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Abstract—We consider the problem of hydrogen storage inte-
gration in microgrids to improve the electricity supply resilience.
Nonlinear effects from electrochemical models of electrolyzers
and fuel cells for hydrogen storage are considered, making
scheduling under the nonlinear model intractable and the con-
ventional linear approximation infeasible. A piecewise linear
model approximation with feasibility projection is proposed,
resulting in a computationally efficient model predictive control
for hydrogen storage operation. Several resilience performance
measures, such as loss-of-load, duration-of-outage, and system
cost, are used in performance evaluation. Simulations for the
proposed optimization demonstrated a 13%-48% reduction in
duration-of-outage, a 6.4%-21.7% reduction in system cost, and
a 95% reduction in loss-of-load for critical loads compared to the
scheduling algorithm involving linear model approximation. The
performance gap of the proposed optimization to the benchmark
involving the accurate nonlinear electrochemical model is less
than 1% in most metrics.

Index Terms—Green hydrogen storage, resilience, electrochem-
ical model, piecewise linear approximation, microgrid.

I. INTRODUCTION

The large-scale integration of intermittent renewable re-
sources and the increasing occurrence of severe climate events
pose significant challenges to the resilience of the modern
power grid. It has been widely recognized that microgrids
operating at both grid-connected and islanding modes are
promising ways to reduce customer outages and enhance
overall resilience. To this end, a synergistic operation of local
renewable generation, storage charging/discharging, and prior-
itized scheduling of flexible demand is critical in minimizing
the loss-of-load and outage duration.

This work focuses on the role of green hydrogen stor-
age for microgrid resilience. Compared with electric battery
systems, hydrogen storage is a strong candidate for long-
duration energy storage owing to its high energy density and
negligible self-discharge rate [1]. Surplus renewable can be
harnessed by electrolyzers to produce green hydrogen. With
advances in electrolyzer and fuel cell technologies and the
economy of scale, green hydrogen is poised to be a dual-use
technology critical to the economic and resilient operations
of the decarbonized power and transportation systems. During
events when power from the parent grid is lost or severely
curtailed, the microgrid can convert green hydrogen back into
electricity with fuel cells to enhance the system resilience.
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A. Summary of contribution

We develop novel modeling and optimization techniques to
enhance microgrid resilience, taking into account the nonlinear
electrochemical characteristics of electrolyzers and fuel cells.

First, we propose a resilience-enhancing energy manage-
ment system (EMS) for a microgrid capable of operating at
both grid-connected and islanding modes. The EMS optimizes
the scheduling of prioritized demand, distributed energy re-
sources (eg. roof-top solar), and electrolyzer and fuel cell
operations under several objective functions involving loss-
of-load norms as resilience metrics.

Second, we propose a piecewise linear approximation of
the nonlinear electrochemical hydrogen storage model and
a feasibility projection approach, resulting in a significantly
reduced computation complexity. This makes it possible for
the real-time operations of microgrid and hydrogen storage
with a model predictive control (MPC) implementation.

Third, we present numerical simulation results, demonstrat-
ing performance gain over the assumed conventional linear
hydrogen charging-discharging model. In particular, we show
that the piecewise linear approximation resulted in less than
1% gaps in system cost and total loss-of-load when compared
with the accurate but more expensive nonlinear model. Com-
pared with the state-of-the-art linear model, on the other hand,
the proposed piecewise linear approximation solution reduces
duration-of-outage by 13%-48%, system cost by 6.4%-21.7%,
and the loss-of-load by 95%.

Our simulation also provided insights into the effectiveness
of different loss-of-load penalty functions used in the objective
function. Specifically, we showed that the l1-norm penalty
function worked best in reducing total loss-of-load. The mixed
norm (i.e., a weighted sum of l1 and l∞ norms) was preferred
if both the maximum loss-of-load and the total loss-of-load
were important resilience metrics. And l2-norm penalty out-
performed others in shortening the duration-of-outage.

B. Related work

The hydrogen storage model is critical to this resilience-
enhancing EMS. We summarize three types of hydrogen stor-
age models. Type I establishes a linear hydrogen storage model
with constant charging/discharging efficiency [2], [3]. Such a
linear model relies on the manufacturer’s efficiency specifi-
cations or linear regression for power-hydrogen relationships.
The model simplicity enables efficient real-time decisions in
bulk system operation and control problems [2]. However,
this approach tends to overlook the crucial electrochemical
dynamics of hydrogen storage. Type II approximates the
nonlinear electrochemical models of hydrogen storage with
piecewise linear models [4], [5]. Such a method balances the
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model’s precision and computation burden. Type III directly
employs nonlinear electrochemical models [6]–[9] to conduct
simulations on device-level research for hydrogen storage.
Such a model is too complicated to be included in a system-
level optimization.

Our method belongs to Type II. We conduct piecewise
linearization for power-hydrogen relationships of the hydrogen
storage. Existing models in Type II usually characterize hydro-
gen by volumetric flow rate (m3/s) [4]. But the dependence
of gas volume on operating conditions (eg. temperature, and
pressure)1 poses challenges in monitoring hydrogen gas vol-
ume across the entire operation cycle including electrolyzers,
storage tanks, and fuel cells. To address this, our approach
considers mass flow rate (kg/s) as it offers a consistent mea-
sure for hydrogen, unaffected by variations in the operating
conditions. Additionally, most hydrogen storage approxima-
tion methods [2]–[5] ignore the issue that they may produce
infeasible dispatch signal resulted from approximation errors.
We resolve this issue by proposing a real-time feasibility
projection embedded in MPC.

When conducting optimization for resilience, most research
considers minimizing the total loss-of-load [10], [11], and
other resilience metrics like minimum load the system can
sustain [11], [12], duration-of-outage [12], percentage of cus-
tomers experiencing an outage [11] are sometimes adopted
for system evaluations. In [13], different values of lost load
were used to indicate the priority of load shedding. Here,
we consider customers with different values of lost load and
penalty function designs toward different resilience metrics for
the microgrid scheduling during the contingency period.

II. ELECTROCHEMICAL MODEL OF HYDROGEN STORAGE

In this section, we first describe nonlinear models for
electrolyzers and fuel cells [8], [9], and then introduce the
piecewise linear approximation model for hydrogen storage.

A. Electrochemical model of electorlyzer

An electrolyzer uses electricity (current) to split water into
hydrogen and oxygen. The most widely used type of elec-
trolyzer is the Proton Exchange Membrane (PEM) electrolyzer
owing to its fast response time [6, p.5]. We adopt the model
for the PEM electrolyzer cells developed by Abomazid et
al. in [8], which takes into account the effect of operating
temperature, pressure, and the number of identical cells.

Let t be the index for time intervals. We denote the
electrolyzer current as Iet (A) and the output hydrogen flow rate
as he

t (kg/s).
2 From Faraday’s Law of Electrolysis [6, p.20],

the current and hydrogen flow relationship of the electrolyzer
is linear, given by

he
t = keneIet , (1)

where we use a constant coefficient3 ke, and ne is the number
of electrolyzer cells connected in series. The input current for
the PEM electrolyzer Iet and the output power pet (kW ) have
a nonlinear relationship, given by

pet = Pe(I
e
t n

e). (2)

1Described by the Ideal Gas Law.
2Superscript ‘e’ represents electrolyzer rather than power of a number.
3Detailed expression can be found in [14].

Details about this nonlinear function Pe(·) are given in the
appendix of our online version [14]. Part of the nonlinearity
is caused by the fact that energy is computed by the product
of current and voltage. Another part of the nonlinearity comes
from the fact that the PEM electrolyzer has nonlinear voltage-
current characteristics, resulting from different voltage losses,
e.g. activation losses, ohmic losses, and mass transport losses
within the cell. The electrochemical kinetics within the cell are
described by the Tafel Equation which has logarithmic terms
making the polarization curves nonlinear [6, p.29].

Since Pe(·) is a bijective function, we get the following
equation explaining the relationship between the input power
pet and output hydrogen he

t for the PEM electrolyzer by
combining equation (2) and (1),

he
t := fe(pet ) = ke[Pe]

−1(pet ). (3)

Some papers approximate this nonlinear relationship with
he
t ≈ (ηepet )/H, where H (kJ/kg) describes the energy

content of hydrogen in terms of its higher heating value, and
ηe represents a constant efficiency parameter of a PEM elec-
trolyzer, typically lying in the 70-90% range [6, p.4]. However,
the performance comparison in our simulation demonstrates
the inaccuracy of such a constant efficiency model.

Due to high mass transport losses at high current densities,
there is a limit on the maximum allowable current through the
cell which thus imposes an upper bound on pet given by

0 ≤ pet ≤ p̄et . (4)

B. Electrochemical model of fuel cell

The reverse reaction of using hydrogen to generate power is
performed by a PEM fuel cell. The PEM fuel cell (PEMFC)
technology is widespread commercially [7]. In this study, we
adopted the model from Corrêa et al. which was experimen-
tally validated on a Ballard-Mark-V PEMFC [9].

Similar to the electrolyzer, the linear relationship between
the output current Ift (A) and input hydrogen hf

t (kg/s)
4 is

described by
Ift = kfhf

t /n
f , (5)

where nf represents the number of PEM fuel cells connected
in series and kf is the constant coefficient that converts
chemical input to electrical output.

The voltage-current relationships for a single PEMFC fol-
low similar physics as an electrolyzer except that the reactions
occuring at the anode and cathode are reversed5. This results
in a nonlinear relationship between the fuel cell current and
power output, pft (kW ), given by the function

pft = Pf (I
f
t n

f ). (6)

Details about this nonlinear function Pf (·) formula are ex-
plained in the appendix of our online version [14]. Combining
(5) and (6) the relationship between the input hydrogen hf

t and
output power pft for PEMFC is given by

pft := ff (hf
t ) = Pf (h

f
t k

f ). (7)

4Superscript ‘f ’ represents fuel cell rather than power of a number.
5The detailed electrochemical model can be found in the appendix of our

online version [14].
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Some papers approximate this nonlinear relationship (7) with
pft ≈ ηfhf

t H. The efficiency ηf of a PEMFC typically lies in
the 40-60% [15] range.

The upper bound on the power output of the fuel cell comes
from the limit on the current through the cell, i.e.,

0 ≤ pft ≤ p̄ft . (8)

C. Intertemporal relationship of hydrogen storage

The state of hydrogen (SoH) is the mass of hydrogen stored
in the hydrogen tank, and it evolves with

et + (he
t − hf

t )δ = et+1, (9a)

e ≤ et ≤ e, e0 = 0.1e. (9b)

where et(kg) is the SoH at time t and δ is the time duration.
Expressing SoH in kg allows us to express the intertemporal
relationship of the hydrogen storage as (9a) without having to
track the operating conditions (e.g. pressure and temperature)
of electrolyzers, storage tank, and fuel cells separately. In this
study, we assume the initial SoH to be 10% in (9b).

D. Piecewise linear approximation

We approximate the nonlinear electrochemical hydrogen
storage model (3) and (7) with piecewise linear functions,i.e.,

he
t =

∑K
k=1(a

e
kp

e
t + bek) {pet ∈ Pe

k},

pft =
∑K

k=1(a
f
kh

f
t + bfk) {hf

t ∈ Hf
k}.

(10)

Here, Pe
k and Hf

k represent the k-th pieces for power and
hydrogen flow, respectively. The indicator function means
that {A } = 1 if A is true and {A } = 0 otherwise. The
coefficients of each linear piece k are aek, b

e
k, a

f
k , b

f
k , which are

computed via minimizing the difference between (3),(7), and
(10) for the piecewise linear hydrogen storage model.

III. ENERGY MANAGEMENT FOR MICROGRID RESILIENCE

We first introduce the microgrid EMS with green hydrogen
storage. Then we explain MPC together with the infeasibility
correction method toward grid resilience in real-time.

A. A microgrid model

Fig. 1. System schematics for the microgrid with hydrogen storage.

We adopt a simplified system schematic shown in Fig. 1
for the microgrid energy management to enhance resilience
with hydrogen storage. At time t, there are two electricity
supply sources: the grid energy supply gt and the roof-top
solar rit from household i. Some of this electricity is directly
consumed by the household, denoted by dit, while another
portion is used to produce hydrogen through electrolyzers,
which is subsequently stored in a hydrogen tank. During
contingencies, the hydrogen in the tank can be utilized to
generate supplementary electricity using fuel cells.

B. Resilence-enhancing microgrid EMS

We considered a microgrid containing customers with dif-
ferent values of the lost load (v1, ..., vN ). N is the number
of households. Critical loads like hospitals have higher values
of the lost load. The loss-of-load for customer i at time t
is denoted by lit. The electricity price from the grid supply
is ct ∈ R+. The objective of EMS is to minimize the
penalty induced by the loss-of-load and the cost of purchasing
energy from the grid. We consider three types of loss-of-load
penalties:

• Type 1 (eg. [10]) adopts l1-norm Φi(li) = vi||li||1 to
penalize the total loss-of-load.

• Type 2 (eg. [13]) adopts l2-norm Φi(li) = vi||li||2 to
give more penalty for the large value of loss-of-load.

• Type 3 (we propose) adopts a mixed norm of l1 and l∞
norms Φi(li) = vi||li||1 + vi||li||∞ · T to penalize both
the total loss-of-load and maximum load shed.6

The optimization for microgrid energy management is
adopted in the receding horizon for MPC. In each receding
horizon from the initial time t′ to the end time T , the length
of the time horizon is T := T − t′ + 1. The roof-top solar
generation prediction (rit) and the initial SoH et′ are given.
Define Ω := {pf ,pe,hf ,he, e, g ∈ RT

+,D,L ∈ R
N×T
+ } for

the domain of decision variables, D := (dit), and L := (lit).
The resilience-enhancing microgrid EMS is given by

minimize
Ω

N∑

i=1

Φi(li) +
T∑

t=t′

ctgt, (11a)

subject to ∀t ∈ {t′, ..., T }, ∀i ∈ {1, ..., N}

dit − rit − lit = qit, (11b)

pft − pet + gt = 1
ᵀqt, (11c)

b ≤ Aqt ≤ b, (11d)

lit ≤ dit, gt ≤ ḡt, (11e)

dit ≤ dit ≤ d̄it, (11f)

(4), (8), (9), (10).

For simplicity, we assume each bus only has one customer. In
(11b), qit is the net withdraw power of bus i at time t. We have
qt ∈ RM for a M -bus network. In (11c), 1 represents a vector
of 1’s. This constraint means that the storage and outer grid
power supply balance the total withdrawal of all buses. We
assume the hydrogen storage is connected to the slack bus,
the grid connection point in the network. In (11d), we use
a linearized DistFlow (LinDistFlow) model for the microgrid
network [16]. A ∈ RN×M is the parameter for the LinDist-
Flow constructed by the network impedance, resistance, and
topology information. b, b are composed of network voltage
limits and thermal limits. Details about parameters A, b, b are
in the appendix of [16]. (11e) shows that the customer loss-of-
load lit is constrained by the household demand, and the grid
supply gt is constrained by ḡt, the maximum available grid
supply. In (11f), dit and d̄it are boundary limits on demands.

The piecewise linear approximation (10) of hydrogen stor-
age is adopted in this optimization to substitute nonlinear

6The first term ||li||1 is summing |lit| over the entire time horizon, whereas
||li||∞ takes only the maximum lit over the time horizon. To increase the
contribution of the second term in the mixed norm, we weight it by T .
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equality constraints (3) and (7), which will result in a non-
convex optimization. Thus, we reduce the computation burden
while maintaining an accurate solution. We further formulate
(11) into a mixed integer program (MIP) with linear con-
straints and convex objective (details in [14]).

C. Model predictive control with feasibility projection

The real-time microgrid operation is conducted in a receding
window MPC. In both the Type I linear model and the Type II
piecewise linear model for storage, the optimal solution might
be infeasible under the nonlinear hydrogen storage model. We
propose a feasibility projection after finishing the optimization
in each receding window. Such a feasibility projection can
fix the approximation error in real-time. Here is a high-level
summary for the feasibility projection of hydrogen storage
operation. If infeasible hydrogen dispatch exceeds the max-
imum bounds e, we decrease the electrolyzer output to make
SoH bounded by e; if infeasible SoH is below the minimum
bounds e, we decrease the fuel cell output correspondingly.
After achieving a feasible operation for hydrogen storage, we
rerun the optimization in that receding window by fixing the
hydrogen operation (See detail algorithm in [14]).

IV. NUMERICAL RESULTS

We simulated the microgrid co-operated with hydrogen
storage for resilience improvement. The system schematics is
shown in Fig. 1. During the contingency caused by an ex-
treme event, the microgrid switched from grid-connected mode
to island mode. We conducted simulations comparing three
hydrogen storage models with different loss-of-load penalty
functions explained in Sec. III-B. (i) The linear model adopted
he
t = (ηepet )/H, pft = ηfhf

t H with ηe = 80% and ηf = 50%
for hydrogen storage via receding window MPC. (ii) The
proposed piecewise linear storage model was implemented as
(11) via receding window MPC. (iii) The nonlinear model (3)
and (7) was simulated as an ideal benchmark, which adopted
the perfect forecast and solved the dispatch in one shot. The
appendix of our online version [14] contains parameters of
detailed nonlinear models and additional results.

A. Parameter settings

We simulated a 60-min time horizon with a 40-min island
mode contingency for a hypothetical microgrid7 with 20
households. We considered three categories of customers with
different values of lost load8, i.e., type-1 v1 = $5/kWh, type-2
v2 = $1/kWh, and type-3 v3 = $0.5/kWh. There were 5,7,
and 8 customers in each of these categories. Demand lower
bounds d were set to be 13, 10, and 8 kW respectively for the
three categories. We set ct = $0.1/kW, ∀t for the outer grid
electricity price, the maximum hydrogen storage charge and
discharge rates 150 kW (p̄e) and 70 kW (p̄f ), the storage tank
capacity ranged from 0 to 3 kg (e and e), the higher heating
value of hydrogen 142MJ/kg (H).

To simulate the 40-min island mode contingency, the maxi-
mum grid supply capacity ḡt was 0 kW (i.e., complete outage)
for t ∈ {11, .., 40}, and 1000 kW for other intervals. We used

7The network constraints were set to be unbinding for the microgrid,
equivalent to a single bus system.

8Values of lost load and pricing parameters were set based on [17].

Pecan Street data9 for household consumption and rooftop
solar generation. Solar forecasts rit, took the mean data from
7 PM - 8 PM with Gaussian noise, N (0, 1) kW, added.

B. Performance evaluation

A resilient microgrid anticipates small total loss-of-load
and large minimum system load10 the microgrid can sustain
during the contingency. We define the dominated area for
one marker as its top-left area in Fig. 2 because points in
the dominated area perform worse than the markers for both
resilience metrics.

Fig. 2. Total loss-of-load of the microgrid and the minimum system load sustained.
(Top left of each marker is the dominated area.)

Our observations for these two resilience metrics in Fig. 2
are three-fold. First, the linear model is always dominated
by the piecewise linear model, because the green markers
always fall into the dominated area of the red markers under
different penalty functions. Second, the piecewise linear model
approaches the nonlinear model, the ideal benchmark, from
which the linear model is far away. This is represented by the
length of dash curves in Fig. 2, and we observe that the red
curves are longer than the blue. Third, comparing different
penalty functions, the l1-norm penalty (circular markers) con-
sistently results in the lowest total loss-of-load, attributed to
the direct penalization for this metric; the mixed-norm penalty
(square markers) outperforms in the minimum system load due
to its l∞-norm penalizing extreme load-shedding.

TABLE I
SYSTEM COST

Penalty
Linear Piecewise Linear Nonlinear

Cost % +/- Cost % +/- Cost % +/-

l1-norm $5127 +17% $4415 +0.8% $4377 -
l2-norm $5956 +6.4% $5614 +0.3% $5596 -

Mixed norm $5361 +21.7% $4448 +0.9% $4404 -

System costs, which include the value of lost load and the
cost of grid energy supply (computed by

∑T−1

t=0 (vilit + ctgt))
are shown in Table I. The costs of linear and piecewise linear
storage models are expressed as a percentage increase/decrease
relative to the cost of the ideal nonlinear benchmark in the col-
umn “% +/-”. Two key observations emerge. First, there exists
a less than 1% disparity in cost between the piecewise linear
and nonlinear models. In contrast, the linear model results in
a 6.4%-21.7% increase in cost compared to the benchmark.
Second, the lowest cost is attained with the l1-norm penalty,
given its direct minimization within the objective function.

The metrics pertaining to time, i.e. the duration-of-outage
(DO) as a percentage of the 60-min time horizon and the

9The data is accessible at Pecan St. Project.
10This refers to the minimum of the resilience trapezoid in Fig. 3, If the

maximum loss-of-load increases, then the minimum system load % decreases.
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TABLE II
TIME METRICS FOR TYPE-2 CUSTOMERS

Penalty
Linear Piecewise Linear Nonlinear

DO BTO DO BTO DO BTO

l1-norm 51.67% 11 38.34% 22 38.34% 22
l2-norm 23.34% 21 20% 31 5% 41

Mixed norm 50% 11 26.67% 21 - -

beginning time of outage (BTO), which corresponds to the
time (in min) at which the system load percentage first goes
below 1% in Fig. 3 (second row) are tabulated in Table II11.
Note that for the DO we consider the total time for which
system load percentage is below 1%. From the data presented
in Table II, two key observations emerge. First, as seen for
all the other metrics, the linear model deviates significantly in
performance from the ideal benchmark. On the other hand,
the piecewise linear model closely approximates the ideal
benchmark. Specifically, in comparison to the linear model, the
piecewise linear model reduces the DO by 13%-48%. Second,
when subject to the l2-norm penalty, DO is reduced, and BTO
is delayed, signifying that the outage takes place later in the
60-min time horizon. This pattern is consistent across all three
storage models. We observe a 54.7% reduction in DO for the
linear model, while a rather significant 87% reduction for the
nonlinear model. The BTO is delayed by 41%-91% under the
l2-norm penalty.12

Fig. 3. Top to Bottom: Resilience trapezoids for type-1 customers and type-2 customers.
Left to Right: Resilience trapezoids under different penalty schemes (The diamond and
star markers represent the minimum points).

In Fig. 3, we depict resilience trapezoids with total system
load percentage, which is the load demand excluding loss-of-
load as a percent of the total demand on the Y -axis. The
“resilience trapezoid” [12] provides a visualization of the
system states. The shaded area represents the total loss-of-load
percentage and the markers represent the minimum system
load percentage. Comparing the linear and piecewise linear
models we observe: (i) For type-1 customers (Fig. 3 first row),
the piecewise linear model reduces total loss-of-load by 95%
under the l1 and mixed-norm penalties and 12% under the
l2-norm compared to the linear storage model; (ii) For type-2
customers (Fig. 3 second row), reductions of 6% under the
l2-norm and 2% under the l1-norm are observed.

11‘-’ implies there is no outage in Table II.
12See [14] for more simulations exploring this phenomenon.

V. CONCLUSIONS

To improve electricity supply resilience, we co-optimize
microgrid and hydrogen storage operation with the proposed
piecewise linearization model, capturing the nonlinear electro-
chemical model of electrolyzers and fuel cells. This approach
implemented with a feasibility projection method in model
predictive control accurately approximates the performance
of the ideal nonlinear benchmark model for hydrogen stor-
age. Besides, this paper has limitations in considering only
operations during the contingency. In our future work, we
will explore joint optimization for both pre-contingency and
during-contingency operations.
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