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Abstract

Mosquito vectors of pathogens (e.g., Aedes, Anopheles, and Culex spp. which transmit den-

gue, Zika, chikungunya, West Nile, malaria, and others) are of increasing concern for global

public health. These vectors are geographically shifting under climate and other anthropo-

genic changes. As small-bodied ectotherms, mosquitoes are strongly affected by tempera-

ture, which causes unimodal responses in mosquito life history traits (e.g., biting rate, adult

mortality rate, mosquito development rate, and probability of egg-to-adult survival) that

exhibit upper and lower thermal limits and intermediate thermal optima in laboratory studies.

However, it remains unknown how mosquito thermal responses measured in laboratory

experiments relate to the realized thermal responses of mosquitoes in the field. To address

this gap, we leverage thousands of global mosquito occurrences and geospatial satellite

data at high spatial resolution to construct machine-learning based species distribution mod-

els, from which vector thermal responses are estimated. We apply methods to restrict mod-

els to the relevant mosquito activity season and to conduct ecologically plausible spatial

background sampling centered around ecoregions for comparison to mosquito occurrence

records. We found that thermal minima estimated from laboratory studies were highly corre-

lated with those from the species distributions (r = 0.87). The thermal optima were less

strongly correlated (r = 0.69). For most species, we did not detect thermal maxima from their

observed distributions so were unable to compare to laboratory-based estimates. The

results suggest that laboratory studies have the potential to be highly transportable to pre-

dicting lower thermal limits and thermal optima of mosquitoes in the field. At the same time,

lab-based models likely capture physiological limits on mosquito persistence at high temper-

atures that are not apparent from field-based observational studies but may critically deter-

mine mosquito responses to climate warming. Our results indicate that lab-based and field-

based studies are highly complementary; performing the analyses in concert can help to

more comprehensively understand vector response to climate change.
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Author summary

Mosquito vectors are strongly affected by temperature, and their distributions are likely to
shift under climate change. Lab studies show that mosquito abundance has a unimodal
response to temperature with thermal optima, upper and lower thermal limits. However,
it remains unknown how mosquito laboratory-derived thermal responses relate to the
thermal responses of mosquitoes in nature. We used a global database of field-collected
mosquito occurrences, geospatial environmental covariates, and species distribution mod-
els to estimate the relationship between temperature and probability of mosquito occur-
rence. We found that thermal minima (r = 0.87) and, to a lesser degree, thermal optima (r
= 0.69) estimated from laboratory studies were correlated with those from the species dis-
tribution models. For most species, we did not detect thermal maxima. These results sug-
gest that laboratory studies and field-based machine learning studies are complementary.
Together, they can help to better understand vector response to climate change.

Introduction

Mosquito-borne diseases (e.g., malaria, dengue, Zika, chikungunya, West Nile, yellow fever)
are responsible for a significant worldwide burden of infectious disease and represent a major
threat to global public health [1–5]. As small-bodied ectotherms, mosquito vectors are sensi-
tive to environmental conditions and, in particular, to abiotic factors such as temperature
[6,7]. Climate change is likely to alter the climatic and habitat suitability for and the geographic
distribution of mosquitoes, in turn affecting the distribution of pathogens they transmit [8–
11]. Understanding the limitations that temperature and other ecological conditions place on
mosquito vectors is critically important for predicting how mosquitoes and vector-borne dis-
eases will respond to climate change.

Previous laboratory experiments have measured the relationship between temperature and
mosquito life history traits such as biting rate, adult mortality rate, mosquito development
rate, and probability of egg-to-adult survival for many vector species [12–15]. Together, these
trait thermal performance relationships can provide a mechanistic estimate of equilibrium
mosquito abundance as a function of temperature [6,10,16]. For mosquitoes for which these
relationships have been estimated, the thermal response curves of individual traits follow pre-
dictable patterns: they decline to zero at lower thermal minima and upper thermal maxima
and peak at intermediate thermal optima, as expected from first principles of physiology and
enzyme kinetics [16–18]. In aggregate, modeled population-level mosquito abundance has a
similar unimodal relationship with temperature [6], reflecting the underlying life history traits
[10]. These studies confirm a core tenet of the metabolic theory of ecology, which states that
organismal physiology operates within and is restricted by thermal limits [19]. Temperature-
dependent effects of these life history traits in turn affect transmission of mosquito-borne dis-
ease [6,20–33]. Despite these clear predictions from ectotherm physiology and laboratory ther-
mal performance experiments, it remains unknown to what extent these experimental,
laboratory-based mosquito thermal responses predict the realized thermal responses of mos-
quito populations in the field. In particular: (1) is temperature an important predictor of mos-
quito distributions? If so, (2) are effects of temperature on mosquito occurrence nonlinear?
And if so, (3) do the predicted thermal optima and limits from laboratory experiments align
with thermal optima and limits measured in the field? Altogether, our study aims to identify
how the gold-standard of measuring mosquito thermal tolerance (lab-based thermal
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performance curves) and advancing artificial intelligence efforts can be combined to identify
how mosquitos will respond to global change within their natural environment.

The rapid rise of biodiversity data, machine learning, and open source satellite imagery in
the past decade has enabled new types of approaches necessary to address these questions. Spe-
cies distribution models offer a way to connect data on species occurrences with environmen-
tal covariates to understand how environmental conditions influence the probability of a
species occurring in a given location (i.e., habitat suitability). Due to the challenges of accu-
rately detecting a species’ absence, species distribution modeling typically compares locations
in which a species has previously been identified (occurrences) and an artificially-generated
set of background points (pseudo-absences) which approximate the potentially-habitable and
accessible area for a given species [34–37]. Species distribution models have been used to char-
acterize the ecological niches (i.e., habitat and climatic requirements) of organisms across the
tree of life, including elephants in South Asia [38], lynxes in Canada [39], ants in Australia
[40], and rare plants in California [41]. Beyond predicting geographic ranges, these models
can indicate which environmental covariates are most important for predicting species occur-
rences, and the functional relationships between environmental conditions and species
distributions.

Species distribution models often rely on remotely sensed satellite imagery to provide infor-
mation about biotic, abiotic, and anthropogenic variables. Recent advances in storage and pro-
cessing of remotely-sensed imagery, including publicly-available platforms like Google Earth
Engine [42], have increased the resolution and spatial extent over which these models can fea-
sibly be run. In parallel, the Global Biodiversity Information Facility (GBIF) leverages crowd-
sourced data collection and digitized biodiversity data, where occurrence points of many
species are compiled within a central repository [42]. Moreover, new algorithms and advances
in machine learning have improved the predictive capacity of species distribution models, and
have facilitated the development of more complex models with interactive and nonlinear rela-
tionships between predictors and responses that can potentially capture ecological complexity.
Together, these innovations provide ripe new avenues and abundant data through which to
tackle ecological questions.

Despite the promising advances in species distribution modeling, major limitations also
remain. First and most importantly, species distribution models are correlative and not causal,
so the factors that best capture distributional limits (i.e., discriminate between presences and
pseudo-absence) may not fully capture the true physiological and ecological limits. This may
occur because biologically limiting factors are not easily measured or highly variable across
distributional ranges, because may have high-order and non-linear correlations with other fac-
tors, or because organisms have not yet encountered their limits in a given ecological factor
due to constraints posed by other factors. For example, a temperature limit may not be easily
identifiable from species distribution models because a species is constrained to a habitat type
where such limiting temperatures do not currently occur. Alternatively, species that are
actively expanding their range may not have yet expanded to occupy the entire available suit-
able habitat. This means that species distribution models have limited capacity to extrapolate
future changes in ecological constraints on a changing world, without complementary knowl-
edge from mechanistic approaches such as experiments and mechanistic models. In this work,
we build on the complementary strengths of two distinct approaches—the biological mecha-
nism and interpretability of simple mathematical models based on controlled laboratory
experiments, and the complexity and flexibility of species distribution models that capture
interactive and nonlinear environmental relationships—to ask whether temperature, a funda-
mental biological constraint, has similar inferred effects on the distributional limits of key
mosquito vector species.
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We focus on the vectors of the world’s highest-burden mosquito-borne diseases (malaria,
dengue, chikungunya, Zika, West Nile, and other arboviruses)—Aedes aegypti, Aedes albopic-
tus, Anopheles gambiae, Anopheles stephensi, Culex pipiens, Culex quinquefasciatus, and Culex
tarsalis—each of which has well-characterized thermal performances curves in laboratory set-
tings and a wealth of data on occurrences in the field [6,9,16,25,28,43,44]. Ae. aegypti and Ae.
albopictus are important vectors of dengue, chikungunya, yellow fever, and Zika viruses. An.
gambiae and An. stephensi primarily vector the Plasmodium spp. protozoans that cause
malaria. Cx. pipiens, Cx. quinquefasciatus, and Cx. tarsalis transmit West Nile, St. Louis
encephalitis, Western Equine encephalitis, and other zoonotic viruses, and Cx. quinquefascia-
tus additionally transmits lymphatic filariasis.

While previous mosquito species distribution models have focused on estimating habitat
suitability and predicting occurrence [8,9,44], our goal is different: to specifically dissect the
relationship between temperature and probability of mosquito occurrence, while incorporat-
ing other constraints on occurrence, and to compare this relationship among mosquito species
and with laboratory-based model predictions. For this reason we created new models, rather
than using published ones, that use consistent methods across multiple mosquito species. Fur-
ther, we aimed to construct species distribution models for each focal species using spatially-
and temporally-similar data sources and consistent model assumptions in order to compare
thermal dependence across species.

We make two important methodological advances to ensure that our species distribution
models capture true thermal limits on mosquito occurrence, rather than sampling bias or
restricted geographic ranges that covary with temperature. First, we sample background
pseudo-absence points only from the set of ecoregions in which the focal mosquitoes occurred,
as well as adjacent ecoregions. This ensures that comparator pseudo-absence points are
selected from regions where the focal mosquito species could have realistically been found but
were not, or in other words, zones that are ecologically plausible for an occurrence. Second, we
restrict temperature measurements to an ‘activity season’ during which each mosquito species
is blood-feeding and reproducing, and not in dormancy or torpor. This captures temperature
constraints within a physiologically realistic period, rather than constraints due to overwinter-
ing or drought persistence, which are less likely to be comparable to laboratory-based trait
thermal response experiments. By using global mosquito occurrences from 2000–2019, geos-
patial satellite-derived covariates at high spatial and temporal resolution, bias-reducing meth-
ods described above, and a gradient-boosted classification tree machine learning algorithm
well-suited for prediction tasks, we aim to provide evidence that spans across continents and
decades for the globally important vectors of human malaria and arboviral disease. By leverag-
ing both approaches, we may be able to use their complementary strengths to minimize each
of their limitations. With a greater understanding of thermal constraints on vector species
occurrence, we can improve the ability to accurately project and mitigate the future impacts of
climate change on mosquito-borne disease distributions.

Methods

Overview and study period

We focused on 2000–2019 to isolate recent land-use and climate patterns but provide a long
enough time period to capture mosquitoes’ stable spatial distribution. The environmental
covariates and mosquito occurrences were both extracted for this time period, providing tem-
poral consistency in the analysis [45]. An overview of the methods can be seen below (Fig 1).
Computation was performed in R v4.1.1, Google Earth Engine and the Sherlock computing
cluster at Stanford University.
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Environmental predictors

Environmental covariates were defined a priori in order to avoid data-dredging [11], and were
based on a literature search of previous species distribution models. Variables were informed
by ecological and biological relevance, expectation to play a role in mosquito vector ecology,
and top contributor status in previous mosquito species distribution models [46–49]. Environ-
mental covariates were computed using remotely sensed and reanalysis data, and resampled
using bilinear interpolation to consistent 1 km x 1 km resolution on Google Earth Engine.
This approach using global satellite data avoids the spatial interpolation limitations of com-
mon climatic datasets such as WorldClim, in which data are sourced from ground meteorolog-
ical stations with uneven geographic distribution and nonrepresentative selection.

Fig 1. Methods for comparing mosquito thermal performance derived from species distribution models (a-c) and
laboratory trait-based models (c). The analysis involved two major steps: statistical modeling of mosquito occurrence using
global species occurrences (a) and geospatial data (b) to identify the relationship between temperature and species occurrence
(solid line, c), and comparison with mosquito abundance curves previously derived from laboratory life history traits [16]
(dashed line, c). Temperature-dependent mosquito abundance (M(T); dashed line in c) is modeled as a function of temperature-
dependent eggs laid per female mosquito per day (EFD(T)), probability of egg-to-adult survival (pEA(T)), development rate
from egg to adult (MDR(T) = 1/development time in days), and daily adult mosquito mortality rate (μ(T)). Trait curves adapted
from [16,31]; M(T) equation originally derived from [6]. Thermal minima and optima of the probability of occurrence from the
species distribution models were identified by calculating the temperature at which the empirical derivative was first positive
and stayed positive for the next step (light blue point, c) and the temperature where the empirical derivative was zero and the
probability of occurrence was at its maximum (light orange, c). Sources of data for the stack of covariates are described in
Table B in S1 Text. The background shapefiles are based on from https://ecoregions.appspot.com/ and coastlines are from
https://ec.europa.eu/eurostat/web/gisco.

https://doi.org/10.1371/journal.pntd.0012488.g001
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In order to verify minimal overlap between predictor variables, a pairwise correlation analy-
sis was performed with a Pearson’s correlation coefficient r< |0.8| threshold (Fig A in S1
Text). Annual averages for covariates were computed across the study period, providing the
characteristic climatic conditions across the study’s temporal range.

Temperature predictors. While many species are active year-round (Table 1), numerous
species physiologically undergo photoperiodic diapause in the winter months when ambient
light is low in order to conserve energy for life sustenance [50] or aestivate during the dry sea-
son when no breeding habitat is available [51]. To capture the temperature that mosquitoes
experience while active, temperature covariates were calculated over the activity season.

For the purposes of this study, the photoperiodic activity season was defined as the time
period encompassing days with at least 9 hours of sunlight (Fig B in S1 Text). This definition
of the activity season was chosen based on a variable separate from temperature and on labora-
tory studies that found that either 8 or 9 hours of light can induce diapause in mosquitoes in
the absence of temperature change [52–54]. The photoperiod-based constraint only limited
the activity season in higher latitudes and did not affect lower latitudes (Fig B in S1 Text).
Other tropical mosquito species (e.g., Anopheles gambiae) do not enter photoperiodic dor-
mancy due to their equatorial setting. Rather, these species’ activity seasons are instead con-
strained by lack of precipitation, when insufficient habitat is available for immature
development and survival. Studies have highlighted how Sahelian Anopheles gambiae mosqui-
toes virtually disappear in the dry season then re-establish in the wet season through aestiva-
tion behavior [51,55], and climatological studies in the Democratic Republic of the Congo
characterize the dry season as having less than 50 mm of rain in the past month [56]. Precipita-
tion activity season is therefore defined in our study as the time period in which there is, on
average, at least 50 mm of precipitation in the past 30 days (Fig C in S1 Text).

Predictors capturing thermal central tendency include year round temperature mean, pho-
toperiod activity season temperature mean, and precipitation activity season temperature
mean. Measures of seasonal thermal variation include year round temperature standard devia-
tion, photoperiod activity season temperature standard deviation, and precipitation activity
season temperature standard deviation.

Other environmental predictors. Environmental variables other than temperature
included measures of vegetation cover, such as enhanced vegetation index mean, enhanced
vegetation index standard deviation, and forest cover percentage, to capture land cover that
might affect mosquito habitat suitability (Table B, Fig D in S1 Text). To determine which envi-
ronmental predictors to include, we first looked to the literature to understand which ecologi-
cal variables were consistently utilized in past SDM models and which were found to be the
most important predictors in other papers for our target mosquito species. Among those top

Table 1. Mosquito species by activity season.

Mosquito Species Activity Season (Reference) Raw Number of Occurrences Unique Cell Centroids

Aedes aegypti Year Round [57,58] 37,115 9,299

Aedes albopictus # Photoperiod [52,59] 39,488 8,688

Anopheles gambiae Precipitation [51,55] 13,650 903

Anopheles stephensi Year Round [60] 1,232 358

Culex pipiens Photoperiod [53,54] 98,276 1,949

Culex quinquefasciatus Year Round [61,62] 30,978 2,670

Culex tarsalis Photoperiod [63] 44,496 909

# This species enters winter diapause in some regions such as the Northeast US, but not other regions like the Southeast US.

https://doi.org/10.1371/journal.pntd.0012488.t001
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predictors from previous papers, we selected covariates that could best capture the underlying
vector ecology and biology.

For example, in this process, we identified that human population density is a variable that
may be ecologically important as it represents the fact that many mosquito species are highly
human-dependent with human blood-feeds, inhabit urban or peri-urban niches, and breed in
artificial containers or pools of water in close proximity to human settlements. Indeed, human
population density was the topmost predictor for in models for Ae. aegypti [48], and for Cx.
pipiens [47]. Precipitation of the driest quarter, on the other hand, was thought to capture suit-
able mosquito breeding habitats in the setting of less standing water in the dry season, and has
been found to be an important predictor for An. gambiae [46], for Ae. aegypti and Cx. pipiens
[49]. Enhanced vegetation index describes the quality of vegetation features like leaf area, can-
opy cover, and sugar resources that may provide alternate food sources or resting sites for
many species [47], and both mean and standard deviation of vegetation index have important
predictors for Cx. pipiens in a previous model [47].

Ultimately, human population density and cattle density were included to capture sources
of blood meal, anthropophilic hotspots, and human-seeking behavior. Precipitation of the dri-
est quarter, precipitation of the wettest quarter, and surface water seasonality were included to
capture hydrology-driven characteristics influencing mosquito breeding site availability or
abundance, while wind speed was included to capture potential aerial dispersal limitation of
mosquitoes and relative humidity was included because it affects survival and life history [64].
Precipitation of the driest quarter and precipitation of the wettest quarter were defined as the
set of 3 consecutive months with the least and most precipitation, respectively, across the
20-year study period.

Occurrence and background

Presence occurrences. Focal mosquito species were selected based on global disease bur-
den, availability of life history trait data from published laboratory studies, and abundance of
publicly-accessible species occurrences, resulting in seven species: Ae. aegypti, Ae. albopictus,
An. gambiae, An. stephensi, Cx. pipiens, Cx. quinquefasciatus, and Cx. tarsalis. Collectively,
these seven species span nearly all habitable continents (Figs E-K in S1 Text). Species occur-
rence records for each species were obtained from the Global Biodiversity Information Facility
(GBIF) for the years 2000–2019. Supplemental occurrence points were obtained from two
papers for An. stephensi [65] and An. gambiae [66], which had low sample sizes from the GBIF
database. Occurrences explicitly tagged in Africa were discarded from the supplemental An.
stephensi data, as these are part of an ongoing species invasion outside of the native range of
the species in South Asia [65], and species distributions models have limitations in detecting
environmental suitability for invasive species as they do not yet occupy their environmental
niche and are not yet in equilibrium with their environment [67].

Raw datasets were cleaned to remove occurrences with unknown basis of record and those
obtained through fossil records, due to the temporal and geographic uncertainty between
when and where the organism actually existed during its lifetime and its location of fossiliza-
tion. Uncertainty in the latitude and longitude coordinates of occurrence points were taken
into account through a two-step process. First, points with a coordinate uncertainty less than
1000 meters—the diameter of our environmental covariate grid cell size—and those points
with missing coordinate uncertainty were selected. Of the points with missing coordinate
uncertainty, we retain only those points with a latitude and a longitude with at least two signifi-
cant decimal points (i.e., each hundredth corresponds to approximately 1.11 km). The occur-
rence data were then restricted to points that reside on landmasses and not in the ocean, those
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with non-missing values for all covariates, and, when relevant, and those that occurred in areas
where the species’ activity season length was greater than 0 (i.e., when the precipitation was
above a certain value in the grid cell, i.e., precipitation activity season, or when there was a cer-
tain amount of daylight hours in the grid cell, i.e., photoperiod activity season) (Figs B-C in
S1 Text). We filtered the occurrences to the cell centroids of the unique 1 km x 1 km cells in
which occurrence points were obtained, which serves to spatially thin the occurrence points
and reduce the effect of biased sampling [68] (Table 1; Table A in S1 Text).

Pseudo-absence background sampling. Species distribution models work by compar-
ing the environmental covariates that best predict locations with species occurrences to
those in which the species does not occur, to understand the environmental conditions that
constrain a species’ distribution. As the majority of information is on species occurrences
rather than species absences, methods for species distribution modeling have developed to
sample pseudo-absences: points that represent the area in which a species could have been
sampled yet was not reported. In order for these sampled points to serve as plausible points
where the species of interest was not found, they should be within the species’ accessible
area, or the region that is reasonably reachable by the species through dispersion or migra-
tion over the relevant time period [34,36,37]. Choosing pseudo-absences that occur within
the same ecoregions, i.e., geographic regions that possess similar species and community
assemblages, as occurrences provides a way to geographically restrict possible background
points. Moreover, these points should be chosen in a way that takes into account sampling
bias and collection effort.

To sample background points, we first created a bias mask to probability-weight the sam-
pling. 72 million occurrences from Class Insecta, filtered to the same criteria as mosquito
occurrence points (i.e., <1000m coordinate uncertainty or at least two significant decimal
points of latitude and longitude, 2000–2019 study period, no fossil record or literature points),
were extracted from GBIF. In order to capture the frequency of GBIF sampling conducted in a
specific geographic location, the number of insects were tallied for each 1 km x 1 km grid cell,
and these counts were converted into proportions of all insects. This proportion was regarded
as the probability weight for that given grid cell. To provide adequate sample size while avoid-
ing a skew of the overall sample towards disproportionately favoring pseudo-absences over
occurrences, we selected a number of unique background cell centroids equal to twice the
number of unique occurrence centroids [69]. Background cells were sampled at random with-
out replacement and weighted by the bias mask from the geographical region that was
bounded by the focal species’ ecoregions of occurrence. In addition, we include adjacent ecore-
gions in the background sampling space to promote contiguity in the potential ecological
spaces from which pseudo-absences can be drawn and to better encapsulate the broad range of
environmental covariates that a given species may experience in nature. Ecoregions were
defined as RESOLVE Ecoregions that intersected with a given species’ occurrence centroids,
buffered with a 200 km radius buffer that approximated an upper end of the wind-assisted geo-
graphic mobility range of a mosquito [70,71]. By buffering occurrences and then choosing the
set of ecoregions and adjacent ecoregions in which these buffered points lie, we approximate
what is known in ecological theory as the ‘accessible area,’ described above [34,36,37]. Because
our focal questions centered on species’ thermal breadth, we wanted to ensure that as broad a
temperature range as was reasonable was included in the background sampling. Specifically,
we checked whether our background sampling scheme provided a temperature distribution at
least as wide as that of the occurrences—a consideration important to ensure that the statistical
model can ascertain thermal minima or maxima.

Due to the unequal historically unequal sampling effort for Insecta species in GBIF, the dis-
tribution of occurrence and background points was weighted towards North America and
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Europe particularly for Ae. aegypti and Ae. albopictus (Figs E-F in S1 Text). If there are regional
differences in the thermal minima and optima between continents, the estimates will be over-
weighted towards North America and Europe. To address this potential bias, we additionally
fit species distribution models for these two species dropping the occurrence and background
points for North America and Europe and re-identifying thermal minima and optima to
understand whether our estimates would change with different geographic representation in
our dataset.

Species distribution modeling

XGBoost model fitting. Raster values for each occurrence and background centroid were
extracted from the stack of covariates for a given species. The data was partitioned into a train-
ing and evaluation set, where 80% of the data was randomly selected for the training set and
20% was randomly selected for the validation set. We used stratified sampling so that there
was an equal proportion of presence points in each set. We used gradient boosted classification
trees to model the training data, as this class of algorithms fits flexible and nonlinear relation-
ships (including thresholds) between environmental conditions and probability of species
occurrence, identifies interactions between covariates due to the structure of the trees, and has
been successfully used in other species distribution models [9,43,72]. Gradient boosted trees
are a type of supervised learning algorithm that iteratively fits trees, each time fitting to the
residual errors from the previous predictions, effectively ensembling weaker learners to accu-
rately predict a target variable [73]. We fit models using eXtreme Gradient Boosting
(XGBoost)[74] in R. Among the strengths of the XGBoost algorithm are its rapid computa-
tional speed when dealing with large-scale data, ability to handle class-imbalanced training
sets (i.e., the number of observations are not equal across each level of the outcome variable),
and ability to tolerate highly-collinear predictor variables. To quantify variation around model
performance and output, we fit the model with 20 random train and validation splits.

Bayesian hyperparameter optimization. Gradient boosted classification trees rely on
hyperparameters that control how each tree is fit and how individual trees’ estimates are com-
bined. Bayesian optimization was conducted to tune key hyperparameters initialized with a
range of user-inputted values, including learning rate (range: 0.0001 to 0.3), maximum tree
depth (range: 2 to 50), minimum child weight (range: 1 to 50), subsample of observations used
in each tree (range: 0.25 to 1), subsample of columns to use in each tree (range: 0.5 to 1), and
minimum split loss (range: 0 to 100) [74,75]. For each round of the Bayesian optimization (up
to a maximum of 24 rounds), we use 5-fold cross validation where we split the training data
into 5 disjoint sets, and train the model on each combination of 4 folds while predicting out-
of-sample for the fifth fold. We use the average out-of-sample log loss averaged over all 5 folds
to identify the optimal number of boosting rounds (up to 10,000) for each iteration of the
Bayesian optimization. After all iterations of the Bayesian optimization, we select the set of
hyperparameters with the lowest out-of-sample log loss and train a final model using all 5 folds
—representing all of the training data, which is 80% of the full data set.

Interpreting the model. Receiver operating characteristic (ROC) curves and their area
under the curve (AUC) values, which graphically and numerically illustrate the discrimination
ability of a binary classifier, were computed for model predictions on both the training and
evaluation sets. We were particularly interested in two aspects of the resulting models: the
inferred relationship between the probability of occurrence and temperature, and the relative
importance of temperature in predicting a species distribution, compared to other environ-
mental covariates. To understand the relationship between temperature and occurrence, we
plotted univariate partial dependence plots for temperature mean and temperature standard
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deviation. Depending on the species, we use annual temperature, temperature during the pho-
toperiod-dictated activity season, or temperature during the precipitation-dictated activity sea-
son. The partial dependence plots depict the marginal effect of temperature on the predicted
value of the model and, at each temperature, is calculated as the mean predicted value (in this
case, probability of species occurrence) across all combinations of other covariates observed in
the dataset [76]. To assess the importance of temperature in relation to other environmental
variables, measured in gain (i.e., the increase in accuracy that a given variable provides when a
regression tree branch is split upon that variable) [75], we computed variable importance
scores for the full set of predictors and compared them with temperature. We computed vari-
able importance and PDPs for each bootstrapped iterations described above.

Mosquito abundance curves from the lab

Physiological life history trait thermal performance curves were collected from published liter-
ature [16,29,31]. Briefly, in previously published work asymmetric responses like mosquito
development rate (MDR) were modeled using a Briere function, and both concave-down sym-
metric responses like eggs per female per day (EFD) and probability of egg-to-adult survival
(pEA) as well as concave-up symmetric responses like mortality rate (μ) were modeled using
quadratic functions. 5,000 posterior draws were selected from each distribution, and mosquito
abundance M(T) was calculated using Eq (1), which was originally derived in [6], adapted
from [10]. Median and 95% credible intervals were computed for each species’ M(T) and criti-
cal thermal limits.

M T! " # EFD!T" pEA !T"MDR!T"
μ!T"2

!1"

Comparison of thermal relationships from XGBoost versus lab-based
models of mosquito abundance

We compared thermal minima and optima of the partial dependence plots from the XGBoost
model to the mosquito abundance M(T) curves from the lab trait trajectories. For species dis-
tribution models, thermal minima were identified as the temperature at which the partial
dependence plot began increasing, which we operationalized as the first time the empirical
derivative was positive and stayed positive for the next step in temperature as well (Fig 1C).
Thermal minima could also correspond to the threshold temperature at which species proba-
bility of occurrence is increasing most rapidly, so we supplementarily identify thermal minima
as the temperature where the empirical derivative is largest (Fig N in S1 Text). Thermal optima
were identified as the point where the empirical derivative was zero and the partial dependence
plot was at its maximum (Fig 1C). We did not identify thermal maxima, as few species had par-
tial dependence plots that clearly declined after the thermal optima and then reached a lower
plateau that was within the range of observed temperatures. For the mosquito abundance
M(T) curves derived from laboratory studies, to determine the thermal minima, we identified
the temperature at which M(T) exceeded zero for each M(T) curve calculated from posterior
draws and then calculated the median, 2.5th and 97.5th percentiles to produce a central esti-
mate and confidence interval for thermal minima. For thermal optima, we identified the tem-
perature where M(T) was highest for each curve, and similarly calculated median and 95%
confidence intervals. We calculate the Pearson correlation between the median species distri-
bution model-based thermal minima and the median lab-based thermal minima, and repeat
for thermal optima to quantify how well the two methods compare. In particular, because
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temperature varies substantially in the field and M(T) curves are based on constant tempera-
ture measurements in the lab, we expect nonlinear averaging to affect the exact thermal limits
observed in the field.

Results

The species distribution models predicted the occurrence of all focal species with high accu-
racy: discrimination across both training (in-sample) and evaluation (out-of-sample) datasets
produced an area under the receiver operating curve (AUC) above 0.9, where 1 indicates per-
fect discrimination of presence and absence and 0.5 is no better than a coin toss (Fig 2;
Table C in S1 Text; Fig L in S1 Text). Of the focal species, Cx. pipiens recorded the lowest out-
of-sample evaluation AUC of 0.935. The fact that the AUCs in the evaluation set were compa-
rable to the training set suggests that the models are learning general patterns, differentiating
between training and evaluation sets, and not overfitting to the training data.

Measures of temperature, i.e., either annual or activity season-limited (as appropriate) tem-
perature mean and temperature standard deviation, were consistently important predictors of

Fig 2. Temperature mean (red) and standard deviation (blue) were important predictors of mosquito occurrence for all focal species. Variable
importance, measured in gain, is shown for each predictor variable by species. Temperature mean variables, including year-round temperature annual mean,
photoperiod activity season temperature mean, and precipitation activity season temperature mean, are colored in red; only the most biologically appropriate
temperature mean variable was included for each species (Table 1). Likewise, temperature standard deviation variables (Table 1) are colored in blue. Other
predictors (black bars) include cattle density, enhanced vegetation index mean, enhanced vegetation index standard deviation, forest cover percentage, human
population density, precipitation of the driest quarter, precipitation of the wettest quarter, relative humidity, surface water seasonality, and wind speed. Points
represent the median importance across the 20 bootstrapped model iterations and lines represent the range over all model iterations. Test and training AUC
values are similarly medians and full ranges over the model iterations.

https://doi.org/10.1371/journal.pntd.0012488.g002
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mosquito occurrence, as measured by gain (Fig 2). For all species, mean temperature was
among the top seven predictors. For Ae. aegypti, Ae. albopictus, and Cx. quinquefasciatus tem-
perature mean was the top predictor and temperature standard deviation was second or third
(Fig 2). An. gambiae, Cx. pipiens, and Cx. tarsalis had temperature standard deviation as a
more important predictor than temperature mean (Fig 2).

Beyond temperature, different predictors were important for different mosquito species.
Based on mean gain across the 20 bootstrapped iterations, forest cover was the most important
predictor for Cx. tarsalis and second most important for An. gambiae, and relative humidity
was most important for An. stephensi (Fig 2). Precipitation variables were among the top-5
predictor variables for all species. Precipitation of the wettest quarter was among the top-5 pre-
dictors for Ae. aegypti, Ae. albopictus and Cx. pipiens (Fig 2). Precipitation of the driest quarter
was among the top-5 predictors for An. gambiae and Cx. quinquefasciatus, and both precipita-
tion variables were among the top-5 predictors for An. stephensi and Cx. tarsalis (Fig 2). Sur-
face water seasonality, however, was the least important predictor variable for all species
distribution models (Fig 2).

While mechanistic relationships between temperature and mosquito abundance, based on
laboratory-derived M(T), were unimodal and hump-shaped in form, the temperature relation-
ships inferred from the statistical models (univariate XGBoost partial dependence plots; PDPs)
were typically nonlinear with steep thresholds and plateaus (Fig 3). Both the mechanistic and
statistical models showed steep increases as temperatures exceeded lower thermal limits
(Fig 3). By contrast, while M(T) consistently responded unimodally to temperature, relation-
ships from XGBoost PDPs mostly only showed lower thermal limits and thermal optima, but
not upper limits (Fig 3). The difference in functional forms between M(T) and XGBoost PDPs
is consistent with the fact that they each describe distinct processes. The mechanistic model,
M(T), describes a relationship between temperature and mosquito abundance that continu-
ously varies with temperature and the underlying laboratory-measured traits. By contrast, the
PDPs from XGBoost capture the relationship between temperature and mosquito occurrence
probability, which we expect to rise and fall sharply and reach a plateau at intermediate, suit-
able temperatures. The M(T) curves for all species showed clear thermal minima, optima, and
maxima because the underlying laboratory experiments captured the full range of tempera-
tures at which mosquito performance is optimized and at which it declines to zero.

Given that both the laboratory-based mechanistic approach (M(T)) and the statistical
approach (XGBoost PDPs) predicted thermal minima and optima for each species, we asked
whether the results of the two approaches were concordant. The estimates of thermal minima
between M(T) and PDP were highly correlated across species (r = 0.869; Fig 4; Figs M-N in
S1 Text), suggesting that M(T) captures key species-specific temperature constraints on occur-
rence in the field. Mosquito species of the Aedes genus exhibited thermal minima that were
approximately 5˚C cooler in the field than predicted in the laboratory (Fig 4; Fig M in
S1 Text). Cx. tarsalis and Cx. pipiens consistently among the two lowest thermal minima, and
An. gambiae and An. stephensi had the two highest thermal minimum when viewed across
M(T) and PDP (Fig 4 and Figs M-N in S1 Text). The alternative identification of thermal
minima as the threshold temperature with the greatest increase in species occurrence resulted
in a similarly high correlation between M(T) and PDP-based thermal minima (r = 0.871), but
resulted in thermal minima approximately 2–5˚C warmer in the field than predicted by the
laboratory for Anopheles mosquitoes (Fig N in S1 Text). Thermal optima were similar,
although more weakly correlated, between M(T) and PDP estimates (r = 0.687), supporting, at
least in part, the conclusion that field based observations capture key components of lab-based
non-linear response to temperature. However, the relationship appeared to deviate the most
for temperate species Cx. pipiens and Cx. taralis, for which thermal optima were 9.4˚C and
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11.5˚C lower, respectively, in the field versus laboratory (Fig 4; Table D in S1 Text; Figs M-N
in S1 Text). We could not compare thermal maxima because our XGBoost models did not
identify thermal maxima for any focal species.

When fitting models for Ae. aegypti and Ae. albopictus without North America (Figs O-P in
S1 Text) and Europe (Figs Q-R in S1 Text) occurrence and background points, we find little
difference in detected thermal minima and optima or their correlations to the mechanistic lab-
based estimates (Fig S in S1 Text), suggesting there are likely minimal differences in critical
thermal values between geographic regions.

Discussion

For all seven major vectors of human disease we investigated, species distribution models cap-
tured occurrence probability with high discrimination and accuracy and temperature was an
important predictor (Fig 2; Fig L in S1 Text). In particular, temperature mean and standard
deviation were highly important predictors across all focal species (Fig 2). This finding echoes
the importance of temperature as a predictor in past models, although many such models
define temperature differently from our study (e.g., temperature suitability, temperature of the

Fig 3. Comparing mosquito temperature responses from mechanistic laboratory-based mosquito abundance models and XGBoost statistical models.
Mosquito abundance for each species is estimated as the median M(T) curve with a shaded 95% credible interval band (blue lines and shaded ribbons).
XGBoost covariate responses are univariate partial dependence plots (PDPs) for annual mean temperature, where mean temperature was bounded by
photoperiod or precipitation for a subset of species, that show the marginal effects of temperature on model prediction (black lines). Each black line for the
PDPs represents one of the 20 model iterations. Both M(T) and PDPSs are scaled to range from 0 to 1. Grey and red density plots in the bottom of each panel
show the distribution of observed annual temperatures for background and occurrence points, respectively.

https://doi.org/10.1371/journal.pntd.0012488.g003
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hottest quarter, temperature of the coldest month) [43,48,77,78]. Four species (Ae. aegypti, Ae.
albopictus, Cx. pipiens, and Cx. quinquefasciatus) had either temperature mean or standard
deviation as their most important predictor (Fig 2). Nonlinear relationships with temperature
from ‘bottom-up’ models of mosquito abundance from lab life-history traits were partially
recapitulated in the ‘top-down’ statistical models of global-scale occurrence data, particularly
at the lower end of the temperature range, consistent with previous work on other mosquito
species [48]. In general, thermal minima and optima were highly comparable across species
between the trait-based and statistical approaches (Fig 4). We find that the thermal minima
are more strongly correlated than the thermal optima, consistent with the fact that the species
distribution models aim to identify the conditions for species occurrence and the partial
dependence plots show steep increases from low temperature not conducive to species occur-
rences then plateau. By contrast, PDPs show little change in occurrence probability with fur-
ther changes in temperature. In contrast to the thermal minima and optima, thermal maxima
were not comparable: XGBoost did not consistently detect thermal maxima for occurrence in
the field, despite laboratory evidence that mosquito life history traits decline precipitously at
high temperatures. This suggests that thermal constraints on species may not be identifiable
using observational approaches, such as species distribution models, alone.

Thermal physiology theory and experiments have established that organismal performance
is constrained to an operative range of temperatures at which key functions can occur and
populations can stably persist [79–83]. Yet, realized species distributions may not clearly reflect
these thermal constraints if other factors are also important for constraining distributions,
including rainfall, seasonality, biotic interactions, habitat, movement rates, and the range of
temperatures that occur within accessible regions [45,84–90]. For example, aridity may con-
strain mosquito distributions beyond direct high-temperature constraints. Likewise, average
temperatures across activity seasons may not reach levels high enough to exclude mosquito
persistence [7,79,91–93]. Alternatively, more extreme temperature variation at low or high

Fig 4. Mechanistic models (M(T); x-axis) captured species’ thermal minima observed in the field (XGBoost PDPs; y-axis). The dashed diagonal
line is the 1:1 line, and mosquito species are colored by genus. The Pearson correlation (r) was 0.869 for the PDP versus M(T) relationship for average
Tmin and 0.687 for the PDP versus M(T) relationship for average Topt. For mechanistic estimates of Tmin and Topt, points indicate medians and
horizontal line ranges are the 95% CI from the 5000 posterior samples used. For statistical estimates of Tmin and Topt, points indicate medians and
vertical lines are the full minimum to maximum range over the 20 bootstrapped model iterations.

https://doi.org/10.1371/journal.pntd.0012488.g004
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means can limit organismal performance, and even moderate variation can reduce perfor-
mance near optimal temperatures (i.e., where M(T) curves are concave-down; Fig 3). The
impact of temperature variation could explain the observation that for species with cooler ther-
mal minima and optima, estimates at constant temperatures in the lab were up to 10˚C
warmer than estimates in the field (Fig 4).

This highlights the importance of climate change projections that consider both field-based
estimates of thermal and other constraints on species distributions and more mechanistic esti-
mates, particularly for thermal optima and maxima, which may be difficult to observe in the
field under current and historical conditions [94]. Simply projecting species distribution mod-
els like those derived here under future climate change scenarios is likely to overlook the
potential for warming temperatures to exceed thermal optima and limits for species persis-
tence. Moreover, it is critical for studies of vector-borne disease transmission under future cli-
mate change to account for the gap between potential and realized future vector thermal
niches, as vectors may not immediately track geographic shifts in climate suitability.
Approaches that combine mechanistic thermal performance information (e.g., from labora-
tory studies and life history models) with statistical inference based on current distributions
are most likely to accurately capture current and future environmental constraints on species
persistence, including for noxious species like disease vectors.

This study incorporates several methodological innovations that advance upon previously
published species distribution modeling methods for mosquitoes, particularly focused on esti-
mating temperature bounds, with applications for climate change models. First, we computed
covariates aligned to the time of collection of our mosquito occurrence data, in contrast to
numerous studies that use climatologies estimated from the years preceding the occurrence
point sampling time frame [9,43,47,49,95,96]. Second, given our explicit goal of estimating
thermal limits, we restricted our measures of average temperature to the relevant activity sea-
son of each focal species [97], which ensures that we are using the temperature range of the
mosquito in the field when that species is active and non-dormant (and therefore comparable
to laboratory experimental measurements). Third, we selected background points from the
ecoregions in which a species occurs plus a 200 km buffer, as well as adjacent ecoregions, to
ensure that we are estimating temperature limitations based on regions that are plausible
based on habitat suitability. This method, grounded in ecological theory [34,37,98] and similar
to background limitation methods for non-mosquito species in the literature [41,99–102],
functionally decouples habitat and temperature. This is largely a new advancement for mos-
quito species distribution modeling. Finally, while most mosquito species distribution model-
ing studies focus on identifying predictors of one or two mosquito species, here we explicitly
aim to infer thermal limits and optima and to compare these to mechanistic estimates [77]
among multiple medically-relevant mosquito vector species [43,78,103–105].

However, our study also has several limitations. First, the lack of thermal breadth in the
background sampling may limit our ability to accurately infer thermal maxima. Mosquito spe-
cies that occur in hotter climates, such as Ae. aegypti, An. stephensi, and An. gambiae, lack a
sufficient amount of ecoregion-matched background points that have comparably high, or
higher, temperatures than the occurrence points, making it difficult to estimate the tempera-
ture range that would be hot enough to prevent occurrence (i.e., identify thermal maxima)
[106] and some species may not currently be constrained by their physiological upper thermal
limits. Second, because our goal was to create accurate but comparable species distribution
models for seven mosquito species across their global extent, we primarily relied on publicly
available GBIF occurrence points (see Methods for data filtering criteria), which may not cap-
ture the full extent of each species that other sources such as local vector surveillance data
might capture. Third, since we were focused on comparing laboratory-derived thermal
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performance curves to field occurrence, we used temperatures measured during the activity
season as predictors in XGBoost models for four out of seven species. Despite the importance
of activity season temperature, other climatic variables such as winter low temperatures or
dry-season aridity may be equally or more important limitations on species distributions.
Fourth, the species distribution modeling framework assumes that species occupy their full cli-
matic niche, but this may not be the case for species that are actively expanding their ranges.
Finally, our analysis is based on a core assumption that using the 2000–2019 average of covari-
ates can accurately characterize the average ecological or habitat preferences of a mosquito
reported in a specific date and location.

Conclusions

As climate change shifts the geographic and seasonal distribution of environmental conditions,
it is critical to understand how temperature limits species ranges. Temperature in particular
affects vector-borne diseases because of its effects on vector biting rate, parasite incubation
rate, survival, and other life history traits. However, the thermal constraints on vector occur-
rence are less well understood, and particularly how they vary among important vector species.
Here, we showed that temperature mean and variation during the activity season provide
important constraints on the ranges of seven important mosquito vectors, and that thermal
minima and, to a lesser degree, thermal optima observed in the field are closely correlated to
those measured in laboratory experimental studies. This finding suggests that species distribu-
tion models can, to some extent, contribute to understanding the thermal biology of organisms
that cannot be studied in a laboratory setting. Importantly, statistical species distribution mod-
els derived from field observations did not clearly identify upper thermal constraints even
though these have been directly demonstrated experimentally in the laboratory. Climate
change is likely to drive many regions past the currently observed range of temperatures. This
highlights the critical need for mechanistic, trait-based studies that capture temperature ranges
at which mosquito abundance and occurrence begin to decline [6,106,107] and, at the very
least, emphasizes that extrapolations from statistical models based on current species distribu-
tions should be validated using physiological models [35,107,108].

Supporting information

S1 Text. Table A: Filtered number of occurrences by species after each data cleaning step.
Table B: Environmental covariates and respective data sources, accessed from Google
Earth Engine. Table C: Model performance. Median and range of AUC (min-max) across
bootstrapping iterations for both in-sample and out-of-sample performance. Table D:
Thermal minima, optima, and maxima with rank ordering across species for the mecha-
nistic trait based model (M(T)) versus the species distribution model (partial dependence
plots (PDPs)). Fig A: Pairwise correlation plot of environmental predictors used in the
model. A pairwise correlation analysis was run for each set of two covariates, and any variables
that had a correlation that exceeded the R < |0.8| threshold were reassessed and modified, or
dropped from the analysis entirely. CD is cattle density; EVIM is enhanced vegetation index
mean; EVISD is enhanced vegetation index standard deviation; FC is forest cover percentage;
HPD is human population density; PDQ is precipitation of the driest quarter; PhotoASTM is
photoperiod activity season temperature annual mean; PhotoASTSD is photoperiod activity
season temperature standard deviation; PrecipASTM is precipitation activity season tempera-
ture annual mean; PrecipASTSD is precipitation activity season temperature standard devia-
tion; PWQ is precipitation of the wettest quarter; SW is surface water seasonality; TAM is
year-round temperature annual mean; TASD is year-round temperature annual standard
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deviation; ARH is average relative humidity; and WS is wind speed. There are NAs among
temperature variables as there was only one set included in each model (e.g., the Ae. albopictus
model included PhotoASTM and PhotoASTD but not TAM, TASD, PrecipASTM, or Preci-
pASTD). Fig B: Photoperiod activity season. Map of the world shaded in with the length of
the photoperiod activity season. Fig C: Precipitation activity season. Map of Africa shaded in
with the length of the precipitation activity season in days. Source for precipitation data is
described in S2 Table. Fig D: Raster plots of all environmental covariates used in the model.
Geographic and spatial distribution of every covariate used in the model, including cattle den-
sity (CD), enhanced vegetation index mean (EVIM), enhanced vegetation index standard devi-
ation (EVISD), forest cover percentage (FC), human population density (HPD), precipitation
of the driest quarter (PDQ), photoperiod activity season temperature mean (PhotoASTM),
photoperiod activity season temperature standard deviation (PhotoASTSD), precipitation
activity season temperature mean (PrecipASTM), precipitation activity season temperature
standard deviation (PrecipASTSD), precipitation of the wettest quarter (PWQ), surface water
seasonality (SW), year-round temperature annual mean (TAM), year-round temperature
annual standard deviation (TASD), average relative humidity (ARH), and wind speed (WS).
PrecipASTM and PrecipASTSD are only depicted over Africa as this is the region the data was
used (An. gambiae’s data points are restricted to Africa). Fig E: Species occurrence and
pseudo-absence background map for Aedes aegypti. Species occurrence centroids (red) and
associated pseudo-absence background centroids (black) are plotted, superimposed on the
respective set of ecoregions in which their buffered occurrence centroids fall and adjacent
ecoregions (gray). The background shapefiles are based on from https://ecoregions.appspot.
com/ and coastlines are from https://ec.europa.eu/eurostat/web/gisco. Fig F: Species occur-
rence and pseudo-absence background maps for Aedes albopictus. Species occurrence cen-
troids (red) and associated pseudo-absence background centroids (black) are plotted,
superimposed on the respective set of ecoregions in which their buffered occurrence centroids
fall and adjacent ecoregions (gray). The background shapefiles are based on from https://
ecoregions.appspot.com/ and coastlines are from https://ec.europa.eu/eurostat/web/gisco. Fig
G: Species occurrence and pseudo-absence background maps for Anopheles stephensi. Sp
ecies occurrence centroids (red) and associated pseudo-absence background centroids (black)
are plotted, superimposed on the respective set of ecoregions in which their buffered occur-
rence centroids fall and adjacent ecoregions (gray). The background shapefiles are based on
from https://ecoregions.appspot.com/ and coastlines are from https://ec.europa.eu/eurostat/
web/gisco. Fig H: Species occurrence and pseudo-absence background maps for Anopheles
gambiae. Species occurrence centroids (red) and associated pseudo-absence background cen-
troids (black) are plotted, superimposed on the respective set of ecoregions in which their buff-
ered occurrence centroids fall and adjacent ecoregions (gray). The background shapefiles are
based on from https://ecoregions.appspot.com/ and coastlines are from https://ec.europa.eu/
eurostat/web/gisco. Fig I: Species occurrence and pseudo-absence background maps for
Culex tarsalis. Species occurrence centroids (red) and associated pseudo-absence background
centroids (black) are plotted, superimposed on the respective set of ecoregions in which their
buffered occurrence centroids fall and adjacent ecoregions (gray). The background shapefiles
are based on from https://ecoregions.appspot.com/ and coastlines are from https://ec.europa.
eu/eurostat/web/gisco. Fig J: Species occurrence and pseudo-absence background maps for
Culex quinquefasciatus. Species occurrence centroids (red) and associated pseudo-absence
background centroids (black) are plotted, superimposed on the respective set of ecoregions in
which their buffered occurrence centroids fall and adjacent ecoregions (gray). The background
shapefiles are based on from https://ecoregions.appspot.com/ and coastlines are from https://
ec.europa.eu/eurostat/web/gisco. Fig K: Species occurrence and pseudo-absence background
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maps for Culex pipiens. Species occurrence centroids (red) and associated pseudo-absence
background centroids (black) are plotted, superimposed on the respective set of ecoregions in
which their buffered occurrence centroids fall and adjacent ecoregions (gray). The background
shapefiles are based on from https://ecoregions.appspot.com/ and coastlines are from https://
ec.europa.eu/eurostat/web/gisco. Fig L: XGBoost models accurately predicted mosquito
occurrence in- and out-of-sample. Receiver operating characteristic (ROC) curves and area
under the curve (AUC) values for assessment of model discrimination are depicted, where 1
represents perfect discrimination of presence and absence and 0.5 represents discrimination
no better than chance. Curves depict the training set (red) and the evaluation set (blue). Fig M:
Thermal minima and thermal optima derived from the PDPs. Thermal minima were identi-
fied as the temperature at which the partial dependence plot began increasing, which we opera-
tionalized as the first time the empirical derivative was positive and stayed positive for the next
step in temperature as well (Fig 1C). Thermal optima were identified as the point where the
empirical derivative was zero and the partial dependence plot was at its maximum (Fig 1C).
We did not identify thermal maxima, as few species had partial dependence plots that clearly
declined after the thermal optima and then reached a lower plateau that was within the range
of observed temperatures. Central thermal minima and optima values are medians across the
20 model iterations, and parentheses indicate the full range of values over the model iterations.
Fig N: Comparison between statistical and mechanistic under alternative definition of
Tmin. Lower thermal limits are instead identified as the temperature with the largest empirical
derivative in the PDP. Panel a is as in Fig M. Panel b is as in Fig 4. Fig O: Species occurrence
and pseudo-absence background map for Aedes aegypti without North America. Species
occurrence centroids (red) and associated pseudo-absence background centroids (black) are
plotted, superimposed on the respective set of ecoregions in which their buffered occurrence
centroids fall and adjacent ecoregions (gray). The background shapefiles are based on from
https://ecoregions.appspot.com/ and coastlines are from https://ec.europa.eu/eurostat/web/
gisco. Fig P: Species occurrence and pseudo-absence background map for Aedes albopictus
without North America. Species occurrence centroids (red) and associated pseudo-absence
background centroids (black) are plotted, superimposed on the respective set of ecoregions in
which their buffered occurrence centroids fall and adjacent ecoregions (gray). The background
shapefiles are based on from https://ecoregions.appspot.com/ and coastlines are from https://
ec.europa.eu/eurostat/web/gisco. Fig Q: Species occurrence and pseudo-absence background
map for Aedes aegypti without Europe. Species occurrence centroids (red) and associated
pseudo-absence background centroids (black) are plotted, superimposed on the respective set
of ecoregions in which their buffered occurrence centroids fall and adjacent ecoregions (gray).
The background shapefiles are based on from https://ecoregions.appspot.com/ and coastlines
are from https://ec.europa.eu/eurostat/web/gisco. Fig R: Species occurrence and pseudo-
absence background map for Aedes albopictus without Europe. Species occurrence centroids
(red) and associated pseudo-absence background centroids (black) are plotted, superimposed
on the respective set of ecoregions in which their buffered occurrence centroids fall and adja-
cent ecoregions (gray). The background shapefiles are based on from https://ecoregions.
appspot.com/ and coastlines are from https://ec.europa.eu/eurostat/web/gisco. Fig Q: Critical
thermal minima and optima identified with different geographic samples. a) Scaled proba-
bility of occurrence (top row) and the derivative of probability of occurrence (bottom row)
from partial dependence plots for the full sample (grey lines and circles), without Europe (red
lines and squares) and without North America (blue lines and triangles). Text labels between
panels indicates the median, minimum, and maximum for the thermal minima (Tmin) and
thermal optima (Topt) across the 20 model iterations. b) As in Fig 4, but showing Tmin (left
panel) and Topt (right panel) from the three different geographic samples (all occurrences
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[circles], without Europe [squares], and without North America [triangles]). Each panel dis-
plays the Pearson’s correlation for the different geographic samples.
(PDF)
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