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Central limit theorems and the geometry of polynomials

Abstract. Let 𝑋 ∈ {0, . . . , 𝑛} be a random variable, with mean 𝜇, standard deviation 𝜎 and let

𝑓𝑋 (𝑧) =
∑︁
𝑘

P(𝑋 = 𝑘)𝑧𝑘 ,

be its probability generating function. Pemantle conjectured that if 𝜎 is large and 𝑓𝑋 has no roots
close to 1 ∈ C then 𝑋 must be approximately normal. We completely resolve this conjecture in the
following strong quantitative form, obtaining sharp bounds. If 𝛿 = min𝜁 |𝜁 − 1| over the complex
roots 𝜁 of 𝑓𝑋 , and 𝑋∗ := (𝑋 − 𝜇)/𝜎, then

sup
𝑡∈R

��P(𝑋∗ ⩽ 𝑡) − P(𝑍 ⩽ 𝑡)
�� = 𝑂

(
log 𝑛
𝛿𝜎

)
where 𝑍 ∼ N(0, 1) is a standard normal. This gives the best possible version of a result of Lebowitz,
Pittel, Ruelle and Speer. We also show that if 𝑓𝑋 has no roots with small argument, then 𝑋 must be
approximately normal, again in a sharp quantitative form: if we set 𝛿 = min𝜁 | arg(𝜁) | then

sup
𝑡∈R

��P(𝑋∗ ⩽ 𝑡) − P(𝑍 ⩽ 𝑡)
�� = 𝑂

(
1
𝛿𝜎

)
.

Using this result, we answer a question of Ghosh, Liggett and Pemantle by proving a sharp multivari-
ate central limit theorem for random variables with real-stable probability generating functions.

Keywords: Geometry of polynomials, stable polynomials, strongly Rayleigh.

1. Introduction

In his influential paper on negative dependence, Pemantle [56] set out a list of desir-
able combinatorial properties for “the correct” definition of negatively dependent random
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variables and laid out a number of natural conjectures. In their celebrated paper, Bor-
cea, Brändén and Liggett [14] provided such a definition by making a striking connection
with the blossoming subject of real-stable polynomials; it turns out that the definition that
Pemantle sought is best described in terms of the zeros of the associated probability gen-
erating function. For this, let 𝑋 ∈ {0, . . . , 𝑛}𝑑 be a random variable1, let

𝑓𝑋 (𝑧1, . . . , 𝑧𝑑) :=
∑︁

(𝑖1 ,...,𝑖𝑑 )
P(𝑋 = (𝑖1, . . . , 𝑖𝑑))𝑧𝑖11 · · · 𝑧𝑖𝑑

𝑑
,

be its probability generating function and define

H = {(𝑧1, . . . , 𝑧𝑑) ∈ C𝑑 : Im(𝑧𝑖) > 0, for all 𝑖}

to be the upper half-plane. A polynomial 𝑓 ∈ R[𝑧1, . . . , 𝑧𝑑] is said to be real-stable if it has
no roots 𝜁 in the upper half-plane H and a random variable 𝑋 is said to be strong Rayleigh
if its probability generating function 𝑓𝑋 is real-stable. Borcea, Brändén and Liggett showed
that strong Rayleigh random variables admit a natural theory of negative dependence and
provided many natural examples of strong Rayleigh distributions: spanning tree distribu-
tions, uniform random matching distributions in graphs and determinantal measures. In
the years since this notion has been well studied and many further examples have been
found [2, 40, 43, 44, 55, 57, 59, 75].

In addition to the connection with negative dependence, the theory of real-stable poly-
nomials has had many recent successes, notably Borcea and Brändén’s [12, 13] powerful
classification of linear operators that preserve real stability; its role in Marcus, Spielman,
and Srivastava’s spectacular proof of the Kadison-Singer conjecture [50]; and in Gurvits’s
surprising and simple proof of (and extensions of) the van der Waerden conjecture [31,32];
among others [3, 39, 49].

In this paper, one of our main motivations is to finish a program set in motion by
Ghosh, Liggett and Pemantle [28] to show that if 𝑋𝑛 ∈ {0, . . . , 𝑛}𝑑 is a sequence of random
variables, with real stable generating functions, then 𝑋𝑛 tends to a multivariate Gaussian
distribution, after centering and scaling, provided 𝜎𝑛 →∞. We will derive this theorem by
first proving results on univariate polynomials, with much looser restrictions on the roots,
and then “lifting” these results to the multivariate setting.

In the univariate setting, work on the connection between roots of polynomials and
their coefficients reaches back (at least) to Cauchy’s quantitative work on the fundamental
theorem of algebra [16], but was perhaps first intensely studied by Littlewood and Offord
[45–47], Szegő [71], Bloch and Póyla [11] and Schur [66] among others (see [51] for more
discussion). To give a bit of flavor of these results, we mention only one such result from
this vast literature that is most relevant for us here. In 1950, Erdős and Turán [24] proved
that if 𝑃(𝑧) = ∑𝑛

𝑘=1 𝑎𝑘𝑧
𝑘 is a polynomial (𝑎0𝑎𝑛 ≠ 0) with sufficiently “flat” coefficients,

1Throughout the paper we will slightly abuse notation and write 𝑋 ∈ 𝑆, for a random variable 𝑋

and a set 𝑆, as shorthand for “𝑋 takes values in the set 𝑆.”
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meaning ( |𝑎0 | |𝑎𝑛 |)−1/2 ∑𝑛
𝑘=1 |𝑎𝑘 | = 𝑒𝑜 (𝑛) , then the roots of 𝑃 are approximately radially-

equidistributed in the complex plane, meaning that each sector {𝑧 : 𝛼 ⩽ arg(𝑧) ⩽ 𝛽}, for
0 ⩽ 𝛼 < 𝛽 ⩽ 2𝜋 contains roughly 𝑛(𝛽 − 𝛼)/2𝜋 roots. This result has been adapted to
different settings [23] and generalized and sharpened several times [1, 10, 53]. For more
details, we refer the reader to the lovely articles of Granville [30] and Soundararajan [70].

In this paper, we show that a substantial amount of information about the coefficients of
a polynomial can be derived from its locus of zeros, if we additionally assume the polyno-
mial is a probability generating function, which is to say, it has non-negative coefficients. A
surprising first step in this direction is due to Lebowitz, Pittel, Ruelle and Speer [41], who
showed that if, for each 𝑛 ⩾ 1, 𝑋𝑛 ∈ {0, . . . , 𝑛} is a random variable for which 𝑓𝑋𝑛

has no
zeros in a neighborhood of 1 ∈ C, and 𝜎𝑛𝑛

−1/3 → ∞ then (𝑋𝑛 − 𝜇𝑛)𝜎−1
𝑛 tends weakly to

a normal distribution (see also the 1979 work of Iagolnitzer and Souillard in the context of
the Ising model [36]). Inspired by this advance, Pemantle [51, 58], was lead to conjecture
that the variance condition in the theorem of Lebowitz, Pittel, Ruelle and Speer could be
greatly improved.

Conjecture 1.1 ([58]). For 𝛿 > 0 and each 𝑛 ⩾ 1, let 𝑋𝑛 ∈ {0, . . . , 𝑛} be a random variable
with mean 𝜇𝑛, standard deviation 𝜎𝑛 and for which the the roots 𝜁 of the probability
generating function 𝑓𝑋𝑛

satisfy |𝜁 − 1| ⩾ 𝛿. Then (𝑋𝑛 − 𝜇𝑛)𝜎−1
𝑛 → 𝑁 (0,1), provided𝜎𝑛 →

∞.

In recent work, the authors [51] refuted this conjecture by showing that for any 𝐶 > 0
there exist random variables 𝑋𝑛 ∈ {0, . . . , 𝑛} with 𝜎𝑛 > 𝐶 log𝑛 that are not asymptotically
normal and for which 𝑓𝑋𝑛

has no roots in a neighborhood of 1 ∈ C. On the other hand, the
authors also showed that Pemantle was right to suspect that the variance condition in the
work of Lebowitz, Pittel, Ruelle and Speer could be significantly improved, by showing
that it is sufficient to assume 𝜎𝑛 > 𝑛𝜀 , for any 𝜀 > 0.

Here, we completely resolve the conjecture of Pemantle, by showing that𝜎𝑛 (log𝑛)−1 →
∞ is sufficient to guarantee convergence to a normal distribution. In fact, we prove a sharp
quantitative version of this theorem that gives an optimal bound on the maximum discrep-
ancy between a random variable 𝑋 and a standard normal, based only on the distance of
the closest root of 𝑓𝑋 to 1 ∈ C.

Theorem 1.2. Let 𝑋 ∈ {0, . . . , 𝑛} be a random variable with mean 𝜇, standard deviation
𝜎 and probability generating function 𝑓𝑋 and set 𝑋∗ = (𝑋 − 𝜇)𝜎−1. If 𝛿 ∈ (0, 1) is such
that |1 − 𝜁 | ⩾ 𝛿 for all roots 𝜁 of 𝑓𝑋 then2

sup
𝑡∈R

|P(𝑋∗ ⩽ 𝑡) − P(𝑍 ⩽ 𝑡) | = 𝑂

(
log 𝑛
𝛿𝜎

)
, (1.1)

where 𝑍 ∼ 𝑁 (0, 1).

We note that this immediately implies the following limit theorem for distributions
with no roots close to 1 ∈ C.

2The implicit constant can be taken to be 23261.
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Corollary 1.3. For each 𝑛 ⩾ 1, let 𝛿𝑛 ∈ (0, 1) and 𝑋𝑛 ∈ {0, . . . , 𝑛} be a random variable
with mean 𝜇𝑛, standard deviation𝜎𝑛 and probability generating function 𝑓𝑛. If |𝜁 − 1| ⩾ 𝛿𝑛

for all roots 𝜁 of 𝑓𝑛 and
𝜎𝑛𝛿𝑛 (log 𝑛)−1 → ∞

then (𝑋𝑛 − 𝜇𝑛)𝜎−1
𝑛 → 𝑁 (0, 1) in distribution.

The condition on the standard deviation 𝜎𝑛 in Corollary 1.3 is sharp, both in terms of
𝛿𝑛 and in terms of 𝑛.

Our second result (and the main ingredient in the proof of the multivariate central limit
theorem for strong Rayleigh distributions) says we can weaken the variance condition in
Theorem 1.2 all the way to 𝜎𝑛 → ∞ (the obvious3 necessary condition) if we further
assume that the sequence 𝑓𝑛 has no roots in a small sector {𝑧 : | arg(𝑧) | < 𝛿} containing
the positive real axis. Again, we prove a sharp, quantitative version of this by obtaining an
optimal bound on the discrepancy between a normal random variable 𝑍 ∼ 𝑁 (0, 1) and a
random variable 𝑋 , based only on the smallest angle made by a root of 𝑓𝑋 and the positive
real axis.

Theorem 1.4. Let 𝑋 ∈ {0, . . . , 𝑛} be a random variable with mean 𝜇, standard deviation𝜎
and probability generating function 𝑓𝑋 and set 𝑋∗ = (𝑋 − 𝜇)𝜎−1. If 𝛿 > 0 is the minimum
of | arg(𝜁) | over the roots 𝜁 of 𝑓𝑋 then4

sup
𝑡∈R

|P(𝑋∗ ⩽ 𝑡) − P(𝑍 ⩽ 𝑡) | = 𝑂

(
1
𝛿𝜎

)
, (1.2)

where 𝑍 ∼ 𝑁 (0, 1).

Theorem 1.4, immediately implies the following limit theorem for distributions where
the smallest argument of a root just exceeds the reciprocal of the standard deviation.

Corollary 1.5. For each 𝑛 ⩾ 1, let 𝑋𝑛 ∈ {0, . . . , 𝑛} be a random variable with mean 𝜇𝑛

standard deviation 𝜎𝑛 and probability generating function 𝑓𝑛. If the roots 𝜁 of 𝑓𝑛 satisfy
| arg(𝜁) | ⩾ 𝛿𝑛 and

𝛿𝑛𝜎𝑛 → ∞,

then (𝑋𝑛 − 𝜇𝑛)𝜎−1
𝑛 → 𝑁 (0, 1), in distribution.

Again, as we shall see in Section 11, the condition on 𝜎𝑛 is sharp for all sequences
(𝛿𝑛)𝑛.

With Theorem 1.4 in hand, it is not hard to prove our multivariate central limit the-
orem for strong Rayleigh distributions, following a key observation of Ghosh, Liggett and

3The law of (𝑋 − 𝜇𝑛)𝜎−1
𝑛 is supported on point masses of distance ⩾ 𝜎𝑛 so we must have

𝜎𝑛 → ∞ if the sequence approximates the continuous Gaussian distribution.
4The implicit constant can be taken to be 23257.
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Pemantle. To properly state this result, recall that if 𝑋 = (𝑋1, . . . , 𝑋𝑑) ∈ R𝑑 is a random
variable, its covariance matrix 𝐴 = 𝐴(𝑋) is a symmetric, semi-definite matrix defined by

(𝐴)𝑖, 𝑗 := E𝑋𝑖𝑋 𝑗 − E𝑋𝑖 E𝑋 𝑗 ,

and its maximum variance 𝜎2
𝑛 is defined as the ℓ2-operator norm of 𝐴. For a 𝑑 × 𝑑 positive

semi-definite matrix 𝐴 and 𝜇 ∈R𝑑 we denote the Gaussian random variable with covariance
matrix 𝐴 and mean 𝜇 by 𝑁 (𝜇, 𝐴).

Motivated by a vast literature on central limit theorems and multivariate generating
functions [5,6,15,27,60,61], Ghosh, Liggett and Pemantle proved a central limit theorem
for strong Rayleigh distributions, in the case that the sequence maximum variances 𝜎2

𝑛

grows sufficiently quickly, namely 𝜎𝑛𝑛
−1/3 → ∞. In particular, they proved that if 𝑑 ∈

N, and 𝑋𝑛 ∈ {0, . . . , 𝑛}𝑑 is a sequence of strong Rayleigh distributions with covariance
matrices {𝐴𝑛} that satisfy 𝜎−2

𝑛 𝐴𝑛 → 𝐴 and 𝜎𝑛𝑛
−1/3 →∞ then (𝑋𝑛 − 𝜇𝑛)𝜎−1

𝑛 → 𝑁 (0, 𝐴),
weakly. They conclude their paper by asking for the best possible condition on the growth
of 𝜎𝑛 and ask, in particular, if the condition 𝜎𝑛 →∞ is sufficient in their theorem. In [51],
we made progress on this problem by showing that 𝜎𝑛 > 𝑛𝜀 is sufficient, for any 𝜀 > 0.
Here, we are able to completely resolve the question of Ghosh, Liggett and Pemantle by
showing that the obvious necessary condition, 𝜎𝑛 → ∞, is indeed sufficient.

Theorem 1.6. For 𝑑 ∈ N and each 𝑛 ⩾ 1, let 𝑋𝑛 ∈ {0, . . . , 𝑛}𝑑 be a random variable with
covariance matrix 𝐴𝑛 and maximum variance 𝜎2

𝑛 . If the probability generating functions
of 𝑋𝑛 are real-stable, 𝜎𝑛 → ∞ and 𝜎−2

𝑛 𝐴𝑛 → 𝐴, then

(𝑋𝑛 − 𝜇𝑛)𝜎−1
𝑛 → 𝑁 (0, 𝐴),

in distribution.

We can additionally prove a quantitative form of this theorem (in the spirit of The-
orem 1.2 and Theorem 1.4), but we defer this more technical result to a later paper.

It is perhaps interesting to note that in this paper, we make essentially no use of the
rich theory of stable polynomials and, as a result, our work here provides (what appears
to be) a new and flexible tool-set for working with real stable polynomials. To illustrate,
in Section 10 we show that our method immediately implies a version of Theorem 1.6 for
Hurwitz stable polynomials [35], a similar and well studied notion [17,72,73] along with
other polynomials satisfying a similar “half-plane property”. Our methods are also of use
beyond proving central limit theorems. In a subsequent paper [52], we use the tools from
this paper to prove a close connection between the roots of 𝑓𝑋 and the variance of 𝑋 .

1.1. General forms of main theorems

While all of our theorems above have been stated for random variables taking values in
{0, . . . , 𝑛} (the form in which these conjectures were posed), it is not hard to see that our
methods imply similar results for more general random variables if we move to a slightly
more general framework.
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Here we state a result from Section 12, our main technical theorem5, from which all
others follow. Note the condition that 𝑋 is integer-valued is not present at all.

Theorem 1.7. For 𝜀 ∈ (0, 1) and 𝑏 ⩾ 0, let 𝑋 be a random variable with logarithmic
potential𝑢𝑋 (𝑧) = log | 𝑓𝑋 (𝑧) | and cumulant sequence (𝜅 𝑗 ) 𝑗 . If𝑢𝑋 is harmonic in 𝐵(1, 𝜀); for
all 0 ⩽ 𝜃1 ⩽ 𝜃2 and 𝑟 > 0 with 𝑟𝑒𝑖 𝜃1 , 𝑟𝑒𝑖 𝜃2 ∈ 𝐵(1, 𝜀) we have 𝑢𝑋 (𝑟𝑒𝑖 𝜃1 ) − 𝑢𝑋 (𝑟𝑒𝑖 𝜃2 ) > −𝑏;
and ∑︁

𝑗⩾2

|𝜅 𝑗 |
𝑗!

(𝜀/32) 𝑗 > 𝑏,

then
sup
𝑡∈R

|P(𝑋∗ ⩽ 𝑡) − P(𝑍 ⩽ 𝑡) | = 𝑂

(
1
𝜀𝜎

)
,

where 𝑍 ∼ 𝑁 (0, 1) is a standard normal.

To illustrate a more general application of Theorem 1.7, we highlight Theorem 12.2
here, which is a natural generalization of Theorem 1.4, from Section 12. We point out that
there is an additional growth hypothesis on 𝑓 (𝑧) appearing in this statement which was
“invisible” before since it is automatically satisfied for polynomials.

Theorem 1.8. For 𝛿 > 0 and 𝜅 > 0, let 𝑋 ∈ R be a random variable with mean 𝜇, standard
deviation 𝜎 and with probability generating function 𝑓𝑋. If 𝑓𝑋 is defined on R⩾0; is zero
free in {𝑧 : | arg(𝑧) | < 𝛿}; and satisfies�� log | 𝑓𝑋 (𝑧) |

�� = 𝑜( |𝑧 |𝜅 ), and
�� log | 𝑓𝑋 (1/𝑧) |

�� = 𝑜( |𝑧 |𝜅 ),

as 𝑧 → ∞ with | arg(𝑧) | < 𝛿; then

sup
𝑡∈R

|P(𝑋∗ ⩽ 𝑡) − P(𝑍 ⩽ 𝑡) | = 𝑂

(
max{𝛿−1, 𝜅}

𝜎

)
,

where 𝑍 ∼ 𝑁 (0, 1) and 𝑋∗ := 𝜎−1 (𝑋 − 𝜇).

Again, this theorem is sharp in the dependence on all of 𝜅, 𝜎 and 𝛿. It is not hard to
extract a similar generalization of Theorem 1.2 in this setting.

1.2. Background

The use of roots to study combinatorial distributions has a long and distinguished history
in mathematics and has provided many surprising connections, with the most classical
instance coming from the connection between the location of the roots of the Riemann
zeta function with the distribution of the primes.

5See Section 3.2 for the definition of cumulants and Section 12 for appropriate generalizations
of 𝑓𝑋 to non-integer-valued random variables.
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In statistical physics, Lee and Yang [42,74] drew a surprising and influential connection
between the roots of polynomials and phase transitions in physical systems by showing
that the zero-freeness of certain partition functions implies the non-existence of phase
transitions.

In combinatorics, the roots of various polynomials associated with graphs and other
combinatorial objects have been shown to have particular regions without zeros (see, for
example, [26,37,62,63]). The two most classical examples here are the striking theorem of
Heilmann and Lieb [34], which says that the roots of the matching polynomial are real and
the classical theorem of Lee and Yang [42,74] who showed that the roots of the probability
generating function (i.e. the partition function) associated with the number of “up-spins”
of the Ising model on a finite graph, always lie on the unit circle.

In some cases, zero-free regions have been used directly to prove central limit theorems.
In the case of matchings, a line of results [29,33,65], starting with the work of Godsil [29]
and culminating in the work of Kahn [38], used the Heilmann-Lieb theorem to give general
results for when the size of a random matching in a graph is approximately normal. In the
case of the Ising model, the work of Lee and Yang was used to prove central limit theorems
for the number of “up-spins” by Iagolnitzer and Souillard [36] and later by Lebowitz, Pittel,
Ruelle and Speer [41]. In a similar vein, Scott and Sokal [67, 68], who built on the work
of Shearer [69] and Dobrushin [22], showed a close connection between zero-free regions
and the Lovasz Local Lemma, another core probabilistic tool.

The philosophy that appears to have emerged from these advances is that the roots of
combinatorially defined objects often have special structure and admit particular zero-free
regions. This observation was made explicit by Rota, who sought to give “combinatorial
meaning” to the distributions of roots in these settings [64]. In this light, one could see our
results as a general contribution to this program of Rota (his so-called critical program)
by giving combinatorial meaning to the roots of a wide class of polynomials.

2. Outline of Proof

Theorems 1.2 and Theorem 1.4 are proved in parallel and can be thought of as two con-
sequences of the same general method. As such, in the discussion here, we are intentionally
vague about which of these two theorems we are proving. Now, let 𝑋 ∈ {0, . . . , 𝑛} be a
random variable with probability generating function 𝑓𝑋 and consider the characteristic
function of 𝑋 , which is a relative of 𝑓𝑋 and defined as 𝜓𝑋 (𝜉) := 𝑓𝑋 (𝑒𝑖 𝜉 ), where 𝜉 ∈ R. The
relevant feature of the characteristic function is that it detects the closeness between two
probability distributions: a sequence of random variables𝑌𝑛 converge in distribution to the
random variable 𝑌 if and only if the sequence of characteristic functions 𝜓𝑌𝑛 converge to
the characteristic function of 𝑌 𝜓𝑌 point-wise. Of course, our results here are quantitative,
but this fact serves as some guide: to show that 𝑌 is approximately normal it is enough to
show that 𝜓𝑌 (𝜉) ≈ 𝑒−𝜉 2/2, where 𝜓𝑍 := 𝑒−𝜉 2/2 is the characteristic function of the stand-
ard normal 𝑍 ∼ 𝑁 (0, 1). With this in mind, it is natural to center and scale 𝑋 , by writing
𝑋∗ := (𝑋 − 𝜇)𝜎−1 and then to consider the logarithm of 𝜓𝑋∗ , due to the exponential form
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of 𝜓𝑍 . Indeed, we will be able to express log |𝜓𝑋∗ (𝜉) | as

log |𝜓𝑋∗ (𝜉) | =
∑︁
𝑗⩾2

𝑎 𝑗𝜎
− 𝑗Re(𝑖 𝑗𝜉 𝑗 ), (2.1)

where 𝜉 is in a sufficiently small neighborhood of 0 and (𝑎 𝑗 ) is a sequence of real numbers.
It turns out that 𝑎2 = −𝜎2/2 and hence the first term of the series is −𝜉2/2, just as we

saw in the exponent of 𝜓𝑍 . From this vantage, our task is becomes clear: we need to show
that |𝑎 𝑗 | ≪ 𝜎 𝑗 in order to have 𝜓𝑋∗ ≈ 𝑒−𝜉 2/2.

With our goal now laid out, we turn to consider the function 𝑢(𝑧) := log | 𝑓𝑋 (𝑧) | in a
region around 1 ∈ C in the complex plane. Note that here we can quite naturally make use
of our zero-free hypothesis: if 𝑓𝑋 is zero free in a region, then the function 𝑢 is harmonic
in this region. Now, while the fact that 𝑢 is harmonic on a particular region is a useful
property, it is far from enough to prove our main theorems6; we will additionally need to
make particular use of the fact that 𝑓𝑋 has positive coefficients, a property that we use in
the form of “weak-positivity” for the function 𝑢 (see Section 3).

As we will see in Section 4, this notion of weak-positivity interacts nicely with the
harmonic property of 𝑢, to give us another “positivity” notion which we make heavy use
of. For 𝑏 ⩾ 0, 𝜀 > 0, we say that function 𝑢 on 𝐵(1, 𝜀), with 𝑢(𝑧) = 𝑢(𝑧), is 𝑏-decreasing
if for all 0 < 𝜃1 < 𝜃2 < 𝛿 we have

𝑢(𝜌𝑒𝑖 𝜃1 ) − 𝑢(𝜌𝑒𝑖 𝜃2 ) ⩾ −𝑏, (2.2)

where the functions are defined. In Section 4 we prove Lemma 4.1, which is our main tool
for showing that a function is 𝑏-decreasing. This lemma says that if 𝑢 is a weakly-positive,
harmonic function on 𝑆 := {𝑧 ∈ C : 𝑅−1 < |𝑧 | < 𝑅, | arg(𝑧) | < 𝛿} then the function 𝑢 is
𝑏-decreasing if

exp
(
−𝛿−1 log(𝑅/𝑟)

)
max
𝑧

|𝑢(𝑧) | ⩽ 𝑏/10, (2.3)

where the maximum is taken over the “ends” of 𝑆, defined as

𝑆∗ := {𝑧 ∈ C : |𝑧 | ∈ {𝑅−1, 𝑅}, arg(𝑧) ∈ [−𝛿, 𝛿]}.

Without going into details, one can already see two important features of (2.3). Firstly, if
𝑢 is harmonic and weakly-decreasing in an entire sector {𝑧 : arg(𝑧) ∈ [−𝛿, 𝛿]}, then the
left-hand-side of (2.3) can be taken to be arbitrarily small (by letting 𝑅 → ∞) and so we
learn that 𝑢 is 0-decreasing, which perhaps should strike the reader as a reasonably strong
property. Secondly, we note the exponential dependence on the width 𝛿 of the sector. This
ultimately accounts for the factor of log 𝑛 that appears in Theorem 1.2.

With this tool in-place, we turn to show how to use the 𝑏-decreasing hypothesis to get
some control of the sequence (𝑎 𝑗 )⩾2. In a series of steps, we work towards Lemma 8.1 and

6In fact, as we discussed in [51], the results of Lebowitz, Pittel, Ruelle and Speer are actually
sharp if one generalizes their theorem to polynomials that have negative coefficients. Thus, we must
use the non-negativity hypothesis in an essential way.
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its important corollary, Corollary 9.3. These results are perhaps the main technical contri-
butions of this paper and their proof consumes Sections 5-8. Lemma 8.1 says that if 𝑢 is a
𝑏-decreasing, weakly-positive, harmonic function on 𝑆 then the associated characteristic
function 𝜓 of 𝑋∗ must look like

𝜓(𝜉) = exp
(
−𝜉2/2 + 𝑅(𝜉)

)
, (2.4)

where the “remainder term” 𝑅(𝜉) is controlled by |𝑅(𝜉) | ⩽ 𝑐 |𝜉 |3/(𝛿𝜎), for all 𝜉 ∈ R satis-
fying |𝜉 | < 𝑐2𝛿𝜎. Of course, the reader should interpret (2.4) as saying that “𝜓 looks like
the characteristic function of a standard normal, up to the remainder-term 𝑅”.

The proof of (2.4) is carried out in three main steps. The first step is proved in Section 5
where we prove an important supporting result, Lemma 5.1, that allows us to compare the
maximum of 𝑢0 := 𝑢 − 𝜇 log |𝑧 |, a re-normalized form of 𝑢, to a particular function 𝜑𝛾,𝑏 (𝑧)
(defined in Section 3) which is both harmonic and positive on a region containing 1 ∈ C.

In Section 6 we use this “comparison” lemma to prove Lemma 6.1, which tells us that
the sequence (𝑎 𝑗 ) 𝑗⩾2 has nice decay properties; for every 𝐿 ⩾ 2, we have that∑

𝑗⩾𝐿 |𝑎 𝑗 |𝜀 𝑗∑
𝑗⩾2 |𝑎 𝑗 |𝜀𝑖

⩽ 𝐶 · 2−𝐿 , (2.5)

provided ∑︁
𝑗⩾2

|𝑎 𝑗 |𝜀 𝑗 > 𝑏,

where 𝐶 is a large, but absolute, constant and 𝜀 ≈ 𝛿.
We stress that (2.5) is a major step towards proving Lemma 8.1 and indeed Sections

5 and 6 are probably the most pivotal in the paper. However, (2.5) is not quite enough.
Roughly speaking, (2.5) says that we have quite a bit of the “mass” of the sequence (𝑎 𝑗 ) 𝑗
is focused on the early terms of this sequence. We actually need to show that “most” of the
mass is on the second term, 𝑎2 = −𝜎2/2.

For this next step, carried out in Section 7, we prove Lemma 7.5, which says that if 𝑢
is weakly-positive and harmonic around 1 ∈ C, and |𝑎 𝑗 | is large for some small 𝑗 ⩾ 2 then
|𝑎2 | must also be large. This allows us to control the magnitude of each of the terms |𝑎 𝑗 |
relative to the value of |𝑎2 |. Applying Lemma 6.1 and Lemma 7.5 in sequence allows us
to deduce (2.4).

Now, while (2.4) tells us that the characteristic function𝜓 of 𝑋∗ is roughly like the char-
acteristic function of a standard normal, we really care about showing that the distribution
of 𝑋∗ is close to the distribution of a standard normal. For this, we need an appropriate
“Fourier inversion” step. This step is carried out in Section 9, just before we go on to deduce
Theorems 1.2 and 1.4.

In Section 10, we turn to use the results developed in previous chapters to prove our
multivariate central limit theorem for strong Rayleigh distributions. This is achieved by
first using a fundamental observation of Ghosh, Liggett and Pemantle that says that if 𝑋 ∈
{0, . . . , 𝑛}𝑑 is a random variable with real-stable generating function, then the characteristic
functions of the one-dimensional projections ⟨𝑋, 𝑣⟩, where 𝑣 ∈ Z𝑑⩾0, have no roots in a small
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sector. Theorem 1.4 then allows us to show all of these these projections are approximately
normal. We then use a strong version of the Cramér-Wold theorem to lift this information
to deduce that 𝑋 itself must be a approximately normal.

In Section 11 we give examples, demonstrating the tightness of our results. Finally,
in Section 12 we briefly discuss how the main results of this paper can be generalized to
go beyond polynomials to prove sharp results for power series and more general analytic
functions.

3. Definitions and basic properties

In this section we fix a few notations and introduce the central objects of our proof.
Throughout, we use the notations R⩾0,R⩽0 and so on, to denote the non-negative reals

and non-positive reals respectively and extend these definitions in the obvious way to Z. If
𝑧 ∈ C, we write 𝑧 = 𝑟𝑒𝑖 𝜃 , where 𝑟 > 0 and 𝜃 ∈ [−𝜋, 𝜋], and then define the argument of 𝑧
to be arg(𝑧) = 𝜃. For −𝜋 ⩽ 𝛽 < 𝛼 ⩽ 𝜋, we define the sector

𝑆(𝛼, 𝛽) := {𝑧 ∈ C \ {0} : 𝛼 ⩽ arg 𝑧 ⩽ 𝛽}

and 𝑆(𝛼) := 𝑆(−𝛼, 𝛼). For 𝑅 ⩾ 1 and 𝜀 > 0, we define the truncated sector

𝑆𝑅 (𝜀) := {𝑧 ∈ C : |𝑧 | ∈ [𝑅−1, 𝑅], and arg(𝑧) ∈ [−𝜀, 𝜀]}

and define
𝑆∗𝑅 (𝜀) := {𝑧 ∈ C : |𝑧 | ∈ {𝑅−1, 𝑅}, and arg(𝑧) ∈ [−𝜀, 𝜀]}

to be the ends of the sector 𝑆𝑅 (𝜀). We also use the notation 𝑆𝑅 (𝛼, 𝛽) = 𝑆(𝛼, 𝛽) ∩ 𝑆𝑅 (𝜋)
in a similar way and use the (standard) notation 𝜕Ω, to denote the boundary of a region
Ω ⊆ C.

3.1. The logarithmic potential

If 𝑋 ∈ {0, . . . , 𝑛} is a random variable7, define

𝑓𝑋 (𝑧) = E 𝑧𝑋 =

𝑛∑︁
𝑘=0
P(𝑋 = 𝑘)𝑧𝑘

to be its probability generating function, 𝜇 = E 𝑋 for its mean and 𝜎2 = Var[𝑋] for its
variance. Also note that 𝑓𝑋 (1) = 1. Now define

𝑢(𝑧) = 𝑢𝑋 (𝑧) := log | 𝑓𝑋 (𝑧) | ,

7For more general random variables, we will assume that 𝑋 has an exponential moment and we
define 𝑓𝑋 for 𝑧 in a neighborhood of 1 by choosing a branch of the logarithm (see Section 12 for
more details).
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to be the logarithmic potential of 𝑋 and observe that if 𝑓𝑋 (𝑧) is zero-free in an open set
Ω ⊆ C then 𝑢 is harmonic on Ω. This key connection will allow us to exploit the theory of
harmonic functions in certain regions ofC. We will say that a function 𝑢 on Ω is symmetric
on Ω if

𝑢(𝑧) = 𝑢(𝑧) (3.1)

for all 𝑧 with 𝑧, 𝑧 ∈ Ω. Of course, the logarithmic potential 𝑢𝑋 (𝑧) is symmetric as 𝑓𝑋 is a
polynomial with real coefficients and so

𝑢(𝑧) = log | 𝑓𝑋 (𝑧) | = log | 𝑓𝑋 (𝑧) | = log | 𝑓𝑋 (𝑧) | = 𝑢(𝑧).

A third key property is particular to the fact that 𝑓𝑋 is a probability generating function;
that is, it is a polynomial with non-negative coefficients. We say that a function 𝑢 is weakly-
positive on Ω if

𝑢( |𝑧 |) − 𝑢(𝑧) ⩾ 0, (3.2)

for all 𝑧 ≠ 0 with 𝑧, |𝑧 | ∈ Ω. Weak-positivity of 𝑢𝑋 follows by taking the logarithm of both
sides of the inequality

| 𝑓𝑋 (𝑧) | = |E𝑧𝑋 | ⩽ E|𝑧 |𝑋 = | 𝑓𝑋 ( |𝑧 |) |.

We also note a useful expression of 𝑢𝑋 in terms of the roots {𝜁 } of 𝑓𝑋

𝑢𝑋 (𝑧) =
∑︁
|𝜁 |<1

log
����1 − 𝜁

𝑧

���� + ∑︁
|𝜁 |⩾1

log
����1 − 𝑧

𝜁

���� + 𝑐𝑋 + 𝑁𝑋 log |𝑧 | , (3.3)

where 𝑐𝑋 is defined so that 𝑢𝑋 (1) = log | 𝑓𝑋 (1) | = 0 and 𝑁𝑋 is the number of roots of 𝑓𝑋

with |𝜁 | < 1.

3.2. The exponential scale

We shall often work with the function 𝑢 = 𝑢𝑋 on an “exponential scale” by defining𝑈 (𝑤) :=
𝑢(𝑒𝑤). Note that 𝑈 (𝑤) is harmonic when 𝑢 is (in the appropriate domains) and is also
symmetric, since

𝑈 (𝑤̄) = 𝑢(𝑒𝑤̄) = 𝑢(𝑒𝑤) = 𝑢(𝑒𝑤) = 𝑈 (𝑤).

The importance of this form is made clear by Lemma 3.1; the Taylor expansion of 𝑈 (𝑤)
at 𝑤 = 0 reveals the cumulants of 𝑋 , which we denote by (𝜅 𝑗 ) 𝑗⩾1. We don’t need to draw
on much external information here about this important sequence, but we do need to note
that the first and second cumulants are familiar probabilistic quantities. Indeed,

𝜅1 =
𝑑

𝑑𝑤
𝑢(𝑒𝑤)

���
𝑤=0

= 𝜇, (3.4)

and
𝜅2 =

𝑑2

𝑑𝑤2 𝑢(𝑒
𝑤)

���
𝑤=0

= 𝜎2 , (3.5)

which exist under the condition that 𝑢 is harmonic in a neighborhood of 1 ∈ C.
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Since our interest is in central limit theorems, when working with 𝑢 it is often useful
to “subtract out” the term corresponding to 𝜇. In particular, define

𝑢0 (𝑧) := 𝑢(𝑧) − 𝜇 log |𝑧 | , (3.6)

and correspondingly define 𝑈0 (𝑤) := 𝑢0 (𝑒𝑤). If 𝑢 is an arbitrary function (that is, not
necessarily coming from a random variable) we may define 𝑢0 and𝑈0 in the same way, by
simply taking 𝜇 := 𝑑

𝑑𝑤
𝑢(𝑒𝑤)

��
𝑤=0, in the case that this quantity exists.

Lemma 3.1. For 𝜀 ∈ (0, 1/2), let 𝑢 be a symmetric harmonic function on 𝐵(1, 2𝜀) ⊆ C
with 𝑢(1) = 0. Then if 𝑈,𝑈0 are defined as above, we may express

𝑈 (𝑤) =
∑︁
𝑗⩾1

𝑎 𝑗Re(𝑤 𝑗 ) (3.7)

and
𝑈0 (𝑤) =

∑︁
𝑗⩾2

𝑎 𝑗Re(𝑤 𝑗 ), (3.8)

for all 𝑤 ∈ 𝐵(0, 𝜀). Where the 𝑎 𝑗 are real numbers and 𝑗!𝑎 𝑗 = 𝜅 𝑗 , where 𝜅 𝑗 is the 𝑗 th
cumulant.

Proof. First note that𝑈 (0) = 𝑢(1) = 0 and that𝑈 (𝑤) is harmonic and symmetric in a ball
𝐵(0, 𝜀), since |𝑤 | < 1/2 and |𝑒𝑤 − 1| ⩽ 2|𝑤 | < 2𝜀.

Now since 𝑈 is harmonic in 𝐵(0, 𝜀), we may write 𝑈 (𝑤) = Re 𝑓 (𝑤) for a function 𝑓

which is analytic in 𝐵(0, 𝜀) (see Conway’s classic text [18], Chapter VIII, Theorem 2.2, p.
202 for a proof). We then express 𝑓 as a power series to obtain

𝑈 (𝑤) =
∑︁
𝑗⩾0

Re(𝑎 𝑗𝑤
𝑗 ) . (3.9)

We now write 𝑤 = 𝜌𝑒𝑖 𝜃 , for sufficiently small 𝜌 > 0, and use the fact that𝑈 (𝑤) =𝑈 (𝑤̄)
to obtain

0 = 𝑈 (𝑤) −𝑈 (𝑤̄) =
∑︁
𝑗⩾0

Re(𝑎 𝑗 𝜌
𝑗 (𝑒𝑖 𝑗 𝜃 − 𝑒−𝑖 𝑗 𝜃 )) =

∑︁
𝑗⩾0

𝜌 𝑗Re(2𝑖𝑎 𝑗 ) sin( 𝑗𝜃) .

By the uniqueness of trigonometric series, we have that Re(2𝑖𝑎 𝑗 ) = 0, implying that 𝑎 𝑗 is
real, for all 𝑗 ⩾ 0. So from (3.9) and the fact that 𝑈 (0) = 0, we obtain (3.7).

To prove the second part of the claim, we simply note that

𝑈0 (𝑤) = 𝑢0 (𝑒𝑤) = 𝑢(𝑒𝑤) − 𝜇 log |𝑒𝑤 | = 𝑈 (𝑤) − 𝜇Re(𝑤).

So (3.7) and the fact that 𝜇 = 𝑎1 yields (3.8).

Throughout the paper we work with the sequence (𝑎 𝑗 ) 𝑗⩾1 rather than the cumulant
sequence (𝜅 𝑗 ) 𝑗⩾1. We call the sequence (𝑎 𝑗 ) 𝑗⩾1 the normalized cumulant sequence.
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3.3. Two important “difference functions” and 𝑏-decreasing

For 𝜏 ∈ (0, 𝜋) and 𝑏 ⩾ 0, we define the function ℎ𝜏 that compares values of 𝑢 reflected
about the line {𝑡𝑒𝑖𝜏/2 : 𝑡 ⩾ 0}

ℎ𝜏,𝑏 (𝑧) := 𝑢(𝑧) − 𝑢(𝑒𝑖𝜏𝑧) + 𝑏. (3.10)

We also define, for 𝛾 ∈ (0, 𝜋), the closely related function

𝜑𝛾,𝑏 (𝑧) := 𝑢(𝑧) − 𝑢(𝑒𝑖𝛾𝑧) + 𝑏. (3.11)

We first observe that if 𝑢 is harmonic in a sector, then ℎ𝜏,𝑏 and 𝜑𝛾,𝑏 are harmonic in a
slightly smaller sector for appropriately chosen 𝜏.

Lemma 3.2. For 𝑅 ∈ (1,∞], 𝛿 > 0, let 𝑢 be a harmonic function in8 𝑆𝑅 (𝛿). Then for
any 𝜏, 𝛾 ∈ (0, 𝛿/2) we have that the functions ℎ𝜏,𝑏 and 𝜑𝛾,𝑏 are harmonic in the sector
𝑆𝑅 (𝛿/2).

Proof. We note that if 𝑣 is harmonic in Ω and 𝛽 ∈ C \ {0} then 𝑣(𝛽𝑧) is harmonic in 𝛽−1Ω

and 𝑣(𝑧) is harmonic in {𝑧 : 𝑧 ∈ Ω}. Also if 𝑣1, 𝑣2 are harmonic in Ω1,Ω2 respectively,
then 𝑣1 − 𝑣2 is harmonic in Ω1 ∩Ω2 (see [4], Chapter 1). Thus, 𝑢(𝑧) is harmonic in 𝑆𝑅 (𝛿)
and 𝑢(𝛼𝑧) is harmonic in 𝑒𝑖𝜏𝑆𝑅 (𝛿) = 𝑆𝑅 (−𝛿 + 𝜏, 𝛿 + 𝜏) and therefore ℎ𝜏,𝑏 is harmonic in
𝑆𝑅 (−𝛿 + 𝜏, 𝛿 + 𝜏) ∩ 𝑆𝑅 (𝛿) ⊇ 𝑆𝑅 (𝛿/2). Likewise, 𝜑𝛾,𝑏 is harmonic in 𝑆𝑅 (𝛿 − 𝛾, 𝛿 + 𝛾) ∩
𝑆𝑅 (𝛿) ⊇ 𝑆𝑅 (𝛿/2).

We now arrive at an essential definition, which we have already mentioned in the over-
view of the proof: 𝑏-decreasing. For 𝑏 ⩾ 0 and Ω ⊆ C, we say a function 𝑢 is 𝑏-decreasing
in Ω if

𝑢(𝜌𝑒𝑖 𝜃1 ) − 𝑢(𝜌𝑒𝑖 𝜃2 ) + 𝑏 ⩾ 0

for all 0 ⩽ 𝜃1 ⩽ 𝜃2 ⩽ 𝜋 with 𝜌𝑒𝑖 𝜃1 , 𝜌𝑒𝑖 𝜃2 ∈ Ω. One nice feature of this definition is that 𝑢
is 𝑏-decreasing in Ω if and only if 𝑢0 is, since

𝑢0 (𝜌𝑒𝑖 𝜃1 ) − 𝑢0 (𝜌𝑒𝑖 𝜃2 ) + 𝑏 = 𝑢(𝜌𝑒𝑖 𝜃1 ) − 𝑢(𝜌𝑒𝑖 𝜃2 ) + 𝑏.

The main motivation behind this definition is easy: it is the correct definition to guarantee
the functions ℎ𝜏,𝑏 and 𝜑𝛾,𝑏 are positive, for all reasonable choices of 𝜏 and 𝛾. Later we shall
make heavy use of this fact by way of the so-called Harnack inequalities. These inequalities
guarantee that ℎ and 𝜑 don’t vary too much on a set Ω away from its boundary.

Lemma 3.3. For 𝛿 > 0 and 𝑏 ⩾ 0, let 𝜏, 𝛾 ∈ (0, 𝛿/2) and let 𝑢 be 𝑏-decreasing and
symmetric in 𝑆𝑅 (𝛿). Then ℎ𝜏,𝑏 (𝑧) ⩾ 0 for all 𝑧 ∈ 𝑆𝑅 (𝜏/2) and 𝜑𝛾,𝑏 (𝑧) ⩾ 0 for all 𝑧 ∈
𝑆𝑅 (−𝛾/2, 𝛿 − 𝛾).

8Here we understand 𝑆∞ (𝛿) to mean the sector 𝑆(𝛿).
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Proof. Let 𝑧 = 𝑟𝑒𝑖 𝜃 ∈ 𝑆𝑅 (𝜏/2) with |𝜃 | ⩽ 𝜏/2. Then

ℎ𝜏,𝑏 (𝑟𝑒𝑖 𝜃 ) = 𝑢(𝑟𝑒𝑖 𝜃 ) − 𝑢(𝑟𝑒𝑖 (𝜏−𝜃 ) ) + 𝑏 .

In the case 𝜃 ∈ [0, 𝜏/2], we have that 𝜃 ⩽ 𝜏 − 𝜃, and thus non-negativity of ℎ𝜏,𝑏 (𝑟𝑒𝑖 𝜃 )
follows from the 𝑏-decreasing assumption on 𝑢. On the other hand, if 𝜃 ∈ [−𝜏/2, 0], we
use symmetry to write

ℎ𝜏,𝑏 (𝑟𝑒𝑖 𝜃 ) = 𝑢(𝑟𝑒𝑖 𝜃 ) − 𝑢(𝑟𝑒𝑖 (𝜏−𝜃 ) ) + 𝑏 = 𝑢(𝑟𝑒−𝑖 𝜃 ) − 𝑢(𝑟𝑒𝑖 (𝜏−𝜃 ) ) + 𝑏

with 0 ⩽ −𝜃 ⩽ 𝜏 − 𝜃 ⩽ 2𝜏 ⩽ 𝛿; non-negativity again follows from 𝑏-decreasing. The proof
for 𝜑𝛾,𝑏 is similar.

It will be important for us that Lemmas 3.2 and 3.3 tell us that both ℎ𝛾,𝑏 and 𝜑𝛾,𝑏 are
harmonic and positive in a sector that contains the positive real axis with room to spare
on both sides. This means that we can work near 1 ∈ C, without getting too close to the
boundary.

4. Weakly positive and harmonic implies 𝒃-decreasing

In this section we prove Lemma 4.1, our main tool for showing that a function is 𝑏-
decreasing.

Lemma 4.1. For 𝛿 ∈ (0, 𝜋) and 𝑅 > 𝑟 > 0 the following hold. Let 𝑢 be a weakly-positive,
symmetric, harmonic function on a neighborhood of 𝑆𝑅 (𝛿). If 𝑏 ⩾ 0 is such that( 𝑟

𝑅

)1/𝛿
max

𝑧∈𝑆∗
𝑅
(𝛿 )

|𝑢(𝑧) | ⩽ 3𝑏/8, (4.1)

then 𝑢 is 𝑏–decreasing on 𝑆𝑟 (𝛿/2).

To prove Lemma 4.1, we use a well-known connection between harmonic functions
and Brownian motion. The following theorem is a special case of Theorem 3.12 from the
book of Mörters and Peres [54] and shows how Brownian motion can be used to recover a
harmonic function from its boundary values.

Theorem 4.2 (Theorem 3.12 of [54]). Let 𝑣 be a function which is harmonic on a bounded,
convex set Ω ⊆ C and continuous on 𝜕Ω, let 𝑧 ∈ Ω and let (𝐵𝑡 )𝑡⩾0 be a Brownian motion
started at 𝑧. If we define the stopping time 𝜏 := min{𝑡 : 𝐵𝑡 ∈ 𝜕Ω} then we have

𝑣(𝑧) = E 𝑣(𝐵𝜏).

In what follows, we will understand 𝜏 to be the stopping time of a Brownian motion
hitting the boundary of Ω, 𝜏 := min{𝑡 : 𝐵𝑡 ∈ 𝜕Ω}, unless otherwise stated.
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4.1. A calculation for Lemma 4.1

To Prove Lemma 4.1, we need an estimate on the probability that a Brownian motion hits
one of the ends of a sector 𝑆𝑅 (𝛿) before hitting the sides.

Lemma 4.3. For 𝛿 ∈ (0, 𝜋) and 𝑅 > 𝑟 > 0, let 𝑧 ∈ 𝑆𝑟 (𝛿) and (𝐵𝑡 )𝑡⩾0 be a Brownian motion
started at 𝑧 and stopped when it hits 𝜕𝑆𝑅 (𝛿). We have

P
(
𝐵𝜏 ∈ 𝑆∗𝑅 (𝛿)

)
⩽

4
3

( 𝑟
𝑅

)𝑐/𝛿
, (4.2)

where 𝑐 = log 4/3.

We should mention that there is an exact formula for the probability in (4.2) and a
proof of this can be found, e.g., in [54, Theorem 7.25]. Here we include a simple proof of
this weaker result, which is still sharp up to the constant 𝑐, to give the reader an intuitive
feel for why we have the exponential dependence in (4.2) on 𝛿. This dependence is quite
important and ultimately explains the logarithmic factor that appears in Theorem 1.2 and
Corollary 1.3.

Our first step towards Lemma 4.3 is to study a similar situation in a square. We shall
then extend this to rectangles, and then use the conformal invariance of Brownian motion
to finish the proof for sectors.

Observation 4.4. For 𝛿 > 0 and 𝑦 ∈ [−𝛿, 𝛿], let 𝐸𝑦 be the event that a Brownian motion,
started at 𝑖𝑦 ∈ C, hits either the left of right edges of the square 𝑆 := {𝑧 : Re(𝑧) ⩽ 𝛿, Im(𝑧) ⩽
𝛿} before the top or bottom edges. Then P(𝐸𝑦) ⩽ 3/4.

Proof. First, for 𝑦 ∈ [0, 𝛿], we consider the event 𝐻𝑦; that a Brownian motion, started at
𝑖𝑦, hits the top edge of 𝑆 before hitting any other edge. We claim P(𝐻𝑦) ⩾ 1/4. If 𝑦 = 0 the
result is clear by symmetry. If 𝑦 > 0, then we couple the Brownian motion (𝐵𝑡 )𝑡 started at
0 with a Brownian motion (𝐵𝑡 + 𝑖𝑦)𝑡 started at 𝑖𝑦 ∈ 𝑆: clearly 𝐵𝑡 + 𝑖𝑦 will hit the top edge
of 𝑆 on every trajectory that 𝐵𝑡 does. So P(𝐻𝑦) ⩾ P(𝐻0) = 1/4. Now, turning to 𝐸𝑦 , simply
note that if 𝑦 ⩾ 0 then P(𝐸𝑦) ⩽ 1 − P(𝐻𝑦) ⩽ 3/4. The case 𝑦 < 0, follows by symmetry.

It is now easy to deduce a version of Lemma 4.3 for rectangles. Here we see quite
naturally where the exponential dependence on 𝛿 appears.

Lemma 4.5. For 𝛿 > 0 and 𝑏 > 𝑎 > 0, let 𝑄 := {𝑧 : |Re(𝑧) | < 𝑏, |Im(𝑧) | < 𝛿}, let 𝑧 ∈ 𝑄

and let (𝐵𝑡 )𝑡⩾0 be a Brownian motion started at 𝑧 which is stopped when it hits 𝜕𝑄. We
have

P (𝐵𝜏 ∈ 𝑄∗) ⩽ exp
(
−𝑐

⌊
𝛿−1 (𝑏 − 𝑎)

⌋ )
, (4.3)

where 𝑄∗ = {𝑧 : |Re(𝑧) | = 𝑏, |Im(𝑧) | < 𝛿} and 𝑐 = log 4/3.

Proof. Let 𝐸𝑦 be the event defined in Observation 4.4 and let 𝑆(𝑧′) be the event that a
Brownian motion, started at 𝑧′ ∈ 𝑄, hits one of the lines {𝑧′ + 𝛿 + 𝑖𝑡}𝑡∈R, {𝑧′ − 𝛿 + 𝑖𝑡}𝑡∈R
before hitting the top or bottom of 𝑄. Clearly P(𝑆(𝑧′)) = P(𝐸𝑦), where 𝑧′ = 𝑥 + 𝑖𝑦.
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We now connect the rectangle-crossing to the box-crossings; a path that hits one of
the ends before hitting the top or bottom of 𝑄 must cross at least ℓ ⩾ ⌊(𝑏 − 𝑎)/𝛿⌋ boxes
without hitting the top or bottom on 𝑄. Therefore we have

P (𝐵𝜏 ∈ 𝑄∗) ⩽ sup
𝑧1 ,...,𝑧ℓ

P (𝑆(𝑧1) ∩ · · · ∩ 𝑆(𝑧ℓ)) ⩽
(
sup
𝑦

P(𝐸𝑦)
)ℓ

, (4.4)

where the supremum is over all complex numbers contained in 𝑄 satisfying 𝑧1 = 𝑧 and
|Re(𝑧𝑖) −Re(𝑧𝑖+1) | = 𝛿 and the second inequality in (4.4) follows from the Markov property
of Brownian motion. Finally, the result follows by applying Observation 4.4.

To prove Lemma 4.3 we simply use an analytic map to transform the rectangle 𝑄 into
the truncated sector 𝑆𝑅 (𝛿). The conformal invariance of Brownian motion allows us to
finish. To state this property of Brownian motion a little more carefully, let 𝜙 : C→ C be
an analytic function and let (𝑊𝑡 )𝑡 be a Brownian motion in C. The conformal invariance
of Brownian motion means that 𝜙(𝑊𝑡 ) traces the path of a Brownian motion, at (possibly)
a different speed. In other words, there exists a increasing function 𝛾 : R⩾0 → R⩾0, a
Brownian motion (𝐵𝑡 ) and a coupling of 𝐵𝑡 and 𝑊𝑡 for which 𝜙(𝑊𝑡 ) = 𝐵𝛾 (𝑡 ) . See the
book of Mörters and Peres [54], Theorem 7.20, for a proof.

Proof of Lemma 4.3: Set 𝑏 = log(𝑅), 𝑎 = log(𝑟) and observe that the analytic function
𝜙(𝑧) := 𝑒𝑧 maps the rectangle 𝑄 = {𝑧 : |Re(𝑧) | < 𝑏, |Im(𝑧) | < 𝛿} to the truncated sector
𝑆𝑒𝑏 (𝛿) = 𝑆𝑅 (𝛿); maps 𝑄 = {𝑧 : |Re(𝑧) | < 𝑎, |Im(𝑧) | < 𝛿} to 𝑆𝑟 (𝛿); and maps the ends
𝑅∗ = {𝑧 : |Re(𝑧) | = 𝑏, |Im(𝑧) | < 𝛿} to the ends 𝑆∗

𝑅
(𝛿).

To finish, choose 𝑤 ∈ {𝑠 : |Im(𝑠) | < 𝛿, |Re(𝑠) | < 𝑏, } so that 𝜙(𝑤) = 𝑧, let (𝑊𝑡 )𝑡⩾0 be a
Brownian motion started at 𝑤 ∈ 𝑅 and let (𝐵𝑡 )𝑡 be a Brownian motion started at 𝑧 ∈ 𝑆𝑅 (𝛿),
and let 𝜏′ be the stopping time 𝜏′ := min{𝑡 : 𝑊𝑡 ∈ 𝜕𝑄}. By conformal invariance, there is
a coupling of (𝐵𝑡 )𝑡⩾0 and (𝜙(𝑊𝑡 ))𝑡 so that they trace the same path. It follows that

P(𝐵𝜏 ∈ 𝑆∗𝑅 (𝛿)) = P(𝜙(𝑊𝜏′ ) ∈ 𝑆∗𝑅 (𝛿)) = P(𝑊𝜏′ ∈ 𝑄∗)

⩽ exp
(
−(log 4/3) ⌊𝛿−1 log 𝑅/𝑟⌋

)
,

where the inequality follows from an application of Lemma 4.5. Utilizing ⌊𝑥⌋ ⩾ 𝑥 − 1
completes the proof.

4.2. The proof of Lemma 4.1

We now turn to the heart of Section 4, Lemma 4.6.

Lemma 4.6. For 𝛿 > 0, 𝑅 > 0, put𝛼 = 𝑒𝑖 𝛿 and let 𝑢 be a weakly-positive harmonic function
on a neighborhood of 𝑆𝑅 (0, 𝛿), let 𝑧 ∈ 𝑆𝑅 (0, 𝛿/2) and let (𝐵𝑡 )𝑡⩾0 be a Brownian motion
started at 𝑧 and stopped when it hits 𝜕𝑆𝑅 (0, 𝛿/2) then

𝑢(𝑧) − 𝑢(𝛼𝑧) ⩾ −2P
(
𝐵𝜏 ∈ 𝑆∗𝑅 (0, 𝛿/2)

)
max

𝑧∈𝑆∗
𝑅
(𝛿 )

|𝑢(𝑧) |. (4.5)
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Proof. We define two coupled Brownian motions starting at 𝑧 and 𝑧◦ := 𝛼𝑧, respectively.
First, let (𝐵𝑡 ) be a Brownian motion started at 𝑧 and, in preparation for defining our
Brownian motion started at 𝑧◦, we define two stopping times: 𝜏 = 𝜏1 := min{𝑡 : 𝐵𝑡 ∈
𝜕𝑆𝑅 (0, 𝛿)} and 𝜏2 := min{𝑡 : 𝐵𝑡 ∈ 𝜕𝑆𝑅 (0, 𝛿/2)}. Now, define the path (𝐵◦

𝑡 )𝑡⩾0 by 𝐵◦
𝑡 := 𝛼𝐵̄𝑡

for 𝑡 ⩽ 𝜏2 and then 𝐵◦
𝑡 := 𝐵𝑡 for 𝑡 ⩾ 𝜏2. We now note that (𝐵◦

𝑡 )𝑡 is in fact a Brownian
motion started at 𝑧◦; this is because it is a Brownian motion, by definition, after time 𝜏2
and it is a reflection of a Brownian motion before time 𝜏2, which is a Brownian motion.
The only thing to note is that 𝐵𝜏2 = 𝛼𝐵̄𝜏2 , that is, the two trajectories agree at 𝜏2, and thus
the whole trajectory is a Brownian motion by the strong Markov property. Also note that
𝜏 = min{𝑡 : 𝐵◦

𝑡 ∈ 𝜕𝐵𝑅 (0, 𝛿)}, by symmetry.
We now apply Theorem 4.2 to 𝑢, and 𝑧, 𝑧◦ in the region 𝑆(0, 𝛿) to express

𝑢(𝑧) = E 𝑢(𝐵𝜏1 ) and 𝑢(𝑧◦) = E 𝑢(𝐵◦
𝜏1 )

and therefore,
𝑢(𝑧) − 𝑢(𝑧◦) = E

(
𝑢(𝐵𝜏) − 𝑢(𝐵◦

𝜏)
)
. (4.6)

To evaluate this expectation, we break up the space of trajectories into three events.
(1) 𝐸1 := {arg(𝐵𝜏2 ) = 𝛿/2}, the event that 𝐵𝑡 , 𝐵◦

𝑡 meet;
(2) 𝐸2 := {arg(𝐵𝜏2 ) = 0}, the event that 𝐵𝑡 hits R⩾0, before meeting its reflection;
(3) 𝐸3 := {𝐵𝜏2 ∈ 𝑆∗

𝑅
(𝛿/2)}, the event that 𝐵𝑡 hits one of the ends of the sectors, before

meeting its reflection.
In the event of 𝐸1, we have that 𝐵𝑡 , 𝐵

◦
𝑡 meet before time 𝜏, and therefore 𝑢(𝐵𝜏) = 𝑢(𝐵◦

𝜏)
so

𝐼1 := E
(
𝑢(𝐵𝜏) − 𝑢(𝐵◦

𝜏)
)
1(𝐸1) = 0. (4.7)

In the event of 𝐸2, 𝐵𝜏 ∈ R⩾0 and thus 𝐵◦
𝜏 = 𝛼𝐵𝜏 so 𝑢(𝐵𝜏) − 𝑢(𝐵◦

𝜏) ⩾ 0, by weak-positivity.
In particular,

𝐼2 := E (𝑢(𝐵𝜏) − 𝑢(𝛼𝐵𝜏)) 1(𝐸2) ⩾ 0. (4.8)

In the case of 𝐸3, we crudely estimate

𝐼3 := E
(
𝑢(𝐵𝜏) − 𝑢(𝐵◦

𝜏)
)
1(𝐸3) ⩾ −2P(𝐸3) max

𝑧∈𝑆∗
𝑅
(𝛿 )

|𝑢(𝑧) |. (4.9)

Now, from (4.6), and (4.7),(4.8),(4.9), we have

𝑢(𝑧) − 𝑢(𝑧◦) = 𝐼1 + 𝐼2 + 𝐼3 ⩾ −2 max
𝑧∈𝑆∗

𝑅
(𝛿 )

|𝑢(𝑧) |P𝑧
(
𝐵𝜏 ∈ 𝑆∗𝑅 (0, 𝛿/2)

)
,

as desired.

We are now able to prove Lemma 4.1.

Proof of Lemma 4.1. To show that 𝑢 is 𝑏-decreasing on 𝑆𝑟 (𝛿/2) we let 𝜌 ∈ [1/𝑟, 𝑟] and let
𝜃1, 𝜃2 ∈ (0, 𝛿/2) satisfy 𝜃2 > 𝜃1. We need to show that

𝑢(𝜌𝑒𝑖 𝜃1 ) − 𝑢(𝜌𝑒𝑖 𝜃2 ) ⩾ −𝑏.
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For this, let us put 𝜙 = 𝜃1 + 𝜃2 and note that 𝜙 < 𝛿. Set 𝑧 = 𝜌𝑒𝑖 𝜃1 and 𝛼 = 𝑒𝑖𝜙 and note that
𝛼𝑧 = 𝜌𝑒𝑖 𝜃2 . We now apply Lemma 4.6 with 𝛿 = 𝜙 to obtain

𝑢(𝜌𝑒𝑖 𝜃1 ) − 𝑢(𝜌𝑒𝑖 𝜃2 ) ⩾ −2P
(
𝐵𝜏 ∈ 𝑆∗𝑅 (0, 𝜙/2)

)
max

𝑧∈𝑆∗
𝑅
(𝜙)

|𝑢(𝑧) |

⩾ −2 · 4
3

( 𝑟
𝑅

)4𝑐/𝛿
· max
𝑧∈𝑆∗

𝑅
(𝛿 )

|𝑢(𝑧) |

⩾ −𝑏,

where the penultimate inequality holds due to the fact that 𝑆∗
𝑅
(0, 𝜙/2) is a sector of width

at most 𝛿/2 and so we apply Lemma 4.3 to the sector 𝑆𝑅 (𝛿/4). The last inequality holds
by the condition on 𝑏 and the inequality 4 log(4/3) > 1. Hence we have shown that 𝑢 is
𝑏-decreasing in 𝑆𝑟 (0, 𝛿/2).

5. A key comparison

With our main positivity-hypothesis in place, we now start with the first in a series of
steps to prove Lemma 8.1. In Sections 5, 6 and 7 we build up the ingredients for the proof
of Lemma 8.1, finally stated and proved in Section 8. The objective of this section is to
prove Lemma 5.1, which says that under the hypotheses of Lemma 8.1 we can bound the
maximum value of 𝑢0 in a small box around 1 in terms of the much more amenable function
𝜑𝛾,𝑏.

Lemma 5.1. For 𝑏 ⩾ 0, 𝜀 ∈ (0, 1/8) and 𝜂 ∈ (0, 𝜀], let 𝑢(𝑧) be a 𝑏-decreasing, weakly-
positive, symmetric and harmonic function on 𝐵(1, 8𝜀), for which 𝑢(1) = 0. Let 𝑢0 and
𝜑𝜂,𝑏 be the associated functions defined at (3.6) and (3.11). We have that

max
𝑧∈𝐵(1, 𝜀)

|𝑢0 (𝑧) | ⩽ 34 · 396𝜀/𝜂𝜑𝜂,𝑏 (1).

To prove this lemma we make a few preparations.

5.1. Positive on the real line

In our first step towards Lemma 5.1 we show that the function

𝑢0 (𝑧) = 𝑢(𝑧) − 𝜇 log |𝑧 |,

is positive on the positive real axis. To prove this, we first need the following basic fact,
which first appears in the work of De Angelis [21] and then was slightly9 extended in the
work of Bergweiler, Eremenko and Sokal [8],[7]. We include a short proof.

9De Angelis actually assumes that 𝑢 = log |𝑝 | for a polynomial 𝑝.
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Lemma 5.2. Let 𝑟 > 0. If 𝑢 is weakly positive, symmetric and harmonic on a neighborhood
of 𝑟 then 𝑈′′ (log 𝑟) ⩾ 0.

Proof. Write 𝑧 = 𝑥 + 𝑖𝑦 and put 𝑉 (𝑥, 𝑦) = 𝑈 (𝑥 + 𝑖𝑦). Note that the harmonicity of 𝑈 at
𝑎 := log 𝑟 implies 𝑉𝑥𝑥 (𝑎, 0) +𝑉𝑦𝑦 (𝑎, 0) = 0 . Weak positivity and symmetry of 𝑢 implies
that 𝑉𝑦𝑦 (𝑎, 0) ⩽ 0, since 𝑉𝑦𝑦 (𝑎, 0) can be written

lim
ℎ→0

𝑉 (𝑎, ℎ) +𝑉 (𝑎,−ℎ) − 2𝑉 (𝑎, 0)
ℎ2 = lim

ℎ→0

𝑢(𝑟𝑒𝑖ℎ) + 𝑢(𝑟𝑒−𝑖ℎ) − 2𝑢(𝑟)
ℎ2 ⩽ 0.

Thus
𝑈′′ (𝑎) = 𝑉𝑥𝑥 (𝑎, 0) ⩾ 0 .

Remark 5.3. In the case 𝑢 = log | 𝑓𝑋 |, there is a natural probabilistic interpretation of
Lemma 5.2 that can be turned into a proof. After unwinding the definitions a little, one
can see that Lemma 5.2 simply says that the random variable defined by the probability
generating function 𝑓𝑋 (𝑟𝑧) 𝑓 −1

𝑋
(𝑟), has non-negative variance. This is trivially true, as all

random variables have non-negative variance. However, we have elected to include this
more general result, as it will simplify our exposition.

We now deduce the following small but crucial ingredient in the proof of Lemma 5.1:
𝑢0 is non-negative on the positive real axis.

Lemma 5.4. For 𝜀 ∈ (0,1), let 𝐸 ⊆ C be an open set containing the interval [1 − 𝜀,1 + 𝜀].
If 𝑢 is weakly positive, harmonic and symmetric in 𝐸 then 𝑢0 (𝑟) ⩾ 𝑢(1), for all 𝑟 ∈ (1 −
𝜀, 1 + 𝜀).

Proof. We may write 𝑟 = 𝑒𝑡 for some 𝑡 ∈ R and apply Taylor’s theorem to 𝑈 (𝑡) at 𝑡 = 0 to
obtain

𝑈 (𝑡) −𝑈 (0) − 𝑡𝑈′ (0) =
𝑡20
2
𝑈′′ (𝑡0),

for some 𝑡0 with 𝑡0 ∈ (1 − 𝜀, 1 + 𝜀). Since 𝑈0 (𝑡) = 𝑈 (𝑡) − 𝑡𝑈′ (0) ((3.8), in Lemma 3.1),
we have 𝑈0 (𝑡) −𝑈 (0) = 𝑡2

0
2 𝑈

′′ (𝑡0) ⩾ 0, by Lemma 5.2 and so

𝑢0 (𝑟) = 𝑢0 (𝑒𝑡 ) = 𝑈0 (𝑡) ⩾ 𝑢(1),

as desired.

5.2. The Poisson density and Harnack inequalities

In Section 4, we saw that we could use Brownian motion to recover the values of a harmonic
function on Ω from the values of its boundary 𝜕Ω, by using Theorem 4.2. In particular, we
had that

𝑢(𝑧) = E 𝑢(𝐵𝜏), (5.1)
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where (𝐵𝑡 )𝑡⩾0 is a Brownian motion started at 𝑧 ∈ Ω and 𝜏 is the stopping time of hitting
𝜕Ω. In the case that Ω is a ball 𝐵, the expectation in (5.1) has a density function 𝑃𝑧 (with
respect to the Lebesgue measure on the circle), and so we can express

𝑣(𝑧) =
∫
𝜕Ω

𝑣(𝑠)𝑃𝑧 (𝑠) 𝑑𝑠. (5.2)

We define the collection of functions {𝑃𝑧} as the Poisson density of the circle10 and note
that 𝑃𝑧 are non-negative functions of the boundary. We refer the reader to [4] and to [18]
for a general treatment of harmonic functions on a ball.

We now state an important tool for working with positive harmonic functions, the
Harnack inequalities for the ball. These say that if 𝑣 is a positive harmonic function on
the ball 𝐵(0, 2𝜀) and if 𝑧 ∈ 𝐵(0, 𝜀) ⊆ 𝐵(0, 2𝜀) then

1
3
⩽

𝑣(𝑧)
𝑣(0) ⩽ 3 . (5.3)

A statement and proof of this result can be found in [4, pg. 47]. For our purposes, we need
a slight generalization:

Lemma 5.5. Let 𝑣 be a positive harmonic function on an open set Ω ⊂ C. For 𝜀 > 0, let
𝑧1, 𝑧2 ∈ Ω be points at distance 𝑑 := 𝑑 (𝑧1, 𝑧2) so that all 𝑧3 that lie on the line segment
joining 𝑧1 and 𝑧2 have 𝐵(𝑧3, 𝜀) ⊂ Ω. Then

1
32𝑑/𝜀+1 ⩽

𝑣(𝑧1)
𝑣(𝑧2)

⩽ 32𝑑/𝜀+1 . (5.4)

We will also need the following lemma, which is a simple consequence of the Harnack
inequalities.

Lemma 5.6. For 𝜀 > 0, let {𝑃𝑧} be the Poisson density of the ball 𝐵(1, 2𝜀). Then for all
𝑧 ∈ 𝐵(1, 𝜀) we have

max
𝑠∈𝜕𝐵2𝜀

𝑃𝑧 (𝑠)
𝑃1 (𝑠)

⩽ 3. (5.5)

Both Lemma 5.5 and Lemma 5.6 follow easily from (5.3). We now prove a straight-
forward lemma that will allow us to find a large negative value of 𝑢0. For this lemma, we
note that if {𝑃𝑧} is the Poisson density of 𝐵(1, 𝜀) then, by symmetry, 𝑃1 (𝑠) = 1

2𝜋𝜀 for all
𝑠 ∈ 𝜕𝐵(1, 𝜀).

Lemma 5.7. Let 𝜀 > 0 and let 𝑣(𝑧) be a symmetric, harmonic function on 𝐵(1, 𝜀) with
𝑣(1) = 0, let {𝑃𝑧} be the Poisson density of the ball 𝐵(1, 𝜀) and set

𝑀 :=
∫
𝑠∈𝜕𝐵(1, 𝜀)

|𝑣(𝑠) |𝑃1 (𝑠) 𝑑𝑠.

10This definition is designed to parallel the (standard) definition of the Poisson kernel which is
defined with respect to the complex line integral, rather than the uniform measure on the circle.
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Then there is a 𝑧0 ∈ 𝜕𝐵(1, 𝜀) with Im(𝑧0) ⩾ 0 and 𝑣(𝑧0) ⩽ −𝑀/2.

Proof. Let us set 𝐵𝜀 := 𝐵(1, 𝜀), 𝑃(𝑠) := 𝑃1 (𝑠) and define 𝜕𝐵𝜀 = 𝐸+ ∪ 𝐸− where 𝐸+ =

{𝑠 ∈ 𝜕𝐵𝜀 : 𝑣(𝑠) ⩾ 0} and 𝐸+ = {𝑠 ∈ 𝜕𝐵𝜀 : 𝑣(𝑠) ⩽ 0}. Now put

𝐴 =

∫
𝑠∈𝐸+

|𝑣(𝑠) |𝑃(𝑠) 𝑑𝑠 and 𝐵 =

∫
𝑠∈𝐸−

|𝑣(𝑠) |𝑃(𝑠) 𝑑𝑠.

and note that

0 = 𝑣(1) =
∫
𝑠∈𝜕𝐵𝜀

𝑣(𝑠)𝑃(𝑠) 𝑑𝑠 =
∫
𝑠∈𝐸+

|𝑣(𝑠) |𝑃(𝑠) 𝑑𝑠 −
∫
𝑠∈𝐸−

|𝑣(𝑠) |𝑃(𝑠) 𝑑𝑠

= 𝐴 − 𝐵,

and that 𝐴 + 𝐵 = 𝑀 . Thus

𝑀/2 =

∫
𝐸−

|𝑣(𝑠) |𝑃(𝑠) 𝑑𝑠 ⩽ max
𝑠∈𝐸−

|𝑣(𝑠) |
∫
𝐸−

𝑃(𝑠) 𝑑𝑠 ⩽ max
𝑠∈𝐸−

|𝑣(𝑠) |,

where the last line holds due to the fact that 𝑃(𝑠) = 1/(2𝜋𝜀) and the length of 𝐸− is
at most 2𝜋𝜀. So if we let 𝑧0 be a value which attains this maximum, we note that both
𝑣(𝑧0) = 𝑣(𝑧0) ⩽ −𝑀/2 by symmetry. Hence one of 𝑧0, 𝑧0 will have non-negative imaginary
part, as desired.

5.3. Proof of Lemma 5.1

We now are in a position to prove the main result of this section, Lemma 5.1.

Proof of Lemma 5.1. To reduce clutter, let us define 𝐵𝜀 , 𝐵2𝜀 to be 𝐵(1, 𝜀), 𝐵(1, 2𝜀),
respectively. Let 𝑃𝑧 be the Poisson density of 𝐵2𝜀 and put

𝑀 :=
∫
𝑠∈𝜕𝐵2𝜀

|𝑢0 (𝑠) |𝑃1 (𝑠) 𝑑𝑠.

By the definition of the Poisson density, for each 𝑧 ∈ 𝐵𝜀 , we have

𝑢0 (𝑧) =
∫
𝑠∈𝜕𝐵2𝜀

𝑢0 (𝑠)𝑃𝑧 (𝑠) 𝑑𝑠

and since, for all 𝑧 ∈ 𝐵𝜀 , we have max𝑠∈𝜕𝐵2𝜀 𝑃𝑧 (𝑠)/𝑃1 (𝑠) ⩽ 3 (by Lemma 5.6) we obtain

max
𝑧∈𝐵𝜀

|𝑢0 (𝑧) | ⩽ 3
∫
𝑠∈𝜕𝐵2𝜀

|𝑢0 (𝑧) |𝑃1 (𝑠) 𝑑𝑠 = 3𝑀. (5.6)

We now apply Lemma 5.7 to the function 𝑣 := 𝑢0 (𝑧) (which is harmonic, symmetric and
has 𝑢0 (1) = 0) and the region 𝐵2𝜀 to find a point 𝑧0 ∈ 𝜕𝐵2𝜀 for which 𝑢0 (𝑧0) ⩽ −𝑀/2 and
Im(𝑧0) ⩾ 0. We may write 𝑧0 in the form 𝑧0 = 𝜌𝑒𝑖𝜙 where 𝜙 ∈ [0, 4𝜀] and 𝜌 ∈ [1 − 2𝜀, 1 +
2𝜀].
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Further, 𝜌𝑒4𝜀𝑖 ∈ 𝐵(1, 8𝜀), allowing us to make use of the 𝑏-decreasing hypothesis:

𝑢0 (𝜌𝑒4𝜀𝑖) ⩽ 𝑢0 (𝑧0) + 𝑏

⩽ 𝑏 − 𝑀/2 .

We now apply Lemma 5.4 to see that 𝑢0 (𝜌) ⩾ 0 as 𝜌 > 0, thereby allowing us to obtain a
bound on ℎ4𝜀,𝑏 (𝜌)

ℎ4𝜀,𝑏 (𝜌) = 𝑢0 (𝜌) − 𝑢0 (𝜌𝑒𝑖4𝜀) + 𝑏 ⩾ −𝑢0 (𝜌𝑒𝑖4𝜀) + 𝑏 ⩾ 𝑀/2. (5.7)

We know that 𝑆(−4𝜀, 4𝜀) ∩ 𝐵4𝜀 ⊂ 𝐵8𝜀 and 𝑢 is 𝑏-decreasing in 𝐵8𝜀 . We then know that
ℎ4𝜀,𝑏 (𝑧) is harmonic and positive (Lemmas 3.2 and 3.3) in 𝑆(−2𝜀, 2𝜀) ∩ 𝐵4𝜀 and thus we
may apply Lemma 5.5 to learn that

ℎ4𝜀,𝑏 (𝜌) ⩽ 364𝜀/𝜂+1ℎ4𝜀,𝑏 (𝜌𝑒𝑖 (2𝜀−𝜂/2) ), (5.8)

since the distance 𝑑 (𝜌, 𝜌𝑒𝑖 (2𝜀−𝜂/2) ) ⩽ (1 + 2𝜀)2𝜀 ⩽ 4𝜀 and each point on the segment
between them is at least 𝜌 · 𝜂/4 ⩾ 𝜂/8 from the boundary of 𝑆(−2𝜀, 2𝜀) ∩ 𝐵4𝜀 .

Now observe that at the value of 𝑧 = 𝜌𝑒𝑖 (2𝜀−𝜂/2) , we have ℎ4𝜀,𝑏 (𝑧) = 𝜑𝜂,𝑏 (𝑧). That is,

ℎ4𝜀,𝑏 (𝜌𝑒𝑖 (2𝜀−𝜂/2) ) = 𝑢(𝜌𝑒𝑖 (2𝜀−𝜂/2) ) − 𝑢(𝜌𝑒𝑖 (2𝜀+𝜂/2) ) + 𝑏 = 𝜑𝜂,𝑏 (𝜌𝑒𝑖 (2𝜀−𝜂/2) ). (5.9)

We now apply Lemmas 3.2 and 3.3 to learn that 𝜑𝜂,𝑏 is harmonic and positive in

𝑆(−𝜂/2, 4𝜀 − 𝜂) ∩ 𝐵4𝜀 .

Hence we may apply Lemma 5.5 along with the fact that 𝜌 ∈ [1 − 2𝜀, 1 + 2𝜀] to see that

𝜑𝜂,𝑏 (𝜌𝑒𝑖 (2𝜀−𝜂) ) ⩽ 332𝜀/𝜂+1𝜑𝜂,𝑏 (1) , (5.10)

since |𝜌𝑒𝑖 (2𝜀−𝜂/2) − 1| ⩽ 4𝜀 and each point on the segment between them is at least 𝜂/4
from the boundary of 𝑆(−𝜂/2, 4𝜀 − 𝜂) ∩ 𝐵4𝜀 . Thus, chaining together lines lines (5.6),
(5.7), (5.8), (5.9), (5.10) gives

max
𝑧∈𝐵𝜀

|𝑢0 (𝑧) | ⩽ 34 · 396𝜀/𝜂𝜑𝜂,𝑏 (1),

as desired.

6. Bounding the tail of the cumulant sequence

In the previous section we showed how to control the maximum of 𝑢0 in a small ball around
1, in terms of the much more amenable function 𝜑𝜂,𝑏. In this section, we use this bound
to prove that the normalized cumulant sequence (𝑎 𝑗 ) 𝑗⩾2 has nice decay properties.
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Lemma 6.1. For 𝜀 ∈ (0,2−4) and 𝑏 ⩾ 0, let 𝑢 be a 𝑏-decreasing function, weakly-positive,
symmetric and harmonic function in 𝐵(1, 24𝜀). Let (𝑎 𝑗 ) 𝑗⩾1 be the normalized cumulant
sequence of 𝑢. If ∑︁

𝑗⩾2
|𝑎 𝑗 |𝜀 𝑗 > 𝑏, (6.1)

then for all 𝐿 ⩾ 2 we have ∑
𝑗⩾𝐿 |𝑎 𝑗 |𝜀 𝑗∑
𝑗⩾2 |𝑎 𝑗 |𝜀 𝑗

⩽ 𝐶 · 2−𝐿 , (6.2)

where 𝐶 > 0 is an absolute constant11.

Proof. We first point out that the expression in (6.2) makes sense; the denominator is non-
zero from the strict inequality at (6.1) and the numerator is finite since we may write

𝑈0 (𝑤) =
∑︁
𝑗⩾2

𝑎 𝑗Re(𝑤 𝑗 ), (6.3)

by Lemma 3.1, for all 𝑤 ∈ 𝐵(0, 8𝜀) and thus the series
∑
𝑎 𝑗𝜀

𝑗 is absolutely convergent.
To prove Lemma 6.1, the idea is to compare both the numerator and denominator in

(6.2) to 𝜑𝜀,𝑏 (1). We begin with the denominator. Recalling that

𝜑𝜀,𝑏 (𝑒𝑤) = 𝑢(𝑒𝑤) − 𝑢(𝑒𝑤+𝑖 𝜀) + 𝑏,

we use (6.3) to express

𝜑𝜀,𝑏 (𝑒𝑤) =
∑︁
𝑗⩾2

𝑎 𝑗Re(𝑤 𝑗 − (𝑤 + 𝑖𝜀) 𝑗 ) + 𝑏,

for 𝑤 sufficiently small. And so, setting 𝑤 = 0, we obtain

|𝜑𝜀,𝑏 (1) | ⩽
∑︁
𝑗⩾2

|𝑎 𝑗 |𝜀 𝑗 + 𝑏 ⩽ 2
∑︁
𝑗⩾2

|𝑎 𝑗 |𝜀 𝑗 , (6.4)

by the triangle inequality and our assumption at (6.1).
We now turn to obtain an upper bound on the numerator of (6.2). We apply Cauchy-

Schwarz to obtain ∑︁
𝑗⩾𝐿

|𝑎 𝑗 |𝜀 𝑗 ⩽ 2 ©­«
∑︁
𝑗⩾2

|𝑎 𝑗 |2 (2𝜀)2 𝑗ª®¬
1/2

2−𝐿 . (6.5)

We now look to relate the series on the right-hand-side of (6.5) to 𝑈0. In preparation for
this, we write

𝑈0 (𝜌, 𝜃) := 𝑈0 (𝜌𝑒𝑖 𝜃 ) =
∑︁
𝑗⩾2

𝑎 𝑗 𝜌
𝑗 cos( 𝑗𝜃),

11Indeed, we can take 𝐶 = 3390



24 M. Michelen, J. Sahasrabudhe

which is valid for all |𝜌 | < 8𝜀, due to (6.3), and then use Parseval’s Theorem to write∑︁
𝑗⩾2

|𝑎 𝑗 |2 (2𝜀)2 𝑗 =
1

2𝜋

∫ 2𝜋

0
|𝑈0 (2𝜀, 𝜃) |2𝑑𝜃 ⩽ max

𝜃∈[0,2𝜋 ]
|𝑈0 (2𝜀, 𝜃) |2. (6.6)

As a remark, note that (6.6) along with (6.1) implies that max𝜃∈[0,2𝜋 ] |𝑈0 (2𝜀, 𝜃) | > 0.
Returning to the main arc of the proof, recall that 𝑧 = 𝑒𝑤 and 𝑤 = 𝜌𝑒𝑖 𝜃 ; so as 𝜃 ranges

over [0, 2𝜋], 𝑧 lies on the curve

Γ = {exp(2𝜀𝑒𝑖 𝜃 ) : 𝜃 ∈ [0, 2𝜋]},

which is contained in the ball 𝐵(1,4𝜀), due to the inequality |1 − 𝑒2𝜀𝑒𝑖𝜃 | ⩽ 4𝜀, which holds
for 𝜀 < 1. Hence we may bound the right hand side of (6.6)

max
𝜃∈[0,2𝜋 ]

|𝑈0 (2𝜀, 𝜃) |2 ⩽ max
𝑧∈𝐵(1,4𝜀)

|𝑢0 (𝑧) |2. (6.7)

Here is the key ingredient: we apply Lemma 5.1 to obtain an upper bound on 𝑢0 in terms
of 𝜑𝜂,𝑏 in 𝐵(1, 4𝜀) with 𝜂 = 𝜀:

max
𝑧∈𝐵(1,4𝜀)

|𝑢0 (𝑧) |2 ⩽
(
3388𝜑𝜀,𝑏 (1)

)2
. (6.8)

Note that this also implies that 𝜑𝜀,𝑏 (1) > 0, due to the remark after (6.6) and (6.7),(6.8).
To finish, we put together the lower bound at (6.4) on the denominator in (6.2) with the

upper bound on the numerator, coming from (6.5), (6.6), (6.7) and (6.8), to obtain∑
𝑗⩾𝐿 |𝑎 𝑗 |𝜀 𝑗∑
𝑗⩾2 |𝑎 𝑗 |𝜀𝑖

⩽ 2 ·
3388𝜑𝜀,𝑏 (1)

1
2𝜑𝜀,𝑏 (1)

2−𝐿 ⩽ 33902−𝐿 ,

as desired.

7. Taming the cumulant sequence

In this section we provide a third and final ingredient in our proof of Lemma 8.1, our core
technical lemma. In Section 6, we showed that the sequence (𝑎 𝑗 ) 𝑗⩾2 had to have quite a bit
of its “mass” concentrated on the early terms. In this section, we use our weak-positivity
hypothesis to show that, in this situation, we can control all of the cumulants in terms of
the second cumulant, the variance.

The main result of this section is Lemma 7.5, which can be seen as a quantitative
version of a tool co-discovered by De Angelis [21] and Bergweiler, Eremenko and Sokal
[8] which was used in their work on classifying polynomials whose large powers have all
positive coefficients. It is also a relative of Lemma 7 in the previous work of the authors
[51] and can be viewed as an effective form of Marcinkiewicz’s Theorem [48].

To prove Lemma 7.5 we need the following preparatory lemma, which is an elementary
fact about sequences of non-negative real numbers.
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Lemma 7.1. Let 𝐴 ⩾ 1, 𝑠 > 0 and let (𝑐𝑖)𝑖⩾1 be a sequence of non-negative numbers for
which the sum

∑
𝑖⩾1 𝑐𝑖𝑠

𝑖 converges and is non-zero. If 𝐿 ∈ N is such that

𝐿∑︁
𝑖=1

𝑐𝑖𝑠
𝑖 >

∑︁
𝑖>𝐿

𝑐𝑖𝑠
𝑖 , (7.1)

then there exists an ℓ ∈ {1, . . . , 𝐿} and 𝑠∗ > 𝑠(16𝐴)−(𝐿+1) so that

𝑐ℓ 𝑠
ℓ
∗ > 𝐴

∑︁
𝑖≠ℓ

𝑐𝑖𝑠
𝑖
∗. (7.2)

Proof. To start, we choose 𝑠0 := 𝑠/(2𝐴). This immediately gives us

𝐿∑︁
𝑖=1

𝑐𝑖𝑠
𝑖
0 > (2𝐴)

∑︁
𝑖>𝐿

𝑐𝑖𝑠
𝑖
0. (7.3)

We now define an algorithm that will find ℓ ∈ {1, . . . , 𝐿} and 𝑠∗ > 𝑠(16𝐴)−(𝐿+1) that
satisfies (7.2): Initialize 𝑡 = 0, 𝑠0 = 𝑠0 (defined above) and 𝑗0 = 𝐿 and inductively define a
sequence of integers 𝑗1 ⩾ 𝑗2 ⩾ · · · ⩾ 1 and positive real numbers 𝑠1 > 𝑠2 > · · · as follows:
if the pair ( 𝑗𝑡 , 𝑠𝑡 ) satisfies

𝑐 𝑗𝑡 𝑠
𝑗𝑡
𝑡 > 2𝐴

∑︁
1⩽𝑖⩽𝐿
𝑖≠ 𝑗𝑡

𝑐𝑖𝑠
𝑖
𝑡 . (7.4)

then we terminate and return (ℓ, 𝑠∗) = ( 𝑗𝑡 , 𝑠𝑡 ). Otherwise, choose 𝑗𝑡+1 so that

𝑐 𝑗𝑡+1 𝑠
𝑗𝑡+1
𝑡 = max{𝑐1𝑠

1
𝑡 , 𝑐2𝑠

2
𝑡 , . . . , 𝑐𝑡 𝑠

𝑗𝑡
𝑡 } (7.5)

and set 𝑠𝑡+1 = 𝑠𝑡/(16𝐴). To see that this algorithm successfully produces a pair (ℓ, 𝑠∗) that
satisfies the conclusions of the lemma, we prove two claims.

Claim 7.2. For each 𝑡 ⩾ 0 we have

𝑐 𝑗𝑡 𝑠
𝑗𝑡
𝑡 > 4𝐴

𝐿∑︁
𝑖= 𝑗𝑡+1

𝑐𝑖𝑠
𝑖
𝑡 . (7.6)

Proof of Claim. We apply induction on 𝑡; note that the 𝑡 = 0 case is trivial. Now suppose
(7.6) is satisfied for some 𝑡 ⩾ 0, write 𝑎 = 𝑗𝑡 , 𝑏 = 𝑗𝑡+1 (for ease of notation) and recall that
𝑏 = 𝑗𝑡+1 was chosen so that 𝑐𝑏𝑠𝑏𝑡 = max1⩽𝑖⩽𝑎{𝑐𝑖𝑠𝑖𝑡 }; thus,

𝑐𝑏𝑠
𝑏
𝑡 >

𝑎∑︁
𝑖=𝑏+1

𝑐𝑖𝑠
𝑖
𝑡

2𝑖−𝑏
,

and since 𝑠𝑡+1 = 𝑠𝑡/(16𝐴), we have

𝑐𝑏𝑠
𝑏
𝑡+1 = (16𝐴)−𝑏𝑐𝑏𝑠𝑏𝑡 > (16𝐴)−𝑏

𝑎∑︁
𝑖=𝑏+1

𝑐𝑖𝑠
𝑖
𝑡

2𝑖−𝑏
⩾ 8𝐴

𝑎∑︁
𝑖=𝑏+1

𝑐𝑖𝑠
𝑖
𝑡+1. (7.7)
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By the induction hypothesis at (7.6), we have 𝑐𝑎𝑠
𝑎
𝑡 ⩾ 4𝐴

∑𝐿
𝑖=𝑎+1 𝑐𝑖𝑠

𝑖
𝑡 and thus (crudely)

we have

𝑐𝑏𝑠
𝑏
𝑡+1 ⩾ 8𝐴

𝐿∑︁
𝑖=𝑎+1

𝑐𝑖𝑠
𝑖
𝑡+1. (7.8)

Averaging (7.7) and (7.8) yields

𝑐𝑏𝑠
𝑏
𝑡+1 > 4𝐴

𝐿∑︁
𝑖=𝑏+1

𝑐𝑖𝑠
𝑖
𝑡+1,

as desired. This completes the proof of the claim, by induction.

Claim 7.3. We have that 𝑗1 > 𝑗2 > · · · ⩾ 1 is a strictly decreasing sequence of integers.

Proof of Claim. By definition, we have 𝑗1 ⩾ 𝑗2 ⩾ · · · and so we claim that if 𝑗𝑡+1 = 𝑗𝑡 ,
then the pair ( 𝑗𝑡 , 𝑠𝑡 ) would in fact satisfy (7.4), the halting condition for the algorithm. So
suppose that 𝑗 := 𝑗𝑡+1 = 𝑗𝑡 and recall that 𝑠𝑡+1 = 𝑠𝑡/(16𝐴); then by (7.5), we have, for all
𝑖 ⩽ 𝑗 ,

𝑐𝑖𝑠
𝑖
𝑡 ⩽ 𝑐 𝑗 𝑠

𝑗
𝑡 (16𝐴)𝑖− 𝑗 .

This implies

4𝐴
𝑗−1∑︁
𝑖=1

𝑐𝑖𝑠
𝑖
𝑡 ⩽ 𝑐 𝑗 𝑠

𝑗
𝑡

(
4𝐴

𝑗−1∑︁
𝑖=1

(16𝐴)𝑖− 𝑗

)
⩽ 𝑐 𝑗 𝑠

𝑗
𝑡 . (7.9)

Averaging (7.9) and (7.6) yields (7.4) for (ℓ, 𝑠∗) = ( 𝑗𝑡 , 𝑠𝑡 ), implying that the algorithm
would have halted before proceeding to step 𝑡 + 1, a contradiction.

Thus, Claim 7.3 tells us that the algorithm must terminate in at most 𝐿 steps and thus
𝑠∗ > 𝑠(16𝐴)−(𝐿+1) .

To see that we have found a pair (ℓ, 𝑠∗) that also satisfies (7.2), we simply note that
(7.3) implies

∑𝐿
𝑖=1 𝑐𝑖𝑠

𝑖
∗ > (2𝐴) ∑𝑖>𝐿 𝑐𝑖𝑠

𝑖
∗ and thus, averaging this with (7.4), yields the

inequality (7.2), as desired.

For our main lemma of this section we make use of the (somewhat crude) inequalities.

Fact 7.4. For 𝑗 ⩾ 3, we have

min
𝜃∈R

{(cos 𝜃) 𝑗 − cos 𝑗𝜃} < −1/2; (7.10)

max
𝜃∈R

{(cos 𝜃) 𝑗 − cos 𝑗𝜃} > 1/2. (7.11)

As mentioned before, we apply a clever idea from the work of De Angelis and Berg-
weiler, Eremenko and Sokal and use the non-negativity of another “difference function”:

𝑢( |𝑧 |) − 𝑢(𝑧).



Central limit theorems and the geometry of polynomials 27

Lemma 7.5. For 𝑠 ∈ (0, 1/2) and 𝐿 ⩾ 2, let 𝑢 be a weakly-positive, symmetric harmonic
function on 𝐵(1, 2𝑠) and let (𝑎 𝑗 ) 𝑗 be its normalized cumulant sequence. If (𝑎 𝑗 ) 𝑗⩾2 is a
non-zero sequence and

𝐿∑︁
𝑗⩾2

|𝑎 𝑗 |𝑠 𝑗 ⩾
∑︁
𝑗>𝐿

|𝑎 𝑗 |𝑠 𝑗 , (7.12)

then there exists a real number 𝑠∗ > 𝑠2−6(𝐿+1) for which |𝑎2 | ⩾ 𝑠
𝑗−2
∗ |𝑎 𝑗 |, for all 𝑗 ⩾ 2.

Proof. First note that the function 𝑈 (𝑤) = 𝑢(𝑒𝑤) is harmonic for 𝑤 ∈ 𝐵(0, 𝑠) due to the
inequality |𝑒𝑤 − 1| ⩽ 2|𝑤 | for |𝑤 | ⩽ 1/2 and the fact that 𝑢 is harmonic on 𝐵(1, 2𝑠). We
consider the function

𝑈0 (Re(𝑤)) −𝑈0 (𝑤) = 𝑢0 ( |𝑒𝑤 |) − 𝑢0 (𝑒𝑤) ⩾ 0, (7.13)

where the inequality follows from weak positivity. Now, writing 𝑤 = 𝜌𝑒𝑖 𝜃 and considering
the series expansion of 𝑈0 around 𝑤 = 0 (Lemma 3.1), we have

𝐹 (𝜌, 𝜃) := 𝑈0 (𝜌 cos 𝜃) −𝑈0 (𝜌𝑒𝑖 𝜃 ) =
∑︁
𝑗⩾2

𝑎 𝑗 𝜌
𝑗 ((cos 𝜃) 𝑗 − cos 𝑗𝜃),

for all 0 ⩽ 𝜌 < 𝑠. Since 𝑎 𝑗 is not identically 0 for all 𝑗 ⩾ 2, we may apply Lemma 7.1 to the
sequence ( |𝑎 𝑗 |) 𝑗⩾2 with 𝐴 = 4, to get an integer ℓ ∈ [𝐿] and a real number 𝑠∗ > 𝑠2−6(𝐿+1)

so that
|𝑎ℓ |𝑠ℓ∗ > 4

∑︁
2⩽𝑖≠ℓ

|𝑎𝑖 |𝑠𝑖∗. (7.14)

We now use weak-positivity to see that ℓ = 2. For this, assume ℓ > 2 and apply Fact 7.4 to
find a 𝜃0 for which

𝑎ℓ
(
(cos 𝜃0)ℓ − cos ℓ𝜃0

)
⩽ −|𝑎ℓ |/2. (7.15)

We write

𝐹 (𝑠∗, 𝜃0) = 𝑎ℓ 𝑠
ℓ
∗
(
(cos 𝜃0)ℓ − cos ℓ𝜃0

)
+

∑︁
2⩽ 𝑗≠ℓ

𝑎 𝑗 𝑠
𝑗
∗
(
(cos 𝜃0) 𝑗 − cos 𝑗𝜃0

)
and apply (7.15) to bound the first term on the right-hand-side and apply the triangle-
inequality to bound the sum. We obtain

𝐹 (𝑠0, 𝜃0) ⩽
−|𝑎ℓ |𝑠ℓ∗

2
+ 2

∑︁
2⩽ 𝑗≠ℓ

|𝑎 𝑗 |𝑠 𝑗∗ < 0,

where the last inequality follows from (7.14). However this contradicts the positivity of 𝐹
(7.13). We therefore conclude that ℓ = 2 and so, from (7.14) again, we have that

|𝑎2 |𝑠2
∗ > 4

∑︁
𝑖⩾3

|𝑎𝑖 |𝑠𝑖∗ ⩾ 4|𝑎 𝑗 |𝑠 𝑗∗ ,

for any 𝑗 ⩾ 3, as desired.
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8. Proof of Lemma 8.1 : the final stroke

In this section we combine the ingredients from the previous sections to prove Lemma 8.1.
What we state here is slightly stronger than what we need but we make these bounds explicit
for use in later work.

Lemma 8.1. For 𝜀 ∈ (0, 1), 𝑏 ⩾ 0 and 𝑛 ⩾ 1, let 𝑋 be a random variable with standard
deviation 𝜎 > 0, logarithmic potential 𝑢 = 𝑢𝑋 and normalized cumulant sequence (𝑎 𝑗 ) 𝑗⩾1.
If 𝑢 is 𝑏-decreasing and harmonic in 𝐵(1, 𝜀) and∑︁

𝑗⩾2
|𝑎 𝑗 | (𝜀/32) 𝑗 > 𝑏, (8.1)

then 𝜓𝑋∗ , the characteristic function of 𝑋∗ := (𝑋 − 𝜇)𝜎−1, satisfies

𝜓𝑋∗ (𝜉) = exp(−𝜉2/2 + 𝑅(𝜉)),

where
(1) 𝑅(0) = 𝑅 (1) (0) = 𝑅 (2) (0) = 0 and

|𝑅 (ℓ ) (0) | ⩽ ℓ!(𝑐2𝜎)2−ℓ ,

for all ℓ ⩾ 3.
(2) In particular12,

|𝑅(𝜉) | ⩽ 𝑐1 |𝜉 |3
𝜀𝜎

for all 𝜉 ∈ C with |𝜉 | ⩽ 𝑐2𝜀𝜎.

Proof. Let 𝜓𝑋 (𝜉) = E𝑋𝑒
𝑖 𝜉𝑋 be the characteristic function of 𝑋 , and note that

𝜓𝑋 (𝜉) = exp ©­«
∑︁
𝑗⩾1

𝜅 𝑗

𝑗!
(𝑖𝜉) 𝑗ª®¬ = exp ©­«

∑︁
𝑗⩾1

𝑎 𝑗 (𝑖𝜉) 𝑗
ª®¬ ,

where 𝜅 𝑗 is the 𝑗 th cumulant of 𝑋 and (𝑎 𝑗 ) 𝑗 is the normalized cumulant sequence. Here,
this expansion is valid for all |𝜉 | < 𝜀/2 since harmonicity of 𝑢 in 𝐵(1, 𝜀) implies analyticity
of𝜓 in 𝐵(0, 𝜀/2) due to the inequality |1− 𝑒𝑤 | ⩽ 2|𝑤 | for |𝑤 | < 1/2. Now note that𝜓𝑋∗ (𝜉) =
𝜓𝑋 (𝜉/𝜎)𝑒−𝑖

𝜇𝜉

𝜎 is the characteristic function of 𝑋∗. Using the fact that 𝑎1 = 𝜇 and 𝑎2 =

−𝜎/2, as noted at (3.4) and (3.5), we have

𝜓𝑋∗ (𝜉) = exp ©­«−𝜉2/2 +
∑︁
𝑗⩾3

𝑎 𝑗

𝜎 𝑗
(𝑖𝜉) 𝑗ª®¬ (8.2)

12We can take the constants 𝑐1 = 23246, 𝑐2 = 2−3246 .
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and so we define
𝑅(𝜉) :=

∑︁
𝑗⩾3

𝑎 𝑗

𝜎 𝑗
(𝑖𝜉) 𝑗 . (8.3)

We now apply Lemma 6.1 to bound 𝑅. To see that we may apply this lemma, note that (8.1)
implies condition (6.1) in Lemma 6.1; the logarithmic potential 𝑢 = 𝑢𝑋 is weakly-positive
and symmetric in 𝐵(1, 𝜀) (as noted in Section 3); and 𝑢 is 𝑏-decreasing and harmonic in
𝐵(1, 𝜀), by assumption. Therefore∑

𝑗⩾𝐿 |𝑎 𝑗 | (𝜀/32) 𝑗∑
𝑗⩾2 |𝑎 𝑗 | (𝜀/32) 𝑗 ⩽ 𝐶 · 2−𝐿 ,

for all 𝐿 ⩾ 2. Now, if we choose 𝐿 = 2 + log2 𝐶 we have that

𝐿∑︁
𝑗=2

|𝑎 𝑗 | (𝜀/32) 𝑗 >
∑︁
𝑗>𝐿

|𝑎 𝑗 | (𝜀/32) 𝑗 , (8.4)

and so we may apply Lemma 7.5 with 𝐿 = 539 and 𝑠 = 𝜀/32 to obtain a 𝑠∗ > 2−3245𝜀 for
which

𝜎2 = |𝑎2 | > 𝑠
𝑗−2
∗ |𝑎 𝑗 |. (8.5)

And so for 𝑗 ⩾ 3 the 𝑗 th term in the expansion of 𝑅(𝜉) is

|𝑅 ( 𝑗 ) (0) |
𝑗!

= |𝑎 𝑗 |𝜎− 𝑗 ⩽ (𝑠∗𝜎)2− 𝑗 ,

and so, for |𝜉 | < 𝑠∗𝜎, we have

|𝑅(𝜉) | ⩽
∑︁
𝑗⩾3

|𝑎 𝑗 | |𝜉 | 𝑗

𝜎 𝑗
⩽

∑︁
𝑗⩾3

|𝜉 | 𝑗
(𝑠∗𝜎) 𝑗−2 =

|𝜉 |3
𝑠∗𝜎(1 − |𝜉 |/(𝑠∗𝜎))

.

This means that we can factor

𝜓𝑋∗ (𝜉) = 𝑒−𝜉 2/2𝑒𝑅 ( 𝜉 ) ,

where |𝑅(𝜉) | < 2 | 𝜉 |3
𝑠∗𝜎

⩽ 23246

𝜀𝜎
, for |𝜉 | < (𝑠∗𝜎)/2 ⩽ 2−3246𝜀𝜎. This completes the proof of

Lemma 8.1.

9. Proofs of Theorems 1.4 and 1.2

In this section we use Lemma 4.1 along with our main technical lemma, Lemma 8.1 to
deduce our theorems on univariate polynomials. Before we finish these proofs, we need
to quickly derive our “Fourier-inversion” lemma, which allows us to conclude that 𝑋 is
approximately normal based on the hypothesis that the characteristic function𝜓𝑋 is approx-
imately the characteristic function of a normal.



30 M. Michelen, J. Sahasrabudhe

9.1. Fourier inversion

In this short subsection, we derive the following basic “Fourier inversion” tool.

Lemma 9.1. Let 𝑋 ∈ R be a random variable with characteristic function 𝜓. If

𝜓(𝜉) = exp
(
−𝜉2/2 + 𝑅(𝜉)

)
,

where |𝑅(𝜉) | ⩽ 𝜂 |𝜉 |3 for all |𝜉 | < 𝜏, then

sup
𝑡∈R

|P(𝑋 ⩽ 𝑡) − P(𝑍 ⩽ 𝑡) | ⩽ 29 max{𝜂, 𝜏−1},

where 𝑍 ∼ 𝑁 (0, 1).

Following Lebowitz, Pittel, Ruelle, and Speer, we use the following quantitative result
which can found in the textbook of Feller [25, pg. 538].

Lemma 9.2. Let 𝑍 ∼ 𝑁 (0, 1) be a standard normal, let 𝑋 ∈ R be a random variable and
let 𝜓(𝜉) be its characteristic function. Then, for all 𝑇 > 0, we have

sup
𝑡∈𝑅

|P(𝑋 ⩽ 𝑡) − P(𝑍 ⩽ 𝑡) | ⩽ 1
𝜋

∫ 𝑇

−𝑇

�����𝜓(𝜉) − 𝑒−𝜉 2/2

𝜉

����� 𝑑𝜉 + 4
𝑇
. (9.1)

We may now easily derive Lemma 9.1, our Fourier inversion lemma.

Proof of Lemma 9.1: We apply Lemma 9.2 with 𝑇 = min{𝜂−1/8, 𝜏} to obtain

sup
𝑡∈R

|P(𝑋 ⩽ 𝑡) − P(𝑍 ⩽ 𝑡) | ⩽ 1
𝜋

∫ 𝑇

−𝑇

�����𝜓(𝜉) − 𝑒−𝜉 2/2

𝜉

����� 𝑑𝜉 + 4
𝑇
. (9.2)

First note that we may assume 𝜂 < 1, otherwise the theorem is trivial. Let 𝐼 be the integral in
(9.2) and set 𝑎 := 𝜂−1/3. We bound the 𝐼 by breaking the integral into two ranges: |𝜉 | ∈ [0, 𝑎]
and |𝜉 | ∈ [𝑎, 𝑇]. For |𝜉 | ⩽ 𝑎, we bound the integrand�����𝜓(𝜉) − 𝑒−𝜉 2/2

𝜉

����� = 𝑒−𝜉 2/2
���� 𝑒𝑅 ( 𝜉 ) − 1

𝜉

���� ⩽ 4𝜂𝑒−𝜉 2/2 |𝜉 |2, (9.3)

since |𝑒𝑧 − 1| ⩽ 4|𝑧 | for |𝑧 | ⩽ 1. For 𝑎 ⩽ |𝜉 | ⩽ 𝑇 , we use the fact that 𝑎 = 𝜂−1/3 ⩾ 1 along
with the triangle inequality to bound the integrand�����𝜓(𝜉) − 𝑒−𝜉 2/2

𝜉

����� ⩽ 𝑒−𝜉 2/4 |𝑒−𝜉 2/4 − 𝑒−𝜉 2/4+𝑅 ( 𝜉 ) | ⩽ 2𝑒−𝜉 2/4 · 𝑒−𝜉 2/4+|𝑅 ( 𝜉 ) | ,

where
−𝜉2/4 + |𝑅(𝜉) | = |𝜉 |2

(
−1

4
+ 𝜂 |𝜉 |

)
⩽ −𝜉2/8
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and the last line holds due to the fact that 𝜂 |𝜉 | ⩽ 𝜂𝑇 ⩽ 1/8, by the choice of 𝑇 . So, for
|𝜉 | ∈ [𝑎, 𝑇], we have�����𝜓(𝜉) − 𝑒−𝜉 2/2

𝜉

����� ⩽ 2𝑒−𝜉 2/4𝑒−𝜉 2/8 ⩽ 2𝑒−𝜉 2/4𝑒−𝑎
2/8 ⩽ 32𝜂𝑒−𝜉 2/4, (9.4)

due to the fact that exp(−|𝑥 |2/3/8) ⩽ 16/|𝑥 |. Using (9.3) and (9.4) we can bound 𝐼 by

𝐼 ⩽ 8𝜂
∫ 𝑎

0
𝑒−𝜉 2/2 |𝜉 |2 𝑑𝜉 + 64𝜂

∫ 𝑇

𝑎

𝑒−𝜉 2/4 𝑑𝜉 ⩽ 29𝜂, (9.5)

where we have used the facts∫ ∞

−∞
𝑒−𝑡

2/2 |𝑡 |2 𝑑𝑡 =
√

2𝜋 and
∫ ∞

−∞
𝑒−𝑡

2/4 𝑑𝑡 = 2
√

2𝜋.

Putting this together with (9.2) gives the bound

sup
𝑡∈R

|P(𝑋 ⩽ 𝑡) − P(𝑍 ⩽ 𝑡) | ⩽ 𝜋−1𝐼 + 32 max{𝜂, 𝜏−1} ⩽ 29 max{𝜂, 𝜏−1},

as desired.

We note that Lemma 9.1, along with our main technical Lemma 8.1, implies the fol-
lowing general result.

Corollary 9.3. For 𝜀 ∈ (0, 1) and 𝑏 ⩾ 0, let 𝑋 be a random variable with logarithmic
potential 𝑢𝑋 and normalized cumulant sequence (𝑎 𝑗 ) 𝑗 . If 𝑢𝑋 is 𝑏-decreasing and harmonic
in 𝐵(1, 𝜀) and ∑︁

𝑗⩾2
|𝑎 𝑗 | (𝜀/32) 𝑗 > 𝑏, (9.6)

then13

𝑠𝑢𝑝𝑡∈R |P(𝑋∗ ⩽ 𝑡) − P(𝑍 ⩽ 𝑡) | = 𝑂

(
1
𝜀𝜎

)
,

where 𝑍 ∼ 𝑁 (0, 1) is a standard normal.

9.2. Proof of Theorem 1.4

We are now ready to prove our main theorem on random variables with roots avoiding a
sector.

Proof of Theorem 1.4. Let 𝑋 ∈ {0, . . . , 𝑛} be a random variable for which its probability
generating function 𝑓𝑋 has no roots in the sector 𝑆(𝛿). This means that its logarithmic
potential 𝑢(𝑧) = 𝑢𝑋 (𝑧) is a weakly-positive, symmetric and harmonic function on 𝑆(𝛿).

13Here, the implicit constant Corollary 9.3 can be taken to be 23255.
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Also, since 𝑓𝑋 is a polynomial, we have that 𝑢(𝑧) = 𝑂 (log |𝑧 |) and 𝑢(1/𝑧) = 𝑂 (log |𝑧 |) as
𝑧 → ∞. Finally note that we may assume 𝜎 > 0, otherwise the statement of Theorem 1.4
is meaningless.

We first look to apply Lemma 4.1 to show that 𝑢 is decreasing in a neighborhood
of 1 ∈ C; that is, 𝑏-decreasing for 𝑏 = 0. For this, note that for all 𝑅 > 1 we have that
𝑆𝑅 (𝛿/2) ⊆ 𝑆(𝛿/2) and so 𝑢 is harmonic in a neighborhood of 𝑆𝑅 (𝛿/2). Set 𝑟 := 2 and we
check, in accordance with (4.1), that(

2
𝑅

)1/𝛿
max

𝑧∈𝑆∗
𝑅
(0, 𝛿 )

|𝑢(𝑧) | = 𝑂

(
𝑅−1/𝛿 log 𝑅

)
→ 0,

as 𝑅 → ∞, due to the growth condition on 𝑢. Thus we may apply Lemma 4.1 to learn that
𝑢 is 𝑏-decreasing in 𝑆2 (0, 𝛿/2) for every 𝑏 ⩾ 0, and therefore is decreasing.

We now look to apply Corollary 9.3 to finish the proof of the theorem. For this we only
have to check the condition at (9.6), which easily follows from the fact that 𝜎 > 0. Since
𝑢 is 0-decreasing and harmonic in 𝐵(1, 𝛿/4), we may apply Corollary 9.3 with 𝜀 = 𝛿/4 to
finish the proof.

9.3. Proof of Theorem 1.2

The proof of Theorem 1.2 is similar to Theorem 1.4. In the proof of Theorem 1.2 we work in
a tiny truncated sector which we place in the zero-free ball 𝐵(1, 𝜀) and then estimate 𝑢𝑋 (𝑧)
on the ends 𝑆∗

𝑅
(𝛿) of the boundary 𝜕𝑆𝑅 (𝛿). This estimate is the content of the following

lemma.

Lemma 9.4. For 𝛿 ∈ (0, 1/2), let 𝑋 ∈ {0, . . . , 𝑛} be a random variable for which 𝑓𝑋 has
no roots in the ball 𝐵(1, 𝛿). For 𝜀 ∈ (0, 𝛿/4) and 𝑅 = 1 + 𝛿/4, we have

max
𝑧∈𝑆∗

𝑅
(𝜀)

|𝑢𝑋 (𝑧) | ⩽ 7𝑛 log(4/𝛿).

Proof. Note that 𝑧 ∈ 𝑆∗
𝑅
(𝜀) implies |𝑧 − 1| ⩽ 𝛿/2. Write 𝑧 = 1 + 𝑠 and expand

𝑢𝑋 (1 + 𝑠) = log | 𝑓𝑋 (1 + 𝑠) | = log

�����∏
𝜆

(
1 + 𝑠

1 − 𝜆

)����� = ∑︁
𝜆

log
���1 + 𝑠

1 − 𝜆

��� .
Since |1 − 𝜆 | ⩾ 𝛿 and |𝑠 | ⩽ 𝛿/2 the triangle inequality implies

max
𝑧∈𝑆∗

𝑅
(𝜀)

|𝑢𝑋 (𝑧) | ⩽ 𝑛 max
|𝑦 |⩽1/2

|log |1 + 𝑦 | | ⩽ 2𝑛 .

Proof of Theorem 1.2 : Let 𝑋 ∈ {0, . . . , 𝑛} be a random variable for which its probability
generating function 𝑓𝑋 has no zeros in the ball 𝐵 = 𝐵(1, 𝛿), for 𝛿 ∈ (0, 1/2). Note that we
may assume that 𝜎 > 210𝛿−1 log 𝑛 otherwise (1.1) is trivial, with implicit constant 210.
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Using the fact that there are no roots in 𝐵 implies that 𝑢(𝑧) = 𝑢𝑋 (𝑧) is harmonic in
the ball 𝐵. We now work in a thin, truncated sector inside of 𝐵. In particular, we set 𝜀 =

𝛿/(32 log 𝑛), 𝑅 = 1 + 𝛿/4, 𝑟 = 1 + 𝜀 and work in the sector 𝑆 := 𝑆𝑅 (𝜀). Since 𝑆𝑅 (𝜀) ⊆ 𝐵,
we have that 𝑢 is harmonic in a neighborhood of 𝑆𝑅 (𝜀).

Now choose 𝑏 = 1 and, looking to apply Lemma 4.1, we verify (4.1). First note that for
𝑛 ⩾ 3,

1
𝜀

log 𝑅/𝑟 ⩾ (32 log 𝑛)𝛿−1 (log 𝑅 − log 𝑟) ⩾ log 𝑛
(
𝛿

4
− 𝛿

8

)
⩾ 4 log 𝑛.

and therefore
exp

(
−1
𝜀

log 𝑅/𝑟
)

max
𝑧∈𝑆∗

𝑅
(0, 𝜀)

|𝑢(𝑧) | ⩽ 1
𝑛4 (2𝑛) ⩽ 2

𝑛3 , (9.7)

using Lemma 9.4. Thus (9.7) is at most 1 · (3/8), for 𝑛 ⩾ 3, and thus we may apply
Lemma 4.1 to conclude that 𝑢 is 1-decreasing in 𝐵(1, 𝜀).

We now look to apply Corollary 9.3. Since 𝑢 is 1-decreasing, weakly-positive and
harmonic in 𝐵(1, 𝜀), we only need to check condition (9.6) for 𝑏 = 1. This is easily done
as ∑︁

𝑗⩾2
|𝑎 𝑗 | (𝜀/32) 𝑗 ⩾

( 𝜀𝜎
32

)2
⩾

(
𝜎𝛿

210 log 𝑛

)2
> 1 = 𝑏,

where we have used the assumption that 𝜎 > 210𝛿−1 log 𝑛, since the statement is trivial
otherwise. We now apply Corollary 9.3 with 𝜀 = 𝛿/(32 log 𝑛) to complete the proof.

10. Multivariate central limit theorem for strong Rayleigh measures

In this section we prove that strong Rayleigh distributions satisfy central limit theorems.
For a 𝑑 × 𝑑 positive semi-definite matrix 𝐴 and a vector 𝜇 ∈ R𝑑 we define 𝑁 (𝜇, 𝐴) to be
the multivariate Gaussian random variable with mean 𝜇 and covariance matrix 𝐴. To prove
that a random variable 𝑋 ∈ R𝑑 is a multivariate normal distribution, we show that “many”
of its one dimensional projections ⟨𝑋, 𝑣⟩ are Gaussian. We will then apply a variant of
the famous Cramér-Wold theorem which will allow us to conclude that 𝑋 itself must be a
multivariate Gaussian.

The key connection between stable polynomials and univariate polynomials that have
no roots in a sector comes from the following fundamental observation, first made by
Ghosh, Liggett and Pemantle [28].

Lemma 10.1. Let 𝑌 ∈ Z𝑑 be a finitely supported random variable with real-stable prob-
ability generating function 𝑓𝑌 . If 𝑣 = (𝑣1, . . . , 𝑣𝑑) ∈ Z𝑑⩾0 then the probability generating
function of ⟨𝑣,𝑌⟩ has no zeros in the sector 𝑆(𝜋/∥𝑣∥∞).

Proof. Let 𝑓𝑌 be the probability generating function of 𝑌 , let 𝑓𝑣 be the probability gener-
ating function of 𝑌 (𝑣) := ⟨𝑣,𝑌⟩ and let 𝜁 be a root of 𝑓𝑣. First note that

𝑓𝑣 (𝑧) = 𝑓𝑌 (𝑧𝑣1 , . . . , 𝑧𝑣𝑑 ). (10.1)
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Now write 𝜁 = 𝑟𝑒𝑖 𝜃 , for 𝑟 > 0, and 𝜃 ∈ [−𝜋, 𝜋]. Since 𝑓𝑣 ∈ R[𝑧], we may additionally
assume that 𝜃 ∈ [0, 𝜋], by possibly replacing 𝑟𝑒𝑖 𝜃 with its conjugate. From (10.1), we see
that (𝑟𝑣1𝑒𝑖𝑣1 𝜃 , . . . , 𝑟𝑣𝑑 𝑒𝑖𝑣𝑑 𝜃 ) is a root of 𝑓𝑌 (𝑧1, . . . , 𝑧𝑑) and therefore, by the real-stability
of 𝑓 , there is some 𝑖 ∈ [𝑑] with sin(𝑣𝑖𝜃) < 0 and therefore 𝜃 ∈ ( 𝜋

𝑣𝑖
, 𝜋] ⊆ ( 𝜋

∥𝑣∥∞ , 𝜋].

Lemma 10.1 allows us to use Theorem 1.4 to show that all the projections of a strong
Rayleigh distribution are approximately normal, in non-negative integer directions. Note
that we will take the degenerate normal 𝑁 (0, 0) to also be a normal random variable:
indeed, this measure is simply the point mass at 0.

Lemma 10.2. For each 𝑛 ⩾ 1, let 𝑋𝑛 ∈ {0, . . . , 𝑛}𝑑 be a strong Rayleigh distribution with
mean 𝜇𝑛, covariance matrix 𝐴𝑛 and maximum variance 𝜎2

𝑛 . Put 𝑋∗
𝑛 = (𝑋𝑛 − 𝜇𝑛)𝜎−1

𝑛 . If
𝜎𝑛 → ∞ and 𝜎−2

𝑛 𝐴𝑛 → 𝐴, then for all 𝑣 ∈ Z𝑑⩾0, we have that

⟨𝑋∗
𝑛, 𝑣⟩ → 𝑁 (0, 𝑣𝑇 𝐴𝑣) ,

in distribution.

Proof. Let us put 𝑌𝑛 (𝑣) := ⟨𝑋𝑛, 𝑣⟩ = 𝑣1𝑋1 + · · · + 𝑣𝑑𝑋𝑑 . Note that E𝑌𝑛 (𝑣) = ⟨𝑣, 𝜇𝑛⟩ and
that

Var(𝑌𝑛 (𝑣)) = 𝑣𝑇 𝐴𝑛𝑣. (10.2)

From Lemma 10.1, we see that the probability generating function 𝑓𝑌𝑛 (𝑣) of 𝑌𝑛 (𝑣) has no
roots in the sector 𝑆(𝛿) where 𝛿 = 𝜋/∥𝑣∥∞.

There are two cases: when 𝑣 is in the null-space of 𝐴 and when 𝑣 is not in the null space
of 𝐴. Let us first assume that 𝐴𝑣 ≠ 0. In this case we have

lim
𝑛

Var(𝑌𝑛 (𝑣))𝜎−2
𝑛 = lim

𝑛
𝑣𝑇

(
𝜎−2
𝑛 𝐴𝑛

)
𝑣 = 𝑣𝑇 𝐴𝑣 ≠ 0,

and in particular Var(𝑌𝑛 (𝑣)) →∞. Thus we may apply our central limit theorem for random
variables avoiding a sector, Corollary 1.5, to see that

𝑌𝑛 (𝑣) − E𝑌𝑛 (𝑣)
(𝑣𝑇 𝐴𝑛𝑣)1/2 → 𝑁 (0, 1)

and therefore
𝜎𝑛

(𝑣𝑇 𝐴𝑛𝑣)1/2 ⟨𝑋
∗
𝑛, 𝑣⟩ =

𝑌𝑛 (𝑣) − E𝑌𝑛 (𝑣)
(𝑣𝑇 𝐴𝑛𝑣)1/2 → 𝑁 (0, 1).

Since (𝑣𝑇 𝐴𝑛𝑣)1/2𝜎−1
𝑛 tends to a constant as 𝑛 → ∞, it follows that

⟨𝑋∗
𝑛, 𝑣⟩ → 𝑁 (0, 𝑣𝑇 𝐴𝑣),

as desired.
In the other case, we have that 𝐴𝑣 = 0 and therefore Var(𝑌𝑛 (𝑣))𝜎−2

𝑛 → 0. So, for all
𝑥 > 0, we may apply Chebyshev’s inequality to see that

P ( |𝑌𝑛 (𝑣) − E𝑌𝑛 (𝑣) | ⩾ 𝑥𝜎𝑛) ⩽ Var(𝑌𝑛 (𝑣)) (𝑥𝜎𝑛)−2 = 𝑜(1).



Central limit theorems and the geometry of polynomials 35

This simply means that (𝑌𝑛 (𝑣) − E𝑌𝑛 (𝑣))𝜎−1
𝑛 tends to a point mass at zero, in distribution.

So trivially,
⟨𝑋∗

𝑛, 𝑣⟩ → 𝑁 (0, 0) = 𝑁 (0, 𝑣𝑇 𝐴𝑣),
as desired.

To “lift” this information about the projected random variables, we appeal to a theorem
of Cuesta-Albertos, Fraiman and Ransford [20], which will allow us to conclude that the
distribution of our multivariate random variable is approximately normal from the fact
that “many” of its projections are normal. To properly state this result, we let 𝜈 be a Borel
probability measure on R𝑑 and, for 𝑣 ∈ R𝑑 , we define the measure 𝜈𝑣 to be the “projected”
measure on R defined by

𝜈𝑣 (𝐵) = 𝜈

({
𝑥 ∈ R𝑑 : ⟨𝑣, 𝑥⟩ ∈ 𝐵

})
,

for every Borel set 𝐵 ⊆ R. If 𝜈̃ is another Borel probability measure on R𝑑 , we define
Π(𝜈, 𝜈̃) ⊆ R𝑑 to be the set of 𝑣 ∈ R𝑑 for which 𝜈̃𝑣 = 𝜈𝑣. In this notation, the classical Cramér-
Wold Theorem [19] says that if 𝜈, 𝜈̃ are Borel probability measures such that Π(𝜈, 𝜈̃) = R𝑑

then 𝜈 = 𝜈̃. Cuesta-Albertos, Fraiman and Ransford [20] have sharpened this result by
showing that it is enough for Π(𝜈, 𝜈̃) to not be contained in the zero-set of a polynomial.
We shall only make use of the following corollary of this theorem.

Corollary 10.3. For 𝑑 ⩾ 1, let 𝐴 be 𝑑 × 𝑑 positive semi-definite matrix and let 𝜈𝐴 be the
Gaussian distribution on R𝑑 with covariance matrix 𝐴 and mean zero. If 𝜈 is a measure
for which Π(𝜈𝐴, 𝜈) ⊇ Z𝑑⩾0 then 𝜈𝐴 = 𝜈.

Recall that a sequence of Borel probability measures 𝜈𝑛 on R𝑑 is said to be tight, if for
every 𝜀 > 0 there exists 𝑅 = 𝑅(𝜀) > 0, so that the ball 𝐵(0, 𝑅) satisfies 𝜈𝑛 (𝐵(0, 𝑅)) > 1− 𝜀,
for all sufficiently large 𝑛. For the proof of Theorem 1.6, we need two basic facts about
tight sequences of measures (see, e.g., [9, Theorem 25.10]): For each 𝑛 ⩾ 1, let 𝑋𝑛 ∈ R𝑑

be a random variable, with finite mean 𝜇𝑛, covariance matrix 𝐴𝑛 and maximum variance
𝜎2
𝑛 ∈ (0,∞). If 𝜈𝑛 is the law of 𝑋∗

𝑛 := (𝑋𝑛 − 𝜇𝑛)𝜎−1
𝑛 then 𝜈𝑛 is a tight sequence of measures.

Secondly, we need that if 𝜈𝑛 is a tight sequence of Borel probability measures on R𝑑 then
there exists a subset 𝑆 ⊆ N and a Borel probability measure 𝜈 for which 𝜈𝑛 → 𝜈, weakly,
for 𝑛 ∈ 𝑆.

We can now finish the proof of Theorem 1.6.

Proof of Theorem 1.6. For each 𝑛 ⩾ 1, let 𝑋𝑛 ∈ {0, . . . , 𝑛}𝑑 be a random variable with
mean 𝜇𝑛, covariance matrix 𝐴𝑛, maximum variance 𝜎2

𝑛 and let 𝜈𝑛 be the law of 𝑋∗
𝑛 :=

(𝑋𝑛 − 𝜇𝑛)𝜎−1
𝑛 . We have that 𝜎−2

𝑛 𝐴𝑛 → 𝐴, for some (non-zero) matrix 𝐴.
Let 𝜈𝐴 denote the law of 𝑁 (0, 𝐴); we show that every subsequence has a further sub-

sequence that converges to 𝜈𝐴, which is enough to conclude that 𝜈𝑛 → 𝜈𝐴. For this, let
𝑆 ⊂ N; by tightness of {𝜈𝑛}, we may find 𝑆′ ⊂ 𝑆 so that along 𝑆′ we have 𝜈𝑛 → 𝜈′

for some measure 𝜈′. Convergence in distribution together with Lemma 10.2 imply that
Π(𝜈𝐴, 𝜈′) ⊇ Z𝑑⩾0. Corollary 10.3 then implies 𝜈′ = 𝜈𝐴. This completes the proof.
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Remark 10.4. We point out that our results here easily generalize beyond real stable poly-
nomials to other situations where 𝑓𝑋 satisfies a certain “half-plane property”. To take a
well-known example, we say that a polynomial is Hurwitz stable if it has no roots in

{(𝑧1, . . . , 𝑧𝑑) ∈ C𝑑 : Re(𝑧𝑖) > 0, for all 𝑖}.

Our work here implies a version of Theorem 1.6 in the case that 𝑓𝑋 is Hurwitz stable. In
fact, the only point to check is Lemma 10.1 and the rest of the proof proceeds in the same
way.

More generally, let 𝜙 ∈ (0, 2𝜋) and define

𝐻𝜙 := {(𝑧1, . . . , 𝑧𝑑) ∈ C𝑑 : arg(𝑧𝑖) ∈ [0, 𝜙], for all 𝑖}.

We say that a polynomial 𝑓 is 𝐻𝜙-stable if it has no roots in 𝐻𝜙 . It is not hard to see that
our results imply a central limit theorem for a sequence of random variables 𝑋𝑛 when the
𝑓𝑋𝑛

are 𝐻𝜙-stable polynomials and 𝜎𝑛 → ∞.

11. Sharpness of results

In this section we show that our quantitative results (Theorems 1.2 and 1.4) are sharp up to
the implied constants. From this it will also follow that the conditions in the limit theorems,
Corollaries 1.3 and 1.5, are best-possible.

Our constructions follow from a few simple observations. This first observation gives
a cheap bound on the discrepancy between a discrete random variable and the standard
normal distribution. Recall that we use the notation 𝑋∗ to denote (𝑋 − 𝜇)𝜎−1, for a random
variable 𝑋 .

Observation 11.1. Let 𝑋 ∈ Z be a random variable with mean 𝜇 < ∞ and standard devi-
ation14 𝜎 ∈ [2−3,∞). Then

sup
𝑡∈R

|P(𝑋∗ ⩽ 𝑡) − P(𝑍 ⩽ 𝑡) | ⩾ 𝑒−16

𝜎
,

where 𝑍 ∼ 𝑁 (0, 1).

Proof. Note that since 𝑋 ∈ Z, we have 𝑋∗ := (𝑋 − 𝜇)𝜎−1 ∈ 1
𝜎
(Z − 𝜇). Find values 𝑎, 𝑏 ∈

Z − 𝜇 so that 𝑏 − 𝑎 = 1, 𝑎 ⩽ 0 and 𝑏 ⩾ 0. Then P(𝑋∗ ∈ 1
𝜎
(𝑎, 𝑏)) = 0 while

P
(
𝑍 ∈ 1

𝜎
(𝑎, 𝑏)

)
=

1
(2𝜋)1/2

∫ 𝑏/𝜎

𝑎/𝜎
𝑒−𝑠

2/2𝑑𝑠 ⩾
1

(2𝜋)1/2

∫ 1/2𝜎

0
𝑒−𝑠

2/2𝑑𝑠 ⩾
𝑒−8

2
√

2𝜋𝜎
,

14The 2−3 is an arbitrary choice, we just needed a sufficiently small number for the application
of Theorem 11.3.
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where 𝑍 ∼ 𝑁 (0, 1) and we have used that one of |𝑎 | or |𝑏 | must be at least 1/2. This allows
us to obtain a lower bound on the maximum discrepancy between the two cumulative
distribution functions. We have

2 sup
𝑡∈R

|P(𝑋∗ ⩽ 𝑡) − P(𝑍 ⩽ 𝑡) | ⩾ |P(𝑋∗ ⩽ 𝑏/𝜎) − P(𝑍 ⩽ 𝑏/𝜎) |

+ |P(𝑋∗ ⩽ 𝑎/𝜎) − P(𝑍 ⩽ 𝑎/𝜎) |,

which is at least

P
(
𝑍 ∈ 1

𝜎
(𝑎, 𝑏)

)
− P

(
𝑋∗ ∈ 1

𝜎
(𝑎, 𝑏)

)
⩾

𝑒−8

2
√

2𝜋𝜎
,

by the triangle inequality. Lower bounding the constant by 𝑒−16 completes the proof.

The next basic observation records a key “trick” in our constructions. It says that the
transformation 𝑋 ↦→ 𝑘 · 𝑋 does not change the maximum discrepancy with a normal. How-
ever, the standard deviation increases as 𝜎(𝑘 · 𝑋) = 𝑘𝜎(𝑋).

Observation 11.2. Let 𝑌 ∈ Z be a random variable with finite mean 𝜇 and standard devi-
ation 𝜎 ∈ [2−3,∞). For 𝑘 > 0, let 𝑋 = 𝑘 · 𝑌 . Then

sup
𝑡∈𝑅

|P(𝑋∗ ⩽ 𝑡) − P(𝑍 ⩽ 𝑡) | ⩾ 𝑐𝑘

𝜎(𝑋) ,

where we can take 𝑐 = 𝑒−16.

Proof. Note that 𝜎(𝑋) = 𝑘𝜎(𝑌 ) and E𝑋 = 𝑘E𝑌 thus

𝑋∗ = (𝑋 − E 𝑋)𝜎(𝑋)−1 = (𝑌 − E𝑌 )𝜎(𝑌 )−1 = 𝑌 ∗,

and so
sup
𝑡∈R

|P(𝑋∗ ⩽ 𝑡) − P(𝑍 ⩽ 𝑡) | = sup
𝑡∈R

|P(𝑌 ∗ ⩽ 𝑡) − P(𝑍 ⩽ 𝑡) |.

Thus, applying Observation 11.1 to 𝑌 yields

sup
𝑡∈R

|P(𝑋∗ ⩽ 𝑡) − P(𝑍 ⩽ 𝑡) | ⩾ 𝑒−16

𝜎(𝑌 ) =
𝑐𝑘

𝜎(𝑋) ,

as desired.

Our constructions for both theorems in this section are achieved simply by applying
Observation 11.2 to an appropriate “seed” random variable. For Theorem 11.3, we make
use of a simple class of random variables. If 𝜃 ∈ [𝜋/2, 𝜋], the polynomial

𝑃𝜌,𝜃 (𝑧) = (𝑧 − 𝜌𝑒𝑖 𝜃 ) (𝑧 − 𝜌𝑒−𝑖 𝜃 ) = 𝑧2 − 2𝜌(cos 𝜃)𝑧 + 𝜌2
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has non-negative coefficients and therefore 𝑃𝜌,𝜃 (𝑧) (𝑃𝜌,𝜃 (1))−1 is the probability generat-
ing function of a random variable, which we shall denote by 𝑌𝜌,𝜃 .

Now note that for each fixed 𝜃, as 𝜌 ⩾ 1 increases, Var(𝑌𝜌,𝜃 ) decreases as a continuous
function of 𝜌. Further, each random variable is non-degenerate for 𝜌 ∈ [1,∞), implying
Var(𝑌𝜌,𝜃 ) > 0. Since we also have lim𝜌→∞ Var(𝑌𝜌,𝜃 ) = 0, there exists some 𝑎(𝜃) > 0 so
that {Var(𝑌𝜌,𝜃 )}𝜌⩾1 ⊇ [0, 𝑎(𝜃)].

Theorem 11.3. For every 𝛿 ∈ (0, 𝜋] and𝜎 > 0 with 𝛿𝜎 ⩾ 1, there exists a random variable
𝑋 ∈ Z⩾0, which is supported on finitely many integers, with standard deviation 𝜎 and
probability generating function 𝑓𝑋 for which 𝛿 = min𝜁 : 𝑓 (𝜁 )=0 | arg(𝜁) | and

sup
𝑡∈R

|P(𝑋∗ ⩽ 𝑡) − P(𝑍 ⩽ 𝑡) | ⩾ 𝑐

𝛿𝜎
,

where we can take 𝑐 = 𝑒−16.

Proof. Let (𝜎, 𝛿) be given. As
⋃

𝑗⩾0 [𝜋/2 𝑗+1, 𝜋/2 𝑗 ] = (0, 𝜋], we may write 𝛿 = 𝜃/𝑘 , for
some 𝑘 ∈ N and 𝜃 ∈ [𝜋/2, 𝜋] and note that 1 ⩽ 𝛿𝜎 = (𝜃𝜎)/𝑘 . We start by constructing
a random variable 𝑌 with standard deviation 𝜎/𝑘 ⩾ 2−3 and min𝜁 | arg(𝜁) | = 𝜃. We then
finish by applying Observation 11.2.

For 𝜌, 𝑚 to be chosen later, let 𝑌𝑖 be independent copies of 𝑌𝜌,𝜃 and let

𝑌 =

𝑚∑︁
𝑖=1

𝑌𝑖 .

Of course, 𝜎(𝑌 ) =𝑚1/2𝜎(𝑌𝜌,𝜃 ) and thus, from the discussion that precedes Theorem 11.3,
we may choose 𝑚, 𝜌 so that 𝑚1/2𝜎(𝑌𝜌,𝜃 ) = 𝜎/𝑘 . Moreover, every root 𝜁 of the probability
generating function 𝑓𝑌 =

(
𝑓𝑌𝜌,𝜃

)𝑚
of 𝑌 has arg(𝜁) ∈ {−𝜃, 𝜃}.

Finally, set 𝑋 = 𝑘 · 𝑌 . The probability generating function of 𝑋 is 𝑓𝑋 (𝑧) = 𝑓𝑌 (𝑧𝑘) and
thus the roots 𝜁 of 𝑓𝑋 satisfy

arg(𝜁) ∈
{
±𝜃/𝑘 + 2𝜋ℓ

𝑘
mod 2𝜋 : ℓ ∈ {0, . . . , 𝑘 − 1}

}
and therefore min𝜁 : 𝑓𝑋 (𝜁 )=0 | arg(𝜁) | = 𝜃/𝑘 = 𝛿. From Observation 11.2, we have that

sup
𝑡∈R

|P(𝑋∗ ⩽ 𝑡) − P(𝑍 ⩽ 𝑡) | ⩾ 𝑒−16𝑘

𝜎(𝑋) ⩾
𝑒−16

𝛿𝜎(𝑋) ,

where the last inequality follows from the fact that 𝑘𝛿 = 𝜃 ∈ [𝜋/2, 𝜋]. This completes the
proof.

The following shows that Theorem 1.2 is sharp. Here, we apply Observation 11.2 to a
sum of Bernoulli random variables.
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Theorem 11.4. For 𝑛⩾ 1, 𝛿 > 0 and𝜎2 ∈ [1, 𝑛0.9) satisfying log 𝑛
𝛿𝜎

⩽ 1 there exists a random
variable 𝑋 ∈ {0, . . . , 𝑛} with standard deviation 𝜎 so that min𝜁 : 𝑓𝑋 (𝜁 )=0 |1 − 𝜁 | ⩾ 𝛿 and

sup
𝑡∈R

|P(𝑋∗ ⩽ 𝑡) − P(𝑍 ⩽ 𝑡) | ⩾ 𝑐 log 𝑛
𝛿𝜎

.

Proof. Let {𝑌𝑖}𝑖⩾1 be independent and identically distributed Bernoulli random variables
where 𝑝 := P(𝑌𝑖 = 1) will be chosen later. Of course, we have that Var(𝑌𝑖) = 𝑝(1 − 𝑝) and
the probability generating function of 𝑌𝑖 is 𝑝𝑧 + (1 − 𝑝). We set

𝑌 =

⌊𝑛/𝑘 ⌋∑︁
𝑖=1

𝑌𝑖 ,

with 𝑘 := ⌊log𝑛/(100𝛿)⌋ and note that Var(𝑌 ) =
⌊
𝑛
𝑘

⌋
𝑝(1 − 𝑝). We define 𝑋 := 𝑘𝑌 and set

𝑝 = 𝑛−𝛼 with 𝛼 ∈ [0.01, 1) to be chosen later. To apply Observation 11.2 to 𝑋 , we require
that Var(𝑌 ) ⩾ 1/8; and so we impose the condition

𝑛1−𝛼 ⩾ log 𝑛/(100𝛿)

to guarantee this. Now,
Var(𝑋) = 𝑘2

⌊ 𝑛
𝑘

⌋
𝑝(1 − 𝑝),

is a continuous function of 𝛼 as 𝑝 = 𝑛−𝛼. Also

Var(𝑋) ⩽ 𝑘𝑛𝑝(1 − 𝑝) ⩽ log 𝑛
100𝛿

𝑛1−𝛼 (1 − 𝑛−𝛼).

and
Var(𝑋) ⩾ 𝑘𝑛𝑝(1 − 𝑝) − 𝑘2𝑝(1 − 𝑝) ⩾ log 𝑛

200𝛿
𝑛1−𝛼 (1 − 𝑛−𝛼),

where the last line holds when 𝑛 ⩾ log 𝑛/(200𝛿) ⩾ 𝑘/2, which always holds for us as
𝑛 ⩾ 𝜎 ⩾ log𝑛/𝛿, by hypothesis. So as 𝛼 ∈ [0.01,1) varies subject to 𝑛1−𝛼 ⩾ log𝑛/(100𝛿),
Var(𝑋) ranges over a set containing the interval [𝛿−2 (log 𝑛)2, 𝑛0.9] and since log 𝑛

𝛿𝜎
⩽ 1 and

𝜎2 < 𝑛0.9 we may select 𝛼 ∈ [0.01, 1) so that Var(𝑋) = 𝜎2.
Now note that deg( 𝑓𝑋) = 𝑘 ⌊𝑛/𝑘⌋ ⩽ 𝑛 and thus 𝑋 ∈ {0, . . . , 𝑛}. Since 𝑓𝑋 (𝑧) = 𝑓𝑌 (𝑧𝑘),

the roots 𝜁 of 𝑓𝑋 are of the form 𝜁 = 𝛽

(
1−𝑝

𝑝

)1/𝑘
, where |𝛽 | = 1, which allows us to bound

min
𝜁

|1 − 𝜁 | ⩾ |1 − 𝑒
𝛼 log𝑛

𝑘 | = |1 − 𝑒𝛼 log 𝑛/⌊log 𝑛/(100𝛿 ) ⌋ | ⩾ 𝛿.

Applying Observation 11.2, we see that

sup
𝑡∈R

|P(𝑋∗ ⩽ 𝑡) − P(𝑍 ⩽ 𝑡) | ⩾ 𝑐𝑘

𝜎(𝑋) ⩾
𝑐 log 𝑛
100𝛿𝜎

⩾
𝐶 log 𝑛
𝛿𝜎

,

as desired.



40 M. Michelen, J. Sahasrabudhe

12. General distributions

In this brief section we discuss how to apply our results to random variables that take
values in R, rather than just in {0, . . . , 𝑛}. In short, everything for Theorem 1.4 extends
rather naturally, but a few extra complications arise.

The first task is to fix an appropriate notion of the probability generating function of 𝑋 .
Luckily, there is already a standard definition in this situation. First set 𝑧𝑟 := exp(𝑟 log 𝑧),
for all 𝑟 ∈ R, where “log” denotes the standard branch of the logarithm; then define

𝑓𝑋 (𝑧) := E𝑋 𝑧𝑋,

for all 𝑧 ∈ C \ R⩽0, to be the probability generating function of 𝑋 .
We now happen upon a feature of the more general set-up: 𝑓𝑋 does not necessarily exist

for all 𝑧 and therefore it may not make any sense to discuss the zeros of 𝑓𝑋 (𝑧) at all. To
ensure the existence of 𝑓𝑋, for all 𝑧 ∉ R⩽0, it is enough to impose the condition 𝑓𝑍 (𝜌) < ∞
for all 𝜌 > 0. With this assumption in hand, Morera’s theorem shows that 𝑓 is analytic as
well:

Lemma 12.1. Let 𝑋 ∈ R be a random variable and let 𝑓𝑋 be its probability generating
function. If 𝑓 (𝜌) < ∞ for all 𝜌 > 0 then 𝑓𝑋 (𝑧) is analytic in C \ R⩽0.

Proof. Let 𝛾 be a piecewise𝐶1 closed contour inC \R⩽0. Since log 𝑧 is analytic inC \R⩾0,
Fubini’s theorem shows∮

𝛾

𝑓𝑋 (𝑧) 𝑑𝑧 = E𝑋

∮
𝛾

exp(𝑋 log 𝑧) 𝑑𝑧 = 0 .

Morera’s theorem then implies 𝑓𝑋 is analytic in C \ R⩾0.

A second subtlety concerns the asymptotic growth of the logarithmic potential 𝑢𝑋 (𝑧) :=
log | 𝑓 (𝑧) |, for |𝑧 | very large and very small. For 𝜅, 𝛿 > 0 we say that 𝑢 satisfies the (𝜅, 𝛿)-
growth condition if we have

lim
|𝑧 |→∞

|𝑢𝑋 (𝑧) |
|𝑧 |𝜅 = 0 and lim

|𝑧 |→∞

|𝑢𝑋 (1/𝑧) |
|𝑧 |𝜅 = 0, (12.1)

where the limits are taken with 𝑧 ∈ 𝑆(𝛿).
In previous sections, we could ignore (12.1), as 𝑢𝑋 trivially satisfies the (𝜅, 𝛿)-growth

condition for all 𝜅 > 0 when 𝑓𝑋 is a polynomial. Here, however, we are forced to take the
rate of growth into account, as it directly affects the convergence to a normal distribution.

We now state our main general theorem for zero-free sectors of probability generating
functions.

Theorem 12.2. For 𝛿 > 0, and 𝜅 > 0 let 𝑋 ∈ R be a random variable with probability
generating function 𝑓𝑋 for which 𝑓 (𝜌) is defined for all 𝜌 ∈ R⩾0. If 𝑢𝑋 satisfies the (𝜅, 𝛿)-
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growth condition and 𝑓𝑋 has no zeros in 𝑆(𝛿) then 15

sup
𝑡∈R

|P(𝑋∗ ⩽ 𝑡) − P(𝑍 ⩽ 𝑡) | = 𝑂

(
max{𝛿−1, 𝜅}

𝜎

)
, (12.2)

where 𝑍 ∼ 𝑁 (0, 1).

Again, this theorem is sharp with respect to the dependence on 𝜅, 𝛿 and 𝜎, as we shall
see in Subsection 12.2.

12.1. Proof of Theorem 12.2

We first notice that many of the properties of the logarithmic potential of 𝑋 easily carry
over to this more general setting. Indeed, if 𝑓𝑋 is zero-free in the sector 𝑆(𝛿) then 𝑢(𝑧)
is harmonic in this sector. Also 𝑢(𝑧) is symmetric, and weakly positive. We also have
that 𝑓𝑋 (1) = 1 and therefore 𝑢𝑋 (1) = 0. With these observations at hand, we may prove
Theorem 12.2 as we proved Theorem 1.4

Proof of Theorem 12.2. Let 𝑋 ∈R be a random variable with probability generating function
𝑓𝑋, satisfying 𝑓𝑋 (𝜌) < ∞, for all 𝜌 > 0; that is zero-free in the sector 𝑆(𝛿); and so that 𝑢𝑋
satisfies the (𝜅, 𝛿)-growth condition. By the discussion above, we know that the logarithmic
potential 𝑢 = 𝑢𝑋 is harmonic, symmetric and weakly-positive in 𝑆(𝛿). Also note that we
may assume that 𝜎 > 0, otherwise the statement of the Theorem 12.2 is meaningless.

We now choose 𝜀 = min{𝛿/2, 1
2𝜅 } and note that 𝑢 is a weakly-positive, symmetric and

harmonic function on the smaller region 𝑆(𝜀). Now, looking to apply Lemma 4.1, we set
𝑟 := 2 and note that(

2
𝑅

)1/𝜀
max

𝑧∈𝑆∗
𝑅
(𝜀)

|𝑢(𝑧) | = 𝑂

(
𝑅−1/𝜀+𝜅

)
= 𝑂 (𝑅−𝜅 ) → 0 (12.3)

as 𝑅 → ∞. Thus, we may apply Lemma 4.1 to learn that 𝑢 is decreasing in 𝑆(𝜀/2). This
implies that 𝑢 is decreasing in 𝐵(1, 𝜀/4). Since 𝜎 > 0, 𝑢 satisfies the conditions of Corol-
lary 9.3, which finishes the proof.

12.2. Proof of the sharpness of Theorem 12.2

Theorem 12.3. Let 𝜅, 𝛿 ∈ (0, 𝜋) and 𝜎 be so that 𝜎 · min{𝛿, 1/𝜅} ⩾ 1. Then there exists
a random variable 𝑋 ∈ Z with standard deviation 𝜎 so that 𝑢𝑋 is harmonic in 𝑆(𝛿), 𝑢𝑋
satisfies the (𝜅, 𝛿)-growth condition, and

sup
𝑡∈R

|P(𝑋∗ ⩽ 𝑡) − P(𝑍 ⩽ 𝑡) | ⩾ 𝑐

𝜎
· max{𝜅, 𝛿−1} . (12.4)

15The implicit constant may be taken to be 23258.
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Proof. If 𝛿 ⩽ 1/𝜅, we apply Theorem 11.3 to obtain a random variable 𝑋 ∈ Z⩾0 which
has finite support and satisfies (12.4). Here, 𝑓𝑋 is a polynomial so log | 𝑓𝑋 | = 𝑂 (log |𝑧 |) =
𝑂 ( |𝑧 |𝜅 ).

In the case of 𝛿 > 1/𝜅, let 𝑌 be the Poisson random variable with mean 4𝜎2/𝜅2. Then
𝑌 ∈ Z with 𝜎(𝑌 ) = 2𝜎/𝜅. Set 𝑋 = (𝜅/2) · 𝑌 and note 𝜎(𝑋) = 𝜎 and

𝑢𝑋 (𝑧) =
4𝜎2

𝜅2

(
𝑧𝜅/2 − 1

)
,

which is harmonic in 𝑆(𝛿) and satisfies the specified growth conditions. Applying Obser-
vation 11.2 completes the proof.
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