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Central limit theorems and the geometry of polynomials

Abstract. Let X € {0,...,n} be a random variable, with mean y, standard deviation o~ and let
fx@ = X =k,
k

be its probability generating function. Pemantle conjectured that if o is large and fx has no roots
close to 1 € C then X must be approximately normal. We completely resolve this conjecture in the
following strong quantitative form, obtaining sharp bounds. If § = miny [{ — 1| over the complex
roots £ of fx,and X* := (X — u) /o, then

1
sup[P(X* <1)—B(Z<1)|=0 (ﬂ)
teR oo

where Z ~ N (0, 1) is a standard normal. This gives the best possible version of a result of Lebowitz,
Pittel, Ruelle and Speer. We also show that if fx has no roots with small argument, then X must be
approximately normal, again in a sharp quantitative form: if we set § = min; |arg({)| then

1
sup[P(X* < 1) -P(Z<1)|=0 (—) .
teR 6o

Using this result, we answer a question of Ghosh, Liggett and Pemantle by proving a sharp multivari-
ate central limit theorem for random variables with real-stable probability generating functions.

Keywords: Geometry of polynomials, stable polynomials, strongly Rayleigh.

1. Introduction

In his influential paper on negative dependence, Pemantle [56] set out a list of desir-
able combinatorial properties for “the correct” definition of negatively dependent random
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variables and laid out a number of natural conjectures. In their celebrated paper, Bor-
cea, Brindén and Liggett [14] provided such a definition by making a striking connection
with the blossoming subject of real-stable polynomials; it turns out that the definition that
Pemantle sought is best described in terms of the zeros of the associated probability gen-
erating function. For this, let X € {0, ..., n}d be a random variable!, let

fxGrza) = Y BX = (i i)z 2

(i15--w5ia)

be its probability generating function and define
H={(z1,...,z4) € C¢ : Im(z;) > 0, forall i}

to be the upper half-plane. A polynomial f € R[zy,. .., z4] is said to be real-stable if it has
no roots £ in the upper half-plane H and a random variable X is said to be strong Rayleigh
if its probability generating function fx is real-stable. Borcea, Brandén and Liggett showed
that strong Rayleigh random variables admit a natural theory of negative dependence and
provided many natural examples of strong Rayleigh distributions: spanning tree distribu-
tions, uniform random matching distributions in graphs and determinantal measures. In
the years since this notion has been well studied and many further examples have been
found [2,40,43,44,55,57,59,75].

In addition to the connection with negative dependence, the theory of real-stable poly-
nomials has had many recent successes, notably Borcea and Brindén’s [12, 13] powerful
classification of linear operators that preserve real stability; its role in Marcus, Spielman,
and Srivastava’s spectacular proof of the Kadison-Singer conjecture [50]; and in Gurvits’s
surprising and simple proof of (and extensions of) the van der Waerden conjecture [31,32];
among others [3,39,49].

In this paper, one of our main motivations is to finish a program set in motion by
Ghosh, Liggett and Pemantle [28] to show that if X,, € {0, ..., n}¢ is a sequence of random
variables, with real stable generating functions, then X,, tends to a multivariate Gaussian
distribution, after centering and scaling, provided o;,, — co. We will derive this theorem by
first proving results on univariate polynomials, with much looser restrictions on the roots,
and then “lifting” these results to the multivariate setting.

In the univariate setting, work on the connection between roots of polynomials and
their coeflicients reaches back (at least) to Cauchy’s quantitative work on the fundamental
theorem of algebra [16], but was perhaps first intensely studied by Littlewood and Offord
[45-47], Szeg6 [71], Bloch and Péyla [11] and Schur [66] among others (see [51] for more
discussion). To give a bit of flavor of these results, we mention only one such result from
this vast literature that is most relevant for us here. In 1950, Erdds and Turdn [24] proved
that if P(z) = X}_, a «z¥ is a polynomial (aga, # 0) with sufficiently “flat” coefficients,

! Throughout the paper we will slightly abuse notation and write X € S, for a random variable X
and a set S, as shorthand for “X takes values in the set S.”
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meaning (|ao||an|)~'/? Yot lax] = ¢® | then the roots of P are approximately radially-
equidistributed in the complex plane, meaning that each sector {z : @ < arg(z) < B}, for
0 < @ < B < 27 contains roughly n(8 — @)/2x roots. This result has been adapted to
different settings [23] and generalized and sharpened several times [1, 10, 53]. For more
details, we refer the reader to the lovely articles of Granville [30] and Soundararajan [70].

In this paper, we show that a substantial amount of information about the coefficients of
a polynomial can be derived from its locus of zeros, if we additionally assume the polyno-
mial is a probability generating function, which is to say, it has non-negative coefficients. A
surprising first step in this direction is due to Lebowitz, Pittel, Ruelle and Speer [41], who
showed that if, for each n > 1, X,, € {0,...,n} is a random variable for which fx, has no
zeros in a neighborhood of 1 € C, and o,n~'/3 — oo then (X,, — u,,)o,; ! tends weakly to
anormal distribution (see also the 1979 work of Iagolnitzer and Souillard in the context of
the Ising model [36]). Inspired by this advance, Pemantle [51, 58], was lead to conjecture
that the variance condition in the theorem of Lebowitz, Pittel, Ruelle and Speer could be
greatly improved.

Conjecture 1.1 ([58]). Foré > 0andeachn > 1, let X, € {0, . ..,n} be a random variable
with mean u,, standard deviation o, and for which the the roots { of the probability
generating function fx, satisfy|{ — 1| > 6. Then (X, — un)o,; ' — N(0, 1), provided o, —

00,

In recent work, the authors [51] refuted this conjecture by showing that for any C > 0
there exist random variables X,, € {0, ...,n} with o, > Clogn that are not asymptotically
normal and for which fx, has no roots in a neighborhood of 1 € C. On the other hand, the
authors also showed that Pemantle was right to suspect that the variance condition in the
work of Lebowitz, Pittel, Ruelle and Speer could be significantly improved, by showing
that it is sufficient to assume o, > n®, for any € > 0.

Here, we completely resolve the conjecture of Pemantle, by showing that o, (logn) ~! —
oo is sufficient to guarantee convergence to a normal distribution. In fact, we prove a sharp
quantitative version of this theorem that gives an optimal bound on the maximum discrep-
ancy between a random variable X and a standard normal, based only on the distance of
the closest root of fx to 1 € C.

Theorem 1.2. Let X € {0, ..., n} be a random variable with mean u, standard deviation
o and probability generating function fx and set X* = (X — p)o~'. If 6 € (0, 1) is such
that |1 = ¢| > 6 for all roots { of fx then’

1
sup|P(x*<z)—P(z<t)|=o(ﬂ), (1.1)
teR oo
where Z ~ N(0, 1).

We note that this immediately implies the following limit theorem for distributions
with no roots close to 1 € C.

2The implicit constant can be taken to be 23201,
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Corollary 1.3. Foreachn > 1, let 6, € (0,1) and X,, € {0, ...,n} be a random variable
with mean u,,, standard deviation o, and probability generating function f,. If | — 1| = 8,
for all roots  of f, and

o6, (logn)~! — o

then (X, — o, — N(0,1) in distribution.

The condition on the standard deviation o, in Corollary 1.3 is sharp, both in terms of
0, and in terms of n.

Our second result (and the main ingredient in the proof of the multivariate central limit
theorem for strong Rayleigh distributions) says we can weaken the variance condition in
Theorem 1.2 all the way to o, — oo (the obvious® necessary condition) if we further
assume that the sequence f;, has no roots in a small sector {z : | arg(z)| < 6} containing
the positive real axis. Again, we prove a sharp, quantitative version of this by obtaining an
optimal bound on the discrepancy between a normal random variable Z ~ N(0, 1) and a
random variable X, based only on the smallest angle made by a root of fx and the positive

real axis.

Theorem 1.4. Let X € {0,...,n} be a random variable with mean u, standard deviation o
and probability generating function fx and set X* = (X — u)o~'. If § > 0 is the minimum
of | arg({)| over the roots ¢ of fx then*

sup|P(X* <) -P(Z<1)|=0 L , (1.2)
teR oo

where Z ~ N(0, 1).

Theorem 1.4, immediately implies the following limit theorem for distributions where
the smallest argument of a root just exceeds the reciprocal of the standard deviation.

Corollary 1.5. Foreachn > 1, let X, € {0, ...,n} be a random variable with mean p,,
standard deviation o, and probability generating function f,. If the roots { of f, satisfy
larg({)| > 0, and

0p0oy — 9,
then (X, — pup)o;; ' — N(0,1), in distribution.

Again, as we shall see in Section 11, the condition on o, is sharp for all sequences

(611)71'
With Theorem 1.4 in hand, it is not hard to prove our multivariate central limit the-
orem for strong Rayleigh distributions, following a key observation of Ghosh, Liggett and

3The law of (X — Hn)Oy ! is supported on point masses of distance > o, so we must have
on — oo if the sequence approximates the continuous Gaussian distribution.
4The implicit constant can be taken to be 23257
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Pemantle. To properly state this result, recall that if X = (X;,...,Xy) € R4 is a random
variable, its covariance matrix A = A(X) is a symmetric, semi-definite matrix defined by

(A)[’j = EX,XJ - EXl EX,

and its maximum variance o2 is defined as the £>-operator norm of A. For a d x d positive
semi-definite matrix A and x4 € R? we denote the Gaussian random variable with covariance
matrix A and mean p by N(u, A).

Motivated by a vast literature on central limit theorems and multivariate generating
functions [5,6,15,27,60,61], Ghosh, Liggett and Pemantle proved a central limit theorem
for strong Rayleigh distributions, in the case that the sequence maximum variances o2
grows sufficiently quickly, namely o,n~'/3> — co. In particular, they proved that if d €
N, and X,, € {0, ...,n}¢ is a sequence of strong Rayleigh distributions with covariance
matrices {A, } that satisfy o;2A,, — A and o,n~ /3 — oo then (X, — un)o, ' — N(0, A),
weakly. They conclude their paper by asking for the best possible condition on the growth
of 0, and ask, in particular, if the condition o, — oo is sufficient in their theorem. In [51],
we made progress on this problem by showing that o, > n® is sufficient, for any £ > 0.
Here, we are able to completely resolve the question of Ghosh, Liggett and Pemantle by
showing that the obvious necessary condition, o, — oo, is indeed sufficient.

Theorem 1.6. Ford € Nand eachn > 1, let X,, € {0, . ..,n}¢ be a random variable with
covariance matrix A, and maximum variance o',%. If the probability generating functions
of X,, are real-stable, o, — oo and o-,:zA,, — A, then

(Xn = pn)oy, ' — N(0, A),
in distribution.

We can additionally prove a quantitative form of this theorem (in the spirit of The-
orem 1.2 and Theorem 1.4), but we defer this more technical result to a later paper.

It is perhaps interesting to note that in this paper, we make essentially no use of the
rich theory of stable polynomials and, as a result, our work here provides (what appears
to be) a new and flexible tool-set for working with real stable polynomials. To illustrate,
in Section 10 we show that our method immediately implies a version of Theorem 1.6 for
Hurwitz stable polynomials [35], a similar and well studied notion [17,72,73] along with
other polynomials satisfying a similar “half-plane property”. Our methods are also of use
beyond proving central limit theorems. In a subsequent paper [52], we use the tools from
this paper to prove a close connection between the roots of fx and the variance of X.

1.1. General forms of main theorems

While all of our theorems above have been stated for random variables taking values in
{0, ..., n} (the form in which these conjectures were posed), it is not hard to see that our
methods imply similar results for more general random variables if we move to a slightly
more general framework.
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Here we state a result from Section 12, our main technical theorem’, from which all
others follow. Note the condition that X is integer-valued is not present at all.

Theorem 1.7. For € € (0,1) and b > 0, let X be a random variable with logarithmic
potential ux (z) =log| fx(z)| and cumulant sequence (k) j. If ux is harmonic in B(1,€); for
all0< 0y < 6y andr > 0withre'? re'®2 € B(1, &) we have ux(re’®) —ux(re'®) > —b;
and
Z |Kj| j

= (e/32)0 > b,
Jj=2 I
then

1
supP(X*<t)-P(Z<1)|=0 (—) ,
teR ET

where Z ~ N(0, 1) is a standard normal.

To illustrate a more general application of Theorem 1.7, we highlight Theorem 12.2
here, which is a natural generalization of Theorem 1.4, from Section 12. We point out that
there is an additional growth hypothesis on f(z) appearing in this statement which was
“invisible” before since it is automatically satisfied for polynomials.

Theorem 1.8. For ¢ > 0and k > 0, let X € R be a random variable with mean u, standard
deviation o and with probability generating function fx. If fx is defined on R, is zero
free in {z : |arg(z)| < 6}, and satisfies

[log | fx (2)I] = o(Iz]), and |log|fx(1/2)|] = o(|z[*),

as 7 — oo with | arg(z)| < 6, then

sup|P(X* <) -P(Z<1)|= 0(

max{6~!, K})
teR '

o
where Z ~ N(0,1) and X* := o~ (X — p).

Again, this theorem is sharp in the dependence on all of «, o~ and §. It is not hard to
extract a similar generalization of Theorem 1.2 in this setting.

1.2. Background

The use of roots to study combinatorial distributions has a long and distinguished history
in mathematics and has provided many surprising connections, with the most classical
instance coming from the connection between the location of the roots of the Riemann
zeta function with the distribution of the primes.

5See Section 3.2 for the definition of cumulants and Section 12 for appropriate generalizations
of fx to non-integer-valued random variables.
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In statistical physics, Lee and Yang [42,74] drew a surprising and influential connection
between the roots of polynomials and phase transitions in physical systems by showing
that the zero-freeness of certain partition functions implies the non-existence of phase
transitions.

In combinatorics, the roots of various polynomials associated with graphs and other
combinatorial objects have been shown to have particular regions without zeros (see, for
example, [26,37,62,63]). The two most classical examples here are the striking theorem of
Heilmann and Lieb [34], which says that the roots of the matching polynomial are real and
the classical theorem of Lee and Yang [42,74] who showed that the roots of the probability
generating function (i.e. the partition function) associated with the number of “up-spins”
of the Ising model on a finite graph, always lie on the unit circle.

In some cases, zero-free regions have been used directly to prove central limit theorems.
In the case of matchings, a line of results [29,33,65], starting with the work of Godsil [29]
and culminating in the work of Kahn [38], used the Heilmann-Lieb theorem to give general
results for when the size of a random matching in a graph is approximately normal. In the
case of the Ising model, the work of Lee and Yang was used to prove central limit theorems
for the number of “up-spins” by Iagolnitzer and Souillard [36] and later by Lebowitz, Pittel,
Ruelle and Speer [41]. In a similar vein, Scott and Sokal [67, 68], who built on the work
of Shearer [69] and Dobrushin [22], showed a close connection between zero-free regions
and the Lovasz Local Lemma, another core probabilistic tool.

The philosophy that appears to have emerged from these advances is that the roots of
combinatorially defined objects often have special structure and admit particular zero-free
regions. This observation was made explicit by Rota, who sought to give “combinatorial
meaning” to the distributions of roots in these settings [64]. In this light, one could see our
results as a general contribution to this program of Rota (his so-called critical program)
by giving combinatorial meaning to the roots of a wide class of polynomials.

2. Outline of Proof

Theorems 1.2 and Theorem 1.4 are proved in parallel and can be thought of as two con-
sequences of the same general method. As such, in the discussion here, we are intentionally
vague about which of these two theorems we are proving. Now, let X € {0,...,n} be a
random variable with probability generating function fx and consider the characteristic
function of X, which is a relative of fx and defined as yx (&) := fx(e¥), where & € R. The
relevant feature of the characteristic function is that it detects the closeness between two
probability distributions: a sequence of random variables Y, converge in distribution to the
random variable Y if and only if the sequence of characteristic functions ¥y, converge to
the characteristic function of Y ¥y point-wise. Of course, our results here are quantitative,
but this fact serves as some guide: to show that Y is approximately normal it is enough to
show that yry (€) = e ¢ 2 2 where yy; = e~ ¢ */2 is the characteristic function of the stand-
ard normal Z ~ N(0, 1). With this in mind, it is natural to center and scale X, by writing
X* := (X — p)o~! and then to consider the logarithm of -, due to the exponential form
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of . Indeed, we will be able to express log |y x+(&)| as
log [yx-(£)] = )" ajo TRe(il€7), @.1)

i>2

where ¢ is in a sufficiently small neighborhood of 0 and (a ) is a sequence of real numbers.

It turns out that a> = —o%/2 and hence the first term of the series is —£2/2, just as we
saw in the exponent of 7. From this vantage, our task is becomes clear: we need to show
that |a| < o/ in order to have yrx- ~ e~¢/2.

With our goal now laid out, we turn to consider the function u(z) := log|fx(z)| in a
region around 1 € C in the complex plane. Note that here we can quite naturally make use
of our zero-free hypothesis: if fx is zero free in a region, then the function u is harmonic
in this region. Now, while the fact that u is harmonic on a particular region is a useful
property, it is far from enough to prove our main theorems®; we will additionally need to
make particular use of the fact that fx has positive coefficients, a property that we use in
the form of “weak-positivity” for the function u (see Section 3).

As we will see in Section 4, this notion of weak-positivity interacts nicely with the
harmonic property of u, to give us another “positivity” notion which we make heavy use
of. For b > 0, £ > 0, we say that function u on B(1, ), with u(z) = u(z), is b-decreasing
if forall 0 < 67 < 6, < 6 we have

u(pe'®) —u(pe'®) > —b, (2.2)

where the functions are defined. In Section 4 we prove Lemma 4.1, which is our main tool
for showing that a function is b-decreasing. This lemma says that if u is a weakly-positive,
harmonic function on S := {z € C: R~! < |z| < R, |arg(z)| < 6§} then the function u is
b-decreasing if

exp (—6*1 log(R/r)) max lu(z)| < b/10, (2.3)

where the maximum is taken over the “ends” of S, defined as
S*:={zeC:|z] € {R', R}, arg(z) € [-6,5]}.

Without going into details, one can already see two important features of (2.3). Firstly, if
u is harmonic and weakly-decreasing in an entire sector {z : arg(z) € [—d, 6]}, then the
left-hand-side of (2.3) can be taken to be arbitrarily small (by letting R — c0) and so we
learn that u is O-decreasing, which perhaps should strike the reader as a reasonably strong
property. Secondly, we note the exponential dependence on the width ¢ of the sector. This
ultimately accounts for the factor of log n that appears in Theorem 1.2.

With this tool in-place, we turn to show how to use the b-decreasing hypothesis to get
some control of the sequence (a)». In a series of steps, we work towards Lemma 8.1 and

6In fact, as we discussed in [51], the results of Lebowitz, Pittel, Ruelle and Speer are actually
sharp if one generalizes their theorem to polynomials that have negative coefficients. Thus, we must
use the non-negativity hypothesis in an essential way.
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its important corollary, Corollary 9.3. These results are perhaps the main technical contri-
butions of this paper and their proof consumes Sections 5-8. Lemma 8.1 says that if u is a
b-decreasing, weakly-positive, harmonic function on S then the associated characteristic
function  of X* must look like

w(&) = exp (€24 RE)), 24)

where the “remainder term” R(¢) is controlled by |R(&)| < ¢|¢]/(8), for all £ € R satis-
fying |£] < cp00. Of course, the reader should interpret (2.4) as saying that “iy looks like
the characteristic function of a standard normal, up to the remainder-term R”.

The proof of (2.4) is carried out in three main steps. The first step is proved in Section 5
where we prove an important supporting result, Lemma 5.1, that allows us to compare the
maximum of ug := u — ulog|z|, are-normalized form of u, to a particular function ¢, 5 (z)
(defined in Section 3) which is both harmonic and positive on a region containing 1 € C.

In Section 6 we use this “comparison” lemma to prove Lemma 6.1, which tells us that
the sequence (a;);>> has nice decay properties; for every L > 2, we have that

Zj;L |aj|5j

Zj>2 |aj|5i

Z |aj|s~f > b,

i>2

<C-27L, (2.5)

provided

where C is a large, but absolute, constant and € ~ §.

We stress that (2.5) is a major step towards proving Lemma 8.1 and indeed Sections
5 and 6 are probably the most pivotal in the paper. However, (2.5) is not quite enough.
Roughly speaking, (2.5) says that we have quite a bit of the “mass” of the sequence (a;);
is focused on the early terms of this sequence. We actually need to show that “most” of the
mass is on the second term, a; = —0'2/2.

For this next step, carried out in Section 7, we prove Lemma 7.5, which says that if u
is weakly-positive and harmonic around 1 € C, and |a | is large for some small j > 2 then
|a>| must also be large. This allows us to control the magnitude of each of the terms |a |
relative to the value of |a;|. Applying Lemma 6.1 and Lemma 7.5 in sequence allows us
to deduce (2.4).

Now, while (2.4) tells us that the characteristic function ¢ of X* is roughly like the char-
acteristic function of a standard normal, we really care about showing that the distribution
of X* is close to the distribution of a standard normal. For this, we need an appropriate
“Fourier inversion” step. This step is carried out in Section 9, just before we go on to deduce
Theorems 1.2 and 1.4.

In Section 10, we turn to use the results developed in previous chapters to prove our
multivariate central limit theorem for strong Rayleigh distributions. This is achieved by
first using a fundamental observation of Ghosh, Liggett and Pemantle that says that if X e
{0,..., n}d is arandom variable with real-stable generating function, then the characteristic

functions of the one-dimensional projections (X, v), where v € Zfo, have no roots in a small



10 M. Michelen, J. Sahasrabudhe

sector. Theorem 1.4 then allows us to show all of these these projections are approximately
normal. We then use a strong version of the Cramér-Wold theorem to lift this information
to deduce that X itself must be a approximately normal.

In Section 11 we give examples, demonstrating the tightness of our results. Finally,
in Section 12 we briefly discuss how the main results of this paper can be generalized to
go beyond polynomials to prove sharp results for power series and more general analytic
functions.

3. Definitions and basic properties

In this section we fix a few notations and introduce the central objects of our proof.

Throughout, we use the notations R, R¢o and so on, to denote the non-negative reals
and non-positive reals respectively and extend these definitions in the obvious way to Z. If
z € C, we write z = re'?, where r > 0 and 6 € [, 7], and then define the argument of 7
to be arg(z) = 6. For - < B < a < m, we define the sector

S(a,B) :={ze€ C\{0}:a<argz< B}
and S(a) := S(—a, ). For R > 1 and & > 0, we define the truncated sector
Sr(e):={z€C:|z| € [R™",R], and arg(z) € [-&, ]}

and define
Si(e) :={z€C: |z € {R™', R}, and arg(z) € [~&,&]}

to be the ends of the sector Sg(&). We also use the notation Sg(a, 8) = S(a, 8) N Sg(7)
in a similar way and use the (standard) notation dQ, to denote the boundary of a region
QcC.

3.1. The logarithmic potential
If X € {0, ...,n}is a random variable’, define
n
fx(@) =B =) P(X = k)
k=0

to be its probability generating function, u = E X for its mean and o> = Var[X] for its
variance. Also note that fx (1) = 1. Now define

u(z) = ux(z) :=log|fx(2)!

7For more general random variables, we will assume that X has an exponential moment and we
define fx for z in a neighborhood of 1 by choosing a branch of the logarithm (see Section 12 for
more details).
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to be the logarithmic potential of X and observe that if fx(z) is zero-free in an open set
Q C C then u is harmonic on Q. This key connection will allow us to exploit the theory of
harmonic functions in certain regions of C. We will say that a function « on Q is symmetric
on Q if

u(z) = u() 3.1

for all z with z, 7 € Q. Of course, the logarithmic potential ux(z) is symmetric as fx is a
polynomial with real coefficients and so

u(z) =log|fx(2)| = log|fx(2)| = log | fx(2)] = u(Z).

A third key property is particular to the fact that fx is a probability generating function;
that is, it is a polynomial with non-negative coefficients. We say that a function u is weakly-
positive on Q if

u(|z]) —u(z) =0, (3.2)

for all z # 0 with z, |z| € Q. Weak-positivity of ux follows by taking the logarithm of both
sides of the inequality

|fx(2)] = [EZX| < Elzl* = | fx(J2])]-

We also note a useful expression of ux in terms of the roots {{} of fx

ux(z) = Z log + Z log

1Z1<1 1Z1>1

1- ¢ +cx + Nxlog|z|, 3.3)

L2
z

where cy is defined so that ux (1) =log|fx(1)| = 0 and Ny is the number of roots of fx
with || < 1.

3.2. The exponential scale

We shall often work with the function u = ux on an “exponential scale” by defining U (w) :=
u(e™). Note that U(w) is harmonic when u is (in the appropriate domains) and is also
symmetric, since

U@) = u(e®) = u(e®) = u(e®) = U(w).

The importance of this form is made clear by Lemma 3.1; the Taylor expansion of U(w)
at w = 0 reveals the cumulants of X, which we denote by («;);>1. We don’t need to draw
on much external information here about this important sequence, but we do need to note
that the first and second cumulants are familiar probabilistic quantities. Indeed,

d w
4= G €]y = G4
and

Ky = ﬁu(ew)’ =02, (3.5)

w=0

which exist under the condition that « is harmonic in a neighborhood of 1 € C.
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Since our interest is in central limit theorems, when working with u it is often useful
to “subtract out” the term corresponding to u. In particular, define

uo(z) = u(z) — uloglzl, (3.6)

and correspondingly define Up(w) := up(e™). If u is an arbitrary function (that is, not
necessarily coming from a random variable) we may define uy and U in the same way, by
simply taking u := ﬁu(ewﬂw:o, in the case that this quantity exists.

Lemma 3.1. For € € (0,1/2), let u be a symmetric harmonic function on B(1,2¢) C C
withu(1) = 0. Then if U, Uy are defined as above, we may express

Uw) = Z a;Re(w’) 3.7
j>1
and
Up(w) = Z aRe(w’), (3.8)
j>2

or all w € B(0, &). Where the a; are real numbers and jla; = k;, where k; is the jth
J J-aj J J J
cumulant.

Proof. First note that U(0) = u(1) = 0 and that U(w) is harmonic and symmetric in a ball
B(0, &), since |w| < 1/2 and |e¥ — 1| < 2|w| < 2e.

Now since U is harmonic in B(0, £), we may write U(w) = Ref(w) for a function f
which is analytic in B(0, ) (see Conway’s classic text [18], Chapter VIII, Theorem 2.2, p.
202 for a proof). We then express f as a power series to obtain

Uw) = Z Re(a;uw’). (3.9)

>0

We now write w = pe'?, for sufficiently small p > 0, and use the fact that U(w) = U (@)
to obtain

0=U(w)-U(w) = Z Re(ajpj(eijo —e YY) = ijRe(Ziaj) sin(j0) .
>0 j>0

By the uniqueness of trigonometric series, we have that Re(2ia ;) = 0, implying that a; is
real, for all j > 0. So from (3.9) and the fact that U(0) = 0, we obtain (3.7).
To prove the second part of the claim, we simply note that

Uo(w) = ug(e”) = u(e") — plogle®| = U(w) — uRe(w).

So (3.7) and the fact that u = a; yields (3.8). ]

Throughout the paper we work with the sequence (a;) ;> rather than the cumulant
sequence (k;);>1. We call the sequence (a;) 1 the normalized cumulant sequence.
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3.3. Two important “difference functions” and b-decreasing

For 7 € (0,7) and b > 0, we define the function /i, that compares values of u reflected
about the line {re!™/2 : t > 0}

hep(z) = u(z) —u(e'7z) +b. (3.10)
We also define, for y € (0, x), the closely related function
@y p(2) = u(z) —u(ez) +b. (3.11)

We first observe that if u is harmonic in a sector, then s+ ;, and ¢, ;, are harmonic in a
slightly smaller sector for appropriately chosen 7.

Lemma 3.2. For R € (1, ], § > 0, let u be a harmonic function in® Sg(6). Then for
any 7,y € (0,6/2) we have that the functions h , and ¢, j, are harmonic in the sector
Sr(6/2).

Proof. We note that if v is harmonic in Q and 8 € C \ {0} then v(z) is harmonic in 7'Q
and v(Z) is harmonic in {Z : z € Q}. Also if v, v, are harmonic in Qj, Q, respectively,
then vy — v is harmonic in Q| N &, (see [4], Chapter 1). Thus, u(Z) is harmonic in Sg(5)
and u(aZ) is harmonic in /7 Sg(8) = Sg(—6 + 7,6 + 7) and therefore /. ;, is harmonic in
SrR(=6+ 71,6 +7) N SR(S) 2 Sr(6/2). Likewise, ¢,  is harmonic in Sg(6 —y,6 +y) N
Sr(6) 2 Sr(6/2). |

We now arrive at an essential definition, which we have already mentioned in the over-
view of the proof: b-decreasing. For b > 0 and Q C C, we say a function u is b-decreasing
in Q if

u(pe'”) —u(pe'®) +b >0
for all 0 < 0] < 6, < m with pe'?, pe'® € Q. One nice feature of this definition is that u
is b-decreasing in Q if and only if u is, since

ug(pe'™) —ug(pe'™) +b = u(pe'™) —u(pe'®) +b.

The main motivation behind this definition is easy: it is the correct definition to guarantee
the functions /-, and ¢, ;, are positive, for all reasonable choices of T and y. Later we shall
make heavy use of this fact by way of the so-called Harnack inequalities. These inequalities
guarantee that 4 and ¢ don’t vary too much on a set £ away from its boundary.

Lemma 3.3. For 6 > 0 and b > 0, let 7,y € (0,5/2) and let u be b-decreasing and
symmetric in Sg(8). Then hy ,(z) > 0 for all z € Sr(7/2) and ¢, (2) > 0 for all z €
Sr(=7/2,6 = 7).

8Here we understand Se () to mean the sector S(5).
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Proof. Letz =re'? € Sg(r/2) with |0] < /2. Then
hT,b(rem) =u(re'?) - u(rei(T_g)) +b.

In the case 6 € [0, 7/2], we have that § < 7 — 6, and thus non-negativity of /. j,(re'?)
follows from the b-decreasing assumption on u. On the other hand, if 6 € [-7/2, 0], we
use symmetry to write

hT,b(reig) =u(re'?) - u(rei(f_g)) +b=u(re %) - u(rei(T_g)) +b

with 0 < —0 < 7 — 6 < 27 < 0; non-negativity again follows from b-decreasing. The proof
for ¢, p is similar. |

It will be important for us that Lemmas 3.2 and 3.3 tell us that both 4, ;, and ¢, ;, are
harmonic and positive in a sector that contains the positive real axis with room to spare
on both sides. This means that we can work near 1 € C, without getting too close to the
boundary.

4. Weakly positive and harmonic implies b-decreasing

In this section we prove Lemma 4.1, our main tool for showing that a function is b-
decreasing.

Lemma 4.1. For 6 € (0, ) and R > r > 0 the following hold. Let u be a weakly-positive,
symmetric, harmonic function on a neighborhood of Sg(6). If b > 0 is such that

A1/
(E) max [u(2)| < 3b/8, 4.1)
R

then u is b—decreasing on S, (6/2).

To prove Lemma 4.1, we use a well-known connection between harmonic functions
and Brownian motion. The following theorem is a special case of Theorem 3.12 from the
book of Morters and Peres [54] and shows how Brownian motion can be used to recover a
harmonic function from its boundary values.

Theorem 4.2 (Theorem 3.12 of [54]). Let v be a function which is harmonic on a bounded,
convex set Q C C and continuous on 0%, let z € Q and let (By);>0 be a Brownian motion
started at z. If we define the stopping time T := min{t : B, € 0Q} then we have

v(z) = Ev(Br).

In what follows, we will understand 7 to be the stopping time of a Brownian motion
hitting the boundary of Q, 7 := min{z : B, € dQ2}, unless otherwise stated.
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4.1. A calculation for Lemma 4.1

To Prove Lemma 4.1, we need an estimate on the probability that a Brownian motion hits
one of the ends of a sector Sg(8) before hitting the sides.

Lemmad.3. Foré € (0,n) and R >r >0, let 7 € S, (6) and (By);»0 be a Brownian motion
started at 7 and stopped when it hits dSg(5). We have

A 4 el
P (Br € Si(®) < 5 () 4.2)

where ¢ =log4/3.

We should mention that there is an exact formula for the probability in (4.2) and a
proof of this can be found, e.g., in [54, Theorem 7.25]. Here we include a simple proof of
this weaker result, which is still sharp up to the constant c, to give the reader an intuitive
feel for why we have the exponential dependence in (4.2) on ¢. This dependence is quite
important and ultimately explains the logarithmic factor that appears in Theorem 1.2 and
Corollary 1.3.

Our first step towards Lemma 4.3 is to study a similar situation in a square. We shall
then extend this to rectangles, and then use the conformal invariance of Brownian motion
to finish the proof for sectors.

Observation 4.4. For 6 > 0andy € [0, 6], let E,, be the event that a Brownian motion,
started atiy € C, hits either the left of right edges of the square S := {7 : Re(z) < §,Im(z) <
0} before the top or bottom edges. Then P(E,) < 3/4.

Proof. First, for y € [0, 6], we consider the event H,; that a Brownian motion, started at
iy, hits the top edge of S before hitting any other edge. We claim P(H,) > 1/4.If y =0 the
result is clear by symmetry. If y > 0, then we couple the Brownian motion (B;), started at
0 with a Brownian motion (B; +iy), started at iy € S: clearly B, + iy will hit the top edge
of S on every trajectory that B; does. So P(H,) > P(Ho) = 1/4. Now, turning to E\,, simply
note thatif y > Othen P(E,) < 1 -P(H,) < 3/4.The case y < 0, follows by symmetry. =

It is now easy to deduce a version of Lemma 4.3 for rectangles. Here we see quite
naturally where the exponential dependence on ¢ appears.

Lemma4.5. For§ >0andb > a > 0, let Q := {z : [Re(2)| < b, |Im(z)| < 6}, letz € O
and let (B;):>0 be a Brownian motion started at z which is stopped when it hits Q. We
have

P (B, € Q) < exp (—c [67" (b - a)J) , (4.3)
where Q* = {z : |[Re(z)| = b, |Im(z)| < 6} and ¢ =log4/3.

Proof. Let E, be the event defined in Observation 4.4 and let S(z’) be the event that a
Brownian motion, started at z’ € Q, hits one of the lines {z’ + § + it};er, {7’ — 6 +it},er
before hitting the top or bottom of Q. Clearly P(S(z")) = P(Ey), where z’ = x +iy.
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We now connect the rectangle-crossing to the box-crossings; a path that hits one of
the ends before hitting the top or bottom of Q must cross at least £ > | (b — a)/d] boxes
without hitting the top or bottom on Q. Therefore we have

¢
P(Br€Q") < sup P(S(z)N---NS(z¢)) < (supP(Ey)) , 4.4)
y

where the supremum is over all complex numbers contained in Q satisfying z; = z and
|Re(z;) — Re(zi+1)| = 6 and the second inequality in (4.4) follows from the Markov property
of Brownian motion. Finally, the result follows by applying Observation 4.4. ]

To prove Lemma 4.3 we simply use an analytic map to transform the rectangle Q into
the truncated sector Sg(§). The conformal invariance of Brownian motion allows us to
finish. To state this property of Brownian motion a little more carefully, let ¢ : C — C be
an analytic function and let (W;), be a Brownian motion in C. The conformal invariance
of Brownian motion means that ¢(W;) traces the path of a Brownian motion, at (possibly)
a different speed. In other words, there exists a increasing function y : Ryg — Ry, a
Brownian motion (B;) and a coupling of B; and W; for which ¢(W;) = B,(;). See the
book of Morters and Peres [54], Theorem 7.20, for a proof.

Proof of Lemma 4.3: Set b = log(R), a = log(r) and observe that the analytic function
¢(z) := e* maps the rectangle Q = {z : |Re(z)| < b, |Im(z)| < 6} to the truncated sector
Se»(6) = Sr(6); maps Q = {z : |Re(z)| < a, |Im(z)| < 6} to S,(6); and maps the ends
R* = {z: |Re(2)| = b, |Im(z)| < 6} to the ends S, (6).

To finish, choose w € {5 : [Im(s)| < &, |Re(s)| < b, } so that ¢(w) = z, let (W;);>0 be a
Brownian motion started at w € R and let (B;); be a Brownian motion started at z € Sg(6),
and let 77 be the stopping time 7’ := min{r : W, € dQ}. By conformal invariance, there is
a coupling of (By);>0 and (¢(W;)); so that they trace the same path. It follows that

P(B; € Si(6)) =P(¢(W,) € Sx(6)) =P(W, € Q%)
< exp (—(log 4/3)16 " log R/rJ) ,

where the inequality follows from an application of Lemma 4.5. Utilizing |x] > x — 1
completes the proof. |

4.2. The proof of Lemma 4.1
We now turn to the heart of Section 4, Lemma 4.6.

Lemmad4.6. Ford >0, R >0, put @ = €'® and let u be a weakly-positive harmonic function
on a neighborhood of Sg(0, 8), let 7 € Sr(0,§/2) and let (B;);>0 be a Brownian motion
started at 7 and stopped when it hits dSg(0, 5/2) then

u(z) —u(az) > -2P (B, € §x(0,6/2)) Ergl*az(&) lu(z)]. 4.5)



Central limit theorems and the geometry of polynomials 17

Proof. We define two coupled Brownian motions starting at z and z° := aZ, respectively.
First, let (B;) be a Brownian motion started at z and, in preparation for defining our
Brownian motion started at z°, we define two stopping times: T = 71 := min{z : B; €
ASr(0,6)} and 1, :=min{z : B, € Sg(0,5/2)}. Now, define the path (BY);>0 by B} := aB;
for t < 7, and then By := B; for t > 75. We now note that (B;), is in fact a Brownian
motion started at z°; this is because it is a Brownian motion, by definition, after time 7,
and it is a reflection of a Brownian motion before time 7,, which is a Brownian motion.
The only thing to note is that B, = @B, that is, the two trajectories agree at 72, and thus
the whole trajectory is a Brownian motion by the strong Markov property. Also note that
T =min{t : B; € dBg(0, )}, by symmetry.
We now apply Theorem 4.2 to u, and z, z° in the region S(0, §) to express

u(z) =Bu(Br) and u(z’) =Eu(BY)
and therefore,
u(z) —u(z°) =E (u(B7) —u(B2)). (4.6)
To evaluate this expectation, we break up the space of trajectories into three events.
(1) E; :={arg(B,,) = §/2}, the event that B;, B; meet;
(2) E, :={arg(B,,) = 0}, the event that B, hits R, before meeting its reflection;

(3) E;3 :={B+, € S;(6/2)}, the event that B, hits one of the ends of the sectors, before
meeting its reflection.

In the event of E, we have that B;, B; meet before time 7, and therefore u(B) = u(B%)
o)
I :=E (u(B;) —u(B3)) 1(E) = 0. 4.7

In the event of E,, Br € Ry¢ and thus B = @B sou(B;) —u(B%) > 0, by weak-positivity.
In particular,
I = E (u(B;) — u(aB;)) 1(E2) > 0. 4.8)

In the case of E3, we crudely estimate

I :=E (u(B;) —u(B)) 1(E3) > —2P(E3) Zergl*azc(s) lu(z)|. 4.9)

Now, from (4.6), and (4.7),(4.8),(4.9), we have

u(z)—u(z®)=hL+hL+13>-2 max |u(z)|P; (B € Sx(0,6/2)),
z€S5(8)

as desired. [

We are now able to prove Lemma 4.1.

Proof of Lemma 4.1. To show that u is b-decreasing on S, (§/2) we let p € [1/r,r] and let
01,60, € (0,6/2) satisfy 8, > 6;. We need to show that

u(pe'®y —u(pe'®) > —b.
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For this, let us put ¢ = 6; + 6 and note that ¢ < §. Set z = pe’? and a = ¢'? and note that
az = pe'?. We now apply Lemma 4.6 with § = ¢ to obtain
u(pe'™) —u(pe'®) > ~2P (B, € Sx(0,4/2)) max |u(z)l
2€SR ()
4 (r

) 4c/ S
>-2.—|— .
3 (R) (Joax ()

> -b,

where the penultimate inequality holds due to the fact that S (0, ¢/2) is a sector of width
at most §/2 and so we apply Lemma 4.3 to the sector Sg(6/4). The last inequality holds
by the condition on b and the inequality 4 log(4/3) > 1. Hence we have shown that u is
b-decreasing in S, (0,6/2). [

5. A key comparison

With our main positivity-hypothesis in place, we now start with the first in a series of
steps to prove Lemma 8.1. In Sections 5, 6 and 7 we build up the ingredients for the proof
of Lemma 8.1, finally stated and proved in Section 8. The objective of this section is to
prove Lemma 5.1, which says that under the hypotheses of Lemma 8.1 we can bound the
maximum value of ug in a small box around 1 in terms of the much more amenable function

Py,b-

Lemma 5.1. Forb > 0, € € (0,1/8) and n € (0, €], let u(z) be a b-decreasing, weakly-
positive, symmetric and harmonic function on B(1, 8¢), for which u(1) = 0. Let uy and
@b be the associated functions defined at (3.6) and (3.11). We have that

max |ug(z)| < 3*- 3%/, ,(1).
zeB(l,¢&)

To prove this lemma we make a few preparations.

5.1. Positive on the real line

In our first step towards Lemma 5.1 we show that the function

uo(z) = u(z) — ulog|zl,

is positive on the positive real axis. To prove this, we first need the following basic fact,
which first appears in the work of De Angelis [21] and then was slightly’ extended in the
work of Bergweiler, Eremenko and Sokal [8],[7]. We include a short proof.

9De Angelis actually assumes that u = log | p| for a polynomial p.
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Lemma 5.2. Letr > 0. Ifu is weakly positive, symmetric and harmonic on a neighborhood
of r then U"” (logr) = O

Proof. Write z = x +1iy and put V(x,y) = U(x + iy). Note that the harmonicity of U at
= logr implies Vi, (a,0) + Vyy(a,0) = 0. Weak positivity and symmetry of u implies
that Vyy, (a,0) < 0, since Vy, (a,0) can be written

. V(a,h)+V(a,—h) —2V(a,0) o u(re™ +u(re™™y = 2u(r)
lim = lim
>0 h? >0 h2

Thus

< 0.

U”(a) =Vix(a,0) >0
n

Remark 5.3. In the case u = log | fx|, there is a natural probabilistic interpretation of
Lemma 5.2 that can be turned into a proof. After unwinding the definitions a little, one
can see that Lemma 5.2 simply says that the random variable defined by the probability
generating function fx(rz) fy 1(r), has non-negative variance. This is trivially true, as all
random variables have non-negative variance. However, we have elected to include this
more general result, as it will simplify our exposition.

We now deduce the following small but crucial ingredient in the proof of Lemma 5.1:

ug is non-negative on the positive real axis.

Lemma 5.4. Fore € (0,1), let E C C be an open set containing the interval [1 — &,1 + £].
If u is weakly positive, harmonic and symmetric in E then uy(r) > u(1), forallr € (1 -
g, 1+e).

Proof. We may write r = e’ for some ¢ € R and apply Taylor’s theorem to U(¢) at t = 0 to

obtain
2

U(1) = U(0) - tU’(0) = o SU” (1),
for some ty with ¢y € (1 — 2 1+ &). Since Uy(t) = U(t) —tU’(0) ((3.8), in Lemma 3.1),
we have Uy(t) — U(0) = 1 sU" (ty) > 0, by Lemma 5.2 and so
uo(r) = ug(e") = Up(t) > u(1),

as desired. [

5.2. The Poisson density and Harnack inequalities

In Section 4, we saw that we could use Brownian motion to recover the values of a harmonic
function on Q from the values of its boundary 0€, by using Theorem 4.2. In particular, we
had that

u(z) =Eu(B-), (5.1
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where (B;);>0 is a Brownian motion started at z € Q and 7 is the stopping time of hitting
0Q. In the case that Q is a ball B, the expectation in (5.1) has a density function P, (with
respect to the Lebesgue measure on the circle), and so we can express

v(z) = /(99 v(s)P;(s) ds. (5.2)

We define the collection of functions {P,} as the Poisson density of the circle'” and note
that P, are non-negative functions of the boundary. We refer the reader to [4] and to [18]
for a general treatment of harmonic functions on a ball.

We now state an important tool for working with positive harmonic functions, the
Harnack inequalities for the ball. These say that if v is a positive harmonic function on
the ball B(0,2¢) and if z € B(0, ) € B(0,2¢) then

1 ()

=< —=<3. 5.3

3 " 0(0) (5-3)
A statement and proof of this result can be found in [4, pg. 47]. For our purposes, we need
a slight generalization:

Lemma 5.5. Let v be a positive harmonic function on an open set Q C C. For € > 0, let
21, 22 € Q be points at distance d := d(z1, z2) so that all z3 that lie on the line segment
Jjoining z1 and zp have B(z3,&) C Q. Then

1 v(z1) 2d/e+1
W < 2(22) <3 . 5.4

We will also need the following lemma, which is a simple consequence of the Harnack
inequalities.

Lemma 5.6. For e > 0, let {P;} be the Poisson density of the ball B(1,2¢). Then for all

7 € B(1, &) we have
P (s) <3.
S€EAB) s Pl(s)

(5.5)

Both Lemma 5.5 and Lemma 5.6 follow easily from (5.3). We now prove a straight-
forward lemma that will allow us to find a large negative value of u(. For this lemma, we
note that if {P,} is the Poisson density of B(1, £) then, by symmetry, P;(s) = ﬁ for all
s € 0B(1,¢).

Lemma 5.7. Let € > 0 and let v(z) be a symmetric, harmonic function on B(1, &) with
v(1) =0, let {P,} be the Poisson density of the ball B(1, ) and set

M = lv(s)|P1(s) ds.
s€dB(1l,¢)

10This definition is designed to parallel the (standard) definition of the Poisson kernel which is
defined with respect to the complex line integral, rather than the uniform measure on the circle.
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Then there is a 7o € B(1, &) with Im(zo) > 0 and v(z9) < -M /2.
Proof. Letus set B, := B(1, ), P(s) := Pi(s) and define 0B, = E. U E_ where E, =
{s € B, :v(s) > 0} and E, = {s € 9B : v(s) < 0}. Now put

A= / [v(s)|P(s)ds and B = / [v(s)|P(s) ds.
seE* seE-
and note that

OZU(I):/BB u(s)P(s)dsz/F |v(s)|P(s)ds—/ _|v(s)|P(s)ds

seE

=A-B,

and that A + B = M. Thus
M)2 = / [v(s)|P(s) ds < max |v(s)|/ P(s)ds < max |v(s)],
E- seE~ E- seE~

where the last line holds due to the fact that P(s) = 1/(2n¢) and the length of E~ is
at most 2re. So if we let zg be a value which attains this maximum, we note that both
v(zo) = v(Zp) < —M /2 by symmetry. Hence one of zg, Zg will have non-negative imaginary
part, as desired. ]

5.3. Proof of Lemma 5.1

We now are in a position to prove the main result of this section, Lemma 5.1.

Proof of Lemma 5.1. To reduce clutter, let us define B, By, to be B(1, ), B(1, 2¢),
respectively. Let P, be the Poisson density of B, and put

M = lug(s)|P1(s) ds.
SEOB¢

By the definition of the Poisson density, for each z € B, we have

w@= [ wr.)ds
SEOB¢
and since, for all z € B, we have maxepp,, P;(s)/P1(s) < 3 (by Lemma 5.6) we obtain

max ao()| <3 [ luo(@)1Pi(5)ds =301 (56)
2€B¢ S€(932£

We now apply Lemma 5.7 to the function v := ug(z) (which is harmonic, symmetric and

has uo(1) = 0) and the region B, to find a point zg € d B, for which uy(z9) < —M /2 and

Im(zg) > 0. We may write zg in the form zg = pe'? where ¢ € [0,4¢] and p € [1 —2¢,1 +

2¢].
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dei

Further, pe*®* € B(1, 8¢), allowing us to make use of the b-decreasing hypothesis:

1) < ug(z0) + b

b-M)2.

up(pe™™) <
<

We now apply Lemma 5.4 to see that ug(p) > 0 as p > 0, thereby allowing us to obtain a
bound on A4c 5 (p)
haeb(p) = uo(p) — uo(pe'*®) + b > —ug(pe'*®) +b > M/2. (5.7

We know that S(—4&,4¢) N By, C By, and u is b-decreasing in Bg.. We then know that
hae.p(z) is harmonic and positive (Lemmas 3.2 and 3.3) in S(—2¢&,2¢) N B4 and thus we
may apply Lemma 5.5 to learn that

haep(p) < 384 py p (pe!Pe71/2), (5.8)

since the distance d(p, pe'?¢71/2)) < (1 + 2¢)2¢e < 4e and each point on the segment
between them is at least p - /4 > n/8 from the boundary of S(—2¢&,2¢&) N Byg.
Now observe that at the value of z = pe!2¢=7/2) we have ., (z) = @55 (2). That is,

haew (e C5712)) = u(pe' 1)) —u(pel ) 1 b = g, 4 (pe P, (5.9)
We now apply Lemmas 3.2 and 3.3 to learn that ¢,, ;, is harmonic and positive in
S(-n/2,4e —1n) N Bye.
Hence we may apply Lemma 5.5 along with the fact that p € [1 — 2¢, 1 + 2¢] to see that

@p(pe’FTmy < 3328y (1)) (5.10)

since |pe!?#71/2) _ 1| < 4 and each point on the segment between them is at least /4
from the boundary of S(—n/2,4& — n) N By4.. Thus, chaining together lines lines (5.6),
(5.7), (5.8), (5.9), (5.10) gives

max |ug(z)| < 3*- 3968/"907;,17(1),
Z€Bg

as desired. [

6. Bounding the tail of the cumulant sequence

In the previous section we showed how to control the maximum of # in a small ball around
1, in terms of the much more amenable function ¢,, ;. In this section, we use this bound
to prove that the normalized cumulant sequence (a;) ;> has nice decay properties.
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Lemma 6.1. Fores € (0,27%) and b > 0, let u be a b-decreasing function, weakly-positive,
symmetric and harmonic function in B(1,2*¢). Let (a i)js1 be the normalized cumulant
sequence of u. If

Z lajle! > b, 6.1)
j>2
then for all L > 2 we have
Yisrlajle’ L
m <C-27%, (6.2)

where C > 0 is an absolute constant'".

Proof. We first point out that the expression in (6.2) makes sense; the denominator is non-
zero from the strict inequality at (6.1) and the numerator is finite since we may write

Up(w) = " a;Re(w), (6.3)

i>2

by Lemma 3.1, for all w € B(0, 8¢) and thus the series ), a &’ is absolutely convergent.
To prove Lemma 6.1, the idea is to compare both the numerator and denominator in
(6.2) to p< p(1). We begin with the denominator. Recalling that

pep(e”) = u(e”) —u(e”'®) +b,
we use (6.3) to express

vep(e”) = Z ajRe(wj - (w+ie)) +0b,
i>2

for w sufficiently small. And so, setting w = 0, we obtain

lpen(DI < D lajle? +b <2 lasle/, (6.4)
j>2 j>2
by the triangle inequality and our assumption at (6.1).
We now turn to obtain an upper bound on the numerator of (6.2). We apply Cauchy-

Schwarz to obtain 2

Z|aj|sf<2 Z|a,~|2(2a)21 2L, (6.5)

J>L i>2

We now look to relate the series on the right-hand-side of (6.5) to Uy. In preparation for
this, we write

Up(p,0) := Ug(pe™) = 3" azp’ cos(j6),

j>2

ndeed, we can take C = 3399
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which is valid for all |p| < 8¢, due to (6.3), and then use Parseval’s Theorem to write

) 1 2n
Z|aj|2(2g)2f =5- / |Uo(2¢,0)17d0 < max _|Up(2e,6). (6.6)
= T Jo 0e[0,27]

As a remark, note that (6.6) along with (6.1) implies that maxgc[o 2] |Uo(2¢, 6)| > 0.
Returning to the main arc of the proof, recall that z = ¢* and w = pe’?; so as 6 ranges
over [0, 2x], z lies on the curve

I = {exp(2ge'?) : 6 € [0,27]},

which is contained in the ball B(1,4¢), due to the inequality |1 — e2ee’’ | < 4&, which holds
for £ < 1. Hence we may bound the right hand side of (6.6)

ma Up(2e,0 ’< ma 2, 6.7
66[0,%(7r]| 0(2¢,0)| zeB(1§8)|”°(Z)| (6.7)

Here is the key ingredient: we apply Lemma 5.1 to obtain an upper bound on u in terms
of ¢, p» in B(1,4¢e) withn = &:
2

max Jup()? < (3% (1) (6:8)

zeB(l,4¢)
Note that this also implies that ¢ (1) > 0, due to the remark after (6.6) and (6.7),(6.8).
To finish, we put together the lower bound at (6.4) on the denominator in (6.2) with the
upper bound on the numerator, coming from (6.5), (6.6), (6.7) and (6.8), to obtain

Ljselajle’ 3%, p(1)

- <2 27k < 3907k,
2js2lajle 3¢eb(1)

as desired. [

7. Taming the cumulant sequence

In this section we provide a third and final ingredient in our proof of Lemma 8.1, our core
technical lemma. In Section 6, we showed that the sequence (a ) ;> had to have quite a bit
of its “mass” concentrated on the early terms. In this section, we use our weak-positivity
hypothesis to show that, in this situation, we can control all of the cumulants in terms of
the second cumulant, the variance.

The main result of this section is Lemma 7.5, which can be seen as a quantitative
version of a tool co-discovered by De Angelis [21] and Bergweiler, Eremenko and Sokal
[8] which was used in their work on classifying polynomials whose large powers have all
positive coefficients. It is also a relative of Lemma 7 in the previous work of the authors
[51] and can be viewed as an effective form of Marcinkiewicz’s Theorem [48].

To prove Lemma 7.5 we need the following preparatory lemma, which is an elementary
fact about sequences of non-negative real numbers.
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Lemma 7.1. Let A > 1, s > 0 and let (¢;)i>1 be a sequence of non-negative numbers for
which the sum ¥, c;s' converges and is non-zero. If L € N is such that

L
Z cis't > Z cis', (7.1)
i=1 i>L

then there exists an € € {1,...,L} and s, > s(16A)~ V) 5o that
c[sf: > A Z cisi. (7.2)

it
Proof. To start, we choose s¢ := s/(2A). This immediately gives us

L

Z cish > (24) Z cish. (7.3)

i=1 i>L

We now define an algorithm that will find £ € {1,...,L} and s, > s(164)~ D) that
satisfies (7.2): Initialize t = 0, sg = 59 (defined above) and j, = L and inductively define a
sequence of integers j; > j» > --- > 1 and positive real numbers s; > sp > - - - as follows:
if the pair (j;, s;) satisfies

cj, s{’ > 2A Z cist. (7.4)
I<i<L

i#]t

then we terminate and return (¢, s.) = (J;, s;). Otherwise, choose j,+| so that

1 2 !
Cjr ST = max{cis;, cost, ... cos0'} (7.5)

and set 5,41 = 5;/(16A). To see that this algorithm successfully produces a pair (¢, s..) that
satisfies the conclusions of the lemma, we prove two claims.
Claim 7.2. Foreacht > 0 we have
. L .
cj sl >4A Z Cisy . (7.6)
i=j+1

Proof of Claim. We apply induction on #; note that the # = O case is trivial. Now suppose
(7.6) is satisfied for some ¢ > 0, write a = j;, b = j;+1 (for ease of notation) and recall that
b = j;4+1 was chosen so that cbsi7 = maX]giga{C[S;.}; thus,

a
b CiSt
CpS; > Z 2i—b .
i=b+1

and since s;41 = 5;/(16A), we have

B B a C'Si a )
cpsty = (164)Pepsl > (164)70 S > 84 D sty 1.7
i=b+1 i=b+1
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By the induction hypothesis at (7.6), we have c,s{ > 4A Z{“: atl cis§ and thus (crudely)

we have
L

cbsf+1 > 8A Z c,-siﬂ. (7.8)

i=a+l

Averaging (7.7) and (7.8) yields

L
b i
Chs,, > 4A E CiSyips
i=b+1

as desired. This completes the proof of the claim, by induction. ]
Claim 7.3. We have that j| > jy > --- > 1 is a strictly decreasing sequence of integers.

Proof of Claim. By definition, we have j; > j» > --- and so we claim that if j.,; = j;,
then the pair (j,, s;) would in fact satisfy (7.4), the halting condition for the algorithm. So
suppose that j := j;+1 = j; and recall that s, = s5,/(16A); then by (7.5), we have, for all
i</,

C,-sf < st{(16A)’._j.
This implies

Jj-1 j-1
4A Z cist < cjs! (4A (16A)"—f) <cjsl. (7.9)
i=1 i=1

Averaging (7.9) and (7.6) yields (7.4) for (¢, s.) = (j;, s¢), implying that the algorithm
would have halted before proceeding to step ¢ + 1, a contradiction. ]

Thus, Claim 7.3 tells us that the algorithm must terminate in at most L steps and thus
sy > s(16A4)~ (LD,

To see that we have found a pair (¢, s.) that also satisfies (7.2), we simply note that
(7.3) implies % ¢;st > (2A) Y;»; c;s' and thus, averaging this with (7.4), yields the
inequality (7.2), as desired. [ ]

For our main lemma of this section we make use of the (somewhat crude) inequalities.

Fact 7.4. For j > 3, we have

min{(cos #)/ — cos jO} < —1/2; (7.10)
feR

max{(cos 6)’ —cos jO} > 1/2. (7.11)
feR

As mentioned before, we apply a clever idea from the work of De Angelis and Berg-
weiler, Eremenko and Sokal and use the non-negativity of another “difference function:

u(|z]) —u(z).
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Lemma 7.5. Fors € (0,1/2) and L > 2, let u be a weakly-positive, symmetric harmonic
Sfunction on B(1,2s) and let (a;); be its normalized cumulant sequence. If (a;) ;2 is a
non-zero sequence and

L
Z lajls’ > Z lajls’, (7.12)
j=2 j>L

then there exists a real number s, > s2~°*D for which |as| > si_2|aj|,f0r all j > 2.

Proof. First note that the function U(w) = u(e") is harmonic for w € B(0, s) due to the
inequality |e” — 1] < 2|w]| for |w| < 1/2 and the fact that u is harmonic on B(1, 2s). We
consider the function

Uo(Re(w)) — Up(w) = uo(le”]) —uo(e®) > 0, (7.13)

where the inequality follows from weak positivity. Now, writing w = pe'? and considering
the series expansion of Uy around w = 0 (Lemma 3.1), we have

F(p.0) = Up(pcos ) = Up(pe'”) = ) a;p (cos0)) = cos j6),
j>2
forall 0 < p < s. Since a; is not identically O for all j > 2, we may apply Lemma 7.1 to the
sequence (|a;|)j>2 with A =4, to get an integer £ € [L] and a real number s, > §270(L+1)
so that

lae|st > 4 Z |a;|st. (7.14)
2<izl

We now use weak-positivity to see that £ = 2. For this, assume ¢ > 2 and apply Fact 7.4 to
find a 6 for which
ar((cos g)" — cos £6y) < —lacl/2. (7.15)

We write
F(s4,60) = agst((cos o)’ — cos £6p) + Z ajsi((cos 60)’ — cos jo)
2<j#t
and apply (7.15) to bound the first term on the right-hand-side and apply the triangle-

inequality to bound the sum. We obtain

—laclst

> +2 Z |aj|si<0,
2<j#¢

F(s0,60) <

where the last inequality follows from (7.14). However this contradicts the positivity of F
(7.13). We therefore conclude that £ = 2 and so, from (7.14) again, we have that

lasls? > 4" Jails’ > 4la;ls,

i3

for any j > 3, as desired. ]
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8. Proof of Lemma 8.1 : the final stroke

In this section we combine the ingredients from the previous sections to prove Lemma 8.1.
What we state here is slightly stronger than what we need but we make these bounds explicit
for use in later work.

Lemma 8.1. Fore € (0,1), b > Oand n > 1, let X be a random variable with standard
deviation o > 0, logarithmic potential u = ux and normalized cumulant sequence (a;)js1.
If u is b-decreasing and harmonic in B(1, ) and

> lajl (/32) > b, 8.1)

j>2
then rx+, the characteristic function of X* := (X — u)o~!, satisfies

Ux-(€) = exp(—€%/2 + R(£)),
where
(1) R(0) =RM(0) =R®(0) =0and
IR (0)] < €1(c20)* ™",

forall € > 3.
(2) In particular',

Jorall ¢ € Cwith |é| < cre0.

Proof. Let yx (&) = Exe'$X be the characteristic function of X, and note that

(@) = exp| 3 1)) | = exp| Y |
izl i>1
where k; is the jth cumulant of X and (a;); is the normalized cumulant sequence. Here,
this expansion is valid for all |¢| < £/2 since harmonicity of u in B(1, £) implies analyticity
of ¥ in B(0, £/2) due to the inequality |1 — e”| < 2|w| for |w| < 1/2. Now note that yyx+ (&) =
wx(f/a)e‘i% is the characteristic function of X*. Using the fact that a; = u and a; =
—o0 /2, as noted at (3.4) and (3.5), we have

U (&) =exp| €212+ ). (i) 8.2)

>3

12We can take the constants c1 = 23246, cy = 23246
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and so we define

R =) L), 83)

>3

We now apply Lemma 6.1 to bound R. To see that we may apply this lemma, note that (8.1)
implies condition (6.1) in Lemma 6.1; the logarithmic potential u = uy is weakly-positive
and symmetric in B(1, €) (as noted in Section 3); and u is b-decreasing and harmonic in
B(1, ), by assumption. Therefore

Yo lajl(e/32))
Y2 lajl(e/32))

for all L > 2. Now, if we choose L = 2 + log, C we have that

<C-27%,

Z lajl(2/32)7 > " la;l(s/32)7, (8.4)
Jj>L
and so we may apply Lemma 7.5 with L = 539 and s = £/32 to obtain a s, > 273**¢ for
which
= laz| > 5] 7%|ay]. (8.5

And so for j > 3 the jth term in the expansion of R(¢) is

IRV (0)]

1 =lajle ™ < (o),

and so, for |£]| < s.0, we have

la j||§| el £°
REI< ), = Z (5.0)772 ~ s.0(1=[€]/(5.0)

>3

This means that we can factor
U (€) = e e,

where |R(&)| < 2'5‘ < 22 for €] < (s.07)/2 < 273%0g0r. This completes the proof of

o’
Lemma 8.1. u

9. Proofs of Theorems 1.4 and 1.2

In this section we use Lemma 4.1 along with our main technical lemma, Lemma 8.1 to
deduce our theorems on univariate polynomials. Before we finish these proofs, we need
to quickly derive our “Fourier-inversion” lemma, which allows us to conclude that X is
approximately normal based on the hypothesis that the characteristic function ¥ x is approx-
imately the characteristic function of a normal.
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9.1. Fourier inversion
In this short subsection, we derive the following basic ‘“Fourier inversion” tool.

Lemma 9.1. Let X € R be a random variable with characteristic function . If
w(&) = exp (-£/2+ R(E)),
where |R(€)| < n|é|3 for all |€] < 7, then

sup |P(X < 1) —P(Z < 1)| < 22 max{n, v},
teR

where Z ~ N(0, 1).

Following Lebowitz, Pittel, Ruelle, and Speer, we use the following quantitative result
which can found in the textbook of Feller [25, pg. 538].

Lemma 9.2. Let Z ~ N(0, 1) be a standard normal, let X € R be a random variable and
let (&) be its characteristic function. Then, for all T > 0, we have

U —e ¥

4
: dé + . ©.1)

1 (T
sup|P(X < 1) -P(Z<1)| < —/
teR T J-T

We may now easily derive Lemma 9.1, our Fourier inversion lemma.

Proof of Lemma 9.1: We apply Lemma 9.2 with T = min{~'/8, 7} to obtain

U —e €

4
z dé + . 9.2)

1 /7T
sup|P(X < 1) -P(Z<1)| < —/
teR TJ-T

First note that we may assume 7 < 1, otherwise the theorem is trivial. Let I be the integral in
(9.2) and set a := n~'/3. We bound the I by breaking the integral into two ranges: |¢| € [0, a]
and |£| € [a,T]. For |£] < a, we bound the integrand

eR(E) _q

= €2 <dne PP, 9.3)

Y(E) —e €2
2

since |e? — 1] < 4|z| for |z] < 1. For a < |£| < T, we use the fact that a = n~1/3

with the triangle inequality to bound the integrand

> 1 along

< o EMAeE A | g E AR | ¢ 9,24 (£ IHIR(E)]

W) —e €2
¢

where

1
£ 4+ 1RO =16 (-5 +alel) < -5
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and the last line holds due to the fact that |¢| < T < 1/8, by the choice of T. So, for
|£] € [a,T], we have

_&2Nn
|l/f(§) — T ER s <2e E Mm@ < 3opem € 9.4)

3

due to the fact that exp(—|x|*/3/8) < 16/]x|. Using (9.3) and (9.4) we can bound I by

a T
1< 877/ e‘§2/2|§|2d§+6477/ e~ gg < 2%, 9.5)
0

a
where we have used the facts

/ e_t2/2|t|2 dt =V2rn and / e~ 4t = 2\,

(o] (o)

Putting this together with (9.2) gives the bound

sup |P(X < 1) —P(Z < 1)| < 7' T+ 32max{n, 7'} < 2° max{n, v},
teR

as desired. [

We note that Lemma 9.1, along with our main technical Lemma 8.1, implies the fol-
lowing general result.

Corollary 9.3. For € € (0,1) and b > 0, let X be a random variable with logarithmic
potential ux and normalized cumulant sequence (a;) ;. If ux is b-decreasing and harmonic
in B(1, &) and

> lajl(s/32) > b, 9.6)
j=2
then!?
1
sup;r|P(X* <) -P(Z<1t)|=0 (—) ,
ET

where Z ~ N(0, 1) is a standard normal.

9.2. Proof of Theorem 1.4

We are now ready to prove our main theorem on random variables with roots avoiding a
sector.

Proof of Theorem 1.4. Let X € {0, ...,n} be a random variable for which its probability
generating function fx has no roots in the sector S(5). This means that its logarithmic
potential u(z) = ux(z) is a weakly-positive, symmetric and harmonic function on S(6).

13Here, the implicit constant Corollary 9.3 can be taken to be 2325,
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Also, since fx is a polynomial, we have that u(z) = O(log|z|) and u(1/z) = O(log|z]) as
z — oo. Finally note that we may assume o > 0, otherwise the statement of Theorem 1.4
is meaningless.

We first look to apply Lemma 4.1 to show that u is decreasing in a neighborhood
of 1 € C; that is, b-decreasing for b = 0. For this, note that for all R > 1 we have that
Sr(6/2) € S(6/2) and so u is harmonic in a neighborhood of Sg(§/2). Set r := 2 and we
check, in accordance with (4.1), that

2\ /8
(—) max  |u(z)] =0(R—1/510gR) =0,
R z€55(0,6)
as R — oo, due to the growth condition on u. Thus we may apply Lemma 4.1 to learn that
u is b-decreasing in S5 (0, §/2) for every b > 0, and therefore is decreasing.

We now look to apply Corollary 9.3 to finish the proof of the theorem. For this we only
have to check the condition at (9.6), which easily follows from the fact that o > 0. Since
u is 0-decreasing and harmonic in B(1,§/4), we may apply Corollary 9.3 with € = §/4 to
finish the proof. ]

9.3. Proof of Theorem 1.2

The proof of Theorem 1.2 is similar to Theorem 1.4. In the proof of Theorem 1.2 we work in
a tiny truncated sector which we place in the zero-free ball B(1, &) and then estimate ux (z)
on the ends S% () of the boundary dSg (). This estimate is the content of the following
lemma.

Lemma 9.4. For 6 € (0,1/2), let X € {0, ...,n} be a random variable for which fx has
no roots in the ball B(1,8). For € € (0,6/4) and R =1 + 6 /4, we have

max ) lux(z)| < Tnlog(4/6).

zeS;, (&

Proof. Note that z € Sy (&) implies |z — 1| < /2. Write z = 1 + 5 and expand

[1(0e 2] - Selre 12

Since |1 — 4| > 6 and |s| < §/2 the triangle inequality implies

ux(l+s) =log|fx(1+s)| =log

max |ux(z)| < n max [log|l+y|| <2n.
z€Sg (e yI<1/2

Proof of Theorem 1.2 : Let X € {0, ...,n} be a random variable for which its probability
generating function fx has no zeros in the ball B = B(1, ), for § € (0, 1/2). Note that we
may assume that o > 26! log n otherwise (1.1) is trivial, with implicit constant 2'°,
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Using the fact that there are no roots in B implies that u(z) = ux(z) is harmonic in
the ball B. We now work in a thin, truncated sector inside of B. In particular, we set € =
6/(32logn), R=1+6/4,r =1+ ¢ and work in the sector S := Sg(&). Since Sg(e) C B,
we have that u is harmonic in a neighborhood of Sk (¢).

Now choose b = 1 and, looking to apply Lemma 4.1, we verify (4.1). First note that for
n>3,

1 § 6
—logR/r > (321logn)é~'(log R —logr) > logn (4_1 -3 > 4logn.
E

~———

and therefore

1 1 2
——logR < —<(2n) < =, 9.7
exp( log /’)ze?;;?ag)'“@' <= 0.7

using Lemma 9.4. Thus (9.7) is at most 1 - (3/8), for n > 3, and thus we may apply
Lemma 4.1 to conclude that u is 1-decreasing in B(1, &).

We now look to apply Corollary 9.3. Since u is 1-decreasing, weakly-positive and
harmonic in B(1, &), we only need to check condition (9.6) for b = 1. This is easily done

as
s ()5 (270 )Ly,
~ U il >1=0b,
;'all(s/) (32) (zlologn)

where we have used the assumption that o > 219671 log n, since the statement is trivial
otherwise. We now apply Corollary 9.3 with € = §/(321og n) to complete the proof. =

10. Multivariate central limit theorem for strong Rayleigh measures

In this section we prove that strong Rayleigh distributions satisfy central limit theorems.
For a d x d positive semi-definite matrix A and a vector u € R? we define N(u, A) to be
the multivariate Gaussian random variable with mean u and covariance matrix A. To prove
that a random variable X € R is a multivariate normal distribution, we show that “many”
of its one dimensional projections (X, v) are Gaussian. We will then apply a variant of
the famous Cramér-Wold theorem which will allow us to conclude that X itself must be a
multivariate Gaussian.

The key connection between stable polynomials and univariate polynomials that have
no roots in a sector comes from the following fundamental observation, first made by
Ghosh, Liggett and Pemantle [28].

Lemma 10.1. Let Y € Z¢ be a finitely supported random variable with real-stable prob-
d
>0
Sfunction of (v,Y) has no zeros in the sector S(n/||v||c)-

ability generating function fy. If v = (vy, ...,vg) € Z2 then the probability generating

Proof. Let fy be the probability generating function of Y, let f, be the probability gener-
ating function of Y (v) := (v,Y) and let £ be a root of f,. First note that

fo(2) = fr (@™, ....2"). (10.1)
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Now write £ = re'?, for r > 0, and @ € [-n, n]. Since f, € R[z], we may additionally
assume that # € [0, 7], by possibly replacing re’? with its conjugate. From (10.1), we see
that (r'1e?1?, ... rbaeiva%) is aroot of fy(z1,...,zq) and therefore, by the real-stability
of f, there is some i € [d] with sin(v;0) < 0 and therefore 6 € (Uﬂi,n] C (m r]. m

Lemma 10.1 allows us to use Theorem 1.4 to show that all the projections of a strong
Rayleigh distribution are approximately normal, in non-negative integer directions. Note
that we will take the degenerate normal N (0, 0) to also be a normal random variable:
indeed, this measure is simply the point mass at 0.

Lemma 10.2. Foreachn > 1, let X,, € {0, . ..,n}? be a strong Rayleigh distribution with

mean W, covariance matrix A, and maximum variance 0'3. Put X, = (Xn — tn)o,, I If

d

Sor e have that

o, — oo and o-,l‘zA,, — A, then forallv € Z
(X, vy = N(O, v Av),
in distribution.

Proof. Let us put Y, (v) := (X, 0) = v1 X1 + -+ - +vgXy. Note that EY,, (v) = (v, u,) and
that
Var (Y, (v)) = v’ A,v. (10.2)

From Lemma 10.1, we see that the probability generating function fy, (,y of ¥, (v) has no
roots in the sector S(8) where § = 71/||v]|co-

There are two cases: when v is in the null-space of A and when v is not in the null space
of A. Let us first assume that Av # 0. In this case we have

1imV:clr(Y,,(v))O',j2 = limo” (a',:zAn) v=0lAv %0,
n n

and in particular Var(Y,, (v)) — oo. Thus we may apply our central limit theorem for random
variables avoiding a sector, Corollary 1.5, to see that

Y, (v) —EY,(v)

A0 — N(0,1)

and therefore
On

_ Ya(v) - EY, (v)
(0T Apv)!/?

X* vy = — N0, 1).
< n > (I)TAnl))l/2 ( )
Since (0" A,v)"/207;! tends to a constant as n — oo, it follows that
(X,,,v) = N(O, ! Av),

as desired.
In the other case, we have that Av = 0 and therefore Var(Y,,(v))o,, > — 0. So, for all
x > 0, we may apply Chebyshev’s inequality to see that

P (¥ (v) — BY, (0)| > x07) < Var(¥y (v)) (x0) > = o(1).
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This simply means that (Y, (v) — EY,,(v))o,; ! tends to a point mass at zero, in distribution.
So trivially,
(X:, vy — N(0,0) = N(0,0" Av),
as desired.
L]

To “lift” this information about the projected random variables, we appeal to a theorem
of Cuesta-Albertos, Fraiman and Ransford [20], which will allow us to conclude that the
distribution of our multivariate random variable is approximately normal from the fact
that “many” of its projections are normal. To properly state this result, we let v be a Borel
probability measure on R? and, for v € R?, we define the measure v, to be the “projected”
measure on R defined by

vo(B) =v ({x eRY: (v,x) € B}) s

for every Borel set B C R. If # is another Borel probability measure on RY, we define
II(v,7) C R4 to be the set of v € R? for which #, = v,. In this notation, the classical Cramér-
Wold Theorem [19] says that if v, ¥ are Borel probability measures such that IT(v, ) = R¢
then v = 7. Cuesta-Albertos, Fraiman and Ransford [20] have sharpened this result by
showing that it is enough for II(v, ¥) to not be contained in the zero-set of a polynomial.
We shall only make use of the following corollary of this theorem.

Corollary 10.3. Ford > 1, let A be d X d positive semi-definite matrix and let v 5 be the
Gaussian distribution on R? with covariance matrix A and mean zero. If v is a measure
for which T1(v4,v) 2 Zfo then vy = v.

Recall that a sequence of Borel probability measures v,, on R¢ is said to be tight, if for
every € > O there exists R = R(&) > 0, so that the ball B(0, R) satisfies v, (B(0,R)) > 1 — &,
for all sufficiently large n. For the proof of Theorem 1.6, we need two basic facts about
tight sequences of measures (see, e.g., [9, Theorem 25.10]): For each n > 1, let X, € R4
be a random variable, with finite mean y,,, covariance matrix A,, and maximum variance
o2 € (0,00).If v, is the law of X := (X,, — u,,) 0, ! then v,, is a tight sequence of measures.
Secondly, we need that if v,, is a tight sequence of Borel probability measures on R¥ then
there exists a subset S € N and a Borel probability measure v for which v,, — v, weakly,
forn € S.

We can now finish the proof of Theorem 1.6.

Proof of Theorem 1.6. For each n > 1, let X,, € {0, ...,n}% be a random variable with
mean u,, covariance matrix A,, maximum variance 0',% and let v, be the law of X, :=
(Xn — un)o,, 1 We have that o, 2A,, — A, for some (non-zero) matrix A.

Let v4 denote the law of N (0, A); we show that every subsequence has a further sub-
sequence that converges to v4, which is enough to conclude that v,, — v4. For this, let
S c N; by tightness of {v,}, we may find S’ C S so that along S’ we have v,, — v’
for some measure v’. Convergence in distribution together with Lemma 10.2 imply that
(va,v') 2 Zio. Corollary 10.3 then implies v’ = v4. This completes the proof. |
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Remark 10.4. We point out that our results here easily generalize beyond real stable poly-
nomials to other situations where fx satisfies a certain “half-plane property”. To take a
well-known example, we say that a polynomial is Hurwitz stable if it has no roots in

{(z1,...,2q) € cd . Re(z;) > 0, forall i}.

Our work here implies a version of Theorem 1.6 in the case that fx is Hurwitz stable. In
fact, the only point to check is Lemma 10.1 and the rest of the proof proceeds in the same
way.

More generally, let ¢ € (0, 27) and define

Hgy :={(z1,...,2q) € ce . arg(z;) € [0, ¢], forall i}.

We say that a polynomial f is H4-stable if it has no roots in H. It is not hard to see that
our results imply a central limit theorem for a sequence of random variables X, when the
fx,, are H 4-stable polynomials and ¢, — oo.

11. Sharpness of results

In this section we show that our quantitative results (Theorems 1.2 and 1.4) are sharp up to
the implied constants. From this it will also follow that the conditions in the limit theorems,
Corollaries 1.3 and 1.5, are best-possible.

Our constructions follow from a few simple observations. This first observation gives
a cheap bound on the discrepancy between a discrete random variable and the standard
normal distribution. Recall that we use the notation X* to denote (X — u)o~!, for arandom
variable X.

Observation 11.1. Let X € Z be a random variable with mean u < oo and standard devi-
ation'* o € [273, ). Then

6_16

sup|P(X* <) -P(Z< )| 2 —,
teR o

where Z ~ N(0, 1).

Proof. Note that since X € Z, we have X* := (X — u)o~! € %(Z — ). Find values a, b €
Z—-psothatb—a=1,a<0andb > 0. Then P(X* € #(a,b)) = 0 while

b/ 12 -8
Plz e l(a,b) - ;/ ‘Te,sz/zds > ;/ ”e,sz/zds > e ’
g (2m)1/2 alo 2m)172 Jo 2\V2ror

14The 273 is an arbitrary choice, we just needed a sufficiently small number for the application
of Theorem 11.3.
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where Z ~ N(0, 1) and we have used that one of |a| or |b| must be at least 1/2. This allows
us to obtain a lower bound on the maximum discrepancy between the two cumulative
distribution functions. We have

2sup |P(X* < 1) -P(Z<1)| 2 |[P(X*<bjo)—P(Z < blo)]
teR
+|P(X* < alo)-P(Z < alo)|,

which is at least

e 8

2 2770',

1 1
P (Z € —(a, b)) -P (X* € —(a,b)) >
g a
by the triangle inequality. Lower bounding the constant by e ~'® completes the proof. =

The next basic observation records a key “trick” in our constructions. It says that the
transformation X +— k - X does not change the maximum discrepancy with a normal. How-
ever, the standard deviation increases as o (k - X) = ko (X).

Observation 11.2. Let Y € Z be a random variable with finite mean u and standard devi-

ation o € [2’3,00). Fork >0,let X=k-Y. Then

ck
supP(X* <t)-P(Z<1)| = ,
teR o(X)

16

where we can take c = e~
Proof. Note that o(X) = ko (Y) and EX = kEY thus
X'=(X-EX)o(X)"' =¥ -EY)o(Y¥) ' =Y,

and so
sup|P(X* <) —P(Z< )| =sup|P(Y*" <1)—P(Z < 1)
teR teR

Thus, applying Observation 11.1 to ¥ yields

e~ 16 ck

sup|P(X* <1)-P(Z<1)| > = —,
W IP(XT< ) =Rz < 01> 06 = 5%

as desired. [

Our constructions for both theorems in this section are achieved simply by applying
Observation 11.2 to an appropriate “seed” random variable. For Theorem 11.3, we make
use of a simple class of random variables. If 8 € [x/2, n], the polynomial

Py0(2) = (z - pe'?)(z - pe ) = 22 = 2p(cos 6)z + p*
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has non-negative coefficients and therefore P,, ¢(z)(P,,¢(1))! is the probability generat-
ing function of a random variable, which we shall denote by Y, 4.

Now note that for each fixed 6, as p > 1 increases, Var(Y), ¢) decreases as a continuous
function of p. Further, each random variable is non-degenerate for p € [1, c0), implying
Var(Y,.¢) > 0. Since we also have lim,_,., Var(¥, ¢) = 0, there exists some a(6) > 0 so
that {Var(Y, ¢)}p>1 2 [0, a(6)].

Theorem 11.3. Foreveryé € (0,7] and o > QO with §o > 1, there exists a random variable
X € Zso, which is supported on finitely many integers, with standard deviation o and
probability generating function fx for which 6 = ming. r(z)=o | arg({)| and

sup|P(X* <t)-P(Z<t)| 2 —,
teR oo

where we can take ¢ = 6_16.

Proof. Let (o, ) be given. As U‘]->O[7r/2f+1, n/2/] = (0, ], we may write § = 6/k, for
some k € N and 6 € [n/2, 7] and note that 1 < do = (6o)/k. We start by constructing
a random variable Y with standard deviation o/k > 273 and min, |arg({)| = 6. We then
finish by applying Observation 11.2.

For p, m to be chosen later, let ¥; be independent copies of Y, ¢ and let

Y:ZY,-.

i=1
Of course, o (Y) = ml/za'(Yp,g) and thus, from the discussion that precedes Theorem 11.3,
we may choose m, p so that ml/ 20’(Yp,9) = o/ k. Moreover, every root ¢ of the probability
m
generating function fy = (fypyg) of Y has arg(¢) € {-0, 6}.

Finally, set X = k - Y. The probability generating function of X is fx(z) = fy(z*) and
thus the roots £ of fx satisfy

2
arg({)e{t@/k+% modZn:é’e{O,...,k—l};

and therefore ming. 7, (£)-0 | arg({)| = 8/k = 6. From Observation 11.2, we have that

-16

sup[P(X* < 1) —P(Z< )| 3 Sk 5 ¢
reR b ST o) 7 so(x)

where the last inequality follows from the fact that k6 = 6 € [n/2, n]. This completes the
proof. ]

The following shows that Theorem 1.2 is sharp. Here, we apply Observation 11.2 to a
sum of Bernoulli random variables.
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Theorem 11.4. Forn> 1,6 >0ando? € [1,n°?) satisfying —=— Og" < 1 there exists a random
variable X € {0, ..., n} with standard deviation o so that mmg_fx(g)zo |1 =¢| = 6 and

clogn

supP(X* < t)-P(Z< 1) =
teR oo

Proof. Let {Y;};>1 be independent and identically distributed Bernoulli random variables
where p := P(Y; = 1) will be chosen later. Of course, we have that Var(Y;) = p(1 — p) and
the probability generating function of ¥; is pz + (1 — p). We set

Ln/k]

Y = Z Y;,
i=1

with k := |logn/(1006) ] and note that Var(Y) = I_%J p(1 —p). We define X := kY and set
p =n~%with a € [0.01, 1) to be chosen later. To apply Observation 11.2 to X, we require
that Var(Y) > 1/8; and so we impose the condition

=@ 5 log n/(1005)

to guarantee this. Now,
Var(X) = k> [ J (1-p),

is a continuous function of @ as p = n~“. Also

ogn
Var(X) < knp(1 = p) < IOgO(S 1=a(] _pm9),

and

lgn
Var(X) = knp(1=p) —k*p(1 = p) > =1 -
ar(X) > knp(1 - p) p(l1-p) 2005" ( ),

where the last line holds when n > log n/(2006) > k/2, which always holds for us as
n > o > logn/é, by hypothesis. So as @ € [0.01, 1) varies subject to nl“’ log n/(lOO(S)
Var(X ) ranges over a set containing the interval [§ ‘2(10g n)z, 9] < 1 and
0?2 < n% we may select @ € [0.01, 1) so that Var(X) =

Now note that deg( fx) = k|n/k] < n and thus X € {0 .,n}. Since fx(z) = fy(z5),

1/k
the roots ¢ of fx are of the form ¢ = 8 (]Tp) , where || = 1, which allows us to bound

min |l = 2| 3 [1 = ™| = |1 = e¥logn/llogn/(1008)]| 5 5
tin |1 -

Applying Observation 11.2, we see that

k 1 Cl
sup [P(X* < 1) —P(Z<1)| > c > clogn S Ogn,
teR o(X) = 10060 So

as desired. [
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12. General distributions

In this brief section we discuss how to apply our results to random variables that take
values in R, rather than just in {0, ..., n}. In short, everything for Theorem 1.4 extends
rather naturally, but a few extra complications arise.

The first task is to fix an appropriate notion of the probability generating function of X.
Luckily, there is already a standard definition in this situation. First set 7" := exp(r log z),
for all » € R, where “log” denotes the standard branch of the logarithm; then define

fx(z) == Ex 2%,

for all z € C \ Ry, to be the probability generating function of X.

We now happen upon a feature of the more general set-up: fx does not necessarily exist
for all z and therefore it may not make any sense to discuss the zeros of fx(z) at all. To
ensure the existence of f, for all z ¢ R, it is enough to impose the condition fz(p) < oo
for all p > 0. With this assumption in hand, Morera’s theorem shows that f is analytic as
well:

Lemma 12.1. Let X € R be a random variable and let fx be its probability generating
Sfunction. If f(p) < oo for all p > 0 then fx(z) is analytic in C \ Rgo.

Proof. Lety be apiecewise C! closed contourin C \ R<g. Since log z is analytic in C \ R,
Fubini’s theorem shows

%fx(z) dz = Ex j{ exp(Xlogz)dz=0.
y y

Morera’s theorem then implies fx is analytic in C \ Ry. ]

A second subtlety concerns the asymptotic growth of the logarithmic potential ux (z) :=
log | f(z)], for |z| very large and very small. For k,§ > 0 we say that u satisfies the («, §)-
growth condition if we have

0@ _ ot i /2]

lzl-e0  [2]¥ lz|l—oe0 |z|%

0, (12.1)

where the limits are taken with z € S(6).

In previous sections, we could ignore (12.1), as uy trivially satisfies the («, §)-growth
condition for all x > 0 when fx is a polynomial. Here, however, we are forced to take the
rate of growth into account, as it directly affects the convergence to a normal distribution.

We now state our main general theorem for zero-free sectors of probability generating
functions.

Theorem 12.2. For 6§ > 0, and k > 0 let X € R be a random variable with probability
generating function fx for which f(p) is defined for all p € Ry. If ux satisfies the (k,0)-
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growth condition and fx has no zeros in S(6) then

sup|P(X* <) —P(Z<t)|=0 ( (12.2)

teR

where Z ~ N(0, 1).

max{6~!, k}
O_ 9

Again, this theorem is sharp with respect to the dependence on «, 6 and o, as we shall
see in Subsection 12.2.

12.1. Proof of Theorem 12.2

We first notice that many of the properties of the logarithmic potential of X easily carry
over to this more general setting. Indeed, if fx is zero-free in the sector S(6) then u(z)
is harmonic in this sector. Also u(z) is symmetric, and weakly positive. We also have
that fx (1) = 1 and therefore ux (1) = 0. With these observations at hand, we may prove
Theorem 12.2 as we proved Theorem 1.4

Proofof Theorem 12.2. Let X € R be arandom variable with probability generating function
fx, satisfying fx(p) < oo, for all p > 0; that is zero-free in the sector S(&); and so that ux
satisfies the (k, §)-growth condition. By the discussion above, we know that the logarithmic
potential u = uy is harmonic, symmetric and weakly-positive in S(d). Also note that we
may assume that o > 0, otherwise the statement of the Theorem 12.2 is meaningless.
We now choose £ = min{§/2, %} and note that u is a weakly-positive, symmetric and
harmonic function on the smaller region S(&). Now, looking to apply Lemma 4.1, we set

r := 2 and note that

2 1/e
(—) max |u(z)| =0 (R_l/“’() =0(R™*) -0 (12.3)
R zeS (&)

as R — oo. Thus, we may apply Lemma 4.1 to learn that u is decreasing in S(&/2). This
implies that u is decreasing in B(1, £/4). Since o~ > 0, u satisfies the conditions of Corol-
lary 9.3, which finishes the proof. ]

12.2. Proof of the sharpness of Theorem 12.2

Theorem 12.3. Let «, 6 € (0, ) and o be so that o - min{8, 1/«k} > 1. Then there exists
a random variable X € Z with standard deviation o so that uy is harmonic in S(6), ux
satisfies the (k, 8)-growth condition, and

sup|P(X* <t)-P(Z< )| =
teR

-max{x,6"'}. (12.4)

SEAY

15The implicit constant may be taken to be 23238,
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Proof. If § < 1/«, we apply Theorem 11.3 to obtain a random variable X € Zs( which
has finite support and satisfies (12.4). Here, fx is a polynomial so log | fx| = O(log |z|) =
O(lzl*).

In the case of & > 1/, let Y be the Poisson random variable with mean 40 /«2. Then
Y € Zwith o (Y) =20 /k. Set X = (k/2) - Y and note o-(X) = o and

4 2
MX(Z) = % (ZK/2 _ 1) ,

which is harmonic in S(6) and satisfies the specified growth conditions. Applying Obser-
vation 11.2 completes the proof. ]
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