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1. Introduction. This paper is concerned with the baroclinic modal structures13

that arise in continuously stratified fluids and the discrete representations of the modes14

and dynamics in the context of ocean models.15

The baroclinic modes arise as the eigenfunctions of the Sturm-Liouville problem,16

d

dz

(

f2

N2(z)

d

dz
ϕm

)

+ λ2mϕm = 0,(1.1)17

with boundary conditions d
dzϕm(0) = 0, d

dzϕm(−H) = 0, where f = 2Ω sin θ0 is the18

Coriolis parameter at latitude θ0. The buoyancy frequency, N(z), is a measure of19

stratification given by20

N(z) =

(

− g

ρ0

∂ρ

∂z

)1/2

,(1.2)21

where ρ is the density, g is the acceleration due to gravity, and ρ0 is a constant reference22

density, typically in the vicinity of 1, 035 kg m−3 for global ocean models. Consistent23

with stable and nonvanishing stratification, we take the buoyancy frequency to be24

positive and bounded away from zero, N2(z) ≥ cN > 0, for a positive constant, cN .25

Homogeneous Neumann boundary conditions reflect a rigid, flat-bottom geome-26

try. Setting a homogeneous Dirichlet condition ϕm(−H) = 0 at the bottom produces27

a related set of modes, sometimes called ‘surface modes’ [6], which are appropri-28

ate to situations with a rough bottom boundary. The baroclinic modes appear in the29

analysis of the linearized Boussinesq, hydrostatic primitive equations underlying most30

large-scale ocean models as well as the classical quasi-geostrophic (QG) approximated31

system often used in studies of extratropical, mesoscale eddy dynamics. Both systems32

are briefly reviewed in section 2.33

In stratified flow, the vertical dimension plays a unique role. For the ocean,34

it is often treated in geopotential or isopycnal coordinates. We introduce a family35
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2 R. ROBEY AND I. GROOMS

of coordinates (1.3) based on the buoyancy frequency, in which the strength of the36

dependency is scaled via a parameter α.37

ξα(z) =
1

ξα

∫ z

−H

Nα(s)ds.(1.3)38

Here, ξα is a normalization constant such that ξα ∈ [0, 1] is dimensionless. Scaled39

versions of the geopotential and isopycnal coordinates are recovered with α = 0 and40

α = 2, respectively. Within this family, we make heavy use of the intermediate41

coordinate with α = 1,42

ξc(z) =
1

ξc

∫ z

−H

N(s)ds.(1.4)43

The subscript c acknowledges the introduction of this coordinate by J. Charney who44

presented it in differential form [4, eq. 19],45

dξc =
N

f
dz.(1.5)46

Known properties of the baroclinic modes for the continuous problem are reviewed47

in section 3 along with a discussion of characterizations, including the WKB approxi-48

mation, and their applicability. We note the independent appearance of the stretched49

Charney coordinate, ξc, in the approximation and that under the coordinate transfor-50

mation even low-order modes have near-constant wavenumber. Section 4 explores the51

form of the baroclinic modes under standard layer-based discretizations. We show that52

discrete modes display oscillatory behavior mirroring that of the continuous modes,53

among other similar properties.54

Although the Charney coordinate has appeared incidentally across analytic treat-55

ments, it has not, to our knowledge, been leveraged to numerical advantage. Given56

the sinusoidal behavior of the continuous modes under the coordinate transform and57

constraints on the discrete modes, we propose and test a vertical grid with layers58

equispaced in the Charney coordinate. Section 5 presents results for a continuously59

varying oceanic stratification showing that a Charney coordinate grid is close to op-60

timal in preserving the structure and non-linear interactions of the baroclinic modes.61

2. Review of primitive and quasi-geostrophic systems. The primitive62

equations model rotating stratified flow under the hydrostatic and Boussinesq approx-63

imations and are frequently used in oceanic modeling. Equations (2.1)-(2.4) comprise64

a standard expression of the system:65

∂tu+ (v · ∇)u+ f ẑ × u = − 1

ρ0
∇p,(2.1)66

∇ · v = 0,(2.2)67

∂zp = −ρg,(2.3)68

∂tρ+ (v · ∇)ρ = 0.(2.4)69

Here, u = (u, v)T is the horizontal velocity and v = (u, v, w)T is the three-dimensional70

velocity; f is the Coriolis parameter, p is the pressure perturbation, ρ is the density71

perturbation, and g is gravity. For simplicity, we omit viscous and diffusive terms and72

assume a linear equation of state and no diabatic effects.73
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DISCRETE AND CONTINUOUS BAROCLINIC MODES 3

The baroclinic modes, i.e. the normal vertical modes, arise from the linearization74

of the primitive equations around a state of rest and fixed stratification varying only75

in z, (e.g., [19, sect. 3.4.1]). The vertical and horizontal coordinates of the linearized76

system may be separated provided the vertical differential operator,77

d

dz

(

1

N2(z)

d

dz
ϕm

)

+
1

c2m
ϕm = 0,(2.5)78

admits a basis of eigenfunctions, which constitute a natural set of vertical modes for79

the pressure and horizontal velocity. Taking ∂zϕ = 0 at z = −H, 0 reflects stress-free80

boundary conditions, though other physically-meaningful boundary conditions can be81

applied [6]. Expanding u and p in terms of the eigenfunction basis (see section 3)82

evolution of mode m in the linearized system becomes,83

∂t
p̂m
ρ0

+ c2m∇ · ûm = 0.(2.6)84

The form clearly identifies cm as a wave speed, which is associated with an m-th85

baroclinic mode gravity wave. The corresponding deformation radius, Lm, may be86

related to the wave speed by [10],87

Lm =

√

c2m
f2 + 2βcm

.(2.7)88

where β = ∂f/∂y is the meridional gradient of the Coriolis parameter.89

From the primitive equations, a further simplified, quasi-geostrophic system may90

be obtained by asymptotic analysis [19]. The approximation is relevant for studies91

of dynamics in extratropical regions of the ocean, rich in mesoscale eddies. The QG92

system on a β-plane is given by,93

∂tq + J [ψ, q] = 0,(2.8)94

∇2ψ + ∂z

(

f2

N2(z)
∂zψ

)

+ βy = q.(2.9)95

where q is the potential vorticity and ψ the streamfunction with u = −∂yψ and96

v = ∂xψ. The advection term is written using a Jacobian operator, J [a, b] = ∂xa∂yb−97

∂ya∂xb. The vertical differential operator in (2.9) yields the vertical modes eigenprob-98

lem for the QG system (1.1); the modes correspond to those of the primitive equations99

(2.5) and eigenvalues reflect extratropical (f ̸= 0, f2 ≫ βcm) deformation radii,100

λ−1
m = Lm ≈ cm

f
.(2.10)101

3. Continuous baroclinic modes. Well-developed Sturm-Liouville theory es-102

tablishes a known structure in the modal solutions of (1.1), which are briefly reviewed103

[18, 19]. The vertical modes are eigenfunctions of the Sturm-Liouville problem and104

are guaranteed to form an infinite set of solutions, {ϕm}∞m=0, which comprise an105

orthonormal basis for L2([−H, 0]). That is,106

∫ 0

−H

ϕnϕmdz = δnm,(3.1)107
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4 R. ROBEY AND I. GROOMS

where δnm is a Kronecker delta and any L2 function may be expanded in {ϕm}.108

The eigenvalues are non-positive (preemptively denoted as −λ2m), distinct, countably109

infinite, and strictly increasing in magnitude to infinity.110

It is trivial to confirm the existence of the constant, barotropic mode ϕ0(z) =111

1/
√
H with eigenvalue λ0 = 0. The depth-varying, baroclinic modes (m ≥ 1) are112

characterized by increasing oscillations such that ϕm has exactly m simple roots in113

[−H, 0]. Furthermore, due to Sturm’s separation theorem [17, Lemma 5.21] the po-114

sitions of the roots of subsequent solutions ϕm and ϕm+1 interlace, i.e., between two115

roots of ϕm+1 there must be a root of ϕm.116

Important physical attributes due to the eigensystem include the vertical structure117

imparted by the modes; the deformation radius, Lm, associated with each mode (2.10);118

and the interaction between vertical modes.119

The interaction is most straightforward to see in the QG system. Expand-120

ing the potential vorticity and streamfunction in the baroclinic mode basis, ψ =121
∑∞

m=0 ψ̂mϕm(z) and q =
∑∞

m=0 q̂mϕm(z), the evolution equation for mode n be-122

comes,123

∂tq̂n +
∑

ℓ,m

ΘℓmnJ [ψ̂ℓ, q̂m] + β∂xψ̂n = 0.(3.2)124

Interactions between modes occur in triads, mediated by triple interaction coefficient,125

Θℓmn =

∫ 0

−H

ϕℓ(z)ϕm(z)ϕn(z)dz.(3.3)126

The interaction describes the efficiency of the energetic interactions and transfers127

between vertical scales. The interaction coefficient is clearly invariant under permu-128

tations of the indices and interactions involving the barotropic mode are simple, i.e.,129

Θ0mn = δmn/
√
H and similarly for Θℓ0n and Θℓm0.130

3.1. Approximations of modal behavior. For a general stratification, N(z),131

the eigensystem cannot be explicitly solved analytically. Approximations and refor-132

mulations can be useful to illuminate characteristics of the modes and deformation133

radii.134

3.1.1. Asymptotic WKB approximation. The Sturm-Liouville eigenprob-135

lem (1.1) lends itself to the asymptotic WKB approximation [3, sect. 10.1]. The136

method was employed by Chelton et al. [5, Appendix A] to estimate ocean vertical137

modes and the corresponding eigenvalues to gain insight into their behavior. The au-138

thors derive the approximate solution for the vertical velocity baroclinic modes; the139

corresponding form for the horizontal velocity baroclinic modes studied here is found140

in [7, Appendix B] by exploiting the relationship between the two kinds of baroclinic141

modes.142

The WKB method may also be applied directly to the horizontal velocity baro-143

clinic modes, as presented here. As noted, {ϕm} are solutions to a Sturm-Liouville144

problem, ensuring λm → ∞ as m → ∞. Let S(z) = f2/N2(z) and take ϵ2 = λ−2
m in145

(1.1), yielding146

−ϵ2 d
dz

(

S(z)
dϕm
dz

)

= ϕm.(3.4)147

Following the WKB method, we assume a solution of the form148

ϕm(z) = exp[T (z)/δ].(3.5)149

This manuscript is for review purposes only.



DISCRETE AND CONTINUOUS BAROCLINIC MODES 5

Substituting (3.5) into (3.4) and simplifying yields,150

− ϵ
2

δ2
[

S(T ′)2 + δ(S′T ′ + ST ′′(z))
]

= 1.(3.6)151

In order to achieve dominant balance with the O(1) right-hand side, we choose δ = ϵ.152

Making this substitution and expanding an asymptotic series, T (z) = T0(z)+ϵT1(z)+153

O(ϵ2),154

S[T ′
0]

2 + ϵ[S′T ′
0 + ST ′′

0 + 2ST ′
0T

′
1] = −1 +O(ϵ2).(3.7)155

Equating O(1) terms and recalling the definition of S, T0 must satisfy the differential156

equation,157

[T ′
0]

2 = − 1

S(z)
= −N

2(z)

f2
.(3.8)158

This yields a solution,159

T0 = ±i

∫ z

0

N(s)

f
ds,(3.9)160

where without loss of generality we impose T0(0) = 0. Equating the O(ϵ) terms in161

(3.7) and using the definition for S and (3.9) for T0,162

2ST ′
0

(

S′

2S
+
T ′′
0

2T ′
0

+ T ′
1

)

= 0.(3.10)163

Noting that 2ST ′
0 is not equivalently zero, we obtain the following differential equation164

for T1,165

T ′
1(z) = −1

2

(

S′

S
+
T ′′
0

T ′
0

)

= −1

2

d

dz
ln (ST ′

0) =
d

dz
ln

[

(1∓ i)

√

N(z)

2f

]

.(3.11)166

The rearranged equation then simply yields,167

T1(z) = ln

[

(1∓ i)

√

N(z)

2f

]

,(3.12)168

up to an additive constant that has no effect on the final form of the solution. Sub-169

stituting (3.9) and (3.12) back into the ansatz (3.5),170

ϕm(z) ≈ exp

(

1

ϵ
T0 + T1

)

171

= exp

(

± i

ϵ

∫ z

0

N(s)

f
ds

)

(1∓ i)

√

N(z)

2f
.(3.13)172

Linear combinations of the two solutions yield a real form,173

ϕm(z) ≈ N1/2(z)

[

a sin

(

1

ϵ

∫ z

0

N(s)

f
ds

)

+ b cos

(

1

ϵ

∫ z

0

N(s)

f
ds

)]

.(3.14)174
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6 R. ROBEY AND I. GROOMS

To simplify the application of the Neumann boundary conditions, we note that the175

derivative is dominated by the sines and cosines at order O(ϵ−1), with the derivative of176

N1/2 only O(1). The top boundary, ϕ′(0) = 0, requires a = 0. The bottom boundary,177

ϕ′(−H) = 0, recovers an approximation for λm,178

λm =
1

ϵ
≈ mπf
∫ 0

−H
N(s)ds

.(3.15)179

Simplifying, we obtain the following approximation, which may be expressed in terms180

of the Charney coordinate, ξc, (1.4).181

ϕm(z) ≈ N1/2(z) cos

(

λm

∫ z

0

N(s)

f
ds

)

= N1/2(z) cos [mπξc(z)] .(3.16)182

The small parameter for the asymptotic approximation depended only on the ex-183

pected growth of λm; the modes are guaranteed to approach the cosine approximation184

as m → ∞ for any stratification N(z) ≥ cN > 0. It is, however, the lowest modes185

(smallm), outside the asymptotic regime, that are most studied and most dynamically186

relevant. In this case, a small parameter must be instead be identified with respect187

to the behavior of N(z). In the derivation of the vertical velocity baroclinic modes,188

Chelton et al. [5] suggest conditions on N under which the approximation is valid:189

the scaled rate of change of N should be small compared to the scaled wavenumber.190

Given typical oceanic stratification (see, e.g., Figure 1), N does vary slowly in the191

bulk of the water column, but routinely violates such an assumption due to the strong192

stratification present in the pyncocline.193

Despite the breakdown of the underlying assumptions, the WKB approximation194

has still empirically proven quite effective, and been used with some success, for low-195

order baroclinic modes (e.g., [5, 7, 16]). Of particular interest for our purposes is196

the introduction of the Charney coordinate (1.4) in the solution of T0. The leading197

order solution for ϕm, (3.14), has constant wavenumber in the transformed coordinate,198

regardless of the particular linear boundary condition.199

3.1.2. Liouville integral form. Identification of the stretched Charney coordi-200

nate using the WKB approach, however, hinges on having made the scaling assump-201

tions and approximations, which we know may not universally hold. An alternate202

approach to characterizing the behavior of the baroclinic modes involves the refor-203

mulation of (1.1) into Liouville normal form [11, 14]. Expanding (1.1) into standard204

form,205

ϕ′′m +

(

−2
N ′

N

)

ϕ′m + λ2m
N2

f2
ϕm = 0.(3.17)206

Following the Liouville transformation (see supplement SM1, [17, Problem 5.13]), we207

define a transformed mode, η(ξ), with208

ϕ(z) = N1/2(z)η(ξ(z)),(3.18)209

along with a stretched coordinate, ξ, which is exactly the Charney coordinate, ξc,210

ξ(z) = ξc(z) =
1

ξ

∫ z

−H

N(t)dt, ξ =

∫ 0

−H

N(t)dt.(3.19)211
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DISCRETE AND CONTINUOUS BAROCLINIC MODES 7

Under the transformation, the differential equation for the transformed mode, η(ξ),212

takes the Liouville normal form,213

η′′(ξ) +
[

κ2 − γ(ξ)
]

η(ξ) = 0, ξ ∈ (0, 1),(3.20)214

η′(ξ) +
ξ

2

dN
dz (ξ)

N2(ξ)
η(ξ) = 0, ξ = 0, 1.(3.21)215

For conciseness, we have defined216

γ(ξ(z)) =
ξ
2

4N2

(

5

N2

(

dN

dz

)2

− 2

N

d2N

dz2

)

.(3.22)217

The solutions to the transformed problem may be related to the original eigenpairs218

using (3.18) and κ = λmξ/f . It is guaranteed that κ2 ≥ 0 since ξ/f is a real constant219

and it is known λm ≥ 0 from the original formulation.220

The Liouville normal form is typically used in investigations of asymptotic behav-221

ior and convergence, but also yields, without approximation, an illuminating implicit222

integral form ([11], see supplement SM2)223

η(ξ) = cos(κξ) +
c0
κ

sin(κξ) +
1

κ

∫ ξ

0

γ(s)η(s) sin[κ(ξ − s)]ds,(3.23)224

where c0 = − 1
2ξ(

dN
dz N

−2)(−H) is a constant arising from the boundary conditions.225

The asymptotic behavior as λm → ∞ may be recovered with the correspond-226

ing limit κ → ∞; the second two terms in (3.23) vanish and the first cosine term227

dominates. Transforming back into ϕm,228

ϕm(z) ≈ N1/2(z) cos(κξ(z)).(3.24)229

As with the WKB approximation, the application of the Neumann boundary condi-230

tions cannot be exact but is simplified by noting that the O(κ) sine term dominates231

the derivative. No mutable parameters exist for the top z = 0 boundary. The bot-232

tom boundary implies κ = mπ. Therefore the eigenfunction and eigenvalue may be233

estimated using,234

ϕm(z) ≈ N1/2 cos(mπξc(z)), λm =
κf

ξc
≈ mπf

ξc
.(3.25)235

The approximated solutions correspond to the WKB result, (3.15) and (3.16).236

Compared to the WKB method, the Liouville transformation gives rise to the237

Charney coordinate independent of any scaling assumptions. The form (3.23) shows,238

without approximation, that the baroclinic modes may be understood as sinusoids of239

constant wavenumber in the Charney coordinate, modified by an integral correction240

term. Without relying on substantial decay of the correction term as κ grows, it is241

sufficient for our purposes that that the convolution inherits the phase of sin(κξ).242

4. Discrete baroclinic modes. Numerical discretization in large-scale ocean243

models is typically built on a grid of vertical layers. The continuous baroclinic modes244

are not represented directly in the discrete system; rather, the discrete system gives245

rise to its own, distinct set of modes equal to the number of layers. The discretization246

and placement of the layers in the grid impact the fidelity of the baroclinic mode247

representation.248
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8 R. ROBEY AND I. GROOMS

4.1. Quasi-geostrophic modes. As in the continuous problem, the discrete249

baroclinic modes are analogously defined by an eigenproblem, based on the discrete250

representation of the vertical differential operator. A classical numerical scheme for251

the QG system with continuously-varying stratification uses a second-order, centered252

finite-volume scheme (e.g., [9]). Under this approach, for a general grid with N layers253

of depth h1,...,N , the discrete vertical difference operator, L, is given by,254

(4.1) ∂z

(

f2(z)

N2(z)
∂zϕ

)

≈ (Lϕ)i =
f2

hi

(

N−2
i− 1

2

ϕi−1 − ϕi
1
2 (hi−1 + hi)

−N−2
i+ 1

2

ϕi − ϕi+1
1
2 (hi + hi+1)

)

,255

where the indices follow the ocean convention counting down from the surface and256

N−2
i±1/2 is the evaluation of N−2(z) at the layer interfaces, zi±1/2. The homogeneous257

Neumann boundary conditions are treated by letting the exact derivative ∂zϕm = 0258

at the top and bottom take the place of the finite difference approximation. Thus,259

Lϕ+ λ2ϕ = 0,(4.2)260

is the discrete analog to the continuous eigenproblem (1.1).261

Note that the QG stretching matrix derived from the rotating shallow water262

equations (e.g., [19, sect. 5.3.2], [12, sect. 6.16]), i.e.,263

(Llayerϕ)1 = f2
(

ϕ1
gh1

+
ϕ1 − ϕ2
g′1h1

)

,264

(Llayerϕ)i = f2
(

ϕi−1 − ϕi
g′i−1hi

+
ϕi − ϕi+1

g′ihi

)

,(4.3)265

with g′k = g(ρk+1 − ρk)/ρ1 the ‘reduced gravity’, is isomorphic to the finite volume266

formulation (4.1) in the limit g ≫ g′1 (e.g. [19, sect. 5.4.6]).267

4.2. Equivalence with primitive equation modes. To demonstrate that the268

analysis of the discrete baroclinic modes performed here has relevance outside the269

setting of quasi-geostrophic dynamics, we make a connection between the discrete270

baroclinic modes of the primitive equations and those of QG. The approach is to271

discretize the primitive equations in the vertical direction only, and then to study the272

normal modes of the discrete system, linearized around a state of rest.273

There are many ways to discretize the vertical coordinate in the primitive equa-274

tions, so we focus on an approach shared by two modern ocean models: The Model275

for Prediction Across Scales - Ocean (MPAS-O; [13]) and the Modular Ocean Model,276

version 6 (MOM6; [1]). Both of these models use an arbitrary Lagrangian-Eulerian277

(ALE) approach to the vertical coordinate.278

We will analyze the purely Lagrangian limit of this discretization, given below279

∂tuk + uk · ∇uk + f ẑ × uk = − 1

ρ0
∇pk − gρk

ρ0
∇zk,(4.4)280

∂thk +∇ · (hkuk) = 0,(4.5)281

∂t(hkρk) +∇ · (hkukρk) = 0.(4.6)282

These equations use a Boussinesq approximation and assume a linear equation of283

state and no diabatic effects. The index k denotes layers, and the ocean modeling284

convention is that k increases downwards. The thickness of the kth layer is denoted hk.285
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The fact that this is a purely Lagrangian limit is reflected in the fact that the thickness286

evolution equation includes no source or sink terms associated with transport between287

adjacent layers. The pressure pk and height zk are obtained from the layer density ρk288

and thickness hk via289

pk = g

[

1

2
ρkhk +

k−1
∑

n=1

ρnhn

]

,(4.7)290

zk =
1

2
hk +

N
∑

n=k+1

hn + zN ,(4.8)291

where zN is the depth of the lower boundary.292

To find the normal modes, linearize around a state of rest uk = 0, thicknesses293

hk = Hk, and densities ρk = Rk, where Hk and Rk are assumed to be positive and294

independent of the horizontal coordinates and of time. The density stratification is295

also assumed to be stable, i.e. Rk > Rk−1 for k > 2. In order for this state to296

be an equilibrium of the governing system, the lower boundary depth zN must be297

independent of the horizontal coordinates, i.e. the lower boundary must be flat. The298

linear perturbation equations are299

∂tuk + f ẑ × uk = − 1

ρ0
∇pk − gRk

ρ0
∇zk,(4.9)300

∂thk +Hk∇ · uk = 0,(4.10)301

∂tρk = 0,(4.11)302

where the pressure and height perturbations are303

pk = g

[

1

2
(Rkhk +Hkρk) +

k−1
∑

n=1

(Rnhn +Hnρn)

]

,(4.12)304

zk =
1

2
hk +

N
∑

n=k+1

hn.(4.13)305

To separate the vertical and horizontal directions in the perturbation equations306

it is convenient to define some notation: let307

(4.14) T =













1
2 0

1
. . .

...
. . .

1 · · · 1 1
2













,308

DR be a diagonal matrix with diagonal elements Rk, and DH be a diagonal matrix309

with diagonal elements Hk. With this notation the relationship between interface310

heights and layer thicknesses (4.13) can be written311

(4.15) z = TTh,312

and the pressure perturbation equations (4.12) can be written313

(4.16) p = gT (DRh+DHρ) .314
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The velocity (4.9) and thickness perturbation (4.10) equations can be written in ma-315

trix form as,316

∂tu+ f ẑ × u = − g

ρ0
∇
[

T (DRh+DHρ) +DRT
Th
]

,(4.17)317

∂th+DH∇ · u = 0.(4.18)318

We may eliminate both the thickness and density perturbations by taking the time319

derivative of (4.17) and using the time-independence of the density perturbations320

(4.11) and the evolution equation (4.18) for the thickness perturbations. The result321

is,322

(4.19) ∂2t u+ f ẑ × ∂tu =
g

ρ0

[(

TDR +DRT
T
)

DH

]

∇ · u.323

We can separate variables in this wave equation for the horizontal velocity provided324

that the matrix,325

(4.20)
g

ρ0

[(

TDR +DRT
T
)

DH

]

,326

has a complete set of eigenvectors; these eigenvectors would then correspond to the327

vertical structure of the linear normal modes of the system.328

If the eigenvalues of this matrix are λ, then the dispersion relation for the asso-329

ciated waves is330

(4.21) ω = 0, ±
√

f2 + λk2,331

where k is the magnitude of the horizontal Fourier wavenumber vector.332

The relationship between the vertical structure of the normal modes of the prim-333

itive equations and the baroclinic modes of the discrete QG system is provided by the334

following theorem:335

Theorem 4.1. The matrix (4.20) is equal to −f2L−1
layer

, where Llayer is the QG336

stretching matrix (4.3).337

The proof is deferred to Appendix A.338

The implication of Theorem 4.1 is that the discrete baroclinic modes from QG339

theory are the same as the vertical structure of the normal modes (for the horizontal340

velocity) of the linearized discrete primitive equations (4.9)–(4.13). The interaction341

coefficients associated with the nonlinear advection terms in (4.4) and (4.5) are exactly342

the same as the interaction coefficients for the QG nonlinear term.343

4.3. Discrete mode properties. We analyze the properties of the discrete344

eigensystem based on L, defined in (4.1); however, the analysis applies to the lay-345

ered shallow water version of QG as well as prevalent discretizations of the primitive346

equations as shown in subsection 4.1 and subsection 4.2.347

A rich structure of properties, in many ways mirroring those of the eigenpairs of348

the continuous Sturm-Liouville problem (1.1), can be derived for the discrete system349

(4.2). The commonalities, however, do not ensure accuracy; the choice of grid may350

in fact preclude the discrete eigenvectors from accurately representing the behavior351

of the continuous eigenfunctions. To begin, we can confirm that important properties352

of the operator spectrum are preserved.353

Theorem 4.2. The matrix L has real, distinct eigenvalues and is negative semi-354

definite.355
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Proof. Via a similarity matrix P = diag[h
1/2
1 , h

1/2
2 , · · · , h1/2

N
], L is similar to a real,356

symmetric, irreducible tridiagonal matrix. It therefore has real, distinct eigenvalues.357

L is also diagonally dominant, with |ℓi,i| ≥ |ℓi,i−1| + |ℓi,i+1|. Applying Gershgorin’s358

circle theorem, the eigenvalues must then lie along the non-positive real axis.359

Lemma 4.3. The matrix L is self-adjoint with respect the the weighted inner prod-360

uct ⟨a, b⟩ = aTHb.361

Proof. Note that we may write L = H−1S where H = diag(h1, h2, . . . , hN ) and362

S is symmetric and tridiagonal. Then it follows easily that,363

⟨Lx,y⟩ = xTLTHy = xTSy = xTHLy = ⟨x,Ly⟩,364

and thus L is self-adjoint.365

Theorem 4.4. The eigenvectors of L form an orthonormal basis of RN with re-366

spect to the weighted inner product ⟨x,y⟩ = xTHy.367

Proof. By Lemma 4.3, the matrix L is self-adjoint with respect to the weighted368

inner product ⟨x,y⟩ = xTHy. Eigenvectors of a self-adjoint matrix corresponding to369

distinct eigenvalues are orthogonal with respect to the appropriate inner product and370

by Theorem 4.2, all eigenvalues of L are distinct. Therefore, all eigenvectors of L are371

mutually orthogonal and thus form a basis for RN .372

As in the continuous case, the discrete modes display a particular structure. Bor-
rowing concepts and results from studies of oscillatory matrices, we are able to con-
cretely characterize oscillations in the discrete eigenvectors. L is an irreducible tridi-
agonal matrix, sometimes termed a Jacobi matrix following [8, Chap. 2.1]. Further,
requiring stable stratification, N2(z) > 0, −L is a normal Jacobi matrix of the form,

















a1 −b1
−c1 a2 −b2

−c2
. . .

. . .

. . .
. . . −bn−1

−cn−1 an

















with ai, bi, ci ≥ 0. Such matrices are a common starting point in studies of more373

general oscillatory matrices. From Gantmacher and Krein [8, Thm. 1 and Thm. 4],374

Theorem 4.5. Given L a normal Jacobi matrix, the sequence of entries in the375

mth eigenvector, ϕm, has exactly m changes in sign (m = 0, . . . ,N − 1).376

Theorem 4.6. The sign-changes (nodes) of two successive eigenvectors alternate.377

Therefore the discrete modes have both the increasing oscillations and vertical com-378

plexity of the continuous modes, as well as a version of the interlacing properties.379

These constraints on the structure of the discrete modes may then be examined in380

relation to the behavior of the continuous modes we hope to represent.381

The barotropic mode is well-handled, regardless of grid choice. As in the contin-382

uous problem, for L defined by (4.1) we can confirm the guaranteed existence of a383

constant barotropic mode associated with λ0 = 0. The discrete analog for the interac-384

tion coefficient, using the H-weighted inner product for the orthogonality condition,385

is given by,386

Θℓmn = ϕT
nH (ϕm ◦ ϕℓ) ,(4.22)387
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where ◦ denotes elementwise multiplication. The barotropic mode is constant so that388

(4.22) reduces to the H-weighted orthonormal relation between the remaining two389

modes, just as it does in the continuous problem, yielding the correct interaction390

coefficients as well. (For Llayer defined by (4.3) the barotropic mode has no sign391

changes, but is weakly non-constant.)392

The behavior of the oscillating baroclinic modes, however, is not guaranteed to393

coincide with that of the continuous system and may be undermined by a poor choice394

of grid. Consider, for example, the highest order discrete mode, ϕN−1. Two thin395

layers might be placed together such that the continuous mode, ϕN−1, has no roots396

between the centers of these two thin layers. The discrete form requires that the ele-397

ments ϕN−1 corresponding to these layers differ in sign, creating an oscillation where398

there should not be one. Because ϕN−1 has this spurious sign change, it must omit399

one of the continuous oscillations that occurs elsewhere in the domain in order to400

maintain the appropriate number of total sign changes. Thus the discrete baroclinic401

modes may be subject to both elided and spurious oscillations. The interaction coef-402

ficient will also be duly impacted. In order to avoid these errors, the layers should be403

ideally placed to support oscillations in the correct positions.404

5. Optimal grid spacing and diagnostics. We propose a grid that is equis-405

paced in the Charney coordinate (1.4) in order to near-optimally resolve the baroclinic406

mode structures. As discussed above, approximations (subsection 3.1) and heuristics407

suggest that the baroclinic modes rapidly approach modulated cosines in ξc. Fur-408

thermore, the behavior of the discrete modes (subsection 4.3) implies that the layers409

should be in accordance with the oscillations of the baroclinic modes to allow the sign-410

changes to reflect continuous behavior. Equispaced layers in the Charney coordinate411

are well-suited to resolving the cosine-like behavior and are a sensible generalization412

for the continuously varying case.413

Note that as the order of the highest-represented mode increases, the cosine ap-414

proximation should improve. That is, the lower-order modes for which the spacing is415

less optimal have the benefit of having many points between the roots. The spacing416

becomes more optimal for the high-order modes that have the fewest points to capture417

the denser oscillations.418

Previous multi-layer QG studies have proposed related schemes for choosing the419

grid based the idea of resolving baroclinic modes. For example, Beckmann [2] placed420

N layer interfaces at the roots of the N th continuous mode. Practically speaking,421

to assign N − 1 layer depths with this method requires first computing an accu-422

rate approximation to the N th continuous mode, which requires using a temporary423

discretization with significantly more than N layers.424

Roullet et al. [15, eq. 10] develop an alternative approach to specifying the layer425

thicknesses by requiring their discretization of the continuous QG elliptic operator426

(2.9) be well-balanced. Their prescription can be related to the differential form of427

the Charney coordinate (1.5) as follows:428

∆ξ =
N

f
∆z =⇒ ∆ξ2 =

N2

f2
∆z2 = − g

ρ0f2
∆ρ∆z.(5.1)429

The final equality of the expression above uses the finite-difference approximation430

N2 = −g∂zρ/ρ0 ≈ −g∆ρ/(ρ0∆z), and the final grid spacing ∆z is obtained by431

requiring ∆ξ to be constant. Practically speaking, to assign N layer depths with this432

method requires solving an equality-constrained nonlinear optimization problem.433

Neither of these QG approaches has been proposed as a basis for a vertical co-434
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represented but instead arise from the discrete stretching matrix for the vertical dif-527

ferential operator. Under common discretizations of the QG and primitive equation528

systems, we show the stretching matrices coincide. We further demonstrate proper-529

ties of the discrete eigensystem, including the identification of oscillatory, sign-change530

requirements in the eigenvectors analogous to those of the continuous eigenfunctions.531

Leveraging the analytical framework suggesting a special role of a Charney coor-532

dinate in regulating the phase of the modal oscillations, and constraints in the discrete533

behavior that demand layers coincide with the locations of the oscillations, we pro-534

pose a new discrete grid approach with layers equispaced in the Charney coordinate.535

While the coordinate has appeared in analytic treatments [4, 5], its unique properties536

have not to our knowledge been exploited numerically.537

The Charney grid is shown to near-optimally resolve the baroclinic modes and538

interaction coefficients, as well as the baroclinic radii with much improved accuracy539

compared to equispaced geopotential and isopycnal grids. With respect to exist-540

ing approaches in QG literature, the Charney-coordinate approach to constructing a541

grid achieves favorable resolution properties, but is also efficient and computationally542

tractable enough for adaptation to primitive-equation models. Because the grid also543

responds to the local stratification, resolution can be achieved globally with fewer544

layers than required by a geopotential grid approach.545

Building off of the theoretical basis for the Charney grid presented here, it remains546

to test its performance and impact on modeled dynamics in fully nonlinear QG simu-547

lations, and eventually to implement it as a vertical coordinate in a primitive-equation548

model.549

Appendix A. Proof of Theorem 4.1. Let550

(A.1) M =
g

ρ0
PDH where P = TDR +DRT

T .551

The proof hinges on finding an explicit form for P−1, which is obtained by Gauss-552

Jordan elimination.553

First note that554

(A.2) P =













R1 · · · · · · R1

... R2 · · · R2

...
...

. . .
...

R1 R2 · · · RN













.555

Consider the application of elementary row operations to find the inverse by solving556

PX = I. The initial augmented matrix is557

(A.3)













R1 · · · · · · R1 1
... R2 · · · R2

. . .
...

...
. . .

...
. . .

R1 R2 · · · RN 1













.558

Eliminating below the first diagonal, followed by elimination to the right of the first559
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diagonal, followed by a normalization of the first diagonal produces560

(A.4)













1 0 · · · 0 1
R1

+ 1

R
(1)
2

− 1

R
(1)
2

0 R
(1)
2 · · · R

(1)
2 −1 1

0
...

. . .
... −1

. . .

0 R
(1)
2 · · · R

(1)
N −1 1













561

where562

(A.5) R
(k)
i = Ri −Rk > 0.563

Since the lower (N − 1) × (N − 1) submatrix on the left has the same form as the564

original matrix, we can almost proceed inductively, but not quite; the column of −1 on565

the right prevents this. However, we may proceed to eliminate below the diagonal in566

the second column, then eliminate to the right of the second diagonal, then normalize567

the second diagonal, which produces568

(A.6)













1 0 · · · 0 1
R1

+ 1

R
(1)
2

− 1

R
(1)
2

0 1 0 0 − 1

R
(1)
2

1

R
(1)
2

+ 1

R
(2)
3

− 1

R
(2)
3

0 0 R
(2)
3

... 0 −1 1

0 0 · · · R
(2)
N 0 −1 1













.569

At this point we can see the pattern repeating inductively and producing the final570

expression for P−1
571

(A.7) P−1 =





















1
R1

+ 1

R
(1)
2

− 1

R
(1)
2

− 1

R
(1)
2

1

R
(1)
2

+ 1

R
(2)
3

− 1

R
(2)
3

. . .
. . .

. . .

− 1

R
(N−2)
N−1

1

R
(N−2)
N−1

+ 1

R
(N−1)
N

− 1

R
(N−1)
N

− 1

R
(N−1)
N

1

R
(N−1)
N





















.572

To complete the proof we need to show that −f2M−1 = L where L is the discrete573

QG stretching matrix (4.3). Expanding,574

(A.8) − f2M−1 = −f
2ρ0
g

D−1
H P−1 =575























− f2

gH1
− f2

H1g′
1

f2

H1g′
1

f2

H2g′
1

− f2

H2g′
1
− f2

H2g′
2

f2

H2g′
2

. . .
. . .

. . .

. . .
. . . f2

HN−1g′
N−1

f2

HNg′
N−1

− f2

HN−1g′
N−1























,576

this is clearly satisfied when the reduced gravities are g′k = gR
(k)
k+1/ρ0 = g(Rk+1 −577

Rk)/ρ0 and we assume ρ0 = R1. Further, under the identification578

(A.9)
f2

g′k−1

= f2
N−1

k−1/2

hk−1/2
, i.e. N2(zk−1/2) =

g′k−1
1
2 (hk−1 + hk)

579
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and in the limit g ≫ g′1 it is isomorphic to the discretization (4.1) of the continuous580

QG equations,581

L = f2









































− N−2
3/2

h3/2h1

N−2
3/2

h3/2h1

N−2
3/2

h3/2h2

. . .
. . .

. . .
. . .

N−2
k−1/2

hk−1/2hk
−
(

N−2
k−1/2

hk−1/2hk
+

N−2
k+1/2

hk+1/2hk

)

N−2
k+1/2

hk+1/2hk

. . .
. . .

. . .
. . .

N−2
N−1/2

hN−1/2hN−1

N−2
N−1/2

hN−1/2hN
− N−2

N−1/2

hN−1/2hN









































,

(A.10)

582

with hi± 1
2
= (hi + hi±1)/2.583

The difference lies in the (1, 1) entry; the layer form assumes a free surface whereas584

the finite volume form imposes a stress-free boundary condition. The limit g ≫ g′1 is585

tantamount to saying that the variations in the height of the free upper surface are586

small, which is appropriate for ocean mesoscales.587

REFERENCES588

[1] A. Adcroft, W. Anderson, V. Balaji, C. Blanton, M. Bushuk, C. O. Dufour, J. P.589
Dunne, S. M. Griffies, R. Hallberg, M. J. Harrison, I. M. Held, M. F. Jansen,590
J. G. John, J. P. Krasting, A. R. Langenhorst, S. Legg, Z. Liang, C. McHugh,591
A. Radhakrishnan, B. G. Reichl, T. Rosati, B. L. Samuels, A. Shao, R. Stouffer,592
M. Winton, A. T. Wittenberg, B. Xiang, N. Zadeh, and R. Zhang, The GFDL Global593
Ocean and Sea Ice Model OM4.0: Model Description and Simulation Features, Journal of594
Advances in Modeling Earth Systems, 11 (2019), pp. 3167–3211, https://doi.org/10.1029/595
2019MS001726.596

[2] A. Beckmann, Vertical Structure of Midlatitude Mesoscale Instabilities, Journal of Phys-597
ical Oceanography, 18 (1988), pp. 1354–1371, https://doi.org/10.1175/1520-0485(1988)598
018⟨1354:VSOMMI⟩2.0.CO;2.599

[3] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engi-600
neers I, Springer, New York, NY, 1999, https://doi.org/10.1007/978-1-4757-3069-2.601

[4] J. G. Charney, Geostrophic Turbulence, Journal of the Atmospheric Sciences, 28 (1971),602
pp. 1087–1095, https://doi.org/10.1175/1520-0469(1971)028⟨1087:GT⟩2.0.CO;2.603

[5] D. B. Chelton, R. A. deSzoeke, M. G. Schlax, K. E. Naggar, and N. Siwertz, Geograph-604
ical Variability of the First Baroclinic Rossby Radius of Deformation, Journal of Physical605
Oceanography, 28 (1998), pp. 433–460, https://doi.org/10.1175/1520-0485(1998)028⟨0433:606
GVOTFB⟩2.0.CO;2.607

[6] M. S. de La Lama, J. LaCasce, and H. K. Fuhr, The vertical structure of ocean eddies,608
Dynamics and Statistics of the Climate System, (2016), p. dzw001.609

[7] R. Ferrari, S. M. Griffies, A. J. G. Nurser, and G. K. Vallis, A boundary-value problem610
for the parameterized mesoscale eddy transport, Ocean Modelling, 32 (2010), pp. 143–156,611
https://doi.org/10.1016/j.ocemod.2010.01.004.612
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