also achieved in a
single-channel weak link if the length L of the link is comparable
to the superconducting coherence length ξ . The panel shows the
spectrum of such a “long” junction calculated within the framework
of Refs. [2,33] [we use L = 3.5ξ , x0 = 0.75L, τ = 0.6, and λ1 = λ2

in the notations of Ref. [2]]. The meaning of red and blue regions is
simlar to that in panel (a).

Clearly, the saturation rate is parametrically smaller for a
phase drive than it is for the gate drive, cf. Eqs. (63) and (68).
Therefore, it should be easier to observe the saturation of the
odd-state preparation rate in the former case.

B. Finite dwell time

Throughout our work, we made an assumption that the
dwell time in the weak link is short, τdw � h̄/�. Under this
assumption, the preparation of the odd state is only allowed
in a narrow interval of phases around ϕ = π , see Fig. 4. The
narrowness of the interval results from a strong dispersion of
the energy levels with phase. Long dwell time, τdw � h̄/�,
suppresses the dispersion; the odd state preparation may now
be allowed in a broad phase interval �ϕ ∼ 1. We demonstrate
this by numerically finding the energy spectrum in a quan-
tum dot model with two channels and coupling 	 ∼ � [see
Fig. 5(a)]. Additionally, we demonstrate that odd state can
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be prepared in a broad range of phases in a single-channel
nanowire Josephson junction of length L ∼ ξ [see Fig. 5(b)].

C. Spin-orbit interaction

In the absence of spin-orbit interaction, Coulomb interac-
tion was necessary to deterministically prepare the odd-parity
state. The role of interaction was to remove degeneracy in
the transition frequencies between the even and odd parity
sectors, see Sec. III C. Away from ϕ = 0, π , spin-orbit inter-
action is also sufficient to remove the degeneracy, even in the
absence of Coulomb interaction. In this case, the fidelity of
the odd state preparation is limited by the dynamics of spin-
relaxation, careful treatment of which is beyond the scope of
our manuscript.

V. CONCLUSIONS

We proposed a mechanism to deterministically prepare a
weak link hosting two Andreev levels in the odd-parity state,
i.e., a state with a single quasiparticle trapped in the lowest
Andreev level. The mechanism relies on driving the even
transition with frequency h̄ω = E1 + E2, and on the residual
Coulomb interaction between the quasiparticles. First, the
drive breaks a Cooper pair generating two quasiparticles, one
in each Andreev level. If the transition frequency is high
enough [cf. Eq. (1)], then the same drive evaporates the quasi-
particle from the upper level into the continuum thus leaving
the weak link in the desired odd state. The presence of residual
Coulomb interaction in the weak link prevents the drive from
adding more quasiparticles once the odd state is reached, see
Fig. 1.

For this mechanism, we calculated the dependence of the
rate γ at which the odd state is prepared on the power P of
the applied drive. We showed that at small powers the rate
scales as γ ∝ P2, see Eq. (32), crossing over to γ ∝ P when
the drive-mediated coupling strength becomes comparable to
the linewidth of the resonance at h̄ω = E1 + E2, see Eq. (27).
At even higher powers, the rate saturates and ceases to in-
crease with P, see Eq. (28). In the presence of quasiparticle
poisoning, this puts a limit on the achievable fidelity of the
odd state preparation, cf. Eq. (37).

A two-photon process similar to the one described above
can be used to bring the weak link from the odd state to the
even state. In contrast to the odd-state preparation, the prepa-
ration of the even state does not rely on residual Coulomb
interaction.

We support our phenomenological theory with a minimal
microscopic model of the weak link. The model consists of a
quantum dot hosting two levels coupled to two superconduct-
ing leads and driven by applying a voltage to an adjacent gate.
Within this model we evaluate the rates of odd- and even-state
preparation and determine their dependence on the phase bias
ϕ across the weak link.

Our results explain a recent experiment [16]. There, a mi-
crowave tone was applied to a weak link with a desire to drive
the transitions in the charge-even parity sector. However, the
link tended to switch to the opposite charge-parity sector upon
the increase of the drive power. We attribute this behavior to
our parity preparation mechanism. The power dependence of

the parity switching rates in Ref. [16] is qualitatively consis-
tent with our results.
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APPENDIX A: CORRECTIONS TO THE SPECTRUM
DUE TO THE COULOMB INTERACTION

Here, we calculate the first-order corrections to the en-
ergies of the relevant many-body states due to Coulomb
interaction. It is these corrections that make the determinis-
tic preparation of the odd-parity state possible. Indeed, the
corrections create a mismatch in the transition frequencies
between the even and odd parity states and thus halt the quasi-
particle addition once the odd state is reached [see Fig. 1(b)].
We carry out the calculations within the microscopic model of
Sec. III, i.e., we treat the weak link as a quantum dot hosting
two Andreev levels. For simplicity, we focus on the regime
of strong coupling to the leads, 	 
 �, and assume that
the two-levels belong to two independent transport channels.
While both assumptions can be straightforwardly lifted, the
corresponding calculation is beyond the scope of the present
work. We also take the simplest possible interaction Hamilto-
nian of the form

Hint = UC (N − 2)2, N =
∑

β=1,2

(c†
β,↑cβ,↑ + c†

β,↓cβ,↓).

(A1)

Here −2 term in (N − 2)2 is added to enforce particle-hole
symmetry. Hamiltonian (A1) neglects the exchange interac-
tion between the quasiparticles as well as the fine structure
due to the spin-orbit coupling [28].

We begin by expanding the dot operators cβ,↑ and c†
β,↓

through the eigenstate operators of the noninteracting problem
[31]:

cβ,↑ =
∑
|ε|<�

pβεγβε +
∑
|ε|>�

pβεγβε,

c†
β,↓ =

∑
|ε|<�

hβεγβε +
∑
|ε|>�

hβεγβε. (A2)
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Next, we substitute these decompositions into the interaction
Hamiltonian (A1). In doing that, we neglect the terms which
contain the operators of the supgap levels either one or three
times. These terms can only lead to corrections of the second

order in UC to the transition frequencies between the discrete
states. We also disregard the terms which do not contain the
operators of the subgap levels since they do not affect the
discrete part of the spectrum. As a result, we arrive at

Hint =UC

⎛⎝∑
β

∑
|ε|<�

∑
|ε′|<�

(p�
εβ pε′β − hε′βh

�
εβ )γ †

εβγε′β

∑
δ

∑
|E |<�

∑
|E ′|<�

(p�
Eδ pE ′δ − hE ′δh

�
Eδ )γ †

EδγE ′δ

+
∑

β

∑
|ε|<�

∑
|ε′|<�

(p�
εβ pε′β − hε′βh

�
εβ )γ †

εβγε′β

∑
δ

∑
E<−�

(|pEδ|2 − |hEδ|2)

+
∑

β

∑
ε<−�

(|pεβ |2 − |hεβ |2)
∑

δ

∑
|E |<�

∑
|E ′|<�

(p�
Eδ pE ′δ − hE ′δh

�
Eδ )γ †

EδγE ′δ

+
∑

β

∑
|ε|<�

∑
|ε′|>�

(p�
εβ pε′β − h�

εβhε′β )γ †
εβγε′β

∑
δ

∑
|E ′|>�

∑
|E |<�

(p�
E ′δ pEδ − h�

E ′δhEδ )γ †
E ′δγEδ

+
∑

β

∑
|ε′|>�

∑
|ε|<�

(p�
ε′β pεβ − h�

ε′βhεβ )γ †
ε′βγεβ

∑
δ

∑
|E |<�

∑
|E ′|>�

(p�
Eδ pE ′δ − h�

EδhE ′δ )γ †
EδγE ′δ

⎞⎠. (A3)

Here, we used the normalization condition as well as particle-hole symmetry [31]∑
ε<0

(|pεβ |2 + |hεβ |2) = 1,
∑
ε>�

|hε |2 =
∑

ε<−�

|pε |2. (A4)

Next, we use a relation

p�
εβ pε′β − h�

εβhε′β = αβδε,−ε′ , αβ =
√

�2 − E2
β/	β, (A5)

which follows directly from the wave functions given by Eq. (51) in the limit 	 
 �. Equation (A5) allows us to neglect the
terms in the second and in the third line of Eq. (A3). Then, combining the terms in the final two lines of Eq. (A3), we obtain

Hint =UC

(
α2

1γ
†
+1γ+1γ−1γ

†
−1 + α2

1γ
†
−1γ−1γ+1γ

†
+1 + α2

2γ
†
+2γ+2γ−2γ

†
−2 + α2

2γ
†
−2γ−2γ+2γ

†
+2

+
∑

β

∑
|ε|<�

[ ∑
ε′>�

(p�
ε′β pεβ − h�

ε′βhεβ )(p�
εβ pε′β − h�

εβhε′β ) −
∑

ε′<−�

(p�
εβ pε′β − h�

εβhε′β )(p�
ε′β pεβ − h�

ε′βhεβ )

]
γ

†
εβγεβ

)
.

(A6)

Next, we use Eq. (A4) and (A5), together with another relation following from the particle-hole symmetry [31],∑
ε>�

pεβh
�
εβ = −

∑
ε<−�

pεβh
�
εβ . (A7)

This allows us to rewrite Eq. (A6) as

Hint =UC

(
α2

1γ
†
+1γ+1γ−1γ

†
−1 + α2

1γ
†
−1γ−1γ+1γ

†
+1 + α2

2γ
†
+2γ+2γ−2γ

†
−2 + α2

2γ
†
−2γ−2γ+2γ

†
+2

+ 2
∑

β

∑
ε′<−�

(
p�

ε′β pEββh
�
Eββhε′β + h�

ε′βhEββ p
�
Eββ pε′β

)(
γ

†
EββγEββ − γ

†
−Eββγ−Eββ

))
. (A8)

Generally, the term in the second line cannot be expressed analytically. It, however, turns out to be irrelevant for the difference of
transition frequencies for even and odd parities—which is the quantity of interest—as we now show. We begin by evaluating the
frequency of the even-parity transition |01, 02〉 ↔ |11, 12〉. To this end, we represent the many-body states in terms of eigenstate
operators of the subgap states:

|01, 02〉 = γ
†
−E11γ

†
−E22|�〉, |11, 12〉 = 1√

2

(
γ

†
E11γ

†
−E11 − γ

†
E22γ

†
−E22

)|�〉. (A9)

Here |�〉 is a vacuum state for which γ±E11|�〉 = 0 and γ±E22|�〉 = 0. Note that the state |11, 12〉 is a spin singlet state formed
by quasiparticles in the two Andreev levels (within our model, the triplet states remain decoupled and can therefore be omitted).
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To determine the correction to the transition frequency due to the interaction, we use first-order perturbation theory inUC . We
begin by finding the corrections to the energies of the states |01, 02〉 and |11, 12〉 due to Hint given by Eq. (A8). This results in

δE|01,02〉 = UC

⎛⎝α2
1 + α2

2 − 2
∑

β

∑
ε′<−�

(
p�

ε′β pEββh
�
Eββhε′β + h�

ε′βhEββ p
�
Eββ pε′β

)⎞⎠, δE|11,12〉 = 0. (A10)

The interaction thus shifts the frequency of the even transition by an amount

h̄δωeven = UC

⎛⎝−α2
1 − α2

2 + 2
∑

β

∑
ε′<−�

(
p�

ε′β pEββh
�
Eββhε′β + h�

ε′βhEββ p
�
Eββ pε′β

)⎞⎠. (A11)

Discrete states in the odd parity sector are given by

|11, 02〉 = γ
†
E11γ

†
−E11γ

†
−E22|�〉, |21, 12〉 = γ

†
E11γ

†
E22γ

†
−E22|�〉. (A12)

Here, we focus on the spin up states—in the absence of spin-orbit coupling the transition frequency is the same for the spin down
states. The corrections to the energies of the discrete states due to the interaction read

δE|11,02〉 = UC

⎛⎝α2
2 − 2

∑
ε′<−�

(
p�

ε′2pE22h
�
E22hε′2 + h�

ε′2hE22p
�
E22pε′2

)⎞⎠, (A13)

δE|21,12〉 = UC

⎛⎝α2
1 + 2

∑
ε′<−�

(
p�

ε′1pE11h
�
E11hε′1 + h�

ε′1hE11p
�
E11pε′1

)⎞⎠. (A14)

Therefore, interaction shifts the frequency of the odd transition by an amount δωodd where

h̄δωodd = UC

⎛⎝α2
1 − α2

2 + 2
∑

β

∑
ε′<−�

(
p�

ε′β pEββh
�
Eββhε′β + h�

ε′βhEββ p
�
Eββ pε′β

)⎞⎠. (A15)

We thus find

δωeven − δωodd = U

h̄
= −2α2

1
UC

h̄
. (A16)

Substituting here the expression for α1 [cf. Eq. (A5)], we
arrive to Eq. (65).

APPENDIX B: SOLUTION FOR ARBITRARY
TUNNELING MATRIX

In the main text, when considering the microscopic model,
we assumed that the first level on the dot was only con-
nected to the first transport channel in both leads, and the
second level on the dot was only connected to the second
channel. Formally, this implied that the matrices describing
the tunneling between the dot and the leads, t̂L and t̂R in
Eq. (43), were diagonal. However, in general, these matrices
do not have to be diagonal. Here, we consider the case of
nondiagonal tunneling matrices and show that in the limit
	 
 �, all of our results remain the same (up to redefinitions
of the parameters) as in the case of the diagonal matrices. To
illustrate this simplification, we determine the spectrum of the
system for nondiagonal t̂i and show that even in this case it is
given by Eq. (49) (with a proper redefinition of the channels).
This observation is in line with general considerations for a
junction with a short dwell time [34].

Assuming that at ϕ = 0 the time-reversal symmetry is
present in the system, the tunneling matrices t̂i can be chosen
to be real. Other than this constraint, t̂i can have a general

four-component form,

t̂i =
(
ti,11 ti,12

ti,21 ti,22

)
. (B1)

Similar to the diagonal case, the spectrum of the system is
determined by the following Schrödinger equation

E

(
1 +

∑
i=R,L 	̂i√

�2 − E2

)
C

= ε̂0τzC + �√
�2 − E2

∑
i=R,L

(
0 	̂ieiϕi

	̂ie−iϕi 0

)
C, (B2)

where 	̂i = πν0t̂it̂
†
i with ν0 being the normal-state density of

states in the leads per spin projection. 	i,αβ has a meaning of
a normal-state tunneling rate of an electron from a dot level
α to the βth channel in lead i = R or L. In the limit of strong
tunneling, 	 
 �, Eq. (B2) reduces to

E
∑
i=R,L

	̂iC = �
∑
i=R,L

(
0 	̂ieiϕi

	̂ie−iϕi 0

)
C. (B3)

Two positive definite matrices 	̂R and 	̂L can be simultane-
ously diagonalized by a phase-independent transformation.
Application of this transformation in Eq. (B3) reduces the
problem to that of the two uncoupled single-channel short
junctions. To construct the transformation, we first perform a
unitary rotation that diagonalizes 	̂L,C = ULC′. This changes
	̂L in Eq. (B3) to U †

L 	̂LUL = �L, where �L is a diagonal
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matrix. Next, we stretch the spinor C′ as C′ = �
−1/2
L C′′. The

two transformations map 	̂L to a unit matrix [note that the
latter of the two transformations is dimensionful; this is why
the dimensionality changes]. As a final step, we apply another
unitary UR that diagonalizes �

−1/2
L U †

L 	̂RUL�
−1/2
L . If we now

introduce a diagonal matrix λR = U †
R�

−1/2
L U †

L 	̂RUL�
−1/2
L UR,

then we obtain the following equation:

EC = �

(
0 eiϕL+λReiϕR

1+λR
e−iϕL+λRe−iϕR

1+λR
0

)
C. (B4)

Since Eq. (B4) is diagonal in the channel space, it can be
solved independently for the two channels. This yields two
levels of the same form as in Eq. (49).

A chain of transformation similar to the one used when
deriving Eq. (B4) can be applied when calculating the matrix
elements of the drive or the ionization rates. The outcome of
this procedure is merely a redefinition of the dipole moment
matrix d̂ in Eq. (44). Therefore, for the purposes of the present
manuscript, the general case with nondiagonal matrices t̂i can
be completely reduced to the diagonal case considered in the
main text.

APPENDIX C: AC-STARK SHIFT

In establishing the dependence of the odd-state preparation
rate γ on the drive power P, we assumed that the drive fre-
quency is at resonance with the transition frequency. However,
there is an important caveat: the position of the resonance is
itself sensitive to the power of the drive due to the ac-Stark
shift [35]. Therefore, if one increases the power P while keep-
ing the drive frequency fixed, then the drive would eventually
go out of resonance with the transition. Here, we establish the
consequences of this effect for the high-power behavior of the
odd-state preparation rate γ . Specifically, we demonstrate that
for the fixed drive frequency, γ saturates with the increase of
P at a much smaller value of γ than that predicted by Eq. (6).

To quantify the ac-Stark shift of the even-parity transi-
tion frequency, we note that the application of the drive

effectively shifts the energy of the second Andreev level due
to its coupling to the continuum. The shift of the second level,
in turn changes the transition frequency from h̄ω = E1 + E2

to h̄ω = E1 + E2 + Re 
c(ω). The real part of self-energy 
c

can be estimated from Eq. (18),

Re 
c(ω) = Re
∑
c

h̄|�|2|αc|2
2ω + i0 − (E1 + Ec)/h̄

= − |�|2
2γAC

,

γAC = 1

2|αc|2νF ln EF
�

, (C1)

where EF is the Fermi energy in the leads, νF is the normal-
state density of states at the Fermi energy, and αc is the
dimensionless coupling at E ∼ EF . We note that this result
is derived on the basis of the phenomenological Hamiltonian
(10), which omits the off-resonant contributions in the drive
term [see the discussion after Eq. (44)]. In principle, such
terms can produce a contribution to the ac-Stark shift of the
same order as in Eq. (C1), so the latter equation can only
be viewed as an order of magnitude estimate. Note that the
argument of logarithm is large in practical conditions; this
results in γAC � γs [cf. Eqs. (21) and (C1)].

Equation (C1) implies that—even if the drive was resonant
with the transition at small power—it becomes progressively
more and more off-resonant as the power is increased [recall
that |�|2 ∝ P]. Using expression (34) for the odd-state prepa-
ration rate in the case a drive detuned from the resonance, we
find

γ = |�|2
2γs

|�|2
|�|2 + |�|4

4γ 2
AC

+ κ2/8
. (C2)

At high drive power, it saturates to

γ = 2γ 2
AC

γs
� γs. (C3)

The saturation occurs at |�| ∼ γAC � γs.
Note that in the limit γAC 
 γs (opposite to the one con-

sidered above) the saturation happens at |�| ∼ γs, same as in
the main text.
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