

1 **Recent developments in the use of electrokinetic methods for rapid cell**
2 **viability assessments and separations**

3

4 Blanca H. Lapizco-Encinas^{†,*}

5

6 [†] Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of
7 Technology, 160 Lomb Memorial Drive, Rochester, New York, 14623, United States.

8

9

10

11

12 *Email: bhlabme@rit.edu

13

14

15

16

17

18

19 **Abstract**

20 Rapid cell viability assessments are essential in a growing number of fields, including clinical analysis, healthcare, drug development
21 and food safety. Electrokinetic (EK) methodologies have proved to be robust and reliable platforms of the analysis of cells, including
22 viability assessments. Discussed here are applications of two EK phenomena, dielectrophoresis and electrophoresis, which can
23 discriminate cells by their viability status and also sort and separate cells into separate viable and nonviable fractions, so further analysis
24 can be performed. For each EK method, the operating principle is presented, followed by a brief historical overview and a detailed
25 analysis of recent reports published between 2015-2024. The concluding remarks include a summary of the content of this review article
26 and present a future perspective on the expected future advances on EK-based systems for the assessment and separation of cells based on
27 their viability status.

28

29 **Keywords:**

30 Cells
31 Dielectrophoresis
32 Electrokinetics
33 Electrophoresis
34 Viability

35

36 **1. Introduction**

37 The assessment of cell viability is essential in a growing number of applications and fields. Methods for the
38 effective control and prevention of infections are urgently needed due to the increasing number of deaths and
39 infections worldwide. In 2019 the Centers for Disease Control and Prevention of the U.S. reported a healthcare
40 cost over 25 billion dollars associated with infectious diseases [1,2]. The advent of antibiotic resistant bacteria,
41 for example, poses a major threat to the control and treatment of infectious diseases. The rapid assessment on the
42 effect of antibiotics and other drugs on pathogenic bacteria, to identify the presence of antibiotic resistant strains
43 has become vital in clinical and healthcare settings [3]. The field of medicine also requires effective methods for
44 the rapid assessment of cell viability for testing the efficacy of new drugs, in particular anticancer drugs.
45 Similarly, the development of new antibiotics requires significant testing of the effects of antibiotics on target
46 pathogenic bacteria.

47 Besides clinical and healthcare applications, cell viability assessments are also an immediate need in the food
48 industry, as early stage detection of pathogens in food matrices is a major challenge in food safety [4]. The
49 incidence of food borne diseases has been increasing over the years, and early detection is key for minimizing
50 the impact on human health [5]. An additional demand in the food industry is the assessment and quality control
51 of food items that contain active microorganisms, such as probiotic and fermented products, functional foods,
52 and dairy products. An effective technology that can enable rapid quantification of viable microorganisms
53 present in these food items and food supplements would be a major asset. Another important example of the

54 immediate need of rapid cell viability approaches is the pharmaceutical industry, where continuous monitoring
55 of the stress and viability of cell cultures is crucial [6]. Others fields, such as environmental monitoring, in
56 particular in the treatment of wastewaters, also require effective methods for the monitoring of cell viability [7].

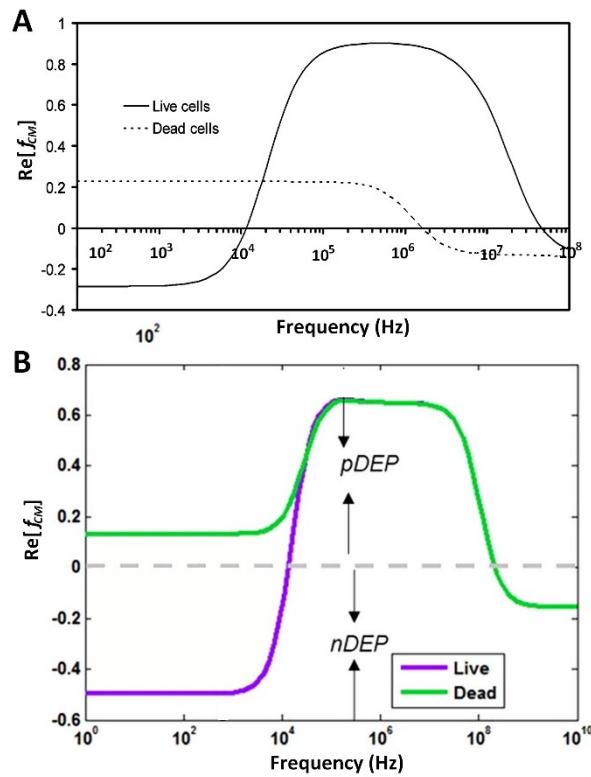
57 Electrokinetic (EK) phenomena, which can be used to manipulate fluids and particles employing electric
58 fields, offer attractive characteristics for the analysis of microorganisms, as they depend on the dielectric
59 properties of the cells, circumventing the use of chemical labels [8]. The combination of microfluidics and EK
60 effects is highly relevant, as it can enable portable devices with short processing times, which can be ideal for
61 on-line monitoring systems and remote sensing applications.

62 The present review article discusses two EK methods for rapid cell viability assessment and separation. The
63 two EK phenomena that were selected for this discussion are dielectrophoresis (DEP) and electrophoresis (EP).
64 The basis for this selection was that both methodologies are able to discriminate cells by their viability status and
65 also sort and separate cells into viable and nonviable fractions, so further analysis can be performed. This review
66 article aims to provide the reader with an overview of EK-based devices and technologies that can handle both
67 operations simultaneously: viability assessment and separation. The technique of electrorotation (EROT) [9],
68 while extremely powerful for viability assessments, cannot be used for continuous sorting and separation
69 purposes, thus, it is not discussed in this article. Both, DEP and EP, are powerful analytical and separation
70 techniques that do not require the use of labels, and can distinguish between live and dead cells by probing the
71 dielectric properties of the cells. While DEP exploits differences in electrical polarization, EP exploits
72 differences in electromigration velocity. The former is usually employed with high frequency AC electric fields,
73 while the latter requires the use of DC or DC-biased low frequency AC electric fields. Although DEP has been
74 successfully utilized to test the viability status of a wider variety of cell types (bacterial, yeast, mammalian and
75 cancer cells), EP also has great potential, as its nonlinear mode offers additional capabilities on how EP can
76 discriminate between live and dead cells [10,11]. This review article is organized as follows: The Introduction,
77 which is Section 1, describes the importance of cell viability assessments and separations in a growing number
78 of applications. Section 2 is focused on DEP-based studies on cell viability. First, the operating principle and
79 fundamental equations are presented, followed by a brief historical overview and a detailed discussion on recent
80 (2015-2024) studies. The majority of the reports discussed in this section demonstrated both processes, viability
81 assessment and live/dead cell sorting/separation. Analogously, the third section describes the operating principle
82 and fundamental equations of the EP-based studies, followed by brief description of the first EP-based viability
83 cell separations and detailed discussion of relevant (2015-2024) studies. It is important to mention that all DEP-
84 based reports employed microfluidic systems, while EP studies employed bench scale capillary electrophoresis
85 (CE) systems and microfluidic systems. Section 4, includes the concluding remarks that summarize the content
86 of this review article and present a perspective on the expected future advances on EK-based systems for the
87 assessment and separation of cells based on their viability status.

88 **2. Dielectrophoresis-based cell viability assessments and separations**

89 Dielectrophoresis probes the dielectric characteristics of microorganisms and thus is an effective methodology
90 for rapid viability separations and assessments, as dielectric properties are altered as a result in changes in
91 viability status [12]. Dielectrophoresis is attractive as a viability assessment tool since it offers rapid response
92 times, the potential for miniaturization and does not need labels or tags. Numerous reports have focused on the
93 manipulation, sorting, separation and quantification of cells employing DEP, where careful consideration is
94 given to preserve cell viability during DEP-based analysis [10,13–20]. Described below are the operating
95 principle and applications of DEP designed specifically to distinguish and separate live from dead cells.
96

97 **2.1 Dielectrophoresis operating principle**


98 Dielectrophoresis is defined as the migration of particles due to polarization effects under the presence of a
99 nonuniform electric field. Changes in dielectrophoretic migration reflect alterations in the cell's polarizability
100 with respect to that of the suspending medium. When a cell dies, its dielectric properties are altered, which in
101 turn alters the dielectrophoretic response of the cell. The dielectrophoretic force (\mathbf{F}_{DEP}) and velocity
102 (\mathbf{v}_{DEP}) exerted on a spherical cell are defined as follows:

103
$$\mathbf{F}_{DEP} = 2\pi r_p^3 \varepsilon_m \operatorname{Re}[f_{CM}] \nabla E^2, \text{ where } f_{CM} = \frac{\varepsilon_p^* - \varepsilon_m^*}{\varepsilon_p^* + 2\varepsilon_m^*} \quad (1)$$

104
$$\mathbf{v}_{DEP} = \mu_{DEP} \nabla E^2, \text{ where } \mu_{DEP} = \frac{r_p^2 \varepsilon_m}{3\eta} \operatorname{Re}[f_{CM}] \quad (2)$$

105 where r_p refers to the cell radius, the magnitude of the electric field is represented by E , and $\operatorname{Re}[f_{CM}]$ is the real
106 part of the Clausius-Mossotti factor, which accounts for the polarizability of the particle/cell compared to that of
107 the suspending medium. The parameter f_{CM} depends on the complex permittivity of the particle/cell and the
108 suspending medium and the frequency of the electric field, and it varies from -0.5 to 1.0 for spherical cells [21].
109 The complex permittivity ε^* , in turn, depends on the real permittivity (ε) and the real conductivity (σ) of the
110 particle/cell ($\varepsilon_p^* = \varepsilon_p - (j\sigma_p/\omega)$) and the medium ($\varepsilon_m^* = \varepsilon_m - (j\sigma_m/\omega)$), respectively. The parameter ω is the
111 angular frequency of the electric field and the parameter j is defined as $j = \sqrt{-1}$. In the expression for \mathbf{v}_{DEP}
112 μ_{DEP} is the dielectrophoretic mobility and η is the suspending medium viscosity. The sign of the parameter
113 $\operatorname{Re}[f_{CM}]$ dictates the direction of the DEP force exerted on a cell, positive DEP (pDEP), obtained at positive
114 values of $\operatorname{Re}[f_{CM}]$, is when cells migrate towards the regions of higher field gradient, while negative DEP (nDEP)
115 is when cells are repelled from these regions. By looking at **Eqn. (1)**, it is possible to discern that the
116 characteristics of a cell that can vary as a result of viability loss are the dielectric properties (ε_p and σ_p) and cell
117 size (r_p). Variations in ε_p and σ_p are directly reflected in the values of the $\operatorname{Re}[f_{CM}]$. Further, the value of $\operatorname{Re}[f_{CM}]$
118 also depends on the frequency ω , at lower values of ω the value of $\operatorname{Re}[f_{CM}]$ depends on the characteristics (ε_p and

119 σ_p) of the cell membrane while at high values of ω the $\text{Re}[f_{CM}]$ is dictated by the characteristics (ε_p and σ_p) of the
 120 cell cytoplasm. Loss of viability modify the values of the ε_p , σ_p and ε_p^* of a cell, which in turn modify the value
 121 of $\text{Re}[f_{CM}]$ as seen in **Fig. 1** for yeast and Human Embryonic Kidney (HEK) 293 cells, where a similar behavior
 122 is observed for eukaryotic and mammalian cells. In general, over a large frequency range (low to mid-range
 123 values) the DEP response of viable cells is nDEP while dead cells exhibit a pDEP response, this observation
 124 holds true for a wide range of operating conditions and cell types. The distinct cell responses illustrated in **Fig. 1**
 125 agree with the fact that the cell membrane properties determine the cell DEP response at lower frequency values.
 126 Cell membranes have an insulative nature, i.e., they possess a low conductivity; however, when a cell dies, the
 127 cell membrane becomes compromised and it gets contaminated with the highly conductive cytoplasm, resulting
 128 in a significant increase of the cell membrane conductivity and polarizability. This explains why from low to
 129 mid-range frequency values dead cells exhibit pDEP while live cells with their nonconducting membranes
 130 exhibit nDEP behavior. In contrast, at high frequencies, live cells will usually exhibit pDEP and dead cells could
 131 exhibit nDEP or negligible DEP (**Fig. 1A**). This distinct behavior of dead cells from that of live cells can be used
 132 to effectively separate and discern live from dead cells [22].

133

134 **Fig. 1.** Values of the real part of the Clausius-Mossotti factor as a function of the frequency of the electric field for live and dead cells. (A)
 135 Yeast cells, theoretical values estimated by Patel and Markx employing the multishell model. Adapted with permission from [22],
 136 copyright (2008) Elsevier. (B) HEK-293 cells, theoretical values estimated by Punjiya et al. employing the double-shell model. Adapted
 137 from [19], open access article distributed under a Creative Commons Attribution (CC BY) License, copyright (2021) Punjiya et al. In
 138 both plots, over a large frequency range, the dead cells exhibit positive values of the real part of the Clausius-Mossotti factor while live
 139 cells exhibit negative values, confirming that cell dielectric properties are affected by viability losses.

140

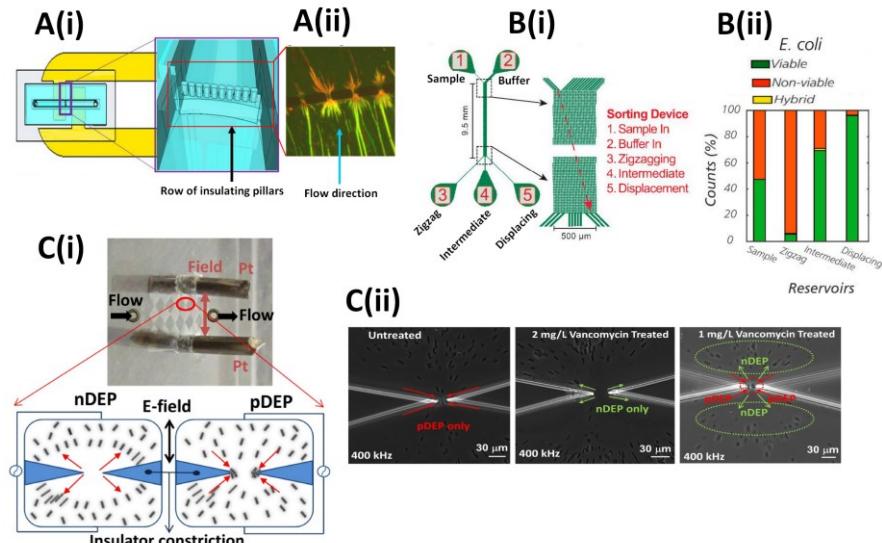
141 **2.2 Reports on dielectrophoretic-based cell viability assessments and separations**

142 The potential of DEP as an effective technique for discriminating between live and dead cells was unveiled
143 15 years after the first report on DEP in 1951 by Herbert Pohl [23]. The separation between live and dead yeast
144 cells was reported by Pohl and collaborators in 1966 and 1968 [24,25]. In these experiments carried out at high
145 frequencies (2.55 MHz), live cells exhibited pDEP behavior and were attracted towards a pin electrode and
146 collected, which is in agreement with **Fig. 1A**. Dead cells, on the other hand, did not exhibit an observable
147 response and remained in the suspending medium, unaffected. Also in agreement with **Fig. 1A** is the observation
148 of dead yeast cells collecting at the electrode at low frequencies under pDEP effects and then repelled under
149 nDEP effect when the frequency was increased to 2.55 MHz [25], as the response for dead cells varies from
150 positive to negative as frequency increases. A summary of all the reports reviewed in this section is included in
151 **Table 1**.

153 **2.2.1 Bacteria cells**

154 Recent reports on the use of DEP for viability assessments have demonstrated novel approaches and the
155 applicability of DEP across diverse cell types. Bacterial viability assessments are of particular interest in clinical
156 applications to detect pathogenic infections and for the testing of antimicrobial/antibiotic reagents. As
157 mentioned, significant effort has been devoted to ensuring the DEP treatment of cells does not affect cell
158 viability, ensuring that cells can be used/studied after DEP analysis [10,13–20] and to determine the effect of
159 DEP on cell viability [7,14,26]. Sorting between live and dead bacterial cells is one of the most important
160 applications of DEP.

161 The Agah group developed a unique approach that employed 3-dimensional insulator-based DEP devices
162 that effectively trapped bacterial cells (*E. coli*) at low applied voltages using DC-biased AC voltages [27].
163 Employing this novel design, the Agah group reported the effective sorting between live and dead
164 *Staphylococcus aureus* (*S. aureus*) and *Staphylococcus epidermidis* (*S. epidermidis*) cells [28–30]. This group
165 developed unique device designs that combined the benefits of electrode-based DEP and insulator-based DEP
166 systems by employing devices with 3D embedded insulating micropillars, where the pillars compressed the flow
167 also along the channel width and height. The presence of the pillars generated the necessary electric field
168 gradients for DEP effects to occur. Employing AC potentials applied through passivated electrodes, they were
169 able to selectively trap live *S. aureus* cells while dead cells kept flowing as shown in **Fig. 2A** [28]. In follow-up
170 studies, they employed DC-biased AC fields to achieve the distinction between live and dead *S. aureus* cells [29]
171 and live and dead *S. epidermidis* cells [30]. The latter report employed off-chip electrodes for stimulating the
172 system and used impedance spectroscopy to assess cell viability. A recent study by the Tegenfeldt group [8]
173 combined DEP and deterministic lateral displacement (DLD) to develop the method of EK-DLD for the


174 effective sorting between live and dead *E. coli* and *Saccharomyces cerevisiae* (*S. cerevisiae*) cells employing AC
175 potentials. Their proposed technique is a powerful approach, as DEP exploits differences in EK properties while
176 DLD exploits differences in size. This was a follow up study on their charge-based separation technique [31]. In
177 this cell focused work [8] they performed a continuous charge-based cell sorting between live and dead *E. coli*
178 cells, the employed device and their results are shown in **Fig. 2B**. The sorting device has three distinct outlets
179 that allowed for collection of separated cell fractions. The sorting process was successful, as the sample that
180 contained equal proportions of live and dead cells, was separated as follows: 72% of the live *E. coli* cells were
181 collected at the displacing reservoir, with a 90% purity. Similarly, 63% of the dead cells were collected at the
182 zigzag reservoir, with a purity above 90%. The intermediate reservoir contained a mixed fraction. The separation
183 took 90 minutes, and the authors discussed that a difference in zeta potentials of 8 mV between the live and dead
184 *E. coli* cells is the parameter that made the separation process. A major finding from this study was the fact that
185 for *E. coli* cells a significant change in the cell zeta potential (ζ_P) was observed as a result of the heat-based cell
186 inactivation process; live cells had a zeta potential of -42 mV, while a value of -34 mV was reported for dead
187 cells (measured with a ZetasizerTM). This is a net difference of ~8 mV, which is more than enough for efficient
188 charge-based separation as demonstrated in recent reports [31,32]. However, this was not the case for live and
189 dead for *S. cerevisiae* cells, were both cell populations, live and dead, had a cell zeta potential ~ -19 mV, that is,
190 there was no discernible change in cell zeta potential as a result of the heat-based cell inactivation process.
191 Regarding changes in cell size, the authors mentioned that no significant change in size was observed for dead *E.*
192 *coli* cells compared to live ones; however, dead *S. cerevisiae* cells were found smaller ($3.80 \pm 0.44 \mu\text{m}$) than live
193 ones ($4.70 \pm 0.63 \mu\text{m}$) [8]. These are important observations, and the contrasting results may be due to the
194 distinct cell types studies, as *E. coli* cells are prokaryotic bacteria and *S. cerevisiae* cells are eukaryotic
195 unicellular fungi. Given that the differences between live and dead cells depend on cell type, the separation
196 process must be adapted accordingly. For the live and dead *E. coli* cell separation, the parameter exploited was
197 charge differences in terms of ζ_P (results in **Fig. 2B**). However, for the live and dead *S. cerevisiae* cell separation
198 (performed at much higher frequency of 20 kHz), differences in cell size were represented by differences in the
199 dielectrophoretic mobility (μ_{DEP}) of the cells (Eqn. 2). The separation took place by exploiting differences on
200 μ_{DEP} , which depends on both, cell size and dielectric properties. The authors stated that two distinct separation
201 mechanisms were observed in their study, a charge-based mechanism and a DEP-mobility-based mechanism,
202 and that more studies are still needed [8].

203 Antibiotic efficacy testing is another major application of DEP-based viability assessments. The Swami
204 group has studied extensively the bacterium *Clostridium difficile* (*C. difficile*) due to its prominence as one of the
205 major causes of antibiotic-induced enteric infections with high disease recurrence after antibiotic treatment [33–
206 35]. In particular, they reported the dielectrophoretic fingerprinting of *C. difficile* strains to distinguish between
207 high toxicogenic and non-toxicogenic cells [33]; and the DEP-based assessment of the efficacy of employing

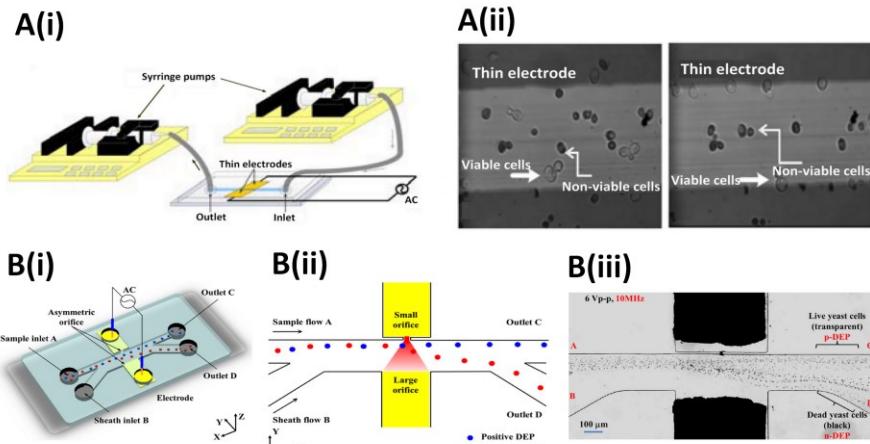
208 probiotic microorganisms as inhibitor of *C. difficile* growth and toxicity [34]. In a more recent report [35], this
209 group studied the efficacy of vancomycin against *C. difficile* employing pDEP and confirmation with
210 electrorotation (EROT). Current methodologies for assessing antibiotic susceptibility require time-consuming
211 bacterial culture, which can take over 16 hours to produce a result when employing the antibiotic at its minimum
212 inhibitory concentration (MIC). The Swami group identified that cell exposure to MIC levels of vancomycin
213 decrease the cytoplasmic conductivity of *C. difficile*, a change that can be assessed with DEP at high frequencies
214 (since under high frequencies the $\text{Re}[f_{CM}]$ is determined by the properties of the cell cytoplasm). **Fig. 2C.i**
215 depicts the employed device which featured triangular insulating structures that created a sharp constriction.
216 High frequency electric fields were applied through the platinum electrodes shown in the image. By testing two
217 distinct concentrations of vancomycin that were close to the MIC levels, it was found that a concentration of 2
218 mg/L was effective at inactivating/killing the *C. difficile* cells, as illustrated by their DEP response in **Fig. 2C.ii**.
219 The results are illustrated by three panels, obtained with untreated cells, and cells treated with 1 and 2 mg/L of
220 vancomycin, respectively. Untreated live cells exhibit only pDEP response, cells treated with 1 mg/L have a
221 mixed response, exhibiting both pDEP and nDEP; while cells treated with 2 mg/L exhibit only nDEP, indicating
222 a strong decrease in their cytoplasmic conductivity, i.e., cell death. Thus, a vancomycin level of 2 mg/L is
223 necessary for complete inactivation of *C. difficile* cells, this result was achieved only after 4 hours of treating the
224 cells with vancomycin. At the high frequency employed, the inactivated/dead *C. difficile* cells exhibit nDEP due
225 to the decrease in their cytoplasmic conductivity compared to live cells which exhibit pDEP. This study
226 demonstrates how the ability for DEP to discern between live and dead cells can be employed for the rapid and
227 effective assessment of antibiotic efficacy. The Gupta group also employed rapid DEP assessments to determine
228 the efficacy of antibiotics [36,37]. The former study focused on DEP-based viability assessment of *E. coli* and
229 *Salmonella Typhi* (*S. Typhi*) cells and by detecting cell membrane rupture (cell death) as a result of cell exposure
230 to sushi S3, an antimicrobial peptide [36]. In the latter report, the Gupta group developed the technique called
231 DEPIS, a combination of DEP with impedance spectroscopy (IS), for the rapid assessment of cell viability and
232 antimicrobial susceptibility [37]. They studied *S. Typhi*, *Enterococcus faecalis* (*E. faecalis*) and *S. aureus*, which
233 were treated with several antimicrobial agents: polymyxin B sulfate, sushi S3 peptide, levofloxacin, bacitracin,
234 and methicillin. Cells exposed to the antibiotic agents were then introduced into the DEPIS device, where they
235 were enriched by DEP forces and screened by IS, the entire process took only 60 min. In contrast with their
236 previous work [36], the antimicrobial agents in this study had distinct cellular targets (cell membrane, cell
237 cytoplasm and cell wall), so each antimicrobial agent produced a distinct set of changes on the cells, justifying
238 why impedance spectroscopy was used to rapidly assess cell viability. The authors concluded that ionic release
239 from dying cells is an effective and rapid way to assess cell viability and antibiotic efficacy [37]. Further, they
240 also demonstrated the rapid distinction between methicillin-resistant and methicillin-susceptible *S. aureus*
241 strains, which can be critical in clinical settings.

242 Ensuring that all pathogens in a sample have been eliminated is another important application. Devices for
 243 cell inactivation were reported by the Yang group [38–40], they employed channels with insulating micropillars
 244 and chambers filled with silica microbeads to allow DEP forces to irreversibly electroporate *E. coli*, *E. faecalis*
 245 and *S. cerevisiae* cells and cause cell death. In these systems DEP was not used for performing the viability
 246 assessment of the cells, DEP was used to induce cell death and cell viability by assessed off-device by standard
 247 spread plate counting.

248

249

250 **Fig. 2.** Dielectrophoretic bacterial viability assessments. **(A.i)** Illustration of the device employed for the distinction between live and *S.*
 251 *aureus* cells, the device features a row of insulating pillars at the center of a microfluidic channel. **(A.ii)** Trapping of live *S. aureus* cells
 252 (dyed green) while dead cells (dyed red) are not trapped and continue flowing under an applied voltage of 400 Vpp at 30 kHz, flow
 253 direction is from bottom to top, and as observed in A.ii, mostly red cells are observed after the row of posts, green cells are not able to
 254 pass across the row of posts. Adapted with permission from [28], copyright (2015) AIP Publishing. **(B.i)** Illustration of the sorting device
 255 employed by Bo et al., the device features three outlet reservoirs, a sample reservoir and a buffer reservoir. The critical diameter of the
 256 device is 1.24 μ m. **(B.ii)** Results from the sorting process illustrating effective discrimination between the live and dead *E. coli* cells. This
 257 sorting was obtained at 138 Vpp at 1 Hz, under a pressure of 20 mBar employing a medium with a conductivity of 100 mS/m. Adapted
 258 from [8], open access article distributed under a Creative Commons Attribution (CC BY) License, copyright (2020) Ho et al. **(C.i)**
 259 Illustration of the device employed by Rouhi et al. and two cartons to depict the cell response under nDEP and pDEP. **(C.ii)** DEP
 260 response of *C. difficile* cells left untreated and treated with 2 mg/L and 1 mg/L of vancomycin. A concentration of 2 mg/L is necessary for
 261 all cells to be indicated as demonstrated by their nDEP response. Adapted with permission from [35], copyright (2018) Elsevier.


262

263 2.2.2 Yeast cells

264 Dielectrophoresis-based viability assessments have also been developed for yeast cells. Discussed in **Section**
 265 **2.2.1** is the study by Ho et al. [8], where they sorted live and dead *S. cerevisiae* cells by their DEP mobility at
 266 high frequency, as a charge-based sorting (as done for *E. coli*) was not possible. The Taguchi group [41]
 267 reported a unique study by developing devices for the discrimination between live and dead cells and also for
 268 cell fusion. They employed *S. cerevisiae* and red cabbage protoplast cells. Their device and discrimination
 269 process for live and dead *S. cerevisiae* cells are shown in **Fig. 3A**. They employed a microfluidic chamber with
 270 top and bottom thin electrodes, where live cells (non-stained) were attached to the electrodes by the effect of

271 pDEP, while dead cells (stained with methylene blue) were not attracted towards the electrodes and were flushed
272 away employing fluid flow driven by syringe pumps. Their study also included live cell manipulation with pDEP
273 and optical tweezers to achieve cell fusion with the addition of polyethylene glycol (PEG). The PEG was added
274 to the cell suspension for two purposes, first, to make cells adhere to each other and second to trigger cell fusion
275 [41]. In a follow up study [42], the Taguchi group analyzed the DEP response of live and dead yeast cells by
276 inducing cell death on chip with bipolar electrodes by increasing the temperature (from 30 to 70 °C) of the
277 suspending media, cell death was observed above 50 °C. They observed that live yeast cells exhibited pDEP and
278 were attracted to the electrodes, but when the cells died, as a result of the increasing system temperature, the
279 yeast cells moved away from the electrode. These observations are in perfect agreement with **Fig. 1A**, since at
280 high frequency live cells exhibit pDEP while dead cells exhibit nDEP. This study demonstrates the flexibility of
281 employing DEP for rapid and labelless cell viability assessments, as the cell response can be easily modified by
282 modifying the frequency of the applied voltage. The García-Diego group [43] also demonstrated a rapid
283 live/dead assessment for *S. cerevisiae* cells, they observed with microscopy that heat-killed yeast cells have
284 broken down cell membranes. Further, they measured the DEP force exerted on live and dead cells employing a
285 two electrode system where the electrodes were positioned forming a funnel configuration. Both cell types, live
286 and dead, had exhibited pDEP behavior, but the DEP force decreased significantly on dead cells, i.e., dead cells
287 still exhibited pDEP, but at a much lower magnitude than live cells. They explained these observations as the
288 result of increased conductivity in the cell membrane and cell wall of the dead cells, since these two structures
289 get contaminated with the cell cytoplasm. A continuous DEP-based sorter for live and dead yeast cells was
290 reported by the Li research group [21]. They developed a unique design where DEP effects were enabled by two
291 asymmetric orifices (one smaller, and one larger) located at the side walls of a microchannel as shown in **Fig.**
292 **3B.i**. Cells exhibiting pDEP (live cells) would migrate closer to the smaller orifice while cells exhibiting nDEP
293 (dead cells) would migrate closer to the larger orifice as depicted in the cartoon and experimental results in **Fig.**
294 **B.ii-B.iii**, respectively. The results are as expected under a high frequency of 10 MHz, where dead yeast cells
295 have a negative response (**Fig. 1A**); they also observed that both cell types, live and dead, exhibited pDEP at a
296 frequency of 1 kHz. In agreement with Ho et al. [8], dead cells were smaller in size than live ones. This novel
297 design allowed for successful continuous sorting and separation processes, where the distinct cell fractions could
298 be collected at distinct outlet reservoirs [21]. The Wenger group [44,45] also reported the separation between
299 live and dead *S. cerevisiae* cells employing a complementary metal-oxide-semiconductor (CMOS) DEP-based
300 device with interdigitated electrode arrays (IDEs). In their first study [44] they achieved the pDEP trapping of
301 live and dead cells at a distinct frequency for each cell type, 3 MHz and 90 kHz for the live and dead cells,
302 respectively, which is in perfect agreement with **Fig. 1A**. In their follow up study [45], the Wenger group
303 demonstrated selective trapping of live yeast cells by means of pDEP while dead cells exhibited nDEP; they
304 achieved a 100% collection of live cells at a frequency of 5 MHz with deionized water as suspending medium.

305 In agreement with previous studies, they reported that dead cells had an increased membrane conductivity, and a
 306 decreased cytoplasmic conductivity compared to live cells. The differences in conductivity values between live
 307 and dead cells were also exploited by Wu et al. [46] in a multiplexed system and by Bunthawin et al. [47] in a
 308 micro-parallel cylindrical electrodes system to separate live from dead yeast cells. All of these reports illustrate
 309 that effective distinction between viable and nonviable *S. cerevisiae* cells can be obtained with DEP by
 310 exploiting the differences in the cells' dielectric properties.

311
 312 **Fig. 3.** Dielectrophoretic yeast cells viability assessments. **(A.i)** Illustration of the thin electrode device employed for distinguishing
 313 between live and dead *S. cerevisiae* cells. The device was connected to two syringe pumps. **(A.ii)** Image of the live (non-stained) and dead
 314 (stained with methylene blue) cells before and after the application of an AC voltage. Live cells are attracted to the electrodes under pDEP
 315 effects while dead cells show no response at a frequency between 300 kHz to 15 MHz. This frequency range was selected as it produce
 316 the distinct behavior of the live and dead cells. Adapted from [41], open access article distributed under a Creative Commons Attribution
 317 (CC BY-NC 4.0) License, copyright (2015) Mizuta et al. **(B.i)** Device with asymmetric orifices for DEP-based viability assessment. **(B.ii)**
 318 Cartoon depicting the expected migration of cells exhibiting pDEP and nDEP behavior. **(B.iii)** Experimental demonstration of the
 319 separation of live and dead *S. cerevisiae* cells suspended in deionized water where live cells exhibit pDEP and dead cells exhibit nDEP
 320 under 6 Vpp at 10 MHz. Adapted with permission from [21], copyright (2019) American Chemical Society.

321

322 2.2.3 Mammalian cells

323 Determination of cell stress due to nutrient depletion or harsh environmental conditions is essential in the
 324 production of biopharmaceuticals. Dielectrophoresis is a tool that can be used to assess the physiological state of
 325 mammalian cells, including the determination of cell apoptosis. The Bridges group [6,48–50] has studied
 326 extensively the changes in the dielectric properties of Chinese hamster ovary (CHO) cells as a result of
 327 starvation. In their more recent report [6] they employed a dual frequency DEP cytometry system to study the
 328 changes in the dielectric properties of CHO cells as a results of starvation-induced apoptosis. The dual frequency
 329 system assessed two specific properties, the membrane capacitance and the cytoplasm conductivity; the lower
 330 frequency (300 kHz) was tuned to probe the cell membrane while the higher frequency (6 MHz) was aimed to
 331 probe the cell cytoplasm. The conditions from this study differ from those in Sections 2.2.1 and 2.2.2, on
 332 bacteria and yeast cells; since in this case cells were not heat-killed, the CHO cells were starved and their
 333 transition from live cells to apoptotic cells occurred gradually. They observed that both the membrane

334 capacitance and cytoplasm conductivity decreased for apoptotic cells compared to viable ones, but the decline
335 occurred in a different manner for each parameter during the progression of the apoptosis process. They carried
336 out measurements over 64 hours and observed that cytoplasmic conductivity declined very slightly during the
337 first 40 h, followed by a rapid decline; while membrane capacitance has a steady decline over the entire 64 h
338 period. The authors stated that their device can be employed for monitoring the physiological state of cells in
339 pharmaceutical process [6].

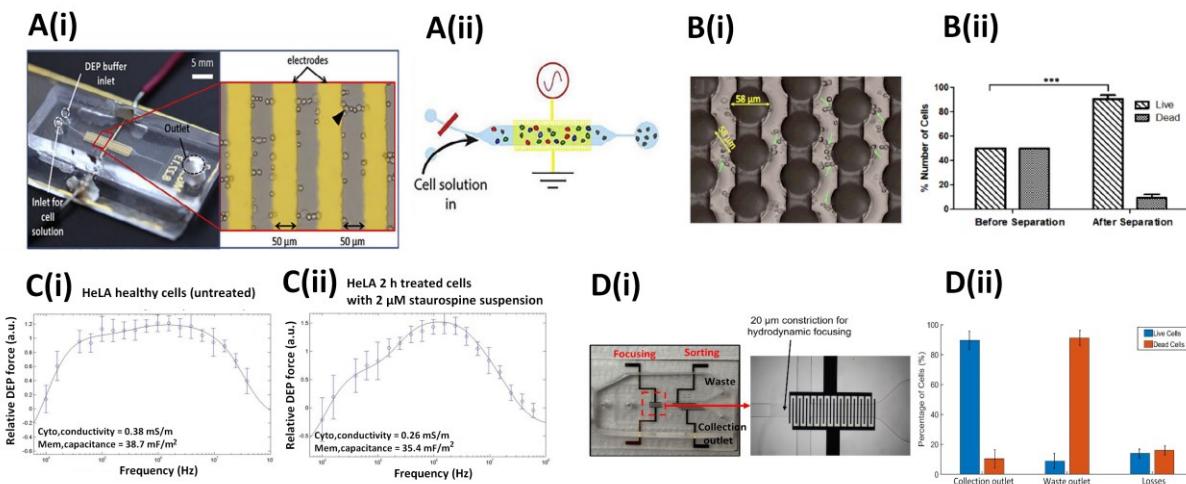
340 The viability of other types of mammalian cells has also been studied with DEP. The Flanagan group
341 discriminated between live and dead neural stem and progenitor cells (NSPCs) in a study focused on enriching
342 stem cells to determine their fate via DEP [51]. Their device, depicted in **Fig. 4A**, featured a large capacity
343 electrode array that enabled the selective enrichment of viable NSPCs by means of pDEP from a sample
344 containing live and dead cells, while nonviable cells were flushed away. Their objective was to process the cell
345 sample at 7 Vpp at 1 MHz, until enough viable cells were trapped and enriched at the electrodes. Once enough
346 cells were captured, the viable cells were then released by decreasing the frequency in 100 kHz increments and
347 collected at distinct frequency bins from the outlet reservoir. A similar approach was performed with astrocyte
348 progenitor cells in the same study [51]. This report illustrated that DEP is a valuable tool in the study of stem
349 cells. The Martinez-Duarte group [52] also worked with stem cells by performing the separation between viable
350 and nonviable rat adipose stem cells (RASCs) in a system featuring 3-dimensional carbon electrodes as shown in
351 **Fig. 4B.i**. Their novel system was equipped with a robotic that “picked and transferred” target cells. Since live
352 RASCs exhibited pDEP at a frequency of 100 kHz, while dead RASCs had a nDEP behavior, their separation
353 was straightforward. The viability assessment of RASCs was one of the three distinct applications developed in
354 this work, the two others being the separation between *Candida albicans* (*C. albicans*) from *Candida tropicalis*
355 (*C. tropicalis*) cells and the separation of *C. tropicalis* from polystyrene beads. The Wood research group [53]
356 studied the live/dead sorting of dental pulp stromal cells (DPSC) by combining surface acoustic waves (SAW)
357 and DEP effects. Their unique system which utilized AC electric fields and lateral mechanical oscillations,
358 successfully enriched live cells with pDEP, achieving separation efficiencies above 98%. The system was able to
359 handle a high throughput of 10^4 cells/minute and operate in a continuous flow mode (majority of DEP system
360 can handle throughput below 10^3 cells/min [54]). This system was also employed for the live/dead separation of
361 *S. cerevisiae* cells [53]. This study provides an additional example of DEP, in this case enhanced with SAW, as
362 an effective tool for discriminating between live and dead cells and separate them for further use or analysis.

363 The assessment of the physiological state of blood cells has also been reported with DEP-based systems. The
364 Martinez-Duarte group [55] also reported the rapid discrimination between U937 live and dead monocytes
365 employing a device with 3-dimensional carbon electrodes. After careful characterization of the DEP response of
366 the monocytes, they identified that at a frequency of 300 kHz the dead monocytes exhibited nDEP while live
367 monocytes were attracted to the edges of the electrodes by pDEP effects. In some cases, live monocytes trapped

368 in pearl-chain formations. **Fig. 4B** shows the trapped live monocytes and a plot of the results. Under a voltage of
369 20 Vpp at 300 kHz, 90% of the live monocytes were trapped while dead monocytes were flushed away
370 employing a 1 μ L/ min flow. The authors discussed that the use of low voltage increases cell viability and
371 strengthens the potential for this type of assessment to be used for the enrichment of live monocytes in clinical
372 applications. Viability analysis of human T-lymphocytes with DEP has been reported by the Nawarathna group
373 [56] and the Lorenzo group [57]. The former study [56] was focused on enriching T-lymphocytes after the
374 transfection step in CAR T-cell therapy, as only viable cells can be used in CAR T-cell therapy. They used
375 Jurkat cells as proxies of the T-lymphocytes, since Jurkat cells have similar characteristics to T-lymphocytes.
376 They developed a device with interdigitated electrodes that successfully separated a mixture of live and dead
377 cells. Their system worked differently from other reports, since at 3 Vpp at 5 MHz they trapped dead cells with
378 pDEP while live cells, which exhibited a weaker pDEP effect than dead cells, were removed with fluid flow.
379 The majority of the reports reviewed here use nDEP for dead cells and pDEP for live cells. Dead cells were
380 obtained by means of electroporation, which may produce dead cells with distinct characteristics of those
381 employed in other DEP-based viability assessments [56]. In the latter study, the Lorenzo group [57] also
382 assessed the viability of T-lymphocytes, where dead cells were prepared by exposing the cells to seven
383 freezing/thawing cycles. They developed a microfluidic device with castellated electrodes, a single inlet and two
384 outlets, which allowed for the continuous sorting between live and dead T-lymphocytes. The electrodes were
385 located on one side of the channel only, cells exhibiting pDEP would travel closer to the electrodes side and
386 elute at the left outlet, while cells under nDEP would move away from the electrodes and elute at the right outlet.
387 The separation was performed at a frequency of 1.5×10^6 Hz, which allowed for the live/dead cell discrimination,
388 as the cells responses were pDEP and nDEP for the live and dead T-lymphocytes cells, respectively. This study
389 is another excellent example of the use of DEP for clinical assessments of blood cells. A study on the apoptosis
390 of Jurkat cells was also reported by the Hughes group [59], this study is discussed in detail in the next section
391 focused on cancer cells.

393 **2.2.4 Cancer cells**

394 The viability assessment of cancer cells is critical when evaluating the efficacy of cancer treatment or drugs
395 and also for monitoring the progress of apoptosis processes. Thus, several DEP-based approaches have been
396 developed to separate and sort viable and nonviable cancer cells. A particular characteristic of these systems is
397 that the great majority comprise several inlet and outlet reservoirs that allow the collection of separate fractions.
398 An example of this is the system developed by the He group [60] for the sorting between live and dead PC-3
399 human prostate cancer cells. Dead PC-3 cells were prepared by thermal treatment. They developed a device with
400 liquid electrodes that featured a conductivity gradient to induce pDEP on target cells. The device featured four
401 inlets and four outlets and allowed separating live from dead PC-3 cells in a continuous manner by exerting


402 strong pDEP on live cells and weak pDEP or nDEP on the dead cells at a frequency of 50 kHz. The results
403 showed that almost 90% of the live cells were deflected to the target outlet which also contained 13.2% of dead
404 cells, achieving a sufficient separation. This device also proved successful at separating human adipose-derived
405 stem cells (ADSCs) from MDA-MB-231 cancer cells.

406 The Hughes group [59] developed a novel study focused on the quantification of apoptosis of HeLA cells.
407 HeLA cells are of significant importance in the field of cancer research, HeLA are a cervical cancer cell line that
408 allowed discerning how the human papilloma virus can cause cervical cancer. The study of the process of cell
409 apoptosis is necessary for the development of new anti-cancer drugs. The Gascoyne group had reported in 2002
410 [61] that apoptosis could be detected by DEP, much earlier than with conventional methods, by detecting
411 changes in the dielectric properties of the cell membrane. The Hughes group had explored the use of DEP to
412 detect changes in cell dielectric properties, which they identify as changes in the cell phenotype, after treatment
413 with anti-cancer drugs [62], and extended this methodology for assessing the series of stages in apoptotic
414 progression [59]. They employed the commercially available system 3DEP (DEPtech), which has been used in
415 several other cell studies [34,62–65]. The 3DEP system consists of a disposable well plate chip, the wells have
416 electrodes on the side walls that enable DEP effects. Cell exhibiting pDEP are attracted to the well walls and
417 trapped at the electrodes, while cells exhibiting nDEP are not trapped and flow through the center of the well, the
418 farthest location from the well wall electrodes. To induce apoptosis the HeLA cells were incubated with
419 staurosporine (1 μ M suspension), a known apoptosis inducing agent. Then the HeLA cells were analyzed with
420 the 3DEP device to obtain their DEP spectra, which consists of a plot of the relative DEP force (**Eqn. 1**) vs
421 frequency. The DEP spectra was then fitted using the single shell model to obtain the dielectric properties of the
422 cells and detect changes when comparing to the spectra of untreated cells. In particular, changes in the
423 parameters of cytoplasmic conductivity and membrane capacitance were observed after 2 h of treatment with
424 staurosporine, these results are included in **Fig. 4C**, which contains two plots of DEP spectra (untreated cells vs.
425 after 2h of treatment). From the DEP spectra it was identified that cytoplasmic conductivity decreased from 38
426 mS/m to 0.26 mS/m; while membrane capacitance also decreased from 38.7 mF/m² to 35.4 mF/m² (membrane
427 conductance remained unchanged). The decrease in cytoplasmic conductivity agrees with the findings from
428 studies performed with bacterial [35], yeast [45] and mammalian [6] cells. This study [59] also included Jurkat
429 cells, for which the results were similar to those obtained with HeLA cells (a decrease on cytoplasmic
430 conductivity and membrane capacitance). The findings from this work illustrate the significant progress on the
431 use of DEP for studying apoptosis and cell death, as commercially available devices can now detect apoptosis
432 much earlier than conventional methods. The Prasad group also studied apoptosis of cancer cells [66], they
433 exposed non-small cell lung cancer (NSCLC) cells to the drug trypsin-EDTA navitoclax (ABT-263) and
434 assessed cell response in an interdigitated electrode DEP system, which allowed them to detect changes in the
435 physiological state of the cells as early as 2 h after cell exposure to ABT-263. The Chen and Wu group [67]

436 studied the effects of the anticancer drug doxorubicin (concentrations up to 15 $\mu\text{g}/\text{ml}$) on MES-SA cells, a
437 human sarcoma cell line, employing an optical-induced DEP system. In their device, DEP effects were optically
438 generated employing a beam of light that served as a virtual electrode array that enabled sorting the cells by
439 moving them from the main channel to one of four distinct side channels, two channels located at each side of
440 the main channel. They exploited differences in cell cytoplasm conductivity to sort the doxorubicin treated MES-
441 SA cells into four groups according to their viability degrees. Their results revealed that 73.9 % of the MES-SA
442 cells were dead after 48 h of treatment with doxorubicin at a concentration of 5 $\mu\text{g}/\text{ml}$, while only 4.5% of the
443 cells with antidrug resistance were dead. This works demonstrated that DEP allows for effective sorting and
444 separation of cells by exploiting changes in cell viability status. The Swami group extended their previous work
445 on the effect of drugs on bacterial cell viability [35] to chemo-resistant circulating pancreatic cancer cells [68].
446 They developed a technology where single-cell cytometry was used to identify optimal frequencies to obtain a
447 pDEP response of pancreatic ductal adenocarcinoma (PDAC) cells. The motivation of this work was the current
448 challenges in enriching circulating tumor cells, which are present in low number in liquid biopsy samples. To
449 this end, this study was focused on enriching live chemo-resistance PDAC cells, while rejecting dead cells, from
450 an in vitro culture from metastatic tumor cells. They developed a device that enabled pDEP of live target cells
451 that featured three distinct outlets, one outlet for each of the three DEP response types: pDEP, no DEP and
452 nDEP. An additional challenge of this work was the fact that chemo-resistant PDAC cells have a wide size
453 distribution that overlaps with other cell subpopulations in the sample (apoptotic and necrotic cells). Cell
454 samples were treated with gemcitabine at a concentration of 1 $\mu\text{g}/\text{ml}$ for 48 h prior to DEP assessments.
455 Employing machine learning, the authors optimized the system and achieved effective enrichment of the live
456 chemo-resistant PDAC cells from a sample containing only 3% of live cells to 44% at the pDEP outlet in their
457 device in just 20 minutes, while rejecting 90% of the dead cells in the sample. The Kirby group [69] also
458 investigated gemcitabine resistance of pancreatic cancer cells by developing a technique where EROT was used
459 to obtain the cells' dielectric properties, which were then employed to predict DEP spectra that can be used for
460 designing DEP-based separations between live and dead cells. These studies focused on the assessment of
461 viability and apoptosis as a result of drug treatment on cancer cells have the potential to accelerate cancer
462 treatment selection, while reducing cost and time.

463 The Lee group [70] separated live and heat-killed dead K562 cells, a human leukemia cell line, employing a
464 novel device that integrated hydrodynamic focusing and DEP effects. An illustration of the device and the results
465 obtained from the live dead separation process is shown in **Fig. 4D**. The device featured two electrode regions,
466 the first one for focusing the cells and the second one for sorting the cells. A 3-dimensional narrow 20 μm
467 constriction was located just prior to the focusing array of interdigitated electrodes to aide with the focusing
468 process. A crucial aspect was to keep the cells close to the electrodes where DEP effects are effective. By
469 carefully optimizing the cell-to-electrode distance and the frequency and voltage in each electrode region, the

470 continuous separation between live and dead K562 cells was achieved at a the very high rate $> 150,000$
 471 cells/min, achieving a purity of 90% with a recovery of 85% of the live cells in the sample. As shown in **Fig. 4D**,
 472 live cells were sent to the collection outlet, while dead cells were sent to the waste outlet. The authors stated that
 473 they exploited the differences in membrane integrity between the live and dead cells, since the heat-killed K562
 474 cells have a compromised cell membrane. A common theme is observed from the distinct reported discussed in
 475 this section, changes in cell membrane can be effectively exploited with DEP effects to achieve the sorting,
 476 separation and assessment of cancer cell viability status.

477 **Fig. 4.** Dielectrophoretic viability assessments of mammalian cells, blood cells and cancer cells. **(A.i)** Illustration of the large capacity
 478 electrode array employed by Adams et al. for the separation between live and dead NSPCs. **(A.ii)** Cartoon of the separation process,
 479 where live cells (red color) are selectively trapped by pDEP at the electrode array and dead cells (gray color) are flushed towards the
 480 outlet reservoir under V_{pp} at 1 MHz. Adapted with permission from [51], copyright (2018) Elsevier. **(B.i)** Image depicting live U937
 481 monocytes trapped at the edges of the 3-dimensional carbon electrodes, the green arrows indicate trapping as pearl chain formations.
 482 **(B.ii)** B of the results from the separation of a 1:1 live dead mixture of live and dead monocytes, illustrating the enrichment of live
 483 monocytes after the separation. Adapted from [55], open access article under a Creative Commons Attribution License 4.0, copyright
 484 (2017) Yildizhan et al. **(C.i)** DEP spectra of HeLa untreated cells and **(C.ii)** after 2 h of treatment with a 1 μ M solution of staurosporine.
 485 DEP spectra was fitted using the single shell model and dielectric properties were extracted illustrating a decrease in both cytoplasmic
 486 conductivity and membrane capacitance. Adapted from [59] open access article under a Creative Commons Attribution-NonCommercial
 487 3.0 Unported License, copyright (2016) Henslee et al. **(D.i)** Illustration of the device used by Aghaamoo et al., the left image depicts the
 488 entire device with two outlets and the right image shows in detail the interdigitated electrode array used to generate DEP effects. **(D.ii)**
 489 Plot of the live/dead cells sorting, where the majority of live cells (blue color) were sent at the collection outlet and the majority of dead
 490 cells were (orange color) sent to the waste outlet. Adapted from [70], open access article distributed under a Creative Commons
 491 Attribution (CC BY) License, copyright (2023) Aghaamoo et al.
 492

494 3. Electrophoresis-based cell viability assessments and separations

495 Electrophoresis (EP), the migration of electrically charged particles (relative to a fluid) under the effects of an
 496 electric field, is a widely used technique in the analytical laboratory. In contrast with DEP that mainly operates
 497 under AC electric fields, EP is employed mainly with DC electric fields. There are a plethora of electrophoresis-
 498 based modes, including gel electrophoresis, the workhorse of analytical laboratory, and specialized modes such
 499 as zone electrophoresis, isotachophoresis, isoelectric focusing etc. Several research groups have reported
 500 effective EP-based separation techniques for the discrimination and separation between cells of distinct types

501 [16,71], there are also important reports exploring the origins of microbial electrical charge [72,73]. Despite
502 these major advances, there is only a reduced number of EP-based studies focused on the assessment and
503 separation between live and dead cells, which have been performed in bench scale CE systems and microfluidic
504 systems. Described below are the operating principle and applications of EP designed specifically to distinguish
505 and separate live from dead cells.

506

507 **3.1 Electrophoresis operating principle**

508 The fundamentals of traditional (linear) EP were developed mainly during the last century. The 20th century
509 witnessed the major advancements in the understanding of the weak field theory. During this time, the
510 techniques of gel EP and capillary electrophoresis (CE) became standards in the analytical laboratory [74]. The
511 separation of cells by EP exploits differences in their electromigration velocity. The expression of the EP
512 velocity under the weak field regime is defined as:

513
$$\mathbf{v}_{EP,L} = \mu_{EP,L} \mathbf{E} = \frac{\varepsilon_m \zeta_P}{\eta} \mathbf{E} \quad (3)$$

514 where $\mathbf{v}_{EP,L}$ refers to the linear electrophoretic velocity, \mathbf{E} represents the electric field (where $\mathbf{E} = E \hat{\mathbf{a}}_E$ and $\hat{\mathbf{a}}_E$ is
515 a unit vector with the direction of vector \mathbf{E} , having a magnitude of E). The parameter $\mu_{EP,L}$ is the mobility of
516 linear EP and ζ_P is the electrokinetic (zeta) potential of the cell, ε_m and η represent the permittivity and viscosity
517 of the suspending medium, respectively. The notation “*L*” in the linear electrophoretic velocity (and mobility) is
518 used to distinguish it from the nonlinear electrophoretic velocity ($\mathbf{v}_{EP,NL}$) which will be discussed in this section.
519 Since a large number of the systems used to assess and separate cells, namely CE or microchip electrophoresis,
520 employ electroosmotic flow (EOF) for pumping the liquid and cells in the system, it is important to define the
521 expression for the EOF velocity:

522
$$\mathbf{v}_{EO} = \mu_{EO} \mathbf{E} = - \frac{\varepsilon_m \zeta_W}{\eta} \mathbf{E} \quad (4)$$

523 where \mathbf{v}_{EO} represents the EOF velocity and ζ_W is the zeta potential of the channel wall. The majority of EP-
524 based separations reported in the literature are performed under the weak field regime, i.e., these reports exploit
525 differences in electromigration velocity under linear EP (EP_L) effects [72,75–77]. Recent experimental reports
526 [78–85] have unveiled the presence of a second EP effect, called nonlinear EP (EP_{NL}) or EP of the second kind,
527 in EP-based separation systems. As discussed by Khair [11], major advances in the strong field theory have
528 marked the last decade and have strengthened the understanding of EP_{NL} . Dukhin and collaborators first reported
529 on the theory of EP_{NL} in the early 1970’s [86], but widespread applications of EP_{NL} was delayed due to scarce
530 availability of experimental data [87]. The importance of EP_{NL} in the separation of cells has been recently
531 reported in microchip EP systems [88–91], and evidence of its effects on the electromigration of plastic
532 nanoparticles has been characterized in CE systems [92]. Thus, EP_{NL} is an important effect that must be

533 considered in EP-based separations. The theory on EP_{NL} is still under development, and three dimensionless
 534 parameters: the dimensionless electric field (β), the Dukhin number (Du) and the Peclet number (Pe), are
 535 necessary for identifying the regimes of EP_{NL} [82]. The definitions of these three parameters are as follows:

$$536 \quad \beta = \frac{E r_p}{\varphi}, \quad Du = \frac{K^\sigma}{K^m r_p} \quad \text{and} \quad Pe = \frac{r_p |\mathbf{v}_{EP}|}{D} \quad (5)$$

537 where E is the electric field magnitude, r_p is the cell radius (hydrodynamic radius for non-spherical cells) and φ
 538 is the thermal voltage (~ 25 mV), In the expression for Du , K^σ and K^m are the surface conductivity and bulk
 539 conductivity of the medium, respectively. In the expression for Pe , $|\mathbf{v}_{EP}|$ is the magnitude of the electrophoretic
 540 velocity considering both linear and nonlinear contributions ($\mathbf{v}_{EP,L} + \mathbf{v}_{EP,NL}$) and D is the diffusion coefficient.
 541 The two following expressions for the velocity of EP_{NL} ($\mathbf{v}_{EP,NL}^{(n)}$) have been developed for the limiting cases of
 542 low Pe values ($Pe \ll 1$) and high Pe values ($Pe \gg 1$) [78,93,94]:

$$543 \quad \mathbf{v}_{EP,NL}^{(3)} = \mu_{EP,NL}^{(3)} E^3 \hat{\mathbf{a}}_E \quad \text{for } \beta \leq 1, \text{ arbitrary } Du \text{ and } Pe \ll 1 \quad (6)$$

$$544 \quad \mathbf{v}_{EP,NL}^{(3/2)} = \mu_{EP,NL}^{(3/2)} E^{3/2} \hat{\mathbf{a}}_E \quad \text{for } \beta > 1, Du \ll 1 \text{ and } Pe \gg 1 \quad (7)$$

545 where $\mu_{EP,NL}^{(n)}$ is the mobility of the EP_{NL} velocity and n represents the electric field dependence. As observed in
 546 **Eqns. (6-7)** the EP_{NL} velocity can have either a cubic or a 3/2 dependence ($n = 3$ or $n = 3/2$) with the electric field,
 547 as determined by values of β , Du and Pe . No analytical expressions for the EP_{NL} velocity are available yet for the
 548 intermediate values of Pe [78,93,94].

549 After introducing the main governing equations of EP, it is necessary to discuss how each regime of EP
 550 (EP_L and EP_{NL}) can differentiate between distinct types of cells, and for the purpose of this review article, how
 551 EP can differentiate between live and dead cells. First, EP-based separations can occur under DC and DC-biased
 552 low frequency AC electric fields, since under pure AC fields, EP effects, linear and nonlinear, cancel out and do
 553 not contribute to the separation process. Differences in electrical charge are effectively exploited with EP_L [11],
 554 as demonstrated by thousands of publications on CE [71,77,95]. Kłodzinska and Buszewski published an
 555 excellent article explaining the origins of microbial electrical charge [72]. However, EP_L cannot differentiate
 556 target analytes, such as live/dead cells, based on size or shape differences [96,97]. The use of EP_{NL} (**Eqns. 6-7**)
 557 is necessary to discriminate cells by size or shape differences [11,82,98]. In terms of the fundamental equations
 558 above, EP_L can discriminate between cells by differences in electrical charge (as determined by cell
 559 electrokinetic (zeta) potential in **Eqn. 1**, ζ_P), most microorganisms possess negative surface charge [73].
 560 Differences in cell size and shape, which can be exploited by EP_{NL}, influence the values of the mobility of EP_{NL}
 561 ($\mu_{EP,NL}$), i.e., the values of $\mu_{EP,NL}$ depend on the size and shape of the cells [83,84,98]. However, due to the
 562 novelty of the application of EP_{NL} to discriminate between distinct cell types, there are no reports yet on the use
 563 of EP_{NL} for shape-based cell discriminations. A recent report from our group [89] demonstrated EP-based
 564 separations under linear and nonlinear modes. First, the separation of microparticles performed by exploiting

565 differences in electrical charge under EP_L was demonstrated, and second, the separation by exploiting
566 differences in particle size under EP_{NL} was realized; resulting in a change of the elution order. Thus, the use of
567 EP, linear and nonlinear mode, can enable effective separation schemes between viable and nonviable cells,
568 since distinct parameters (charge, size or shape) can be exploited to achieve the desired separation, and switching
569 between the linear and nonlinear modes of EP can be accomplished by simply modifying the magnitude of the
570 applied electric voltage. Linear EP dominates the electromigration of cells at low electric fields, while EP_{NL}
571 becomes a major effect on cell electromigration at high electric fields [89].

572 **3.2 Reports on electrophoretic-based cell viability assessments and separations**

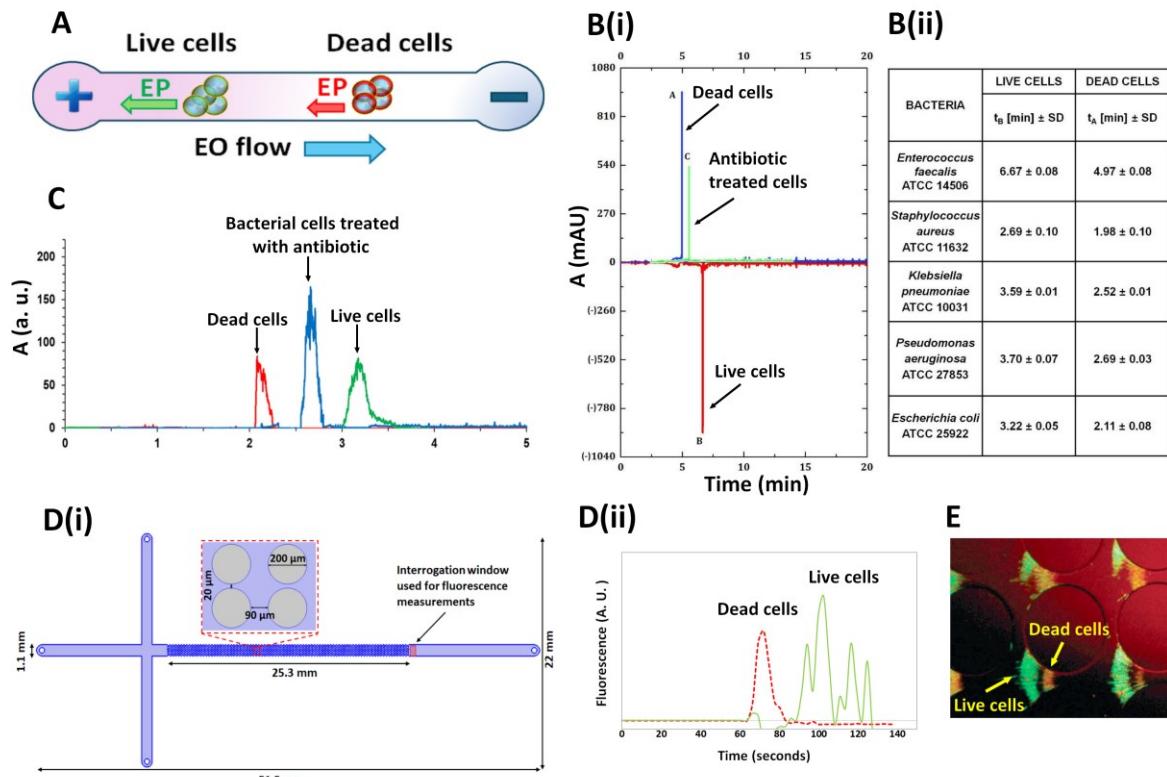
573 Electrophoretic separations were first developed for large biological macromolecules, such as DNA and
574 proteins [99]. The separation of intact cells by means of CE was first reported in 1987 by Hjertén *et al.* [100].
575 This was followed by the studies of Ebersole and McCormick [101] in 1983 and Armstrong *et al.* [102] in 1999.
576 Armstrong in particular pioneered many of the first advances on the use of CE for separating intact
577 microorganisms [102–104]. Numerous challenges, such as bacterial aggregation [105], undesired wall-cell
578 interaction [72] and control of EOF [106] have been overcome during the last two decades. As data on the EP
579 mobility became more available [107], contributions from the Buszewski [72,75,108] and Horká [109–111]
580 research groups further established CE as technique with excellent capabilities for separating intact cells and
581 observe the results as electropherograms. The recent knowledge on EP_{NL} [17], further confirms the potential of
582 EP for separating viable and nonviable cells. However, only a handful of studies on the use of EP for cell
583 viability assessments and separations have been reported. Below is a discussion on these studies and a summary
584 of all the reports reviewed in this section is included in **Table 2**.

585

586 **3.2.1 Bacteria cells**

587 The first reports on an EP-based separation by exploiting differences in bacterial cell viability was reported
588 in 2001 by the Armstrong group [112,113]. The authors stated that the motivation for their work was to illustrate
589 the potential of EK-based separations (EP in this case) for the analysis and characterization of intact
590 microorganisms, which is possible since all microbes have surface charge. They explained that microorganisms
591 have membranes and cell walls that contain molecules such as proteins, lipids, lipopolysaccharides, teichoic
592 acid, etc., which provide them with a characteristic surface electrical charge. This of course also depends on the
593 characteristics of the suspending media, such as pH and ionic strength. The origins of surface charge on
594 microorganisms have also been discussed on recent reports [72,73]. As reported by Polaczyk *et al.* [73], under
595 physiological conditions, the majority of bacterial cells (and other types of cells) have a negative surface charge,
596 which means that their EP migration will be towards the inlet (towards the anode), in the opposite direction of
597 the EOF which is commonly towards the cathode in bare fused silica capillaries. The report by Polaczyk *et al.*

598 [73] listed only one case of a bacteria with a positive charge at pH values below 11 [114]. **Figure 5A** shows a
599 cartoon of the migration of live and dead cells in an EP-based system. In this cartoon representation, both cell
600 types, live and dead, have net negative surface charge, but dead cells have lower charge magnitude (lower
601 magnitude of their negative ζ_P value), as reported in the literature [8,115].

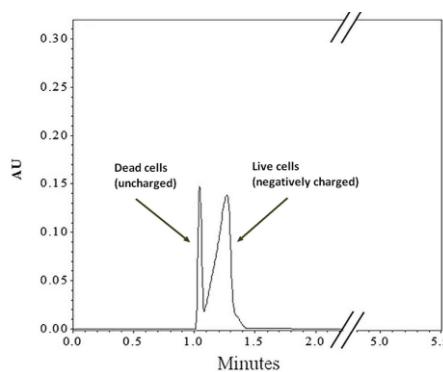

602 In their first pioneer CE viability-based separation report [112], the Armstrong group assessed the quality of
603 supplements for lactose intolerant individuals. They tested the live/dead cell content of *Lactobacillus acidophilus*
604 (*L. acidophilus*) in tablets from food supplements. They employed a commercially available CE system with
605 laser induced fluorescence (LIF) detection and were able to quantify the ratio of live to dead *L. acidophilus* cells
606 in the sample as 60% of viable cells. However, no differences in the migration time of the live and dead cells
607 were observed, the distinction and quantification of live cells was done employing the relative peak area of each
608 type (live and dead) by assessing the fluorescence signal. The cells were fluorescently labeled employing
609 propidium iodide for the dead cells and Syto 9 for the live cells. In their second pioneer CE viability study [113]
610 the Armstrong group worked with cells samples of *L. acidophilus*, *Bifidobacterium infantis* (*B. infantis*) and *S.*
611 *cerevisiae*, the bacteria were obtained from food supplements and the yeast from a freeze-dried supermarket
612 product. Similar to their previous report [112], they employed CE-LIF and the same fluorescent dyes. The results
613 showed that the peaks of the dead and live cells had almost identical migration times, and viability quantification
614 was performed again by estimating the peak area employing fluorescence. Their viability determinations were
615 45%, 43% and <2% for *L. acidophilus*, *S. cerevisiae* and *B. infantis*, respectively. The analyzed the samples with
616 flow cytometry, obtaining similar results (within the margin of error), illustrating that the CE-LIF viability
617 determinations were accurate [113].

618 There have been important advances since these two pioneer CE cell viability reports from 2001 [112,113].
619 In 2017 Bonomo et al. [116] reported the separation of ethanol-stressed *Oenococcus oeni* (*O. oeni*) strains. They
620 were interested in studying the viability changes caused by ethanol-induced environmental stress of the *O. oeni*
621 cells, as these strains are important in wine production. Employing a CE system with a diode array detector, they
622 were able to assess the changes on cell surface charge induced by the oxidative stress produced by alcohol
623 exposure. They identified a large variability in the changes induced on the four distinct strains of *O. oeni*
624 included in this study. In general, they observed from their CE analysis of the alcohol-treated samples that for
625 each strain, at least three subpopulations were present, each population corresponding to a distinct electrical
626 charge, as illustrated by three peaks: positive, neutral and negative charge peaks. Their results suggested that
627 exposure to alcohol resulted in three types of cell viability status: injured, dormant and viable cells,
628 corresponding to the positive, neutral and negative charge peaks, respectively. They observed, in general, that
629 the subpopulation in the positive peak (damaged cells) increased with increased alcohol exposure. Similar results
630 were obtained with flow cytometry, validating the CE analysis. The Buszewski group [117] recently published
631 the CE-based viability analysis of five distinct strains of bacteria: *E. faecalis*, *S. aureus*, *Klebsiella pneumoniae*

632 (*K. pneumoniae*), *Pseudomonas aeruginosa* (*P. aeruginosa*) and *E. coli* which were treated with antibiotics.
633 They analyzed three distinct samples of each strain: live untreated cells, dead cells (inactivated with 70%
634 ethanol) and antibiotic treated cells. A major goal of the study was to demonstrate the effect of antibiotics on the
635 electrical charge and electromigration of cells. Their results, obtained with a capillary zone electrophoresis
636 (CZE) system equipped with a diode array detector, are represented by the electropherogram for *E. faecalis* and
637 the summary table contained in **Fig. 5B**. As seen from the electropherogram (**Fig. 5B.i**), dead and antibiotic-
638 treated *E. faecalis* cells have a similar response in terms of their absorbance vs. time, but antibiotic-treated cells
639 have slightly longer migration time than dead cells, while live cells have a longest migration time. The results in
640 the table (**Fig. 5B.ii**) for all five cell strains follow the same trend, live cells have longer migration times than
641 dead cells in the CZE system. These findings, which are in agreement with a previous report by the same group
642 [115] and others [8,118,119], illustrate that dead bacterial cells have negative zeta potential values of lower
643 magnitude than those of live cells. This causes live cells to have longer migration times, as they migrate behind
644 dead cells (**Fig. 5A**). In a follow up study the Buszewski group [118] studied the effects of antibiotics on
645 methicillin-resistant *S. aureus* (MRSA), methicillin-sensitive *S. aureus* (MSSA), and *E. coli*. Cells were treated
646 with antibiotics for 24 h and dead cells were obtained by exposure to 70% ethanol. Similar results to their
647 previous work [117] were obtained, dead cells had shorter migration times than live cells caused by their lower
648 magnitude negative ζ_P values; while antibiotic-treated cells had an “intermediate” migration time, between those
649 of dead and live cells. These results are illustrated in the electropherogram for *E. coli* cells in **Fig. 5C**. The
650 viability results obtained with CE were compared with flow cytometry obtaining good agreement between the
651 two methods. The authors stated that CE has the potential to become a routine method for cell viability
652 assessments and separation in modern clinical practice [118].

653 More recently, our group separated live from dead *E. coli* cells employing a microchip EP system [119]
654 which consisted of a T-shaped insulator-based (iEK) microfluidic channel that contained an array on cylindrical
655 insulating pillars. The device employed and the results obtained are shown in **Fig. 5D**. For this separation the
656 two phenomena of EP_L and EP_{NL} , described in **Section 3.1**, were employed. Our group has investigated
657 extensively the use of EP_{NL} for the separation of cells and microparticles [32,88–91,98]. The presence of the
658 insulating pillars in the iEK device in **Fig. 5D.i** create regions of high electric field magnitude where nonlinear
659 EK phenomena, such as EP_{NL} (and DEP to a lesser extent [88]) can arise and contribute to the separation
660 process. Heat-treated dead cells and live cells were first characterized in terms of their ζ_P and $\mu_{EP,NL}^{(3)}$ values,
661 which were as follows: -25.5 ± 1.5 and -18.5 ± 0.8 mV for the ζ_P of live and dead cells, respectively; and $-6.0 \pm$
662 0.6 and $-3.0 \pm 0.3 \times 10^{-18} \text{ m}^4 \text{V}^{-3} \text{s}^{-1}$ for the $\mu_{EP,NL}^{(3)}$ of live and dead cells, respectively. For both EP phenomena,
663 dead cells had a lower magnitude in both negative parameters, this means that EP effects on dead cells are lower
664 than those for live cells, which agrees with several previous reports by other groups [8,115,118]. The values of

665 these parameters also indicated that engaging the nonlinear regime of EP will aid the separation, as it will
666 increase the overall difference between live and dead cells. The electropherogram in **Fig. 5D.ii** illustrates a
667 separation with a resolution of $Rs = 1.87$, where as expected, dead cells migrated ahead of live cells due to their
668 lower EP effects (linear and nonlinear). The fluorescence signal from the cells was used to build the
669 electropherogram, dead cells and live cells were labeled with propidium iodide and Syto 9 dyes, respectively.
670 The employed iEK device and operating conditions could be further modified to increase the separation
671 resolution as needed. A second objective of this study [119] was to re-analyze the results from a 2004 article
672 [120] that reported the trapping at distinct locations of live and dead *E. coli* cells in an iEK device with
673 cylindrical pillars. By leveraging the new knowledge on EP_{NL} it was possible to offer a new explanation on the
674 results from the 2004 study; the trapping of live and dead *E. coli* cells shown in **Fig. 5E** are the results of EP_{NL}
675 effects, and not DEP forces as it was originally assumed. The potential of EP-based systems for the separation
676 and enrichment of bacterial cells based on cell viability status is significant, and the new knowledge on EP_{NL}
677 opens novel and exciting possibilities.



678 **Fig. 5.** Electrophoretic viability assessments of bacterial cells. **(A)** Cartoon illustration of the direction of EP migration and EOF in an
679 electrophoretic system. It is important to note the opposite direction between EP migration and EOF. **(B.i)** CZE results as milli-
680 absorbance unit (mAU) as a function of time obtained for *E. faecalis*. **(B.ii)** Summary table of migration times for live and dead (treated
681 with 70% ethanol) bacterial cells. In all cases all dead cells have a shorter migration time than the live cells, indicating a lower magnitude
682 of the cell negative zeta potential. Adapted from [117], open access article distributed under a Creative Commons Attribution (CC BY)
683 License, copyright (2022) Kupczyk et al. **(C)** Electropherogram of dead, antibiotic-treated and live *E. coli* cells. Adapted with permission
684 from [118], copyright (2022) John Wiley & Sons. **(D.i)** Illustration of the T-shaped iEK channel employed for the separation of live and
685 dead *E. coli* cells. **(D.ii)** Electropherogram of the separation of live and dead *E. coli* cells by exploiting linear and nonlinear EP effects.

687 Adapted from [119]. (E) Trapping of live (green) and dead (red) *E. coli* cells between the cylindrical insulating pillars in an iEK channel.
688 Pillar diameter is 200 μm arranged in a 250 μm center-to-center square array. Adapted with permission from [120], copyright (2004)
689 American Chemical Society.
690

691 3.2.1 Yeast cells

692 Similar to the advances with bacterial cells, the CE separation of *S. cerevisiae* cells based on cell viability
693 was reported in 2016 by Crispo et al. [121] as a predecessor report from their work in 2017 with *O. oeni*
694 bacterial strains [116]. To separate live and dead *S. cerevisiae* cells by means of CZE with a diode array detector
695 (DAD), dead cells were prepared by thermal treatment. The live/dead cell separation, performed after optimizing
696 the CZE separation conditions, resulted in an electropherogram with two distinct peaks, which illustrated the
697 presence of two cell subpopulations (as also observed in their latter report [116]). They identified that heat-
698 treated dead *S. cerevisiae* cell had almost no electrical charge and eluted ahead of live negatively-charged cells.
699 An interesting observation was that the dead cell peak (uncharged cells) was better defined than the peak
700 corresponding to live cells, they explained these results as dead cells being more homogeneous in size than live
701 cells. This separation took less than 5 minutes as shown in the electropherogram in **Fig. 6**. Similarly to the
702 studies on EP-separation of bacterial cells, this report contributes to the growing evidence that simple EP-based
703 systems are effective options for the rapid separation and assessment of live and dead yeast cells.
704

705
706 **Fig. 6.** Electrophoretic viability assessments of yeast cells. Electropherogram of the separation between live and dead *S. cerevisiae* cells
707 by CZE. Dead cells, which are uncharged eluted ahead of live cells. Adapted with permission from [121], copyright (2016) Elsevier.
708

709 4. Concluding remarks

710 The rapid assessment of cell viability status is essential in several fields, including clinical analysis, drug
711 development, food safety and quality control, among others. In numerous applications the sorting and separation
712 of live and dead cells is also required, as further analysis can be performed with separated fractions of viable and
713 nonviable cells. Electrokinetic phenomena, being robust and label-free, offer great potential as techniques for the
714 simultaneous assessment and separation of cells based on their viability status. This review article discusses the
715 fundamentals, presents a brief historical overview and analyzes relevant recent (2015-2024) reports on two

716 electrokinetics techniques that can assess and separate cells based on viability status; these techniques are
717 dielectrophoresis and electrophoresis. The similarities and differences of both techniques are examined.
718 Dielectrophoresis discriminates live from dead cells by differences in polarizability, where in the majority of the
719 studies live cells exhibited positive dielectrophoresis and dead cells exhibited negative dielectrophoresis, these
720 differences enables effective live/dead cell sorting. Electrophoresis, in contrast, exploits differences in
721 electromigration velocity (which is dictated by cell electrical charge, size and shape), and viable cells are separated
722 from nonviable ones in the form of two different zones inside the capillary/microchannel manifested as two
723 resolved peaks on the electropherogram. A detailed discussion on very recent developments on nonlinear
724 electrophoresis is also included, to provide the reader with the most up-to-date advances and showcase the new
725 capabilities of electrophoresis-based separation systems. The field of electrokinetics, although not new, is still
726 rapidly evolving and novel studies are continuously being reported. It is expected that new developments will
727 further increase the viability-based discriminatory capabilities of both techniques. Perhaps viability assessments
728 and separations with electrophoresis can be extended to mammalian and cancer cells in the future.

729

730

731 ***Declaration of Competing Interest***

732 The author declares no competing financial interest.

733 ***Author contributions: CRedit***

734 **BHLE**: Conceptualization, Funding acquisition, Project administration, Writing Original Draft – Review &
735 Editing.

736 ***Data availability***

737 Data sharing is not applicable to this article as no new data were created or analyzed in this study.

738 ***Acknowledgments***

739 This material is based upon work supported by the National Science Foundation under Awards No. 2127592
740 and No. 2133207. The authors acknowledge Research Computing at the Rochester Institute of Technology for
741 providing computational resources and support that have contributed to the research results reported in this
742 publication.

743 ***ORCID***

744 Blanca H. Lapizco-Encinas: 0000-0001-6283-8210

745

746

References

747 [1] M.P.. William A. Rutala, Ph.D., Guideline for disinfection and sterilization in healthcare facilities:
748 Updated 2017, *Healthc. Infect. Control Pract. Advis. Comm.* (2017) 1–158.
749 <https://stacks.cdc.gov/view/cdc/47378> (accessed February 2, 2024).

750 [2] S.A. Alali, E. Shrestha, A.R. Kansakar, A. Parekh, S. Dadkhah, W.F. Peacock, Community hospital
751 stethoscope cleaning practices and contamination rates, *Am. J. Infect. Control.* 48 (2020) 1365–1369.
752 <https://doi.org/10.1016/j.ajic.2020.04.019>.

753 [3] G.F. Hatfull, R.M. Dedrick, R.T. Schooley, Phage Therapy for Antibiotic-Resistant Bacterial Infections,
754 *Annu. Rev. Med.* 73 (2022) 197–211. <https://doi.org/10.1146/annurev-med-080219-122208>.

755 [4] S. He, Y. Chen, J. Wang, J. Sun, X. Zhang, Q. Chen, Rapid and Sensitive Quantification of Bacterial
756 Viability Using Ratiometric Fluorescence Sensing, *Anal. Chem.* (2024).
757 <https://doi.org/10.1021/ACS.ANALCHEM.4C01737>.

758 [5] M. Puiu, C. Bala, Microfluidics-integrated biosensing platforms as emergency tools for on-site field
759 detection of foodborne pathogens, *TrAC - Trends Anal. Chem.* 125 (2020).
760 <https://doi.org/10.1016/j.trac.2020.115831>.

761 [6] S. Afshar, E. Salimi, A. Fazelkhah, K. Braasch, N. Mishra, M. Butler, D.J. Thomson, G.E. Bridges,
762 Progression of change in membrane capacitance and cytoplasm conductivity of cells during controlled
763 starvation using dual-frequency DEP cytometry, *Anal. Chim. Acta.* 1059 (2019) 59–67.
764 <https://doi.org/10.1016/j.aca.2019.01.046>.

765 [7] B. Larbi, A. Ltaief, A. Hawari, F. Du, M. Baune, J. Thöming, Assessment of the Effect of
766 Dielectrophoresis (DEP) on the Viability of Activated Sludge Biomass, *Int. J. Environ. Sci. Dev.* 8 (2017)
767 715–718. <https://doi.org/10.18178/ijesd.2017.8.10.1044>.

768 [8] B.D. Ho, J.P. Beech, J.O. Tegenfeldt, Cell sorting using electrokinetic deterministic lateral displacement,
769 *Micromachines.* 12 (2021) 1–14. <https://doi.org/10.3390/mi12010030>.

770 [9] C.I. Trainito, E. Bayart, E. Bisceglia, F. Subra, O. François, B. Le Pioufle, Electrorotation as a versatile
771 tool to estimate dielectric properties of multi-scale biological samples: From single cell to spheroid
772 analysis, *IFMBE Proc.* 53 (2016) 75–78. https://doi.org/10.1007/978-981-287-817-5_17.

773 [10] B.H. Lapizco-Encinas, Microscale nonlinear electrokinetics for the analysis of cellular materials in
774 clinical applications: a review, *Microchim. Acta.* 188 (2021) 104. <https://doi.org/10.1007/s00604-021-04748-7>.

776 [11] A.S. Khair, Nonlinear electrophoresis of colloidal particles, *Curr. Opin. Colloid Interface Sci.* 59 (2022)
777 101587. <https://doi.org/10.1016/j.cocis.2022.101587>.

778 [12] J. Zhang, Z. Song, Q. Liu, Y. Song, Recent advances in dielectrophoresis-based cell viability assessment,
779 *Electrophoresis.* 41 (2020) 917–932. <https://doi.org/10.1002/elps.201900340>.

780 [13] E.A. Henslee, Review: Dielectrophoresis in cell characterization, *Electrophoresis*. 41 (2020) 1915–1930.
781 <https://doi.org/10.1002/elps.202000034>.

782 [14] A.R. Hyler, D. Hong, R. V. Davalos, N.S. Swami, E.M. Schmelz, A novel ultralow conductivity
783 electromanipulation buffer improves cell viability and enhances dielectrophoretic consistency,
784 *Electrophoresis*. 42 (2021) 1366–1377. <https://doi.org/10.1002/elps.202000324>.

785 [15] Z. Çağlayan, Y. Demircan Yalçın, H. Külah, A Prominent Cell Manipulation Technique in BioMEMS:
786 Dielectrophoresis, *Micromachines*. 11 (2020) 990. <https://doi.org/10.3390/mi11110990>.

787 [16] A. Vaghef-Koodehi, B.H. Lapizco-Encinas, Microscale electrokinetic-based analysis of intact cells and
788 viruses, *Electrophoresis*. 43 (2022) 263–287. <https://doi.org/10.1002/elps.202100254>.

789 [17] B.H. Lapizco-Encinas, Nonlinear Electrokinetic Methods of Particles and Cells, *Annu. Rev. Anal. Chem.*
790 17 (2024) 243–264. <https://doi.org/10.1146/annurev-anchem-061622-040810>.

791 [18] R. Deivasigamani, N.N. Mohd Maidin, N.S. Abdul Nasir, A. Abdulhameed, A. Bin Ahmad Kayani, M.A.
792 Mohamed, M.R. Buyong, A correlation of conductivity medium and bioparticle viability on
793 dielectrophoresis-based biomedical applications, *Electrophoresis*. 44 (2023) 573–620.
794 <https://doi.org/10.1002/elps.202200203>.

795 [19] M. Punjiya, H.R. Nejad, J. Mathews, M. Levin, S. Sonkusale, A flow through device for simultaneous
796 dielectrophoretic cell trapping and AC electroporation, *Sci. Rep.* 9 (2019) 1–11.
797 <https://doi.org/10.1038/s41598-019-48198-x>.

798 [20] M.P. Hughes, Fifty years of dielectrophoretic cell separation technology, *Biomicrofluidics*. 10 (2016).
799 <https://doi.org/10.1063/1.4954841>.

800 [21] K. Zhao, Larasati, B.P. Duncker, D. Li, Continuous Cell Characterization and Separation by Microfluidic
801 Alternating Current Dielectrophoresis, *Anal. Chem.* 91 (2019) 6304–6314.
802 <https://doi.org/10.1021/acs.analchem.9b01104>.

803 [22] P. Patel, G.H. Markx, Dielectric measurement of cell death, *Enzyme Microb. Technol.* 43 (2008) 463–
804 470. <https://doi.org/10.1016/j.enzmictec.2008.09.005>.

805 [23] H.A. Pohl, The Motion and Precipitation of Suspensoids in Divergent Electric Fields, *J. Appl. Phys.* 22
806 (1951) 869–871.

807 [24] H.A. Pohl, I. Hawk, Separation of living and dead cells by dielectrophoresis, *Science (80-.).* 152 (1966)
808 647–649. <https://doi.org/10.1126/science.152.3722.647-a>.

809 [25] J.S. Crane, H.A. Pohl, A study of living and dead yeast cells using dielectrophoresis, *J. Electrochem. Soc.*
810 115 (1968) 584–586. <https://doi.org/10.1149/1.2411345>.

811 [26] M.A. Saucedo-Espinosa, A. Lalonde, A. Gencoglu, M.F. Romero-Creel, J.R. Dolas, B.H. Lapizco-
812 Encinas, Dielectrophoretic manipulation of particle mixtures employing asymmetric insulating posts,
813 *Electrophoresis*. 37 (2016) 282–290. <https://doi.org/10.1002/elps.201500195>.

814 [27] P.A. Zellner, A. Sahari, Y. Hosseini, B. Behkam, M. Agah, Selective *E. coli* trapping with 3D insulator-
815 based dielectrophoresis using DC-biased, AC electric fields, in: Proc. Annu. Int. Conf. IEEE Eng. Med.
816 Biol. Soc. EMBS, 2012: pp. 6285–6288. <https://doi.org/10.1109/EMBC.2012.6347431>.

817 [28] D. Nakidde, P. Zellner, M.M. Alemi, T. Shake, Y. Hosseini, M. V. Riquelme, A. Pruden, M. Agah, Three
818 dimensional passivated-electrode insulator-based dielectrophoresis, *Biomicrofluidics*. 9 (2015) 14125.
819 <https://doi.org/10.1063/1.4913497>.

820 [29] P. Zellner, T. Shake, Y. Hosseini, D. Nakidde, M. V. Riquelme, A. Sahari, A. Pruden, B. Behkam, M.
821 Agah, 3D Insulator-based dielectrophoresis using DC-biased, AC electric fields for selective bacterial
822 trapping, *Electrophoresis*. 36 (2015) 277–283. <https://doi.org/10.1002/elps.201400236>.

823 [30] K. Kikkeri, M.V. Riquelme Breazeal, X. Ren, A. Pruden, M. Agah, A Monolithic Dielectrophoresis Chip
824 with Impedimetric Sensing for Assessment of Pathogen Viability, *J. Microelectromechanical Syst.* 27
825 (2018) 810–817. <https://doi.org/10.1109/JMEMS.2018.2860926>.

826 [31] B. Ho, J. Beech, J. Tegenfeldt, Charge-Based Separation of Micro- and Nanoparticles, *Micromachines*.
827 11 (2020) 1014. <https://doi.org/10.3390/mi11111014>.

828 [32] A. Vaghef-Koodehi, C. Dillis, B.H. Lapizco-Encinas, High-Resolution Charge-Based Electrokinetic
829 Separation of Almost Identical Microparticles, *Anal. Chem.* 94 (2022) 6451–6456.
830 <https://doi.org/10.1021/acs.analchem.2c00355>.

831 [33] Y.H. Su, C.A. Warren, R.L. Guerrant, N.S. Swami, Dielectrophoretic monitoring and interstrain
832 separation of intact *Clostridium difficile* based on their S(Surface)-layers, *Anal. Chem.* 86 (2014) 10855–
833 10863. <https://doi.org/10.1021/ac5029837>.

834 [34] Y.H. Su, A. Rohani, C.A. Warren, N.S. Swami, Tracking Inhibitory Alterations during Interstrain
835 *Clostridium difficile* Interactions by Monitoring Cell Envelope Capacitance, *ACS Infect. Dis.* 2 (2016)
836 544–551. <https://doi.org/10.1021/acsinfecdis.6b00050>.

837 [35] A. Rohani, J.H. Moore, Y.H. Su, V. Stagnaro, C. Warren, N.S. Swami, Single-cell electro-phenotyping
838 for rapid assessment of *Clostridium difficile* heterogeneity under vancomycin treatment at sub-MIC
839 (minimum inhibitory concentration) levels, *Sensors Actuators, B Chem.* 276 (2018) 472–480.
840 <https://doi.org/10.1016/j.snb.2018.08.137>.

841 [36] M. Goel, A. Verma, S. Gupta, Electric-field driven assembly of live bacterial cell microarrays for rapid
842 phenotypic assessment and cell viability testing, *Biosens. Bioelectron.* 111 (2018) 159–165.
843 <https://doi.org/10.1016/j.bios.2018.04.005>.

844 [37] P. Swami, A. Sharma, S. Anand, S. Gupta, DEPIS: A combined dielectrophoresis and impedance
845 spectroscopy platform for rapid cell viability and antimicrobial susceptibility analysis, *Biosens.*
846 *Bioelectron.* 182 (2021) 113190. <https://doi.org/10.1016/j.bios.2021.113190>.

847 [38] S. Pudasaini, A.T.K. Perera, D. Das, S.H. Ng, C. Yang, Continuous flow microfluidic cell inactivation

848 with the use of insulating micropillars for multiple electroporation zones, *Electrophoresis*. 40 (2019)
849 2522–2529. <https://doi.org/10.1002/elps.201900150>.

850 [39] S. Pudasaini, A.T.K. Perera, S.S.U. Ahmed, Y.B. Chong, S.H. Ng, C. Yang, An electroporation device
851 with microbead-enhanced electric field for bacterial inactivation, *Inventions*. 5 (2020) 2.

852 <https://doi.org/10.3390/inventions5010002>.

853 [40] S. Pudasaini, A.T.K. Perera, S.H. Ng, C. Yang, Bacterial inactivation via microfluidic electroporation
854 device with insulating micropillars, *Electrophoresis*. 42 (2021) 1093–1101.
855 <https://doi.org/10.1002/elps.202000326>.

856 [41] Y. Mizuta, H. Takuya, T.D. Nguyen, K. Taguchi, Cell Fusion and Distinction between Viable Cell and
857 Non-Viable Cell Using Dielectrophoresis and Optical Tweezers, in: Proc. 2015 Int. Conf. Electr. Autom.
858 Mech. Eng., 2015: pp. 59–62. <https://doi.org/10.2991/eame-15.2015.16>.

859 [42] R. Komai, K. Aritoshi, K. Taguchi, Efficient Evaluation Method of Cell's Viability Using
860 Dielectrophoresis, *Appl. Mech. Mater.* 870 (2017) 375–379.
861 <https://doi.org/10.4028/www.scientific.net/amm.870.375>.

862 [43] F.-J. Garcia-Diego, M. Rubio-Chavarria, P. Beltran, F.J. Espinos, G.-D. Fernando-Juan, M. Rubio-
863 Chavarría, P. Beltrán, F.J. Espinós, Thermal Shock Response of Yeast Cells Characterised by
864 Dielectrophoresis Force Measurement, *Sensors*. 19 (2019) 5304. <https://doi.org/10.3390/s19235304>.

865 [44] H.M. Ettehad, P.S. Zarrin, R. Hölzel, C. Wenger, Dielectrophoretic immobilization of yeast cells using
866 CMOS integrated microfluidics, *Micromachines*. 11 (2020) 501. <https://doi.org/10.3390/MI11050501>.

867 [45] H.M. Ettehad, C. Wenger, Characterization and separation of live and dead yeast cells using cmos-based
868 dep microfluidics, *Micromachines*. 12 (2021) 270. <https://doi.org/10.3390/mi12030270>.

869 [46] Y. Wu, R. Chattaraj, Y. Ren, H. Jiang, D. Lee, Label-Free Multitarget Separation of Particles and Cells
870 under Flow Using Acoustic, Electrophoretic, and Hydrodynamic Forces, *Anal. Chem.* 93 (2021) 7635–
871 7646. <https://doi.org/10.1021/acs.analchem.1c00312>.

872 [47] S. Bunthawin, P. Srichan, K. Jaruwongrungsee, R.J. Ritchie, Using dielectrophoretic spectra to identify
873 and separate viable yeast cells, *Appl. Microbiol. Biotechnol.* 107 (2023) 7647–7655.
874 <https://doi.org/10.1007/s00253-023-12809-5>.

875 [48] S. Afshar, E. Salimi, K. Braasch, M. Butler, D. Thomson, G. Bridges, Two-frequency dielectrophoresis
876 analysis of viable/non-viable single CHO cells employing a microwave cytometer, in: BioWireLESS 2016
877 - Proceedings, 2016 IEEE Top. Conf. Biomed. Wirel. Technol. Networks, Sens. Syst., IEEE, 2016: pp.
878 70–73. <https://doi.org/10.1109/BIOWIRELESS.2016.7445565>.

879 [49] E. Salimi, K. Braasch, A. Fazelkhah, S. Afshar, B. Saboktakin Rizi, K. Mohammad, M. Butler, G.E.
880 Bridges, D.J. Thomson, Single cell dielectrophoresis study of apoptosis progression induced by
881 controlled starvation, *Bioelectrochemistry*. 124 (2018) 73–79.

882 https://doi.org/10.1016/j.bioelechem.2018.07.003.

883 [50] S. Afshar, A. Fazelkhah, E. Salimi, M. Butler, D. Thomson, G. Bridges, In-Flow Dielectrophoresis
884 Sensor for Measuring the Dielectric Spectrum of Single Cells: Viable and Non-viable Cells, Proc. IEEE
885 Sensors. 2019-Octob (2019) 1–4. <https://doi.org/10.1109/SENSORS43011.2019.8956709>.

886 [51] T.N.G. Adams, A.Y.L. Jiang, P.D. Vyas, L.A. Flanagan, Separation of neural stem cells by whole cell
887 membrane capacitance using dielectrophoresis, Methods. 133 (2018) 91–103.
888 <https://doi.org/10.1016/j.ymeth.2017.08.016>.

889 [52] R. Natu, M. Islam, D. Keck, R. Martinez-Duarte, Automated “pick and transfer” of targeted cells using
890 dielectrophoresis, Lab Chip. 19 (2019) 2512–2525. <https://doi.org/10.1039/c9lc00409b>.

891 [53] A.J. Smith, R.D. O’Rorke, A. Kale, R. Rimsa, M.J. Tomlinson, J. Kirkham, A.G. Davie, C. Wälti, C.D.
892 Wood, Rapid cell separation with minimal manipulation for autologous cell therapies, Sci. Rep. 7 (2017)
893 1–15. <https://doi.org/10.1038/srep41872>.

894 [54] K. Torres-Castro, C. Honrado, W.B. Varhue, V. Farmehini, N.S. Swami, High-throughput dynamical
895 analysis of dielectrophoretic frequency dispersion of single cells based on deflected flow streamlines,
896 Anal. Bioanal. Chem. 412 (2020) 3847–3857. <https://doi.org/10.1007/s00216-020-02467-1>.

897 [55] Y. Yildizhan, N. Erdem, M. Islam, R. Martinez-Duarte, M. Elitas, Dielectrophoretic separation of live
898 and dead monocytes using 3D carbon-electrodes, Sensors. 17 (2017) 2691.
899 <https://doi.org/10.3390/s17112691>.

900 [56] V.D. Jayasooriya, D. Nawarathna, Label-free purification of viable human T-lymphocyte cells from a
901 mixture of viable and non-viable cells after transfection by electroporation, J. Phys. D. Appl. Phys. 52
902 (2019) 36LT01. <https://doi.org/10.1088/1361-6463/ab2b81>.

903 [57] A. Mustafa, E. Pedone, L. Marucci, D. Moschou, M. Di Lorenzo, A flow-through microfluidic chip for
904 continuous dielectrophoretic separation of viable and non-viable human T-cells, Electrophoresis. 43
905 (2022) 501–508. <https://doi.org/10.1002/elps.202100031>.

906 [58] V. Jayasooriya, D. Nawarathna, Design of Micro-interdigitated Electrodes and Detailed Impedance Data
907 Analysis for Label-free Biomarker Quantification, Electroanalysis. 29 (2017) 330–338.
908 <https://doi.org/10.1002/elan.201600364>.

909 [59] E.A. Henslee, R.M. Torcal Serrano, F.H. Labeed, R.I. Jabr, C.H. Fry, M.P. Hughes, K.F. Hoettges,
910 Accurate quantification of apoptosis progression and toxicity using a dielectrophoretic approach, Analyst.
911 141 (2016) 6408–6415. <https://doi.org/10.1039/c6an01596d>.

912 [60] M. Sun, P. Agarwal, S. Zhao, Y. Zhao, X. Lu, X. He, Continuous on-chip cell separation based on
913 conductivity-induced dielectrophoresis with 3D self-assembled ionic liquid electrodes, Anal. Chem. 88
914 (2016) 8264–8271. <https://doi.org/10.1021/acs.analchem.6b02104>.

915 [61] X. Wang, F.F. Becker, P.R.C. Gascoyne, Membrane dielectric changes indicate induced apoptosis in HL-

916 60 cells more sensitively than surface phosphatidylserine expression or DNA fragmentation, *Biochim.*
917 *Biophys. Acta - Biomembr.* 1564 (2002) 412–420. [https://doi.org/10.1016/S0005-2736\(02\)00495-9](https://doi.org/10.1016/S0005-2736(02)00495-9).

918 [62] S. Mahabadi, F.H. Labeed, M.P. Hughes, Dielectrophoretic analysis of treated cancer cells for rapid
919 assessment of treatment efficacy, *Electrophoresis.* 39 (2018) 1104–1110.
920 <https://doi.org/10.1002/elps.201700488>.

921 [63] M.P. Hughes, F.H. Labeed, K.F. Hoettges, S. Porter, V. Mercadante, N. Kalavrezos, C. Liew, J.A.
922 McCaul, R. Kulkarni, J. Cyberman, C. Kerawala, J. Barber, M.P. Lewis, S. Fedele, Point-of-care
923 Analysis for Non-invasive Diagnosis of Oral cancer (PANDORA): A technology-development proof of
924 concept diagnostic accuracy study of dielectrophoresis in patients with oral squamous cell carcinoma and
925 dysplasia, *J. Oral Pathol. Med.* 52 (2023) 305–314. <https://doi.org/10.1111/jop.13417>.

926 [64] E.D. Lavi, F. Crivellari, Z. Gagnon, Dielectrophoretic detection of electrical property changes of stored
927 human red blood cells, *Electrophoresis.* 43 (2022) 1297–1308. <https://doi.org/10.1002/elps.202100241>.

928 [65] K.F. Hoettges, E.A. Henslee, R.M. Torcal Serrano, R.I. Jabr, R.G. Abdallat, A.D. Beale, A. Waheed, P.
929 Camelliti, C.H. Fry, D.R. van der Veen, F.H. Labeed, M.P. Hughes, Ten-Second Electrophysiology:
930 Evaluation of the 3DEP Platform for high-speed, high-accuracy cell analysis, *Sci. Rep.* 9 (2019) 19153.
931 <https://doi.org/10.1038/s41598-019-55579-9>.

932 [66] R. Taruvai Kalyana Kumar, S. Liu, J.D. Minna, S. Prasad, Monitoring drug induced apoptosis and
933 treatment sensitivity in non-small cell lung carcinoma using dielectrophoresis, *Biochim. Biophys. Acta -*
934 *Gen. Subj.* 1860 (2016) 1877–1883. <https://doi.org/10.1016/j.bbagen.2016.05.039>.

935 [67] P.Y. Chu, C.J. Liao, C.H. Hsieh, H.M. Wang, W.P. Chou, P.H. Chen, M.H. Wu, Utilization of optically
936 induced dielectrophoresis in a microfluidic system for sorting and isolation of cells with varied degree of
937 viability: Demonstration of the sorting and isolation of drug-treated cancer cells with various degrees of
938 anti-cancer dru, *Sensors Actuators B Chem.* 283 (2019) 621–631.
939 <https://doi.org/10.1016/J.SNB.2018.12.047>.

940 [68] A. Rane, J. Jarmoshti, A.-B. Siddique, S. Adair, K. Torres-Castro, C. Honrado, T.W. Bauer, N.S. Swami,
941 Dielectrophoretic enrichment of live chemo-resistant circulating-like pancreatic cancer cells from media
942 of drug-treated adherent cultures of solid tumors., *Lab Chip.* 24 (2024) 561–571.
943 <https://doi.org/10.1039/d3lc00804e>.

944 [69] T. Lannin, W.W. Su, C. Gruber, I. Cardle, C. Huang, F. Thege, B. Kirby, Automated electrorotation
945 shows electrokinetic separation of pancreatic cancer cells is robust to acquired chemotherapy resistance,
946 serum starvation, and EMT, *Biomicrofluidics.* 10 (2016). <https://doi.org/10.1063/1.4964929>.

947 [70] M. Aghaamoo, B. Cardenas-Benitez, A.P. Lee, A High-Throughput Microfluidic Cell Sorter Using a
948 Three-Dimensional Coupled Hydrodynamic-Dielectrophoretic Pre-Focusing Module, *Micromachines.* 14
949 (2023) 1813. <https://doi.org/10.3390/mi14101813>.

950 [71] B. Buszewski, E. Kłodzińska, Rapid microbiological diagnostics in medicine using electromigration
951 techniques, *TrAC - Trends Anal. Chem.* 78 (2016) 95–108. <https://doi.org/10.1016/j.trac.2016.02.008>.

952 [72] E. Kłodzińska, B. Buszewski, Electrokinetic detection and characterization of intact microorganisms,
953 *Anal. Chem.* 81 (2009) 8–15. <https://doi.org/10.1021/ac801369a>.

954 [73] A.L. Polaczyk, J.E. Amburgey, A. Alansari, J.C. Poler, M. Propato, V.R. Hill, Calculation and
955 uncertainty of zeta potentials of microorganisms in a 1:1 electrolyte with a conductivity similar to surface
956 water, *Colloids Surfaces A Physicochem. Eng. Asp.* 586 (2020) 124097.
957 <https://doi.org/10.1016/j.colsurfa.2019.124097>.

958 [74] P.G. Righetti, 50, 100, 1000 Years: Happy Anniversary Electrophoresis!, *Electrophoresis* 40 (2019) 11–
959 15. <https://doi.org/10.1002/elps.201800447>.

960 [75] B. Buszewski, M. Szumski, E. Kłodzińska, H. Dahm, Separation of bacteria by capillary electrophoresis,
961 *J. Sep. Sci.* 26 (2003) 1045–1049. <https://doi.org/10.1002/jssc.200301442>.

962 [76] A. Rogowska, P. Pomastowski, M. Złoch, V. Railean-Plugaru, A. Król, K. Rafińska, M. Szultka-
963 Młyńska, B. Buszewski, The influence of different pH on the electrophoretic behaviour of
964 *Saccharomyces cerevisiae* modified by calcium ions, *Sci. Rep.* 8 (2018) 7261.
965 <https://doi.org/10.1038/s41598-018-25024-4>.

966 [77] B. Buszewski, E. Maślak, M. Złoch, V. Railean-Plugaru, E. Kłodzińska, P. Pomastowski, A new
967 approach to identifying pathogens, with particular regard to viruses, based on capillary electrophoresis
968 and other analytical techniques, *TrAC - Trends Anal. Chem.* 139 (2021).
969 <https://doi.org/10.1016/J.TRAC.2021.116250>.

970 [78] M. Rouhi Youssefi, F.J. Diez, Ultrafast electrokinetics, *Electrophoresis* 37 (2016) 692–698.
971 <https://doi.org/10.1002/elps.201500392>.

972 [79] S. Tottori, K. Misiunas, U.F. Keyser, D.J. Bonthuis, Nonlinear Electrophoresis of Highly Charged
973 Nonpolarizable Particles, *Phys. Rev. Lett.* 123 (2019) 14502.
974 <https://doi.org/10.1103/PhysRevLett.123.014502>.

975 [80] B. Cardenas-Benitez, B. Jind, R.C. Gallo-Villanueva, S.O. Martinez-Chapa, B.H. Lapizco-Encinas, V.H.
976 Perez-Gonzalez, Direct Current Electrokinetic Particle Trapping in Insulator-Based Microfluidics:
977 Theory and Experiments, *Anal. Chem.* 92 (2020) 12871–12879.
978 <https://doi.org/10.1021/acs.analchem.0c01303>.

979 [81] S. Antunez-Vela, V.H. Perez-Gonzalez, A. Coll De Peña, C.J. Lentz, B.H. Lapizco-Encinas,
980 Simultaneous Determination of Linear and Nonlinear Electrophoretic Mobilities of Cells and
981 Microparticles, *Anal. Chem.* 92 (2020) 14885–14891. <https://doi.org/10.1021/acs.analchem.0c03525>.

982 [82] J. Bentor, H. Dort, R.A. Chitrap, Y. Zhang, X. Xuan, Nonlinear electrophoresis of dielectric particles in
983 Newtonian fluids, *Electrophoresis* 44 (2023) 938–946. <https://doi.org/10.1002/elps.202200213>.

984 [83] J. Bentor, X. Xuan, Nonlinear electrophoresis of nonspherical particles in a rectangular microchannel,
985 Electrophoresis. (2023). <https://doi.org/10.1002/ELPS.202300188>.

986 [84] V. Kasarabada, O.D. Ernst, A. Vaghef-Koodehi, B.H. Lapizco-Encinas, Effect of cell shape on nonlinear
987 electrophoresis migration, *J. Chromatogr. A.* 1717 (2024) 464685.
988 <https://doi.org/10.1016/j.chroma.2024.464685>.

989 [85] E. Frants, S. Amrouidine, E. Demekhin, DNS of Nonlinear Electrophoresis, *Microgravity Sci. Technol.*
990 36 (2024) 1–22. <https://doi.org/10.1007/s12217-024-10108-w>.

991 [86] S.S. Dukhin, Electrokinetic phenomena of the second kind and their applications, *Adv. Colloid Interface
992 Sci.* 35 (1991) 173–196. [https://doi.org/10.1016/0001-8686\(91\)80022-C](https://doi.org/10.1016/0001-8686(91)80022-C).

993 [87] N.A. Mishchuk, N.O. Barinova, Theoretical and experimental study of nonlinear electrophoresis, *Colloid
994 J.* 73 (2011) 88–96. <https://doi.org/10.1134/S1061933X11010133>.

995 [88] A. Vaghef-Koodehi, O.D. Ernst, B.H. Lapizco-Encinas, Separation of Cells and Microparticles in
996 Insulator-Based Electrokinetic Systems, *Anal. Chem.* 95 (2023) 1409–1418.
997 <https://doi.org/10.1021/acs.analchem.2c04366>.

998 [89] A. Vaghef-Koodehi, B.H. Lapizco-Encinas, Switching Separation Migration Order by Switching
999 Electrokinetic Regime in Electrokinetic Microsystems, *Biosens. 2024, Vol. 14, Page 119.* 14 (2024) 119.
1000 <https://doi.org/10.3390/BIOS14030119>.

1001 [90] N.N. Nasir Ahamed, C.A. Mendiola-Escobedo, V.H. Perez-Gonzalez, B.H. Lapizco-Encinas,
1002 Development of a DC-biased AC stimulated microfluidic device for the electrokinetic separation of
1003 bacterial and yeast cells, *Biosensors.* 14 (2024) 237. <https://doi.org/10.3390/BIOS14050237>.

1004 [91] N.N. Nasir Ahamed, C.A. Mendiola-Escobedo, V.H. Perez-Gonzalez, B.H. Lapizco-Encinas, Assessing
1005 the Discriminatory Capabilities of iEK Devices under DC and DC-Biased AC Stimulation Potentials,
1006 *Micromachines.* 14 (2023). <https://doi.org/10.3390/mi14122239>.

1007 [92] C. Adelantado, B.H. Lapizco-Encinas, J. Jordens, S. Voorspoels, M. Velimirovic, K. Tirez, Capillary
1008 Electrophoresis as a Complementary Analytical Tool for the Separation and Detection of Nanoplastic
1009 Particles, *Anal. Chem.* 96 (2024) 7706–7713. <https://doi.org/10.1021/acs.analchem.4c00822>.

1010 [93] E. Yariv, O. Schnitzer, The electrophoretic mobility of rod-like particles, *J. Fluid Mech.* 719 (2013) 1–12.
1011 <https://doi.org/10.1017/jfm.2013.43>.

1012 [94] O. Schnitzer, E. Yariv, Nonlinear electrophoresis at arbitrary field strengths: Small-Dukhin-number
1013 analysis, *Phys. Fluids.* 26 (2014) 122002. <https://doi.org/10.1063/1.4902331>.

1014 [95] F. Krebs, H. Zagst, M. Stein, R. Ratih, R. Minkner, M. Olabi, S. Hartung, C. Scheller, B.H. Lapizco-
1015 Encinas, C. Sänger-van de Griend, C.D. García, H. Wätzig, Strategies for capillary electrophoresis:
1016 Method development and validation for pharmaceutical and biological applications—Updated and
1017 completely revised edition, *Electrophoresis.* 44 (2023) 1279–1341.

1018 https://doi.org/10.1002/elps.202300158.

1019 [96] D. Li, Chapter 9 - Electrophoretic motion of particles in microchannels, in: Interface Sci. Technol., 2004:

1020 pp. 542–616. https://doi.org/10.1016/S1573-4285(04)80031-0.

1021 [97] F.A. Morrison, Electrophoresis of a particle of arbitrary shape, *J. Colloid Interface Sci.* 34 (1970) 210–

1022 214. https://doi.org/10.1016/0021-9797(70)90171-2.

1023 [98] O.D. Ernst, A. Vaghef-Koodehi, C. Dillis, A. Lomeli-Martin, B.H. Lapizco-Encinas, Dependence of

1024 Nonlinear Electrophoresis on Particle Size and Electrical Charge, *Anal. Chem.* 95 (2023) 6595–6602.

1025 https://doi.org/10.1021/acs.analchem.2c05595.

1026 [99] O. Vesterberg, History of electrophoretic methods, *J. Chromatogr. A.* 480 (1989) 3–19.

1027 https://doi.org/10.1016/S0021-9673(01)84276-X.

1028 [100] S. Hjertén, K. Elenbring, F. Kilár, J.-L. Liao, A.J.C. Chen, C.J. Siebert, M.-D. Zhu, Carrier-free zone

1029 electrophoresis, displacement electrophoresis and isoelectric focusing in a high-performance

1030 electrophoresis apparatus, *J. Chromatogr. A.* 403 (1987) 47–61.

1031 https://doi.org/https://doi.org/10.1016/S0021-9673(00)96340-4.

1032 [101] R.C. Ebersole, R.M. McCormick, Separation and isolation of viable bacteria by capillary zone

1033 electrophoresis, *Nat Biotech.* 11 (1993) 1278–1282. https://doi.org/10.1038/nbt1193-1278.

1034 [102] D.W. Armstrong, G. Schulte, J.M. Schneiderheinze, D.J. Westenberg, Separating Microbes in the Manner

1035 of Molecules. 1. Capillary Electrokinetic Approaches, *Anal. Chem.* 71 (1999) 5465–5469.

1036 https://doi.org/10.1021/ac990779z.

1037 [103] M.J. Desai, D.W. Armstrong, Separation, identification, and characterization of microorganisms by

1038 capillary electrophoresis, *Microbiol. Mol. Biol. Rev.* 67 (2003) 38–51.

1039 https://doi.org/10.1128/mmbr.67.1.38-51.2003.

1040 [104] M. Girod, D.W. Armstrong, Monitoring the migration behavior of living microorganisms in capillary

1041 electrophoresis using laser-induced fluorescence detection with a charge-coupled device imaging system,

1042 *Electrophoresis.* 23 (2002) 2048–2056. https://doi.org/10.1002/1522-2683(200207)23:13<2048::AID-ELPS2048>3.0.CO;2-T.

1043 [105] E. Dziubakiewicz, B. Buszewski, Capillary electrophoresis of microbial aggregates, *Electrophoresis.* 35

1044 (2014) 1160–1164. https://doi.org/10.1002/elps.201300588.

1045 [106] B. Buszewski, E. Kłodzińska, Determination of pathogenic bacteria by CZE with surface-modified

1046 capillaries, *Electrophoresis.* 29 (2008) 4177–4184. https://doi.org/10.1002/elps.200800080.

1047 [107] J.N. Mehrishi, J. Bauer, Electrophoresis of cells and the biological relevance of surface charge,

1048 *Electrophoresis.* 23 (2002) 1984–1994. https://doi.org/10.1002/1522-2683(200207)23:13<1984::AID-ELPS1984>3.0.CO;2-U.

1049 [108] M. Szumski, E. Kłodzińska, B. Buszewski, Separation of microorganisms using electromigration

1052 techniques, *J. Chromatogr. A.* 1084 (2005) 186–193.
1053 <https://doi.org/https://doi.org/10.1016/j.chroma.2004.09.062>.

1054 [109] M. Horká, P. Karásek, F. Růžička, M. Dvořáčková, M. Sittová, M. Roth, Separation of Methicillin-
1055 Resistant from Methicillin-Susceptible *Staphylococcus aureus* by Electrophoretic Methods in Fused
1056 Silica Capillaries Etched with Supercritical Water, *Anal. Chem.* 86 (2014) 9701–9708.
1057 <https://doi.org/10.1021/ac502254f>.

1058 [110] J. Šalplachta, M. Horká, F. Růžička, K. Šlais, Identification of bacterial uropathogens by preparative
1059 isoelectric focusing and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, *J.*
1060 *Chromatogr. A.* 1532 (2018) 232–237. <https://doi.org/10.1016/j.chroma.2017.11.072>.

1061 [111] M. Horká, J. Šalplachta, P. Karásek, F. Růžička, D. Štveráková, R. Pantůček, M. Roth, Rapid Isolation,
1062 Propagation, and Online Analysis of a Small Number of Therapeutic Staphylococcal Bacteriophages
1063 from a Complex Matrix, *ACS Infect. Dis.* 6 (2020) 2745–2755.
1064 <https://doi.org/10.1021/acsinfecdis.0c00358>.

1065 [112] D.W. Armstrong, J.M. Schneiderheinze, J.P. Kullman, L.F. He, Rapid CE microbial assays for consumer
1066 products that contain active bacteria, *FEMS Microbiol. Lett.* 194 (2001) 33–37.
1067 <https://doi.org/10.1111/j.1574-6968.2001.tb09442.x>.

1068 [113] D.W. Armstrong, L. He, Determination of cell viability in single or mixed samples using capillary
1069 electrophoresis laser-induced fluorescence microfluidic systems, *Anal. Chem.* 73 (2001) 4551–4557.
1070 <https://doi.org/10.1021/ac010449q>.

1071 [114] B.A. Jucker, H. Harms, A.J.B. Zehnder, Adhesion of the positively charged bacterium *Stenotrophomonas*
1072 (*Xanthomonas*) *malophilia* 70401 to glass and teflon, *J. Bacteriol.* 178 (1996) 5472–5479.
1073 <https://doi.org/10.1128/jb.178.18.5472-5479.1996>.

1074 [115] E. Kłodzińska, M. Szumski, E. Dziubakiewicz, K. Hrynkiewicz, E. Skwarek, W. Janusz, B. Buszewski,
1075 Effect of zeta potential value on bacterial behavior during electrophoretic separation, *Electrophoresis* 31
1076 (2010) 1590–1596. <https://doi.org/10.1002/elps.200900559>.

1077 [116] M.G. Bonomo, C. Cafaro, A. Guerreri, F. Crispo, L. Milella, L. Calabrone, G. Salzano, Flow cytometry
1078 and capillary electrophoresis analyses in ethanol-stressed *oenococcus oeni* strains and changes
1079 assessment of membrane fatty acid composition, *J. Appl. Microbiol.* 122 (2017) 1615–1626.
1080 <https://doi.org/10.1111/jam.13466>.

1081 [117] W. Kupczyk, E. Maślak, V. Railean-Plugaru, P. Pomastowski, M. Jackowski, B. Buszewski, Capillary
1082 Zone Electrophoresis in Tandem with Flow Cytometry in Viability Study of Various ATCC Bacterial
1083 Strains under Antibiotic Treatment, *Int. J. Environ. Res. Public Health.* 19 (2022).
1084 <https://doi.org/10.3390/ijerph19031833>.

1085 [118] E. Maślak, W. Kupczyk, V. Railean, P. Pomastowski, M. Jackowski, B. Buszewski, Viability study of

1086 clinical bacterial strains by capillary electrophoresis and flow cytometry approaches, Electrophoresis. 43
1087 (2022) 2005–2013. <https://doi.org/10.1002/elps.202200096>.

1088 [119] V. Kasarabada, N.N. Nasir Ahamed, A. Vaghef-Koodehi, G. Martinez, B.H. Lapizco-Encinas, N. Nihaar,
1089 N. Ahamed, A. Vaghef-Koodehi, G. Martinez-Martinez, B.H. Lapizco-Encinas, Separating the Living
1090 from the Dead: An Electrophoretic Approach, Anal. Chem. 96 (2024) 15711–15719.

1091 <https://doi.org/10.1021/acs.analchem.4c03336>.

1092 [120] B.H. Lapizco-Encinas, B.A. Simmons, E.B. Cummings, Y. Fintschenko, Dielectrophoretic Concentration
1093 and Separation of Live and Dead Bacteria in an Array of Insulators, Anal. Chem. 76 (2004) 1571–1579.
1094 <https://doi.org/10.1021/ac034804j>.

1095 [121] F. Crispo, A. Capece, A. Guerrieri, P. Romano, Capillary zone electrophoresis as alternative tool for
1096 rapid identification and quantification of viable *Saccharomyces cerevisiae* cells, LWT - Food Sci.
1097 Technol. 68 (2016) 506–513. <https://doi.org/10.1016/j.lwt.2015.12.026>.

1099 TABLES

1100 **Table 1.** Summary of the reports on dielectrophoresis-based cell viability assessments and separations.

Bacterial cells			
Cell type	Description of the system employed	Electric stimulation	Year and ref.
<i>S. aureus</i>	Microdevice containing 3D embedded insulating micropillars.	AC voltages up to 400 Vpp at frequencies from 30 to 60 kHz. DC-biased AC voltages with 10 to 20 VDC and up to 200 Vpp at frequencies from 2 kHz and 400 kHz.	2015 [28,29]
<i>S. epidermidis</i>	Monolithic device that combines off- chip passivated insulator-based dielectrophoresis and bioimpedance measurements for	AC voltages up to 300 Vpp at frequencies from 100 to 400 kHz.	2018 [30]
<i>E. coli</i> and <i>S. cerevisiae</i>	Combination of DEP and deterministic lateral displacement (DLD). Sorting device with a dense array of insulating pillars, and three distinct outlets that allowed for collection of separated cell fractions.	AC voltages up to 600 Vpp at frequencies from 1 Hz to 20 kHz.	2021 [8]
<i>C. difficile</i>	Microchannels with sharp lateral constrictions that reduce channel width from 1000 μ m to only 15 μ m.	AC voltages up to 300 Vpp at frequencies from 50 kHz to 1 MHz.	2018 [35]
<i>E. coli</i> and <i>S. Typhi</i>	Microdevice with microwells that contained circular photoconductive electrodes	AC voltages in the range of 5 to 20 Vpp at frequencies from 50 kHz to 20 MHz.	2018 [36]
<i>S. Typhi</i> , <i>E. faecalis</i> and <i>S. aureus</i>	Microdevice that combined DEP and impedance spectroscopy that featured reusable interdigitated electrodes.	AC voltages of 20 Vpp at a frequency of 5 MHz.	2021 [37]
<i>E. coli</i> and <i>E. faecalis</i>	Microfluidic chambers filled with silica microbeads used to inactivate bacteria.	DC voltages up to 400 V to generate electric fields up to 2 kV/cm.	2020 [39]
<i>E. coli</i> and <i>E. faecalis</i>	Microchannels with an array of insulating micropillars are used to electroporate cells and induce cell death.	DC voltages to generate electric fields up to 167 V/cm. AC voltages up to 300 V and frequencies from 2.5 kHz to 100 kHz.	2021 [40]
Yeast cells			

Cell type	Description of the system employed	Electric stimulation	Year and ref.
<i>S. cerevisiae</i>	Rudimentary, the system had a cup-shaped cavity that contained a pin and plate electrodes.	AC voltages up to 200 V (rms) @ 2.55 MHz.	1966, 1968 [24,25]
<i>S. cerevisiae</i>	Combination of DEP and deterministic lateral displacement (DLD). Sorting device with a dense array of insulating pillars, and three distinct outlets that allowed for collection of separated cell fractions.	AC voltages up to 600 Vpp at frequencies from 1 Hz to 20 kHz.	2021 [8]
<i>S. cerevisiae</i>	Microchannels with an array of insulating micropillars are used to electroporate cells and induce cell death.	DC voltages up to 900 V [38].	2019 [38]
<i>S. cerevisiae</i> and red cabbage protoplast cells	Microfluidic chamber with top and bottom thin electrodes, live cells were attracted to the electrodes.	AC voltages up to 1.5 Vpp at frequencies from 300 kHz to 15 MHz.	2015 [41]
<i>S. cerevisiae</i>	Microdevice with bipolar electrodes where cell death was induced by increasing the temperature from 30 to 70 °C.	AC voltages up to 4 Vpp at frequencies from 10 kHz to 15 MHz.	2017 [42]
<i>S. cerevisiae</i>	Microdevice with two electrodes positioned forming a funnel configuration.	AC voltages up to 15 Vpp at frequencies from 0.03 MHz to 1 MHz.	2019 [43]
<i>S. cerevisiae</i>	Integrated CMOS DEP-based device with interdigitated electrode arrays.	AC voltages up to 20 Vpp at frequencies from 1 kHz to 20 MHz.	2020, 2021 [44,45]
<i>S. cerevisiae</i>	Integrated multiplexed system that combined acoustic and electric fields. DEP and DLD was induced with bipolar electrodes.	AC voltages up to 10 Vpp at frequencies from 50 Hz to 10 MHz.	2021 [46]
<i>S. cerevisiae</i>	System with micro-parallel cylindrical electrodes.	AC voltages from 1.5 to 14 Vpp at frequencies from 50 kHz to 4 MHz.	2023 [47]
Mammalian cells			
Cell type	Description of the system employed	Electric stimulation	Year and ref.
Chinese hamster ovary	Microdevice with a microfluidic channel with DEP actuation electrodes operated at dual frequencies, this system was referred as a DEP cytometer.	AC voltages up to 3 Vpp employing Frequency 1 = 300 kHz and frequency 2 = 6 to 7 MHz.	2016, 2019 [6,48]
Chinese hamster ovary	Microfluidic device with an array of embedded electrodes at the channel bottom.	AC voltages up to 3 Vpp at frequencies from 50 Hz to 10 MHz.	2018 [49]
Chinese hamster ovary	Microdevice with actuation electrodes that measures the dielectric spectrum of single cells while they flow through a microfluidic channel.	AC voltages up to 3 Vpp at frequencies from 10 kHz to 3 MHz.	2019 [50]
Neural stem and progenitor cells	Device with a large capacity electrode array that enabled the selective enrichment of viable cells.	AC voltages up to 7 Vpp at frequencies from 80 kHz to 1 MHz.	2018 [51]
Rat adipose stem cells	Microsystem with 3-dimensional carbon electrodes equipped with a robotic that “picked and transferred” target cells.	AC voltages up to 20 Vpp at frequencies from 10 kHz to 5 MHz.	2019 [52]
Dental pulp stromal cells	Microsystem with two sets of opposing interdigitated transducers that combined surface acoustic waves (SAW) and DEP effects.	SAW induced electric field at a frequency of 10 MHz.	2017 [53]
U937 monocytes	Microsystem with 3-dimensional carbon electrodes.	AC voltages up to 20 Vpp at frequencies from 50 kHz to 1 MHz.	2017 [55]
Jurkat cells as proxies for T-lymphocytes	Device with micro-fabricated interdigitated electrode array (IDE).	DC voltages of 12 V for electroporation. AC voltages up to 6 Vpp at frequencies from 100 Hz to 5 MHz.	2019 [56]
T-lymphocytes	Microfluidic device with castellated electrodes, a single inlet and two outlets.	AC voltages up to 5 Vpp at frequencies from 150 Hz to 150 MHz.	2022 [57]
Cancer cells			
Cell type	Description of the system employed	Electric stimulation	Year and ref.

Human prostate cancer (PC-3)	Microdevice with 3-dimensional self-assembled ionic liquid electrodes that featured a conductivity gradient to induce pDEP on target cells.	AC voltages up to 400 Vpp at frequencies from 10 kHz to 10 MHz.	2016 [60]
HeLa	Commercially available system 3DEP (DEPtch). The system is a well-based DEO cytometer that employs 20 parallel 3-dimensional electrode arrays.	AC voltages up to 400 Vpp at frequencies from 10 kHz to 20 MHz.	2016 [59]
Non-small cell lung cancer	Microdevice with an array of interdigitated electrode system.	AC voltages up to 10 Vpp at frequencies from 1 kHz to 100 MHz.	2016 [66]
Pancreatic ductal adenocarcinoma	Microdevice where DEP effects were optically generated employing a beam of light that served as a virtual electrode array.	NA – this system was optically stimulated.	2019 [67]
Chemo-resistant circulating pancreatic cancer cells	Microdevice with a DLD array that featured three distinct outlets, one outlet for each of the three DEP response types.	AC voltages from 15 to 45 Vpp at frequencies from 0.1 to 1 MHz.	2024 [68]
Pancreatic cancer	Device for electrorotation with hyperbolic 4-electrode geometry. Data obtained with electrorotation was used to predict DEP spectra.	AC voltages from 15 to 45 Vpp at frequencies from 100 Hz to 100 MHz.	2016 [69]
Human leukemia (K562)	Device that integrated hydrodynamic focusing and DEP. The device featured a narrow constriction located prior interdigitated electrode array.	AC voltages of 3.8 Vpp at frequencies of 1 MHz.	2023 [70]

1101

1102

Table 2. Summary of the reports on electrophoresis-based cell viability assessments and separations.

Bacterial cells			
Cell type	Description of the system employed	Electric stimulation	Year and ref.
<i>L. acidophilus</i> ,	CE system with a 100 μm diameter fused silica capillary, 27 cm long with, with the interrogation window located at 20 cm from the capillary inlet. UV detection was employed.	DC voltages, separation performed at 10 kV.	2001 [112]
<i>B. infantis and cerevisiae</i>	CE system with a 100 μm diameter fused silica capillary, 30 cm long with, with the interrogation window located at 20 cm from the capillary inlet. LIF detection was employed.	DC voltages, separation performed at 15 kV.	2001 [113]
<i>O. oeni</i>	CE system with a 100 μm diameter fused silica capillary, 49.5 cm long with, with the interrogation window located at 38.5 cm from the capillary inlet. Diode array detection was employed.	DC voltages, separation performed at 10 kV.	2017 [116]
<i>E. faecalis, S. aureus, K. pneumoniae, P. aeruginosa and E. coli</i> .	CE system with a 75 μm diameter quartz capillary, 33.5 cm long with, with the interrogation window located at 25 cm from the capillary inlet. Diode array detection was employed.	DC voltages, separation performed at 15 kV.	2022 [117]
MRSA, MSSA and <i>E. coli</i>	CE system with a 75 μm diameter fused silica capillary, 33.5 cm long with, with the interrogation window located at 25 cm from the capillary inlet. Diode array detection was employed.	DC voltages, separation performed at 15 kV.	2022 [118]
<i>E. coli</i>	Insulator-based electrokinetic (iEK) microchannel with a T-cross configuration for EK injection. Channel was 51.53 mm long, 1.1 mm wide and had an array of cylindrical insulating pillars.	DC voltages, separation performed at an overall electric field of 137.4 V/cm.	2024 [119]
<i>E. coli</i>	Insulator-based electrokinetic (iEK) microchannel with a T-cross configuration for EK injection. Channel was 10.2 mm long, 1.0 mm wide and had an array of cylindrical insulating pillars.	DC voltages, separation performed at an overall electric field of 600 V/cm	2004 [120]
Yeast cells			
Cell type	Description of the system employed	Electric stimulation	Year and ref.

<i>S. cerevisiae</i>	CE system with a 100 μm diameter bare fused silica capillary, with the interrogation window located at 21 cm from the capillary inlet. Diode array detection was employed.	DC voltages, separation performed at 10 kV.	2016 [121]
----------------------	---	---	---------------

1103