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Quantum theory of Bloch oscillations in a
resistively shunted transmon

Vladislav D. Kurilovich 1,2 , Benjamin Remez 1 & Leonid I. Glazman 1

A transmon qubit embedded in a high-impedance environment acts in a way
dual to a conventional Josephson junction. In analogy to the AC Josephson
effect, biasing of the transmon by a direct current leads to the oscillations of
voltage across it. These oscillations are known as the Bloch oscillations. We
find the Bloch oscillations spectrum, and show that the zero-point fluctuations
of charge make it broadband. Despite having a broad-band spectrum, Bloch
oscillations can be brought in resonancewith an externalmicrowave radiation.
The resonances lead to steps in the voltage-current relation, which are dual to
the conventional Shapiro steps.Wefindhow the shapeof the steps dependson
the environment impedance R, parameters of the transmon, and the micro-
wave amplitude. The Bloch oscillations rely on the insulating state of the
transmon which is realized at impedances exceeding the Schmid transition
point, R > RQ = h/(2e)2.

A coherent charge propagation across a tunnel junction between
superconductors gives rise to celebratedDCandAC Josephson effects.
A spectacular manifestation of the latter one is monochromatic cur-
rent oscillations at frequency 2 eVJ/ℏ in a junction biased by voltage VJ

1.
The Josephson effect is based on the continuous flow of the super-
conducting condensate across the junction. The notion of the con-
tinuous flow of condensate is in tension with the Coulomb blockade
phenomenon stemming from the charge discreteness. A picture of
charge-2eCooper pairs tunneling across the junction one after another
have lead one to the prediction of Bloch oscillations2, a phenomenon
dual to the AC Josephson effect. Application of a direct current IJ to a
small Josephson junction leads to the accumulation of the displace-
ment charge across the junction until it reaches 2e, at which point a
Cooper pair tunnels. The process repeats itself with the angular fre-
quency ΩJ = 2πIJ/2e, resulting in the oscillations of the voltage across
the current-biased junction; these are the Bloch oscillations.

The presence of Bloch oscillations relies on the insulating state of
the junction. Indeed, the charge transferred through the junction is a
variable conjugate to the superconducting phase difference. By
uncertainty relation, having a well-defined, discrete transferred charge
requires the phase variable to be delocalized. The latter condition
corresponds to an insulating (as opposed to a superconducting) state
of the junction.

According to the Schmid transition paradigm3, the Josephson
junction becomes insulating if the impedance of its electromagnetic
environment R exceeds the resistance quantum RQ = h/(2e)2. In fact,
verificationof this superconductor-to-insulator transitionproved tobe
a challenging task by itself. The voltage-current characteristics of the
resistively-shunted junctions were measured in this context in Ref. 4.
The phase diagram extracted from these measurements deviated
noticeably from the theory prediction. A number of recent works goes
as far as to contest the notion of the superconductor-to-insulator
transition in a Josephson junction altogether5–8. In opposition to these
works, microwave experiments with Josephson junction arrays do
seem compatible with the Schmid transition prediction9.

The Schmid transition controversy leads one to question if Bloch
oscillations of a Josephson junction exist at all. Recent experimental
works give evidence for this effect by reporting observation of dual
Shapiro steps10–12 (as well as of a related effect13). Dual Shapiro—or
Bloch-Shapiro—steps2 arise from synchronization of Bloch oscillations
with the external microwave radiation applied to the junction. The
steps appear in the voltage across the junction and are centered at
IJ = n ⋅ 2eωac/2π, where ωac is the microwave frequency and n 2 Z.

Admittedly, the quantization of the measured steps is much less
precise than that of the conventional Shapiro steps in superconducting
junctions centered around VJ = n ⋅ ℏωac /2e14. The quantization of the
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latter is in fact so perfect that it is used as a metrological voltage
standard. What are the limitations on the sharpness of the Bloch-
Shapiro steps? Previous works quantitatively addressed only the
smearing of the Bloch-Shapiro steps by the thermal fluctuations15.
However, a fundamental limit on the steps sharpness is set by quan-
tum, rather than thermal, fluctuations2,15,16. The question of quantum
smearing—although important for experiments as well as for devel-
oping a metrological current standard—have not been answered
quantitatively yet. Little is known17,18 about an intimately related
question of how monochromatic the frequency spectrum of Bloch
oscillations is.

To address these questions, we consider a transmon qubit (i.e., a
large Josephson junction) coupled to an Ohmic electromagnetic

environment such as a resistor or a transmission line. The advantage
of the transmon is in a large gap separating its lowest Bloch band
from the higher-energy excitations. The dynamics of the transmon
within its lowest Bloch band is governed by the boundary sine-Gor-
don model. Previously, application of this model allowed one to
reveal signatures of the Schmid transition in microwave response of
the transmon19,20. Here, we use it to find the manifestation of Bloch
oscillations in the transport properties of the junction, as well as in its
radiation spectrum.

Our theory gives specific predictions for the voltage-current
characteristics, and points out the features in them indicating the
insulating state of the junction. We also elucidate circuit parameters
controlling the presence and sharpness of Bloch-Shapiro steps.

Results
Model
We consider a transmon qubit embedded in a high-impedance elec-
tromagnetic environment. A transmon is a variety of a Josephson
junction inwhich the Josephson energy EJ exceeds the charging energy
EC. The condition EJ ≫ EC guarantees that the energy spectrum of the
transmon consists of well-separated charge bands. The separation
between the bands suppresses the Landau-Zener tunneling allowing
one to focus on the qubit dynamics within a single, isolated band.
These are the optimal conditions for the observation of Bloch
oscillations.

Specifically, we consider two circuits depicted in Figs. 1 and 2. In
Fig. 1, a transmon is shunted by a resistor R, and biased by an external
current source I(t). In Fig. 2, a transmon is galvanically coupled to a
transmission line (comprised of Josephson junctions); the current bias
is supplied via the same line. In ω → 0 limit, the impedance of the line
Z(ω) approaches a constant Z(0) ≡ R (here we assume that the limit
L → ∞, where L is the length of the transmission line, is taken before
ω → 0; we address the finite-size effects in a forthcoming work21). The
latter feature allows us to model the resistor of Fig. 1 as a semi-infinite
transmission line aswell22. At this level, theonly differencebetween the
two circuits is whether the junction and the transmission line are
connected in parallel [Fig. 1] or in series [Fig. 2].

Both circuits can be described by the Hamiltonian of the form

H =HJ +HR, ð1Þ

where terms HJ and HR correspond to the transmon and the trans-
mission line, respectively. The Hamiltonian of the transmon is given by

HJ =4EC ðN � nÞ2 � EJ cosφ: ð2Þ

The first term is the electrostatic energy; the charging energy EC = e 2/
2C is determined by the junction capacitanceC.N is the operator of the
number of Cooper pairs transferred through the junction and n is the
“displacement” charge imposed on the junction by the remaining cir-
cuit. The second term in Eq. (2) is the Josephson coupling. The phase
difference operator φ is canonically conjugate to the Cooper pair
number N: [N, φ] = − i.

The degrees of freedom of the electromagnetic environment are
described by the term HR in Eq. (1). This term is given by

HR =
Z 1

0
dx

_v
2π

1
K
ð∂xθÞ2 +Kð∂xϕÞ2

� �
, ð3Þ

where v is the wave velocity in the transmission line and K is a
dimensionless parameter characterizing the line impedance R,

K =
RQ

2R
, RQ =

h
4e2

: ð4Þ

Fig. 1 | Circuit 1, and a respective voltage-current relation. a In circuit 1, a
transmon is shunted by resistor R and biased by current I. b If R exceeds the resis-
tance quantum RQ, then the transmon (EJ ≫ EC) acts as an insulator. The insulating
behavior is confined to a narrow domain of the VI-relation, I ≲ I⋆ [see Eqs. (7) and
(18)]. For higher currents, V(I) is similar to that of a conventional superconducting
junction. c Sketch of the low-current part of V(I) [we use Eqs. (16) and (26) with K = 1/
8 to produce the plot]. d The Coulomb blockade results in a sharp increase of Vwith
the current through the junction IJ, see Eq. (25) and the discussion following it.

Fig. 2 | Circuit 2, and the junction radiation spectrum. a In circuit 2, a transmon is
coupled to the Josephson junction array with a low-frequency impedance R. The
voltage V ismeasured at the sameport atwhich the current I is supplied. Because of
the current-induced Bloch oscillations, transmon emits waves into the array.
b Power spectrum of the emitted waves ωS(ω) is broad-band. Bloch oscillation
frequency Ω =πI/e sets a characteristic frequency of an emitted photon, as well as
the position of a threshold in the dependence ofωS(ω) onω. The curve is produced
using Eq. (30) for K = 1/8.
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Hamiltonian (3) is expressed in terms of the charge displacement field
θ(x) and the phase field ϕ(x). The field θ(x) is related to the charge
density in the transmission line, ρ(x) = 2e ∂xθ/π. The field ϕ(x) is
canonically conjugate to the charge density, i.e., it satisfies the fol-
lowing commutation relation

½∂xθðxÞ,ϕðx0Þ�= iπδðx � x0Þ: ð5Þ

Theboundary valueof the phasefield gives thephasedifference across
the junction, φ ≡ϕ(x =0). The continuous-field Hamiltonian (3)
adequately describes the junction array [Fig. 2] as long as the relevant
wavelengths exceed the array period.

For an isolated transmon, the displacement charge n is a c-num-
ber. This makes the Hamiltonian (2) identical in form to the Hamilto-
nian of a quantum-mechanical particle moving in a periodic potential
/ � cosφ. Parameter n plays the role of the quasi-momentum in this
analogy. Similarly to the spectrum of a particle in the periodic poten-
tial, the spectrum of the transmon consists of “Bloch” energy bands
Ej(n) which depend periodically on n (with a period 1). For EJ ≫ EC, the
lowest Bloch band is given by

E0ðnÞ= � λ cosð2πnÞ: ð6Þ

The bandwidth λ is determined by the amplitude of the phase slip at
the junction (i.e., tunneling between two equivalent minima of the
� cosφ “potential”); it is exponentially small in EJ/EC ≫ 123:

λ= EC 2
5

ffiffiffiffi
2
π

r
EJ

2EC

� �3=4
e�

ffiffiffiffiffiffiffiffiffiffiffi
8EJ=EC

p
: ð7Þ

The lowest band is separated from the higher bands by an energy gap.
Themagnitude of the gap Egap = ℏωQ≫ λ is set by the plasma frequency
of the junction,

ωQ =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8EJEC

q
=_: ð8Þ

The coupling of the transmon to the environment and current
bias make the displacement charge n a dynamical variable. There are
two contributions to n:

n= � θðx =0Þ=π +N : ð9Þ

The first contribution is the charge transferred from one side of the
junction to the other through the transmission line. The second con-
tribution is a c-number that describes the current bias I(t) applied to
the circuit, _N ðtÞ= IðtÞ=2e, see Fig. 1. In the case of the circuit depicted in
Fig. 2, one may also use Eq. (9) by including the current bias in the
definition of θ(x) and modifying the boundary condition for θ(x)
accordingly.

If n changes in time slowly (on a scale set by the plasma frequency
ωQ), then interband transitions of transmon can be neglected; the
system follows the variations of n adiabatically. One can then describe
the dynamics of the circuit with the help of an effective Hamiltonian
obtained by projecting the Hamiltonian (2) onto the lowest Bloch
band. Using Eqs. (6) and (9), we obtain

HJ = � λ cosð2θð0Þ � 2πN Þ, ð10Þ

where λ is given by Eq. (7). In passing, we note that although Eq. (7) was
derived for a specific case of a weakly-transparent junction with many
conduction channels, the effectiveHamiltonian in Eq. (10) is applicable
more broadly. It can be used to describe a junction with as little as a
single conduction channel, of arbitrary transparency24,25

Under the DC bias, the component of the displacement chargeN
grows linearly in time,N = It=2e. As a result,HJ oscillates in time giving
rise to Bloch oscillations of voltage across the junction.

We now use the boundary sine-Gordon model defined by equa-
tions (1), (3), and (10) to find the spectrum of Bloch oscillations
[“Spectrum of radiation emitted by Bloch oscillations”] and their
manifestations in the transport properties of the transmon [“Voltage-
current characteristic and Bloch-Shapiro steps”]. Below, we use units
with ℏ = 1.

Voltage-current characteristic
First, we evaluate the DC voltage-current relation V(I) for the two cir-
cuits of Figs. 1 and 2. Aswewill see, the character ofV(I) depends on the
comparisonbetween impedanceR and the resistance quantumRQ. The
transmon acts as a superconductor at R < RQ, and has the traits of an
insulator for R > RQ.

To start with, we consider the circuit in Fig. 1 and compute V(I)
perturbatively in the phase slip amplitude λ (the spirit of the calcula-
tion is similar to that of PðEÞ theory of the dynamical Coulomb
blockade26–28). Because of the Bloch oscillations, the transmon biased
by current I acts as a source of waves emitting energy into the trans-
mission line. The power P dissipated via the wave emission can also be
attributed to a DC voltage drop V across the transmon:

P = IV : ð11Þ

We can evaluate the power P using Fermi’s golden rule and thus get
V(I). Denoting the initial and final states of the circuit as ∣ii and ∣f

�
,

respectively, we obtain at T = 0:

P = 2πΩ
X
f

j f
�

∣λ e2iθð0Þ=2∣iij2δðEf � Ei �ΩÞ: ð12Þ

We introduced here

Ω=2πI=2e, ð13Þ

which is the frequency of oscillations in the Hamiltonian HJ [cf. Eq.
(10)]. With the considered accuracy, the majority of the supplied cur-
rent flows through the junction, IJ ≈ I, so Ω coincides with the Bloch
oscillations frequency ΩJ = 2πIJ/2e. We re-write the right-hand side of
Eq. (12) in terms of the correlation function CθðΩÞ of the boundary
displacement field,

P =
λ2Ω
4

CθðΩÞ,

CθðΩÞ=
Z

dteiΩt e�2iθð0, tÞe2iθð0,0Þ
D E

:

ð14Þ

The averaging here is performed over the ground state of the circuit
unperturbed by the phase slips, and θð0, tÞ= eiHRtθð0Þe�iHRt , where HR

is given by Eq. (3). For concreteness, we assumed I = 2eΩ/2π > 0.
The correlation function of a free boson theory is well-known29:

CθðΩÞ= 2π
Γð4KÞ

1
Ω

Ω

ωQ

� �4K

e�Ω=ωQ �ΘðΩÞ, ð15Þ

whereΘ(x) is the step function. The exponent of the power-law factor,
4K = 2RQ/R, is determined by impedance R. The UV cutoff of the low-
energy theory is set by the plasma frequency of the junction ωQ

19 (in
the case of circuit 2 [see Fig. 2], we assume that the latter frequency is
lower than the plasma frequencyof the junctions comprising the array,
consistent with experiments9).
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By combining Eqs. (14) and (15) with Eq. (11), and relatingΩ to the
current I via Eq. (13), we find that the VI–relation is a power-law:

V =
πλ2

2Γð4KÞ
1
I

πjIj
eωQ

� �4K
, ð16Þ

where we assumed ∣I∣ ≪ 2eωQ/2π. Equation (16) can be straightfor-
wardly generalized to the case of finite temperatures; the result coin-
cides with Eq. (33) of Ref. 30, up to the replacement of the UV cutoff
parameter ωc by ωQ.

Equation (16) reveals a transition between insulating and super-
conducting phases of the transmon as a function of R3. To see this, we
assess the effective resistance Reff = V/I. From Eq. (16) it follows that

Reff / jIj4K�2: ð17Þ

For K > 1/2 (i.e., at the low impedance, R < RQ), the effective resistance
vanishes at I→0; the transmon acts as a superconductor. The situation
reverses for high impedance, K < 1/2 (R > RQ). In this case, Reff diverges
at low biases. The divergence reflects the onset of Coulomb blockade
of transport across the junction. The Coulomb interaction-driven
superconductor-to-insulator transition happening across R = RQ is the
Schmid transition.

The low-bias divergence of Reff at R > RQ signals a breakdown of
perturbation theory in λ. We can estimate the value of the bias I⋆ at
which the breakdown happens by setting Reff(I⋆) = R. This condition
gives

I? =
eωQ

π

ffiffiffiffiffiffiffiffiffiffiffiffi
2K

Γð4KÞ

s
πλ
ωQ

 !1=ð1�2KÞ

: ð18Þ

The obtained result for V(I) [Eq. (16)] applies only at I ≫ I⋆. The
character of the V(I)-dependence changes qualitatively at low
currents. At I ≪ I⋆, the transmon acts as an almost perfect insu-
lator. Therefore, the majority of the supplied current flows
through the resistor [Fig. 1], and only its small part IJ ≪ I flows
through the junction. It means that the V(I)-relation of the circuit
is close to the Ohmic one,

V = IR� δV , δV = IJR: ð19Þ

Here IJ ≡ IJ(I) is a function of the total current I. The Coulomb blockade
effect is revealed the most directly in the V(IJ)-relation for the
Josephson junction. Full blockade corresponds to a jump in V(IJ). The
jump is smeared by quantum fluctuations. We now quantify the
smearing by finding IJ(I) and V(IJ).

In the Coulomb blockade regime, the charge transport
through the junction happens via rare events of a single Cooper
pair tunneling. The latter are described by an effective Hamilto-
nian dual to Eq. (10)

HJ =
~λ cosðφ� 2eVtÞ, ð20Þ

where eiφ is an operator that transfers a Cooper pair across the junc-
tion. In the leading-order approximation, the voltagedrop isV≈ IR. The
relation between the tunneling amplitude ~λ in Eq. (20) and the phase
slip amplitude λ was derived in Ref. 31:

~λ=
ωQ

π
Γð1=2KÞ

2K
1

2KΓð2KÞ
πλ
ωQ

� ��1=2K

: ð21Þ

TheHamiltonian (20) captures the least-irrelevant transport processes
(in the renormalization group sense).

We now use Eq. (20) to find current IJ through the Josephson
junction. Employing Fermi’s golden rule, we find at T =0

IJ =2e � 2π
X
f

j f
�

∣~λeiφ=2∣iij2δðEf � Ei � 2eV Þ, ð22Þ

where ∣ii is the ground state of the circuit, and ∣f
�
is the final state.

Performing the summation over the final states, we express IJ in terms
of the correlation function of the phase difference φ:

IJ =
e~λ

2

2
Cφð2eV Þ,

Cφð2eV Þ=
Z

dtei2eVt e�iφðtÞeiφð0Þ
� �

:

ð23Þ

Up to a replacement 4K → 1/K, the latter correlation function coincides
with that of the displacement charge [cf. Eq. (15)]. Therefore, we find

IJ =
π~λ

2

2Γð1=KÞ
1
V

2ejV j
ωQ

� �1=K

: ð24Þ

As a result, we obtain for the V(IJ)-relation of the junction:

V = sign IJ �
ωQ

2e
Γð1=KÞωQ

π~λ
2

jIJ j
e

 !K=ð1�KÞ

: ð25Þ

TheCoulombblockade results in a sharp increase of the voltagewith IJ.
At IJ ~ I⋆, the voltage reaches the crossover value V⋆ ~ I⋆R. The Coulomb
blockade of the Josephson junction breaks down at higher currents in
which case IJ ≈ I; theV(IJ)-relation is givenbyEq. (16)with I→ IJ. Note that
at a sufficiently high impedance, K < 1/4, V(IJ) becomes a non-
monotonic function, see Fig. 1(d). A non-monotonicV(IJ) was observed,
e.g., in Ref. 32.

We can also use Eq. (24) to quantify the deviation of the full V(I)-
relation of the circuit from Ohm’s law. Approximating V ≈ IR in the
right-hand side of Eq. (24), we obtain for the deviation δV = IJR in Eq.
(19):

δV =
π~λ

2

2Γð1=KÞ
1

ð2KÞ1=K
1
I

πjIj
eωQ

� �1=K

: ð26Þ

It remains small as long as I ≪ I⋆.
At K ≪ 1, the crossover scale I⋆ ~ eKλ. In this limit, quantum fluc-

tuations of charge can be neglected, and the circuit can be described
by classical equations ofmotion. The solutionof these equations yields
the entire V(IJ) dependence2:

V = IJR ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ð4eKλ=IJÞ2

q
� 1�: ð27Þ

The V(I)-relation of the full circuit is

V =
IR, jIj<4eKλ,
IR ½1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð4eKλ=IÞ2

q
�, jIj>4eKλ:

(
ð28Þ

It agrees with the found asymptotes of V(I) at K ≪ 1.
Next, we briefly address the VI-relation in the circuit of Fig. 2. The

principal difference between this circuit and the one in Fig. 1 is that in
the former circuit all of the supplied current I has to flow through the
junction. This feature becomes important in the Coulomb blockade
regime, I ≲ I⋆. There, the need to overcome the blockade results in a
sharp increase of the voltage drop V with I. The specific dependence
V(I) can be obtained by replacing IJ → I in Eq. (25); this yields V ∝ IK/(1−K).
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On the other hand, at current I ≫ I⋆, the difference between the two
circuits becomes inconsequential and V(I) is given by Eq. (16), same as
for the circuit 1. Figure 1d with the replacement IJ → I illustrates the
overall form of the VI-relation at T = 0.

The “Bloch nose” [see Fig. 1(c, d)] gets lower and wider with the
increase of T. At T ≳ T⋆ ≡ I⋆/e, thermal fluctuations dominate over
quantum fluctuations. In this case, the temperature dependence of the
maximal voltage in the V-I characteristic is given by an activation law.
The activationenergy in itwas found in the classical limit inRef. 33, and
quantum corrections to that energy were evaluated in Ref. 30. A dis-
tinct limit in which classical fluctuations dominate over the quantum
ones exists only if K ≪ 1.

Lastly, we note that the found crossover current scale I⋆ is a direct
counterpart of the crossover voltage in a dual problem of a I(V)-rela-
tion of a shunted Josephson junction34.

Spectrum of radiation emitted by Bloch oscillations
Due to the Bloch oscillations, the current-biased transmon acts as an
antenna emittingwaves into the transmission line [see Fig. 2a]. Herewe
find the spectrum of the emitted photons. We will see that the zero-
point charge fluctuations make the spectrum non-monochromatic.

To the second order in λ, number of photons S(ω)dω emitted per
unit time in a frequency range [ω, ω + dω] can be evaluated with the
help of Fermi’s golden rule. A calculation similar to the one yielding Eq.
(14) gives

SðωÞ= 4K
ω

λ2

4
CθðΩ� ωÞ, ð29Þ

where CθðΩÞ is the displacement charge correlation function. Using Eq.
(15), we find

SðωÞ= 1
ω

2Kπλ2

ωQΓð4KÞ
Ω� ω
ωQ

� �4K�1

�ΘðΩ� ωÞ: ð30Þ

The Bloch oscillation frequency Ω = 2πI/2e sets the characteristic fre-
quency of the emitted photons, but the radiation spectrum is broa-
dened by the dynamics of charge quantum fluctuations. [We remind in
passing, that all of the current in circuit 2 flows through the junction,
IJ = I; this is why the Bloch oscillation frequency ΩJ coincides with
parameterΩ introduced in Eq. (13).] The profile of the spectral density
S(ω) depends on the line impedance R = RQ/2K. For a high impedance
line, K < 1/4, it becomes divergent atω =Ω, see Fig. 2(b). In spite of the
divergence, the spectrum remains broad: the entire interval [0, Ω]
contributes to the total emitted power. The spectrum becomes
monochromatic only in a singular limitK→0. Result (30) is valid athigh

biases I ≫ I⋆. The decrease of I towards I⋆ further broadens the spec-
trum by introducing additional thresholds ∝ Θ(nΩ − ω) at
multiples of Ω.

The functional form of S(ω) in Eq. (30) is similar to that of V(I) in
Eq. (16), with the replacement I → e(Ω − ω)/π in it. This similarity
existing in the perturbative regime is a manifestation of general fluc-
tuation relations35–38.Wenote however, thatS(ω)whichweevaluated at
I ≫ I⋆ is valid at any ω. At the same time, the perturbative result for
V(I)∣I=e(Ω−ω)/π is valid only at Ω − ω ≫ πI⋆/e. Once this condition is vio-
lated, the relation between S(ω) and V(I) breaks down.

Bloch-Shapiro steps
Bloch oscillations can be synchronized with the external microwave
radiation. Synchronization occurs whenever the Bloch oscillation fre-
quency is an integer multiple of the microwave frequency ωac. For
circuit (a), this condition is ΩJ = nωac, where ΩJ is set by the current IJ
flowing through the junction,ΩJ = 2πIJ/2e. Synchronization leads to the
steps in the V(IJ)-relation of the junction centered at IJ = n ⋅ 2eωac/2π.
The steps in V(IJ) in a shunted transmon are dual to conventional
Shapiro steps in I(VJ) of a Josephson junction in series with a resistor
[Fig. 3]. Here we find the dependence of the steps shape on the
impedanceR, properties of the transmon, and power of themicrowave
radiation.

To demonstrate how synchronization affects the V(IJ)-relation, we
start with a Heisenberg equation of motion for the variable θ(0, t)
following directly from Eqs. (3) and (10)2:

dθð0, tÞ
dt = dθð0Þ ð0, tÞ

dt � 2πKλ sin 2θð0, tÞ � 2πN ðtÞð Þ: ð31Þ

The left-hand side is the operator of current flowing through the
resistor, with chargemeasured in units of 2e/π. On the right-hand side,
θ(0)(0, t) is the free field operator (i.e., the field operator unperturbed
by the phase slips). It encodes the effect of quantum fluctuations on
the dynamics of θ(0, t). In the presence of microwave radiation, the
bias supplied to the circuit is given by

2πN ðtÞ=Ωt +α sinωact, ð32Þ

where the first term describes the DC component, Ω = 2πI/2e, and
α ⋅ ωac is the amplitude of the microwave-induced AC component.

Bloch-Shapiro steps are narrow if the microwave frequency is
sufficiently high, ωac ≫ 2πI⋆/2e. Steps occur near the currents through
the circuit I close to values n ⋅ 2eωac/2π set by the microwave radiation
frequency, ∣I − n ⋅ 2eωac/2π∣≪ 2eωac/2π. In what follows,we assume that
the two conditions above are satisfied. To find the shape of the n-th
step, we expand the oscillation in Eq. (31) in the Fourier series, and
single out the near-resonant harmonic:

dθð0, tÞ
dt

=
dθð0Þð0, tÞ

dt
� 2πK

X
p≠n

JpðαÞλ sinð2θð0, tÞ � ðΩ� pωacÞtÞ

� 2πKJnðαÞλ sin 2θð0, tÞ � ðΩ� nωacÞt
	 


:

ð33Þ

Here Jp(α) is the Bessel function of order p. The off-resonant terms
(second line) lead to the emissionof high-frequencywaveswithω ~ωac.
As was discussed in “Voltage-current characteristic” section the
radiation contributes to the DC voltage drop across the transmon.
To capture the effect of radiation, we split the variable θ into its slow
and fast components,θ = θs + θf, and perform an analysis in the spirit of
Born-Oppenheimer principle. Here θs contains the harmonics with
frequencies ω < ωs, while θf contains those with ω > ωs. We choose the
scale ωs to be smaller than ωac (the specific value of ωs will drop out
from final results). First, we solve Eq. (33) for the fast component θf at
fixed θs. Next, we derive equation for the evolution of θs. This can be

Fig. 3 | Duality between Bloch-Shapiro steps and conventional Shapiro steps.
Bloch-Shapiro steps develop in the V(IJ) dependence at the current values neω/π
associatedwith the frequency of the ac component of the source current I(t). These
steps occurring in a circuit with R > RQ are dual to the conventional Shapiro steps in
I(VJ) of a superconducting junction in series with resistor R < RQ. Boxes around the
Josephson junctions indicate the junction capacitances.
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achieved by substituting the found solution for θf back into Eq. (33),
and averaging its right-hand side over the fast variable. The resulting
equation for θs(0, t) is

dθsð0, tÞ
dt

=
dθð0Þ

s ð0, tÞ
dt

+
π
2e

Vn

R
� 2πKJnðαÞλs sin 2θsð0, tÞ � ðΩ� nωacÞt

	 

,

ð34Þ

where

Vn =
X
p≠n

πλ2

2Γð4KÞ
J2pðαÞ

I � p 2eωac
2π

πjI � p 2eωac
2π j

eωQ

 !4K

: ð35Þ

The phase-slip amplitude has been renormalized to λs = λ ωs=ωQ

	 
2K by
quantum fluctuations θð0Þ

f ð0, tÞ. It is further convenient to make an
offset θsð0, tÞ= ~θsð0, tÞ+ tðπ=2eÞVn=R eliminating the constant term in
the right-hand side of Eq. (34):

d~θsð0, tÞ
dt

=
dθð0Þ

s ð0, tÞ
dt

� 2πKJnðαÞλs sinð2~θsð0, tÞ � ðΩ� nωac �
π
e
Vn=RÞtÞ:

ð36Þ

This equation reveals a special value of the DC bias, I = 2eΩ/
2π = n ⋅ 2eωac/2π + Vn/R, at which dh~θi=dt =0. The latter condition
means that the current through the resistor is Vn/R and, accordingly,
the voltage drop across it is Vn. The remaining part of the supplied
current flows through the junction and is perfectly synchronized with
the microwave radiation, IJ = n ⋅ 2eωac/2π. This defines the center of a
step in the V(IJ)-relation.

To find the shape of a step, we note that the form of Eq. (36) is
similar to that of an equation for dθ/dt in the DC case [cf. Eq. (31)].
Therefore, we can use the results of “Voltage-current character-
istic” section to find the voltage-current relation. With respect to its
center, the step’s shape is a replicaof theDCV(IJ). In the replica, the full
current IJ in the DC case is replaced by its deviation from the syn-
chronized value, IJ → IJ − n ⋅ 2eωac/2π, while the voltage drop across the
circuit is replaced by its deviation from the “background” value,
V → V − Vn. The phase slip amplitude is replaced by a value determined
by themicrowave amplitude, λ→ Jn(α)λ. In analogywith theDCcase, we
find that the qualitative character of V(IJ) depends on the comparison

between the deviation IJ − n ⋅ 2eωac/2π and current scale

I?,n = j JnðαÞj1=ð1�2KÞI?, I?,n<I?, ð37Þ

where I⋆ is given by Eq. (18), and α is the microwave amplitude, cf. Eq.
(32). A scale ∝ ∣ Jn(α)∣1/(1−2K) previously appeared in the context of
thermal smearing of the steps18. In the quantum limit we consider here,
Eq. (37) defines the width of the step. The step height is V⋆,n ~ I⋆,nR; its
dependence on themicrowave amplitude is also ∝ ∣ Jn(α)∣1/(1−2K). The tail
of a step corresponds to ∣IJ − n ⋅ 2eωac/2π∣ ≫ I⋆,n and is given by

V � Vn =
πλ2s J

2
nðαÞ

2Γð4KÞ
1

IJ � n 2eωac
2π

πjIJ � n 2eωac
2π j

eωs

 !4K

=
πλ2J2nðαÞ
2Γð4KÞ

1

IJ � n 2eωac
2π

πjIJ � n 2eωac
2π j

eωQ

 !4K

,

ð38Þ

cf. Eq. (16) [we used λs = λðωs=ωQÞ2K to express the final result in
terms of the bare value of the phase slip amplitude λ]. Combination
of Eqs. (34) and (38) obeys the general perturbative result,
V ðIÞ=Pn J

2
nðαÞVDCðI � n � 2eωac=2πÞ, obtained earlier in a number

contexts15,18,39,40 and extended to non-equilibrium conditions in Ref.
37. In the opposite limit, ∣IJ − n ⋅ 2eωac/2π∣ ≪ I⋆,n, the voltage changes
sharply with the deviation from the step center:

V � Vn = sign ðIJ � n
2eωac

2π
Þ

×
ωQ

2e
Γð1=KÞωQ

π~λ
2
n

jIJ � n 2eωac
2π j

e

0
@

1
A

K
1�K ð39Þ

[cf. Eq. (25)], where ~λn is obtained from Eq. (21) by replacement λ → ∣
Jn(α)∣λ. The two asymptotes (38) and (39) match each other at
∣IJ − n ⋅ 2eωac /2π∣ ~ I⋆,n. Using the asymptotes, in Fig. 4 we sketch the
V(IJ)-relation of the transmon in the presence of microwaves.

The full shape of a step can be found in the limit of negligible
quantum fluctuations, R ≫ RQ (i.e., K ≪ 1). In this case, the first term in
the right-hand side of Eq. (33) can be dropped. The solution of the
resulting classical equation yields

V � Vn = ðIJ � n
2eωac

2π
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

4eKJnðαÞλ
IJ � n 2eωac

2π

 !2
vuut � 1

2
64

3
75, ð40Þ

cf. Eq. (27). This formula shows that, in the presence of microwave
radiation, the voltage-current relation develops a replica of the DC
V(IJ), with themagnitude of a jump rescaled by ∣Jn(α)∣. The dependence
of the step height on the microwave amplitude mirrors the conven-
tional Shapiro steps41.

At finite K, the rescaling parameter changes to ∣Jn(α)∣1/(1−2K). The
height of the steps rapidly decreases as K approaches the Schmid
transition point, K → 1/2. There are no Bloch-Shapiro steps on the
superconducting side of the transition, K > 1/2.

Synchronization between the Bloch oscillations and the micro-
wave radiation can also be achieved in the circuit of Fig. 2. It would lead
to steps in V(I) centered around I = n ⋅ 2eωac /2π, with a similar
dependence of step width and height on the microwave amplitude α
and impedance R.

Discussion
The Coulomb blockade impedes the flow of supercurrent through the
Josephson junction embedded into a high impedance environment
(formed by, e.g., a resistor or a junction array). Depending on the
environment, the junction’s ground state may change from a super-
conducting to an insulating one. In the superconducting state, the

Fig. 4 | Bloch-Shapiro steps in the V(IJ)-relation of a transmon in circuit 1. The
curve is plotted with the help of Eqs. (38) and (39) for K = 1/8. The steps in V(IJ) are
centered at the values of current corresponding to the multiples of the microwave
frequency, IJ = n ⋅ 2eωac/2π. A finite width of the steps I⋆,n [see Eq. (37)] stems from
the zero-point fluctuations of charge transferred through the resistor. Dashed line
shows V(IJ) in the absence of microwaves.
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differential resistance dV/dIJ of the junction approaches zero at IJ → 0,
whiledV/dIJ of an insulating junction diverges at low current due to the
onset of the Coulomb blockade. The transition between the super-
conducting and insulating ground states occurs at the critical value of
the impedance R = RQ = h/(2e)2 regardless of the relation between the
charging energy EC and the Josephson energy EJ.

However, the relation between EC and EJdetermines howbig is the
portion of VI-characteristic where the junction exhibits the insulating
behavior. Specifically, the insulating state of a transmon circuit
(EJ ≫ EC) is confined to a domain IJ ≲ I⋆ exponentially small in EJ/EC ≫ 1,
see Eqs. (7) and (18). At higher currents, the circuit VI-characteristic is
hardly distinguishable from that of a conventional superconducting
junction, see, e.g., Fig. 1(b). Nonetheless, the Cooper pair charge dis-
creteness, which gives rise to the Coulomb blockade in the first place,
continues to manifest at IJ ≳ I⋆. The most striking manifestation is the
Bloch oscillations of voltage across the Josephson junction. Despite
exponential smallness of I⋆, transmon is the most suitable circuit for
the observation of this phenomenon. The reason is a large gap
between the lowest-energy charge band and higher-energy states,
preventing the transmon from ionization by inter-band transitions.

Classically, the Bloch oscillations occur at frequency ΩJ = 2πIJ/2e
set by the current flowing through the junction and the Cooper pair
charge 2e. Quantum fluctuations broaden the oscillations spectrum;
the monochromatic line at ΩJ is replaced by a power-law threshold
behavior ∝ Θ(ΩJ − ω), see Eq. (30). The broadening of the spectrum
increases with the impedance R being lowered towards RQ.

Bloch oscillations can be synchronizedwith the externally applied
microwave radiation. Synchronization results in the formation of steps
in the VI-characteristic of the circuit. These steps are dual to the con-
ventional Shapiro steps, and occur at the quantized values of current
IJ = n ⋅ 2eωac/2π set by the multiples of microwave frequency ωac. The
height of the n-th step, V ?,n / jJnðαÞj1=ð1�RQ=RÞ, depends on the impe-
dance R as well as on the microwave amplitude α. Due to the quantum
fluctuations of charge, the steps are not perfectly vertical even at zero
temperature. The step width is I⋆,n ~ V⋆,n/R, see Eq. (37). The specific
shape of the steps is given by Eqs. (38) and (39). In the limit R → ∞, the
effect of quantum fluctuations becomes negligible. Then, Bloch-
Shapiro steps are an exact dual of classical Shapiro steps whose height
scales with the first power of the Bessel function and which are per-
fectly sharp41. The dual Shapiro steps vanish across the Schmid tran-
sition, R = RQ, along with other effects of charge discreteness.

There is a duality between the charge and phase fluctuations. The
latter establish a fundamental limitation for the sharpness of the
conventional Shapiro steps. Upon the proper change of variables V↔ I
and impedances R $ R2

Q=R, the quantum-broadened Shapiro and
Bloch-Shapiro steps are described by the same dimensionless func-
tion. One may ask a question: how high should R be for the Bloch-
Shapiro steps to be as sharp as the conventional Shapiro steps for a
Josephson junction coupled to vacuum impedance of 370Ω? The
answer is R ≈ 110 kΩ. A comparable impedance was used in the
experiment10, but the width of the observed Bloch-Shapiro steps
exceeded substantially the quantum limit. This means that other
mechanisms (e.g., themicrowave-induced heating) are responsible for
the steps width; elimination of such mechanisms can significantly
improve the accuracy of current quantization.

Data availability
The information necessary to support the findings of this study are
provided in the main article file.
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