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A transmon qubit embedded in a high-impedance environment acts in a way
dual to a conventional Josephson junction. In analogy to the AC Josephson
effect, biasing of the transmon by a direct current leads to the oscillations of
voltage across it. These oscillations are known as the Bloch oscillations. We
find the Bloch oscillations spectrum, and show that the zero-point fluctuations
of charge make it broadband. Despite having a broad-band spectrum, Bloch
oscillations can be brought in resonance with an external microwave radiation.
The resonances lead to steps in the voltage-current relation, which are dual to
the conventional Shapiro steps. We find how the shape of the steps depends on
the environment impedance R, parameters of the transmon, and the micro-

wave amplitude. The Bloch oscillations rely on the insulating state of the
transmon which is realized at impedances exceeding the Schmid transition
point, R > Ry =h/(2e)*

A coherent charge propagation across a tunnel junction between
superconductors gives rise to celebrated DC and AC Josephson effects.
A spectacular manifestation of the latter one is monochromatic cur-
rent oscillations at frequency 2 eV)/f in a junction biased by voltage V}'.
The Josephson effect is based on the continuous flow of the super-
conducting condensate across the junction. The notion of the con-
tinuous flow of condensate is in tension with the Coulomb blockade
phenomenon stemming from the charge discreteness. A picture of
charge-2e Cooper pairs tunneling across the junction one after another
have lead one to the prediction of Bloch oscillations?, a phenomenon
dual to the AC Josephson effect. Application of a direct current /;to a
small Josephson junction leads to the accumulation of the displace-
ment charge across the junction until it reaches 2e, at which point a
Cooper pair tunnels. The process repeats itself with the angular fre-
quency Q, =2 ml)/2e, resulting in the oscillations of the voltage across
the current-biased junction; these are the Bloch oscillations.

The presence of Bloch oscillations relies on the insulating state of
the junction. Indeed, the charge transferred through the junction is a
variable conjugate to the superconducting phase difference. By
uncertainty relation, having a well-defined, discrete transferred charge
requires the phase variable to be delocalized. The latter condition
corresponds to an insulating (as opposed to a superconducting) state
of the junction.

According to the Schmid transition paradigm®, the Josephson
junction becomes insulating if the impedance of its electromagnetic
environment R exceeds the resistance quantum R, = h/(2€) In fact,
verification of this superconductor-to-insulator transition proved to be
a challenging task by itself. The voltage-current characteristics of the
resistively-shunted junctions were measured in this context in Ref. 4.
The phase diagram extracted from these measurements deviated
noticeably from the theory prediction. A number of recent works goes
as far as to contest the notion of the superconductor-to-insulator
transition in a Josephson junction altogether® 5. In opposition to these
works, microwave experiments with Josephson junction arrays do
seem compatible with the Schmid transition prediction®.

The Schmid transition controversy leads one to question if Bloch
oscillations of a Josephson junction exist at all. Recent experimental
works give evidence for this effect by reporting observation of dual
Shapiro steps'®? (as well as of a related effect’). Dual Shapiro—or
Bloch-Shapiro—steps? arise from synchronization of Bloch oscillations
with the external microwave radiation applied to the junction. The
steps appear in the voltage across the junction and are centered at
l;=n - 2e w,o/2m, where w,. is the microwave frequency and n € 7.

Admittedly, the quantization of the measured steps is much less
precise than that of the conventional Shapiro steps in superconducting
junctions centered around V,=n - fiw,. /2¢"*. The quantization of the
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Fig. 1| Circuit 1, and a respective voltage-current relation. a In circuit 1, a
transmon is shunted by resistor R and biased by current /. b If R exceeds the resis-
tance quantum R, then the transmon (£, > E¢) acts as an insulator. The insulating
behavior is confined to a narrow domain of the VI-relation, / < I, [see Egs. (7) and
(18)]. For higher currents, V() is similar to that of a conventional superconducting
junction. ¢ Sketch of the low-current part of W(/) [we use Egs. (16) and (26) with K=1/
8 to produce the plot]. d The Coulomb blockade results in a sharp increase of V with
the current through the junction /, see Eq. (25) and the discussion following it.

Circuit2
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Fig. 2| Circuit 2, and the junction radiation spectrum. a In circuit 2, a transmon is
coupled to the Josephson junction array with a low-frequency impedance R. The
voltage Vis measured at the same port at which the current /is supplied. Because of
the current-induced Bloch oscillations, transmon emits waves into the array.

b Power spectrum of the emitted waves wS(w) is broad-band. Bloch oscillation
frequency Q =ml/e sets a characteristic frequency of an emitted photon, as well as
the position of a threshold in the dependence of wS(w) on w. The curve is produced
using Eq. (30) for K=1/8.

latter is in fact so perfect that it is used as a metrological voltage
standard. What are the limitations on the sharpness of the Bloch-
Shapiro steps? Previous works quantitatively addressed only the
smearing of the Bloch-Shapiro steps by the thermal fluctuations®.
However, a fundamental limit on the steps sharpness is set by quan-
tum, rather than thermal, fluctuations*"'¢. The question of quantum
smearing—although important for experiments as well as for devel-
oping a metrological current standard—have not been answered
quantitatively yet. Little is known”'® about an intimately related
question of how monochromatic the frequency spectrum of Bloch

environment such as a resistor or a transmission line. The advantage
of the transmon is in a large gap separating its lowest Bloch band
from the higher-energy excitations. The dynamics of the transmon
within its lowest Bloch band is governed by the boundary sine-Gor-
don model. Previously, application of this model allowed one to
reveal signatures of the Schmid transition in microwave response of
the transmon'®?°. Here, we use it to find the manifestation of Bloch
oscillations in the transport properties of the junction, as well as in its
radiation spectrum.

Our theory gives specific predictions for the voltage-current
characteristics, and points out the features in them indicating the
insulating state of the junction. We also elucidate circuit parameters
controlling the presence and sharpness of Bloch-Shapiro steps.

Results
Model
We consider a transmon qubit embedded in a high-impedance elec-
tromagnetic environment. A transmon is a variety of a Josephson
junction in which the Josephson energy £; exceeds the charging energy
Ec. The condition E; > E¢ guarantees that the energy spectrum of the
transmon consists of well-separated charge bands. The separation
between the bands suppresses the Landau-Zener tunneling allowing
one to focus on the qubit dynamics within a single, isolated band.
These are the optimal conditions for the observation of Bloch
oscillations.

Specifically, we consider two circuits depicted in Figs. 1 and 2. In
Fig. 1, a transmon is shunted by a resistor R, and biased by an external
current source /(¢). In Fig. 2, a transmon is galvanically coupled to a
transmission line (comprised of Josephson junctions); the current bias
is supplied via the same line. In w ~> O limit, the impedance of the line
Z(w) approaches a constant Z(0) = R (here we assume that the limit
L > =, where L is the length of the transmission line, is taken before
® ~> 0; we address the finite-size effects in a forthcoming work®). The
latter feature allows us to model the resistor of Fig. 1 as a semi-infinite
transmission line as well*. At this level, the only difference between the
two circuits is whether the junction and the transmission line are
connected in parallel [Fig. 1] or in series [Fig. 2].

Both circuits can be described by the Hamiltonian of the form

H=H,+Hy, Q)

where terms H; and Hg correspond to the transmon and the trans-
mission line, respectively. The Hamiltonian of the transmon is given by

H;=4E(N — n)* — E; cos ¢. @)

The first term is the electrostatic energy; the charging energy Ec=e?/
2Cis determined by the junction capacitance C. Nis the operator of the
number of Cooper pairs transferred through the junction and n is the
“displacement” charge imposed on the junction by the remaining cir-
cuit. The second term in Eq. (2) is the Josephson coupling. The phase
difference operator ¢ is canonically conjugate to the Cooper pair
number N: [N, @] = - i.

The degrees of freedom of the electromagnetic environment are
described by the term Hp in Eq. (1). This term is given by

Y hwl 2 2
He= [ dxﬁ{E(axf)) K@), 3)

where v is the wave velocity in the transmission line and K is a
dimensionless parameter characterizing the line impedance R,

oscillations is. K= Rq R - h )
To address these questions, we consider a transmon qubit (i.e., a 2R’ Q7 4e2

large Josephson junction) coupled to an Ohmic electromagnetic
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Hamiltonian (3) is expressed in terms of the charge displacement field
6(x) and the phase field ¢(x). The field 8(x) is related to the charge
density in the transmission line, p(x)=2e0d,6/m. The field ¢(x) is
canonically conjugate to the charge density, i.e., it satisfies the fol-
lowing commutation relation

[0,0(x), ()] = im6(x — X'). S

The boundary value of the phase field gives the phase difference across
the junction, @=¢@(x=0). The continuous-field Hamiltonian (3)
adequately describes the junction array [Fig. 2] as long as the relevant
wavelengths exceed the array period.

For an isolated transmon, the displacement charge n is a c-num-
ber. This makes the Hamiltonian (2) identical in form to the Hamilto-
nian of a quantum-mechanical particle moving in a periodic potential
o — cos @. Parameter n plays the role of the quasi-momentum in this
analogy. Similarly to the spectrum of a particle in the periodic poten-
tial, the spectrum of the transmon consists of “Bloch” energy bands
Ei(n) which depend periodically on n (with a period 1). For E; > E, the
lowest Bloch band is given by

Eo(n)= — Acos(2mn). (6)

The bandwidth A is determined by the amplitude of the phase slip at
the junction (i.e., tunneling between two equivalent minima of the
— cos ¢ “potential”); it is exponentially small in E/E¢ » 17

) E 3/4
_ S —/8E,JE 7
A=Ec2 \/;<256> exre @)

The lowest band is separated from the higher bands by an energy gap.
The magnitude of the gap Egap = iwg > A is set by the plasma frequency

of the junction,
wq = \/8E/Ec/h. 8)

The coupling of the transmon to the environment and current
bias make the displacement charge n a dynamical variable. There are
two contributions to n:

n=-0x=0)/m+N. 9)

The first contribution is the charge transferred from one side of the
junction to the other through the transmission line. The second con-
tribution is a c-number that describes the current bias /() applied to
the circuit, N'(£) = 1(t)/2e, see Fig. 1. In the case of the circuit depicted in
Fig. 2, one may also use Eq. (9) by including the current bias in the
definition of 6(x) and modifying the boundary condition for 6(x)
accordingly.

If n changes in time slowly (on a scale set by the plasma frequency
wq), then interband transitions of transmon can be neglected; the
system follows the variations of n adiabatically. One can then describe
the dynamics of the circuit with the help of an effective Hamiltonian
obtained by projecting the Hamiltonian (2) onto the lowest Bloch
band. Using Eqgs. (6) and (9), we obtain

H,= — Acos(26(0) — 21N), (10)
where 1is given by Eq. (7). In passing, we note that although Eq. (7) was
derived for a specific case of a weakly-transparent junction with many
conduction channels, the effective Hamiltonian in Eq. (10) is applicable
more broadly. It can be used to describe a junction with as little as a
single conduction channel, of arbitrary transparency***

Under the DC bias, the component of the displacement charge A
grows linearly in time, A/ =/t /2e. As a result, H, oscillates in time giving
rise to Bloch oscillations of voltage across the junction.

We now use the boundary sine-Gordon model defined by equa-
tions (1), (3), and (10) to find the spectrum of Bloch oscillations
[“Spectrum of radiation emitted by Bloch oscillations”] and their
manifestations in the transport properties of the transmon [“Voltage-
current characteristic and Bloch-Shapiro steps”]. Below, we use units
withi=1.

Voltage-current characteristic

First, we evaluate the DC voltage-current relation V(/) for the two cir-
cuits of Figs. 1and 2. As we will see, the character of V(/) depends on the
comparison between impedance R and the resistance quantum R, The
transmon acts as a superconductor at R < Ry, and has the traits of an
insulator for R > R,

To start with, we consider the circuit in Fig. 1 and compute W(/)
perturbatively in the phase slip amplitude A (the spirit of the calcula-
tion is similar to that of P(E) theory of the dynamical Coulomb
blockade?*®). Because of the Bloch oscillations, the transmon biased
by current / acts as a source of waves emitting energy into the trans-
mission line. The power P dissipated via the wave emission can also be
attributed to a DC voltage drop V across the transmon:

P=1v. (1)
We can evaluate the power P using Fermi’s golden rule and thus get
W(). Denoting the initial and final states of the circuit as |i) and |f),
respectively, we obtain at 7= 0:

P=2mQ " [( 120 /2)i) 26(E; — E; — Q). 1)
7

We introduced here

Q=2ml/2e, 13)
which is the frequency of oscillations in the Hamiltonian H [cf. Eq.
(10)]. With the considered accuracy, the majority of the supplied cur-
rent flows through the junction, /; = I, so Q coincides with the Bloch
oscillations frequency Q,=2ml/2e. We re-write the right-hand side of
Eq. (12) in terms of the correlation function C4(Q) of the boundary
displacement field,

20
P= e Co(QY),

' (14)
Co() = / dre’™ <e—2i9<0, 0g2i6(0,0) > _

The averaging here is performed over the ground state of the circuit
unperturbed by the phase slips, and 6(0, t) = ez 0(0)e~xt, where Hg
is given by Eq. (3). For concreteness, we assumed /=2eQ/2m > 0.

The correlation function of a free boson theory is well-known?’:

Co(Q) = (15)

2 1 /0N\* ..
it (ag) €0
where O(x) is the step function. The exponent of the power-law factor,
4K =2Rq/R, is determined by impedance R. The UV cutoff of the low-
energy theory is set by the plasma frequency of the junction wq" (in
the case of circuit 2 [see Fig. 2], we assume that the latter frequency is
lower than the plasma frequency of the junctions comprising the array,
consistent with experiments®).

Nature Communications | (2025)16:1384


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-56411-x

By combining Egs. (14) and (15) with Eq. (11), and relating Q to the
current / via Eq. (13), we find that the V/-relation is a power-law:

Ve A’ 1 <nm>4’<

2r(4K) 1 \ewy)

where we assumed |/| « 2ewq/2m. Equation (16) can be straightfor-

wardly generalized to the case of finite temperatures; the result coin-

cides with Eq. (33) of Ref. 30, up to the replacement of the UV cutoff
parameter w. by wq.

Equation (16) reveals a transition between insulating and super-

conducting phases of the transmon as a function of R®. To see this, we
assess the effective resistance R.g= V/I. From Eq. (16) it follows that

6)

Regr o |I|*2, 17)
For K>1/2 (i.e., at the low impedance, R < Ry), the effective resistance
vanishes at /> 0; the transmon acts as a superconductor. The situation
reverses for high impedance, K <1/2 (R > Ry). In this case, Res diverges
at low biases. The divergence reflects the onset of Coulomb blockade
of transport across the junction. The Coulomb interaction-driven
superconductor-to-insulator transition happening across R = R, is the
Schmid transition.

The low-bias divergence of Res at R > R, signals a breakdown of
perturbation theory in A. We can estimate the value of the bias /, at
which the breakdown happens by setting Res(/,) = R. This condition

gives
1/(1-2K)
- [ 2K m
oom [(4K) wq ’

The obtained result for V(/) [Eq. (16)] applies only at / > [,. The
character of the V(/)-dependence changes qualitatively at low
currents. At / < [, the transmon acts as an almost perfect insu-
lator. Therefore, the majority of the supplied current flows
through the resistor [Fig. 1], and only its small part /, < / flows
through the junction. It means that the V(/)-relation of the circuit
is close to the Ohmic one,

8)

V=IR-6V, &V=IR. 19)
Here I, = I(l) is a function of the total current /. The Coulomb blockade
effect is revealed the most directly in the W(/)-relation for the
Josephson junction. Full blockade corresponds to a jump in V(). The
jump is smeared by quantum fluctuations. We now quantify the
smearing by finding /(/) and V(/)).

In the Coulomb blockade regime, the charge transport
through the junction happens via rare events of a single Cooper
pair tunneling. The latter are described by an effective Hamilto-
nian dual to Eq. (10)

H, :;lcos((p —2elt), (20)
where €? is an operator that transfers a Cooper pair across the junc-
tion. In the leading-order approximation, the voltage drop is V=IR. The
relation between the tunneling amplitude Ain Eq. (20) and the phase
slip amplitude A was derived in Ref. 31:

A= @n

wol(A/2K) (1 mA\"V*
m 2K 2KT(2K) wq

The Hamiltonian (20) captures the least-irrelevant transport processes
(in the renormalization group sense).

We now use Eq. (20) to find current /; through the Josephson
junction. Employing Fermi’s golden rule, we find at T=0

I,=2e-2m " |(fIe? 21i) P6(Ef — E; — 2eV), 22)
7

where |i) is the ground state of the circuit, and |f) is the final state.
Performing the summation over the final states, we express /; in terms
of the correlation function of the phase difference ¢:

el
1= —C,(2eV),
J 2 (P( ) 23)

C,(2eV)= / dee?Vt (e=0ev0)),

Up to a replacement 4K - 1/K, the latter correlation function coincides
with that of the displacement charge [cf. Eq. (15)]. Therefore, we find

32 1/K
)= mA 1 (2elV| 24)
A/ V \ wq
As a result, we obtain for the V(/)-relation of the junction:
K/(1—K)

ra/K /
v =signl, - 42 (Mu) | 25)

e A e

The Coulomb blockade results in a sharp increase of the voltage with /.
At~ 1, the voltage reaches the crossover value V, -~ I,R. The Coulomb
blockade of the Josephson junction breaks down at higher currents in
which case /;= I; the W(/)-relation is given by Eq. (16) with /> /,. Note that
at a sufficiently high impedance, K < 1/4, W) becomes a non-
monotonic function, see Fig. 1(d). A non-monotonic V(/)) was observed,
e.g., in Ref. 32.

We can also use Eq. (24) to quantify the deviation of the full V(/)-
relation of the circuit from Ohm’s law. Approximating V = IR in the
right-hand side of Eq. (24), we obtain for the deviation 6V = /R in Eq.
(19):

11 <m/|>l/’< 26)

V=3ra JK) 2K 7K T \ewq

It remains small as long as / < /,.

At K < 1, the crossover scale /, ~ eKA. In this limit, quantum fluc-
tuations of charge can be neglected, and the circuit can be described
by classical equations of motion. The solution of these equations yields
the entire V(/) dependence

V=1,R[\/1+(4eKA/I))* —1]. (27)
The V(I)-relation of the full circuit is
IR, [I|<4eKA,
V= 5 (28)
IR[1— /1 — (4eKA/1)?],  |I|>4eKA.

It agrees with the found asymptotes of W(/) at K < 1.

Next, we briefly address the VI-relation in the circuit of Fig. 2. The
principal difference between this circuit and the one in Fig. 1 is that in
the former circuit all of the supplied current / has to flow through the
junction. This feature becomes important in the Coulomb blockade
regime, / < /.. There, the need to overcome the blockade results in a
sharp increase of the voltage drop V with /. The specific dependence
V() can be obtained by replacing /, > I in Eq. (25); this yields V e /45,
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Fig. 3 | Duality between Bloch-Shapiro steps and conventional Shapiro steps.
Bloch-Shapiro steps develop in the W) dependence at the current values new/m
associated with the frequency of the ac component of the source current /(t). These
steps occurring in a circuit with R > R are dual to the conventional Shapiro steps in
I(V)) of a superconducting junction in series with resistor R < Rq. Boxes around the
Josephson junctions indicate the junction capacitances.

On the other hand, at current / » [,, the difference between the two
circuits becomes inconsequential and W) is given by Eq. (16), same as
for the circuit 1. Figure 1d with the replacement /, > [ illustrates the
overall form of the V/-relation at T = 0.

The “Bloch nose” [see Fig. 1(c, d)] gets lower and wider with the
increase of T. At T = T, = I,/e, thermal fluctuations dominate over
quantum fluctuations. In this case, the temperature dependence of the
maximal voltage in the V-/ characteristic is given by an activation law.
The activation energy in it was found in the classical limit in Ref. 33, and
quantum corrections to that energy were evaluated in Ref. 30. A dis-
tinct limit in which classical fluctuations dominate over the quantum
ones exists only if K < 1.

Lastly, we note that the found crossover current scale /, is a direct
counterpart of the crossover voltage in a dual problem of a /(V)-rela-
tion of a shunted Josephson junction®.

Spectrum of radiation emitted by Bloch oscillations
Due to the Bloch oscillations, the current-biased transmon acts as an
antenna emitting waves into the transmission line [see Fig. 2al. Here we
find the spectrum of the emitted photons. We will see that the zero-
point charge fluctuations make the spectrum non-monochromatic.
To the second order in A, number of photons S(w)dw emitted per
unit time in a frequency range [w, ® + dw] can be evaluated with the
help of Fermi’s golden rule. A calculation similar to the one yielding Eq.
(14) gives

2

S(w)= %%cg(o —w), 29)

where Cy(Q) is the displacement charge correlation function. Using Eq.
(15), we find

2
1 2KnmA <Q—o) (30)

0= G a0 g

4K-1
> -0(Q — w).
The Bloch oscillation frequency Q = 2ml/2e sets the characteristic fre-
quency of the emitted photons, but the radiation spectrum is broa-
dened by the dynamics of charge quantum fluctuations. [We remind in
passing, that all of the current in circuit 2 flows through the junction,
I, = I; this is why the Bloch oscillation frequency Q, coincides with
parameter Q introduced in Eq. (13).] The profile of the spectral density
S(w) depends on the line impedance R = Ry/2K. For a high impedance
line, K <1/4, it becomes divergent at w = Q, see Fig. 2(b). In spite of the
divergence, the spectrum remains broad: the entire interval [0, Q]
contributes to the total emitted power. The spectrum becomes
monochromatic only in a singular limit K > 0. Result (30) is valid at high

biases / > I,. The decrease of / towards /, further broadens the spec-
trum by introducing additional thresholds <« O(nQ - w) at
multiples of Q.

The functional form of S(w) in Eq. (30) is similar to that of V(/) in
Eq. (16), with the replacement / > e(Q — w)/m in it. This similarity
existing in the perturbative regime is a manifestation of general fluc-
tuation relations® %, We note however, that S(w) which we evaluated at
1> [, is valid at any w. At the same time, the perturbative result for
V(D 1=e(a-wy/r is Valid only at Q - w > m/,/e. Once this condition is vio-
lated, the relation between S(w) and V(/) breaks down.

Bloch-Shapiro steps

Bloch oscillations can be synchronized with the external microwave
radiation. Synchronization occurs whenever the Bloch oscillation fre-
quency is an integer multiple of the microwave frequency w,.. For
circuit (a), this condition is Q, = nw,c, where () is set by the current /,
flowing through the junction, Q, = 2m/,/2e. Synchronization leads to the
steps in the V(/))-relation of the junction centered at /; = n - 2ew,/2m.
The steps in V(/) in a shunted transmon are dual to conventional
Shapiro steps in /(V)) of a Josephson junction in series with a resistor
[Fig. 3]. Here we find the dependence of the steps shape on the
impedance R, properties of the transmon, and power of the microwave
radiation.

To demonstrate how synchronization affects the V(/)-relation, we
start with a Heisenberg equation of motion for the variable 6(0, t)
following directly from Egs. (3) and (10)%

400.0 = d6%40.0 _ 377 5in(26(0, £) — 2N (2)). 31
The left-hand side is the operator of current flowing through the
resistor, with charge measured in units of 2e/m. On the right-hand side,
00, ) is the free field operator (i.e., the field operator unperturbed
by the phase slips). It encodes the effect of quantum fluctuations on
the dynamics of (0, t). In the presence of microwave radiation, the
bias supplied to the circuit is given by
2N (t)=Qt +asin w,.t, (32)
where the first term describes the DC component, Q = 2mi/2e, and
a - W, is the amplitude of the microwave-induced AC component.

Bloch-Shapiro steps are narrow if the microwave frequency is
sufficiently high, w,. > 2m/,/2e. Steps occur near the currents through
the circuit / close to values n - 2ew,/2m set by the microwave radiation
frequency, |/ - n - 2ew,./2m| < 2ew,./2m. In what follows, we assume that
the two conditions above are satisfied. To find the shape of the n-th
step, we expand the oscillation in Eq. (31) in the Fourier series, and
single out the near-resonant harmonic:

deo,t) _do0,1
dt ~  dt
= 21K Y " J,(@)Asin20(0,t) — (Q — pw,c)t)

p#n

— 21K/ ,(a)Asin(26(0, t) — (Q — nw,.)t).

(33)

Here J,(a) is the Bessel function of order p. The off-resonant terms
(second line) lead to the emission of high-frequency waves with @ ~ ;.
As was discussed in “Voltage-current characteristic” section the
radiation contributes to the DC voltage drop across the transmon.
To capture the effect of radiation, we split the variable 8 into its slow
and fast components, 8 = 6; + 8¢, and perform an analysis in the spirit of
Born-Oppenheimer principle. Here 65 contains the harmonics with
frequencies w < ws, while 8¢ contains those with @ > ws. We choose the
scale ws to be smaller than w,. (the specific value of ws will drop out
from final results). First, we solve Eq. (33) for the fast component 6 at
fixed 6s. Next, we derive equation for the evolution of ;. This can be
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Fig. 4 | Bloch-Shapiro steps in the V(/)-relation of a transmon in circuit 1. The
curve is plotted with the help of Eqgs. (38) and (39) for K=1/8. The steps in V(/)) are
centered at the values of current corresponding to the multiples of the microwave
frequency, /;= n - 2ew,/2m. A finite width of the steps /, , [see Eq. (37)] stems from
the zero-point fluctuations of charge transferred through the resistor. Dashed line
shows W(/)) in the absence of microwaves.

achieved by substituting the found solution for ¢ back into Eq. (33),
and averaging its right-hand side over the fast variable. The resulting
equation for 64(0, ¢) is

d6y(0,t) _ do (o, v,
dt dt 2e R (34)
— 21KJ ,(2)A sin(264(0, £) — (Q — nw,)t),
where
2 2 2ewac
_ Z A Jp(lz(zw <III p= |> 39)
o 2I(4K) 1 — p 2 ewq

The phase-slip amplitude has been renormalized to A, =A(w. /wQ)ZK by
quantum fluctuations 6(0)(0 t). It is further convenient to make an
offset 6,(0, t) = 6 (0, ¢) +t(mr/2e)V /R eliminating the constant term in
the right-hand side of Eq. (34):

do,0,t) _do®(0,t)
e dt
— 21K/ ,(@)A, sin(20,(0, t) —

(36)

Q- Nw,e — E Vn/R)t)-

This equation reveals a special value of the DC bias, / = 2eQ)/
21 = n - 2ew,o/2m + V,/R, at which d(8)/dt=0. The latter condition
means that the current through the resistor is V,/R and, accordingly,
the voltage drop across it is V,,. The remaining part of the supplied
current flows through the junction and is perfectly synchronized with
the microwave radiation, /, = n - 2ew,/2m. This defines the center of a
step in the W(/)-relation.

To find the shape of a step, we note that the form of Eq. (36) is
similar to that of an equation for d6/dt in the DC case [cf. Eq. (31)].
Therefore, we can use the results of “Voltage-current character-
istic” section to find the voltage-current relation. With respect to its
center, the step’s shape is a replica of the DC W(/)). In the replica, the full
current /; in the DC case is replaced by its deviation from the syn-
chronized value, [, > [, - n - 2ew,/2m, while the voltage drop across the
circuit is replaced by its deviation from the “background” value,
V- V- V,. The phase slip amplitude is replaced by a value determined
by the microwave amplitude, A1 > J,(a)A. In analogy with the DC case, we
find that the qualitative character of V(/)) depends on the comparison

between the deviation /; - n - 2ew,/2m and current scale

= Jp@MOL, <, (37

* N
where [ is given by Eq. (18), and a is the microwave amplitude, cf. Eq.
(32). A scale o | J,(a)]Y* previously appeared in the context of
thermal smearing of the steps'®. In the quantum limit we consider here,
Eq. (37) defines the width of the step. The step height is V. , ~ I, ,R; its
dependence on the microwave amplitude is also = | /,,(a)["%. The tail
of a step corresponds to |/, — n - 2ew,./2m| > I, , and is given by

oy MA@ 1 mil, — n2e |\ *
" 2T(K) 1~ 2 ew

S

aK
@ 1 mil, — n e
2l (4K) I - zewac ewg !

cf. Eq. (16) [we used A =A(w,/wy)* to express the final result in
terms of the bare value of the phase slip amplitude A]. Combination
of Egs. (34) and (38) obeys the general perturbative result,
V(=3 J5@)Vpc(l — n - 2ew,./2m), obtained earlier in a number
contexts™'***#% and extended to non-equilibrium conditions in Ref.
37. In the opposite limit, |/, — n - 2ew,/2m| < I, ,, the voltage changes
sharply with the deviation from the step center:

(38)

. 2ew.
V—V,=sign(, - nﬁac)

K
L g (TA/K)wq Il — n25 | o
2e n;li e

[cf. Eq. (25)], where /1,, is obtained from Eq. (21) by replacement A - |
Ja(@)IA. The two asymptotes (38) and (39) match each other at
|l = n - 2ew,c /27| ~ I, . Using the asymptotes, in Fig. 4 we sketch the
V(l))-relation of the transmon in the presence of microwaves.

The full shape of a step can be found in the limit of negligible
quantum fluctuations, R > R, (i.e., K < 1). In this case, the first term in
the right-hand side of Eq. (33) can be dropped. The solution of the
resulting classical equation yields

(39)

V—V,=(—n

Zewac) 4eK/,(a)A
2 Ij Ze(uz,C

> -1, (40)

cf. Eq. (27). This formula shows that, in the presence of microwave
radiation, the voltage-current relation develops a replica of the DC
V(1)), with the magnitude of a jump rescaled by |/,(a)|. The dependence
of the step height on the microwave amplitude mirrors the conven-
tional Shapiro steps*..

At finite K, the rescaling parameter changes to |/,(a)["""9. The
height of the steps rapidly decreases as K approaches the Schmid
transition point, K > 1/2. There are no Bloch-Shapiro steps on the
superconducting side of the transition, K > 1/2.

Synchronization between the Bloch oscillations and the micro-
wave radiation can also be achieved in the circuit of Fig. 2. It would lead
to steps in V() centered around / = n - 2ew,:/2m, with a similar
dependence of step width and height on the microwave amplitude a
and impedance R.

Discussion

The Coulomb blockade impedes the flow of supercurrent through the
Josephson junction embedded into a high impedance environment
(formed by, e.g., a resistor or a junction array). Depending on the
environment, the junction’s ground state may change from a super-
conducting to an insulating one. In the superconducting state, the

Nature Communications | (2025)16:1384


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-56411-x

differential resistance dV/dl, of the junction approaches zero at ;> O,
while dV/dl, of an insulating junction diverges at low current due to the
onset of the Coulomb blockade. The transition between the super-
conducting and insulating ground states occurs at the critical value of
the impedance R = R, = h/(2e)” regardless of the relation between the
charging energy Ec and the Josephson energy £,.

However, the relation between Ec and E; determines how big is the
portion of VI-characteristic where the junction exhibits the insulating
behavior. Specifically, the insulating state of a transmon circuit
(E;> E¢) is confined to a domain /; < I, exponentially small in £/Ec > 1,
see Egs. (7) and (18). At higher currents, the circuit V/-characteristic is
hardly distinguishable from that of a conventional superconducting
junction, see, e.g., Fig. 1(b). Nonetheless, the Cooper pair charge dis-
creteness, which gives rise to the Coulomb blockade in the first place,
continues to manifest at /; 2 /. The most striking manifestation is the
Bloch oscillations of voltage across the Josephson junction. Despite
exponential smallness of /,, transmon is the most suitable circuit for
the observation of this phenomenon. The reason is a large gap
between the lowest-energy charge band and higher-energy states,
preventing the transmon from ionization by inter-band transitions.

Classically, the Bloch oscillations occur at frequency Q,=2ml)/2e
set by the current flowing through the junction and the Cooper pair
charge 2e. Quantum fluctuations broaden the oscillations spectrum;
the monochromatic line at Q) is replaced by a power-law threshold
behavior = O(Q, — w), see Eq. (30). The broadening of the spectrum
increases with the impedance R being lowered towards Ry,.

Bloch oscillations can be synchronized with the externally applied
microwave radiation. Synchronization results in the formation of steps
in the VI-characteristic of the circuit. These steps are dual to the con-
ventional Shapiro steps, and occur at the quantized values of current
I = n - 2ew,/2m set by the multiples of microwave frequency w,.. The
height of the n-th step, V, , o /(@)@ Re/®, depends on the impe-
dance R as well as on the microwave amplitude a. Due to the quantum
fluctuations of charge, the steps are not perfectly vertical even at zero
temperature. The step width is /, , ~ V, /R, see Eq. (37). The specific
shape of the steps is given by Egs. (38) and (39). In the limit R > «, the
effect of quantum fluctuations becomes negligible. Then, Bloch-
Shapiro steps are an exact dual of classical Shapiro steps whose height
scales with the first power of the Bessel function and which are per-
fectly sharp*. The dual Shapiro steps vanish across the Schmid tran-
sition, R = R, along with other effects of charge discreteness.

There is a duality between the charge and phase fluctuations. The
latter establish a fundamental limitation for the sharpness of the
conventional Shapiro steps. Upon the proper change of variables V & |
and impedances R < RZQ /R, the quantum-broadened Shapiro and
Bloch-Shapiro steps are described by the same dimensionless func-
tion. One may ask a question: how high should R be for the Bloch-
Shapiro steps to be as sharp as the conventional Shapiro steps for a
Josephson junction coupled to vacuum impedance of 370 Q? The
answer is R =110kQ. A comparable impedance was used in the
experiment'®, but the width of the observed Bloch-Shapiro steps
exceeded substantially the quantum limit. This means that other
mechanisms (e.g., the microwave-induced heating) are responsible for
the steps width; elimination of such mechanisms can significantly
improve the accuracy of current quantization.

Data availability
The information necessary to support the findings of this study are
provided in the main article file.
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