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CONTINUOUS AND DISCRETE BAROCLINIC MODES IN
CONTINUOUSLY VARYING STRATIFICATION*

RACHEL ROBEY' AND IAN GROOMS'

Abstract. We study the behavior of baroclinic modes in a continuously stratified fluid and their
discrete representation in a layer model. The modes are shown to rapidly approach simple sinusoidal
behavior under a Charney-coordinate transform. We propose a corresponding grid scheme to near-
optimally preserve the oscillating structure in the discrete modes. The discrete modal representation
and analysis are relevant for quasi-geostrophic models and are also shown to apply to the primitive
equations using a common discretization scheme.

Key words. geophysical fluid dynamics, quasi-geostrophic, primitive equation, baroclinic
modes, vertical grid
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1. Introduction. This paper is concerned with the baroclinic modal structures
that arise in continuously stratified fluids and the discrete representations of the modes
and dynamics in the context of ocean models.

The baroclinic modes arise as the eigenfunctions of the Sturm-Liouville problem,

d [ f2 d ,
1.1 — —Om AS by =0,
(L1.1) dz <N2(z) dz¢ >+ m?
with boundary conditions %qﬁm(O) =0, %@n(—H) = 0, where f = 2Qsinfy is the
Coriolis parameter at latitude 6y. The buoyancy frequency, N(z), is a measure of
stratification given by

(12) N = (~22)",

where p is the density, g is the acceleration due to gravity, and pg is a constant reference
density, typically in the vicinity of 1,035 kg m~2 for global ocean models. Consistent
with stable and nonvanishing stratification, we take the buoyancy frequency to be
positive and bounded away from zero, N?(z) > ¢y > 0, for a positive constant, cy.

Homogeneous Neumann boundary conditions reflect a rigid, flat-bottom geome-
try. Setting a homogeneous Dirichlet condition ¢,,(—H) = 0 at the bottom produces
a related set of modes, sometimes called ‘surface modes’ [6], which are appropri-
ate to situations with a rough bottom boundary. The baroclinic modes appear in the
analysis of the linearized Boussinesq, hydrostatic primitive equations underlying most
large-scale ocean models as well as the classical quasi-geostrophic (QG) approximated
system often used in studies of extratropical, mesoscale eddy dynamics. Both systems
are briefly reviewed in section 2.

In stratified flow, the vertical dimension plays a unique role. For the ocean,
it is often treated in geopotential or isopycnal coordinates. We introduce a family
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2 R. ROBEY AND I. GROOMS

of coordinates (1.3) based on the buoyancy frequency, in which the strength of the
dependency is scaled via a parameter a.

Y
(1.3) €a(z) = f‘X/HN (s)ds.

Here, &, is a normalization constant such that &, € [0,1] is dimensionless. Scaled
versions of the geopotential and isopycnal coordinates are recovered with o = 0 and
a = 2, respectively. Within this family, we make heavy use of the intermediate
coordinate with oo = 1,

1 z
(1.4) ée(z) = fc/H N(s)ds.

The subscript ¢ acknowledges the introduction of this coordinate by J. Charney who
presented it in differential form [4, eq. 19],

(1.5) dé. = %dz.

Known properties of the baroclinic modes for the continuous problem are reviewed
in section 3 along with a discussion of characterizations, including the WKB approxi-
mation, and their applicability. We note the independent appearance of the stretched
Charney coordinate, &, in the approximation and that under the coordinate transfor-
mation even low-order modes have near-constant wavenumber. Section 4 explores the
form of the baroclinic modes under standard layer-based discretizations. We show that
discrete modes display oscillatory behavior mirroring that of the continuous modes,
among other similar properties.

Although the Charney coordinate has appeared incidentally across analytic treat-
ments, it has not, to our knowledge, been leveraged to numerical advantage. Given
the sinusoidal behavior of the continuous modes under the coordinate transform and
constraints on the discrete modes, we propose and test a vertical grid with layers
equispaced in the Charney coordinate. Section 5 presents results for a continuously
varying oceanic stratification showing that a Charney coordinate grid is close to op-
timal in preserving the structure and non-linear interactions of the baroclinic modes.

2. Review of primitive and quasi-geostrophic systems. The primitive
equations model rotating stratified flow under the hydrostatic and Boussinesq approx-
imations and are frequently used in oceanic modeling. Equations (2.1)-(2.4) comprise
a standard expression of the system:

(2.1) du+ (v-V)u+ fZ xu= —inp,
0
(2.2) V.ov=0,
(2.3) 0.p = —pg,
(2.4) Op+ (v-V)p=0.

Here, u = (u,v)T is the horizontal velocity and v = (u,v,w)” is the three-dimensional
velocity; f is the Coriolis parameter, p is the pressure perturbation, p is the density
perturbation, and g is gravity. For simplicity, we omit viscous and diffusive terms and
assume a linear equation of state and no diabatic effects.
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DISCRETE AND CONTINUOUS BAROCLINIC MODES 3

The baroclinic modes, i.e. the normal vertical modes, arise from the linearization
of the primitive equations around a state of rest and fixed stratification varying only
in z, (e.g., [19, sect. 3.4.1]). The vertical and horizontal coordinates of the linearized
system may be separated provided the vertical differential operator,

d 1 d 1
(25) @ <N2(Z) (iz(bm) + %(ﬁm - 07
admits a basis of eigenfunctions, which constitute a natural set of vertical modes for
the pressure and horizontal velocity. Taking 0,¢ = 0 at z = —H, 0 reflects stress-free
boundary conditions, though other physically-meaningful boundary conditions can be
applied [6]. Expanding w and p in terms of the eigenfunction basis (see section 3)
evolution of mode m in the linearized system becomes,

(2.6) ™+ 2V iy, = 0.
Po

The form clearly identifies ¢, as a wave speed, which is associated with an m-th
baroclinic mode gravity wave. The corresponding deformation radius, L,,, may be
related to the wave speed by [10],

|
(2.7) L =\ 4 550

where 8 = 0f /0y is the meridional gradient of the Coriolis parameter.

From the primitive equations, a further simplified, quasi-geostrophic system may
be obtained by asymptotic analysis [19]. The approximation is relevant for studies
of dynamics in extratropical regions of the ocean, rich in mesoscale eddies. The QG
system on a (-plane is given by,

2
2. 2 | —=—0. =q.
(2.9) Vi + 0 (NQ(Z)C')#J)Jrﬁy q
where ¢ is the potential vorticity and ¢ the streamfunction with v = —0y¢ and

v = Jz1. The advection term is written using a Jacobian operator, J[a,b] = 0,a0yb—
0yadzb. The vertical differential operator in (2.9) yields the vertical modes eigenprob-
lem for the QG system (1.1); the modes correspond to those of the primitive equations
(2.5) and eigenvalues reflect extratropical (f # 0, f? > Bc,,) deformation radii,

(2.10) AL =L~
f

3. Continuous baroclinic modes. Well-developed Sturm-Liouville theory es-

tablishes a known structure in the modal solutions of (1.1), which are briefly reviewed

[18, 19]. The vertical modes are eigenfunctions of the Sturm-Liouville problem and

are guaranteed to form an infinite set of solutions, {¢m,}5°_,, which comprise an
orthonormal basis for L?([—H,0]). That is,

0
(31) /—H ¢n¢mdz = 5nm7
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4 R. ROBEY AND I. GROOMS

where d,,, is a Kronecker delta and any L? function may be expanded in {¢,,}.
The eigenvalues are non-positive (preemptively denoted as —\2,), distinct, countably
infinite, and strictly increasing in magnitude to infinity.

It is trivial to confirm the existence of the constant, barotropic mode ¢¢(z) =
1/vH with eigenvalue \g = 0. The depth-varying, baroclinic modes (m > 1) are
characterized by increasing oscillations such that ¢,, has exactly m simple roots in
[-H,0]. Furthermore, due to Sturm’s separation theorem [17, Lemma 5.21] the po-
sitions of the roots of subsequent solutions ¢,, and ¢,, 1 interlace, i.e., between two
roots of ¢,,41 there must be a root of ¢,,.

Important physical attributes due to the eigensystem include the vertical structure
imparted by the modes; the deformation radius, L,,, associated with each mode (2.10);
and the interaction between vertical modes.

The interaction is most straightforward to see in the QG system. FExpand-
ing the potential vorticity and streamfunction in the baroclinic mode basis, ¥ =
S mém(z) and ¢ = Y2°°_ Gmém(2), the evolution equation for mode n be-
comes,

lm

Interactions between modes occur in triads, mediated by triple interaction coefficient,

0

The interaction describes the efficiency of the energetic interactions and transfers
between vertical scales. The interaction coefficient is clearly invariant under permu-
tations of the indices and interactions involving the barotropic mode are simple, i.e.,
O0mn = Omn/VH and similarly for O, and G-

3.1. Approximations of modal behavior. For a general stratification, N(z),
the eigensystem cannot be explicitly solved analytically. Approximations and refor-
mulations can be useful to illuminate characteristics of the modes and deformation
radii.

3.1.1. Asymptotic WKB approximation. The Sturm-Liouville eigenprob-
lem (1.1) lends itself to the asymptotic WKB approximation [3, sect. 10.1]. The
method was employed by Chelton et al. [5, Appendix A] to estimate ocean vertical
modes and the corresponding eigenvalues to gain insight into their behavior. The au-
thors derive the approximate solution for the vertical velocity baroclinic modes; the
corresponding form for the horizontal velocity baroclinic modes studied here is found
in [7, Appendix B] by exploiting the relationship between the two kinds of baroclinic
modes.

The WKB method may also be applied directly to the horizontal velocity baro-
clinic modes, as presented here. As noted, {¢,,} are solutions to a Sturm-Liouville
problem, ensuring \,, — 0o as m — co. Let S(z) = f?/N?(z) and take €2 = )2 in
(1.1), yielding

d do
4 —e2— — ) = -
(3.4) i (s0%2) o
Following the WKB method, we assume a solution of the form
(3.5) Pm(2) = exp[T(2)/0].

This manuscript is for review purposes only.
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DISCRETE AND CONTINUOUS BAROCLINIC MODES 5

Substituting (3.5) into (3.4) and simplifying yields,
2

(3.6) -5

[S(T")? +6(S'T" + ST"(2))] = 1.

In order to achieve dominant balance with the O(1) right-hand side, we choose § = e.
Making this substitution and expanding an asymptotic series, T'(z) = To(z)+€T1(2)+
O(e),

(3.7) ST + €[S'T) + STy + 2STTy] = —1 + O(?).

Equating O(1) terms and recalling the definition of S, Ty must satisfy the differential
equation,

n2 _ 1 _ _N2(z)
This yields a solution,
*N
(3.9) Ty = ii/ () g
o [

where without loss of generality we impose Tp(0) = 0. Equating the O(e) terms in
(3.7) and using the definition for S and (3.9) for Ty,

Sl T/l
1 28T [ =— 0
(3.10) S°<2S+2Té

+T1’> =0.

Noting that 25T} is not equivalently zero, we obtain the following differential equation
for T,

! /!
(3.11) Tl’(z):—1 (S—FTO> :—liln(ST(S):a%ln

2\ s T} 2 dz 2f

(1F1i) N(Z)] .

The rearranged equation then simply yields,

(3.12) Ti(z) = In [(1 +1) ]\;(fz)] :

up to an additive constant that has no effect on the final form of the solution. Sub-
stituting (3.9) and (3.12) back into the ansatz (3.5),

(]5m(2’) ~ exp (1T0 + T1>

(3.13) = exp <j:l /0 N}s)ds> 1) ]\;(Jf)

Linear combinations of the two solutions yield a real form,

(3.14) Gm(2) = NV2(z) [asin (1 /O N](f)ds) + beos (1 /0 N](f) ds)} .
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6 R. ROBEY AND I. GROOMS

To simplify the application of the Neumann boundary conditions, we note that the
derivative is dominated by the sines and cosines at order O(e~!), with the derivative of
N'/2 only O(1). The top boundary, ¢'(0) = 0, requires a = 0. The bottom boundary,
¢'(—H) = 0, recovers an approximation for A,

1 mm f
3.15 A, = - R ———
( ) € fEH N(s)ds

Simplifying, we obtain the following approximation, which may be expressed in terms
of the Charney coordinate, &., (1.4).

(3.16) dm(2) = NY2(2) cos (/\m /O ’ N}S)ds> = NV2(2) cos [mné.(2)] .

The small parameter for the asymptotic approximation depended only on the ex-
pected growth of A,,; the modes are guaranteed to approach the cosine approximation
as m — oo for any stratification N(z) > ¢y > 0. It is, however, the lowest modes
(small m), outside the asymptotic regime, that are most studied and most dynamically
relevant. In this case, a small parameter must be instead be identified with respect
to the behavior of N(z). In the derivation of the vertical velocity baroclinic modes,
Chelton et al. [5] suggest conditions on N under which the approximation is valid:
the scaled rate of change of N should be small compared to the scaled wavenumber.
Given typical oceanic stratification (see, e.g., Figure 1), N does vary slowly in the
bulk of the water column, but routinely violates such an assumption due to the strong
stratification present in the pyncocline.

Despite the breakdown of the underlying assumptions, the WKB approximation
has still empirically proven quite effective, and been used with some success, for low-
order baroclinic modes (e.g., [5, 7, 16]). Of particular interest for our purposes is
the introduction of the Charney coordinate (1.4) in the solution of Tjy. The leading
order solution for ¢,,, (3.14), has constant wavenumber in the transformed coordinate,
regardless of the particular linear boundary condition.

3.1.2. Liouville integral form. Identification of the stretched Charney coordi-
nate using the WKB approach, however, hinges on having made the scaling assump-
tions and approximations, which we know may not universally hold. An alternate
approach to characterizing the behavior of the baroclinic modes involves the refor-
mulation of (1.1) into Liouville normal form [11, 14]. Expanding (1.1) into standard
form,

N’ N2
(3.17) or + (—2N)¢LR+A?WQ¢7” =0.

Following the Liouville transformation (see supplement SM1, [17, Problem 5.13]), we
define a transformed mode, n(§), with

(3.18) ¢(2) = N2 (2)n(€(=)),

along with a stretched coordinate, £, which is exactly the Charney coordinate, &,

1 z . 0
(3.19) €)= () = 2 | wwa €= [ e
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DISCRETE AND CONTINUOUS BAROCLINIC MODES 7

Under the transformation, the differential equation for the transformed mode, n(¢),
takes the Liouville normal form,

(3.20) n'(€) + [ = ()] n€) =0,  £€(0,1),

(3.21) v+ L& o e_o

2N2(¢)

For conciseness, we have defined

The solutions to the transformed problem may be related to the original eigenpairs
using (3.18) and k = \,,&/f. It is guaranteed that x? > 0 since £/ f is a real constant
and it is known A, > 0 from the original formulation.

The Liouville normal form is typically used in investigations of asymptotic behav-
ior and convergence, but also yields, without approximation, an illuminating implicit
integral form ([11], see supplement SM2)

co . I .
(3:23) €)= costng) + Lsiniue) + 1 [ A (s)n(s)sinfe(€ — s)}ds
0
where ¢ = —2£(2¥X N~2)(—H) is a constant arising from the boundary conditions.

The asymptotic behavior as A,, — oo may be recovered with the correspond-
ing limit k — oo; the second two terms in (3.23) vanish and the first cosine term
dominates. Transforming back into ¢y,

(3.24) bm(2) = NV2(2) cos(k&(2)).

As with the WKB approximation, the application of the Neumann boundary condi-
tions cannot be exact but is simplified by noting that the O(x) sine term dominates
the derivative. No mutable parameters exist for the top z = 0 boundary. The bot-
tom boundary implies k = mm. Therefore the eigenfunction and eigenvalue may be
estimated using,

& mrt
£ &

The approximated solutions correspond to the WKB result, (3.15) and (3.16).
Compared to the WKB method, the Liouville transformation gives rise to the
Charney coordinate independent of any scaling assumptions. The form (3.23) shows,
without approximation, that the baroclinic modes may be understood as sinusoids of
constant wavenumber in the Charney coordinate, modified by an integral correction
term. Without relying on substantial decay of the correction term as k grows, it is
sufficient for our purposes that that the convolution inherits the phase of sin(k¢).

(3.25) bm(2) = N2 cos(mméo(2)), Am =

4. Discrete baroclinic modes. Numerical discretization in large-scale ocean
models is typically built on a grid of vertical layers. The continuous baroclinic modes
are not represented directly in the discrete system; rather, the discrete system gives
rise to its own, distinct set of modes equal to the number of layers. The discretization
and placement of the layers in the grid impact the fidelity of the baroclinic mode
representation.

This manuscript is for review purposes only.
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8 R. ROBEY AND I. GROOMS

4.1. Quasi-geostrophic modes. As in the continuous problem, the discrete
baroclinic modes are analogously defined by an eigenproblem, based on the discrete
representation of the vertical differential operator. A classical numerical scheme for
the QG system with continuously-varying stratification uses a second-order, centered
finite-volume scheme (e.g., [9]). Under this approach, for a general grid with N layers
of depth hq .. ar, the discrete vertical difference operator, L, is given by,

f2(2) )N f2( o Qi1 — i 9 ¢i¢i+1)
w1 0. (Faggeee) = o= - (33 s VA )

where the indices follow the ocean convention counting down from the surface and
Nifl /2 is the evaluation of N~2(z) at the layer interfaces, z;4+1 /2. The homogeneous
Neumann boundary conditions are treated by letting the exact derivative 0,¢,, = 0

at the top and bottom take the place of the finite difference approximation. Thus,
(4.2) Lo+ \2¢p =0,

is the discrete analog to the continuous eigenproblem (1.1).
Note that the QG stretching matrix derived from the rotating shallow water
equations (e.g., [19, sect. 5.3.2], [12, sect. 6.16]), i.e.,

(L)1 = 12 <¢1 + W) ,

ghy g1h

Pic1— Pi i — Pit1
4. L] . i = 2 )
(4.9 (Lol = 7 (P2 4 2ol

with g, = g(pr+1 — px)/p1 the ‘reduced gravity’, is isomorphic to the finite volume
formulation (4.1) in the limit g > g} (e.g. [19, sect. 5.4.6]).

4.2. Equivalence with primitive equation modes. To demonstrate that the
analysis of the discrete baroclinic modes performed here has relevance outside the
setting of quasi-geostrophic dynamics, we make a connection between the discrete
baroclinic modes of the primitive equations and those of QG. The approach is to
discretize the primitive equations in the vertical direction only, and then to study the
normal modes of the discrete system, linearized around a state of rest.

There are many ways to discretize the vertical coordinate in the primitive equa-
tions, so we focus on an approach shared by two modern ocean models: The Model
for Prediction Across Scales - Ocean (MPAS-O; [13]) and the Modular Ocean Model,
version 6 (MOMS; [1]). Both of these models use an arbitrary Lagrangian-Eulerian
(ALE) approach to the vertical coordinate.

We will analyze the purely Lagrangian limit of this discretization, given below

1

(4.4) owuy +ug - Vug, + fZxu,=——Vpg — %Vzk,
Po Po

(4.5) Othi + V - (hgug) =0,

(4.6) 8t(hkpk) + V- (hkukpk) =0.

These equations use a Boussinesq approximation and assume a linear equation of
state and no diabatic effects. The index k denotes layers, and the ocean modeling
convention is that k increases downwards. The thickness of the k" layer is denoted hy.

This manuscript is for review purposes only.
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DISCRETE AND CONTINUOUS BAROCLINIC MODES 9

The fact that this is a purely Lagrangian limit is reflected in the fact that the thickness
evolution equation includes no source or sink terms associated with transport between
adjacent layers. The pressure py and height z; are obtained from the layer density pj
and thickness hj, via

k—1
1
(4.7) k=g [zpkhk + anhnl ;
n=1
) N
(4.8) 2k = hi + ;th + 2n,

where zy is the depth of the lower boundary.

To find the normal modes, linearize around a state of rest u;y = 0, thicknesses
hy = Hy, and densities pr = Ry, where Hy and Ry are assumed to be positive and
independent of the horizontal coordinates and of time. The density stratification is
also assumed to be stable, i.e. R, > Rjp_1 for & > 2. In order for this state to
be an equilibrium of the governing system, the lower boundary depth zx must be
independent of the horizontal coordinates, i.e. the lower boundary must be flat. The
linear perturbation equations are

1 R
(4.9) ouy, + fﬁ Xup =——Vpg — g—szk,
Po £o
(4.10) Oshy + H,V -uy, = 0,
where the pressure and height perturbations are
k—1
1
(4.12) P =9 |5 (Brhi + Hepr) + > (Ruhn + Hupn) |
n=1
1 N
(4.13) 2k = §hk + Z hy,.
n=k+1

To separate the vertical and horizontal directions in the perturbation equations
it is convenient to define some notation: let

1
2
(4.14) T—| !

: o
1o 14

Dpr be a diagonal matrix with diagonal elements Ry, and Dy be a diagonal matrix
with diagonal elements Hj. With this notation the relationship between interface
heights and layer thicknesses (4.13) can be written

(4.15) z="T"h,
and the pressure perturbation equations (4.12) can be written

(4.16) p=gT (Drh+Dpyp).

This manuscript is for review purposes only.
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The velocity (4.9) and thickness perturbation (4.10) equations can be written in ma-
trix form as,

(4.17) dut f2xu= —piv [T (Drh +Dyp) + DrT7h],
0

(4.18) Oh+DyV - u=0.

We may eliminate both the thickness and density perturbations by taking the time
derivative of (4.17) and using the time-independence of the density perturbations
(4.11) and the evolution equation (4.18) for the thickness perturbations. The result

is,
(4.19) PPu+ f2 x du = % [(TDR +DRTT) DH} V.u

We can separate variables in this wave equation for the horizontal velocity provided
that the matrix,

(4.20) g KTD R+ D RTT) DH} ,
Po
has a complete set of eigenvectors; these eigenvectors would then correspond to the
vertical structure of the linear normal modes of the system.
If the eigenvalues of this matrix are A, then the dispersion relation for the asso-
ciated waves is

4.21 w=0, +f2+A\k?
(4.21) : :

where k is the magnitude of the horizontal Fourier wavenumber vector.

The relationship between the vertical structure of the normal modes of the prim-
itive equations and the baroclinic modes of the discrete QG system is provided by the
following theorem:

THEOREM 4.1. The matriz (4.20) is equal to —f?L;} , where Luy. is the QG
stretching matriz (4.3).

The proof is deferred to Appendix A.

The implication of Theorem 4.1 is that the discrete baroclinic modes from QG
theory are the same as the vertical structure of the normal modes (for the horizontal
velocity) of the linearized discrete primitive equations (4.9)—(4.13). The interaction
coefficients associated with the nonlinear advection terms in (4.4) and (4.5) are exactly
the same as the interaction coefficients for the QG nonlinear term.

4.3. Discrete mode properties. We analyze the properties of the discrete
eigensystem based on L, defined in (4.1); however, the analysis applies to the lay-
ered shallow water version of QG as well as prevalent discretizations of the primitive
equations as shown in subsection 4.1 and subsection 4.2.

A rich structure of properties, in many ways mirroring those of the eigenpairs of
the continuous Sturm-Liouville problem (1.1), can be derived for the discrete system
(4.2). The commonalities, however, do not ensure accuracy; the choice of grid may
in fact preclude the discrete eigenvectors from accurately representing the behavior
of the continuous eigenfunctions. To begin, we can confirm that important properties
of the operator spectrum are preserved.

THEOREM 4.2. The matrix L has real, distinct eigenvalues and is negative semi-
definite.

This manuscript is for review purposes only.
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DISCRETE AND CONTINUOUS BAROCLINIC MODES 11

Proof. Via a similarity matrix P = diag[h}/Q, hé/Q, cee h}f], L is similar to a real,
symmetric, irreducible tridiagonal matrix. It therefore has real, distinct eigenvalues.
L is also diagonally dominant, with |¢; ;| > [¢; ;—1| + [4;i+1]. Applying Gershgorin’s
circle theorem, the eigenvalues must then lie along the non-positive real axis. 0

LEMMA 4.3. The matriz L is self-adjoint with respect the the weighted inner prod-
uct {(a,b) = a”Hb.

Proof. Note that we may write L = H™'S where H = diag(hy, ho, ..., hy) and
S is symmetric and tridiagonal. Then it follows easily that,

(Lz,y) = 2" L"Hy = " Sy = 2" HLy = (z, Ly),

and thus L is self-adjoint. ]

THEOREM 4.4. The eigenvectors of L form an orthonormal basis of RN with re-
spect to the weighted inner product {(x,y) = T Hy.

Proof. By Lemma 4.3, the matrix L is self-adjoint with respect to the weighted
inner product (x,y) = 27 Hy. Eigenvectors of a self-adjoint matrix corresponding to
distinct eigenvalues are orthogonal with respect to the appropriate inner product and
by Theorem 4.2, all eigenvalues of L are distinct. Therefore, all eigenvectors of L are
mutually orthogonal and thus form a basis for RV . 0

As in the continuous case, the discrete modes display a particular structure. Bor-
rowing concepts and results from studies of oscillatory matrices, we are able to con-
cretely characterize oscillations in the discrete eigenvectors. L is an irreducible tridi-
agonal matrix, sometimes termed a Jacobi matriz following [8, Chap. 2.1]. Further,
requiring stable stratification, N?(z) > 0, —L is a normal Jacobi matriz of the form,

ay —by
—C1 ag —ba
—cs
*bn—l
—Cp—1 an

with a;,b;,¢; > 0. Such matrices are a common starting point in studies of more
general oscillatory matrices. From Gantmacher and Krein [8, Thm. 1 and Thm. 4],

THEOREM 4.5. Given L a normal Jacobi matriz, the sequence of entries in the

m™ eigenvector, ¢, has exactly m changes in sign (m=0,...,.N —1).

THEOREM 4.6. The sign-changes (nodes) of two successive eigenvectors alternate.

Therefore the discrete modes have both the increasing oscillations and vertical com-
plexity of the continuous modes, as well as a version of the interlacing properties.
These constraints on the structure of the discrete modes may then be examined in
relation to the behavior of the continuous modes we hope to represent.

The barotropic mode is well-handled, regardless of grid choice. As in the contin-
uous problem, for L defined by (4.1) we can confirm the guaranteed existence of a
constant barotropic mode associated with A\g = 0. The discrete analog for the interac-
tion coefficient, using the H-weighted inner product for the orthogonality condition,
is given by,

(4.22) Otmn = ¢ H (dm 0 ¢1)
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where o denotes elementwise multiplication. The barotropic mode is constant so that
(4.22) reduces to the H-weighted orthonormal relation between the remaining two
modes, just as it does in the continuous problem, yielding the correct interaction
coefficients as well. (For L. defined by (4.3) the barotropic mode has no sign
changes, but is weakly non-constant.)

The behavior of the oscillating baroclinic modes, however, is not guaranteed to
coincide with that of the continuous system and may be undermined by a poor choice
of grid. Consider, for example, the highest order discrete mode, ¢pr—1. Two thin
layers might be placed together such that the continuous mode, ¢ —1, has no roots
between the centers of these two thin layers. The discrete form requires that the ele-
ments ¢r_1 corresponding to these layers differ in sign, creating an oscillation where
there should not be one. Because ¢ar—1 has this spurious sign change, it must omit
one of the continuous oscillations that occurs elsewhere in the domain in order to
maintain the appropriate number of total sign changes. Thus the discrete baroclinic
modes may be subject to both elided and spurious oscillations. The interaction coef-
ficient will also be duly impacted. In order to avoid these errors, the layers should be
ideally placed to support oscillations in the correct positions.

5. Optimal grid spacing and diagnostics. We propose a grid that is equis-
paced in the Charney coordinate (1.4) in order to near-optimally resolve the baroclinic
mode structures. As discussed above, approximations (subsection 3.1) and heuristics
suggest that the baroclinic modes rapidly approach modulated cosines in &.. Fur-
thermore, the behavior of the discrete modes (subsection 4.3) implies that the layers
should be in accordance with the oscillations of the baroclinic modes to allow the sign-
changes to reflect continuous behavior. Equispaced layers in the Charney coordinate
are well-suited to resolving the cosine-like behavior and are a sensible generalization
for the continuously varying case.

Note that as the order of the highest-represented mode increases, the cosine ap-
proximation should improve. That is, the lower-order modes for which the spacing is
less optimal have the benefit of having many points between the roots. The spacing
becomes more optimal for the high-order modes that have the fewest points to capture
the denser oscillations.

Previous multi-layer QG studies have proposed related schemes for choosing the
grid based the idea of resolving baroclinic modes. For example, Beckmann [2] placed
N layer interfaces at the roots of the N'*" continuous mode. Practically speaking,
to assign N — 1 layer depths with this method requires first computing an accu-
rate approximation to the A'*" continuous mode, which requires using a temporary
discretization with significantly more than A layers.

Roullet et al. [15, eq. 10] develop an alternative approach to specifying the layer
thicknesses by requiring their discretization of the continuous QG elliptic operator
(2.9) be well-balanced. Their prescription can be related to the differential form of
the Charney coordinate (1.5) as follows:

N2

N g
5.1 Af==Az = A& ="NA2=— ApAz.
> 7 7 oo ?
The final equality of the expression above uses the finite-difference approximation
N2 = —g0.p/po ~ —gAp/(poAz), and the final grid spacing Az is obtained by

requiring A€ to be constant. Practically speaking, to assign N layer depths with this
method requires solving an equality-constrained nonlinear optimization problem.
Neither of these QG approaches has been proposed as a basis for a vertical co-
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Surface layer

Pycnocline

0.8
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o

Normalized depth —z/H
=3
>

Charney coordinate depth &

0.2 4

0.0 4 Deep ocean

26 27 28 0 2 4 -2 0 2
Density oy [kg/m3] N2 [s72] le-5 Vertical modes ¢y(z) Vertical modes ¢pm(&c)

Fic. 1. Density and buoyancy frequency profiles for a representative oceanic stratification profile
with a strong subsurface pycnocline. The first few baroclinic modes, computed at high resolution, are
shown in geopotential space and the stretched Charney coordinate along with the N1/2(§C) envelope.

ordinate in primitive-equation models, where the stratification varies slowly in the
horizontal directions, because both would be impractical. In contrast, an equispaced
grid in the Charney coordinate only requires integrating the profile, N(z), which is
typically already computed within the model for other purposes.

The importance of designing grids that accurately resolve the baroclinic modes
is only now being discussed for global primitive equation modes. Stewart et al. [16]
propose a geopotential grid in which they constrain the spacing using estimated roots
of the first one or two baroclinic modes computed from global data with the WKB
approximation. In a geopotential grid the layer depths are the same for all points
on the globe, so to accommodate global variations in the stratification (and hence
variations in the mode structure), the geopotential grid requires a significant number
of layers — 50 to resolve the first baroclinic mode, and 25 more for each of the second
and third modes.

5.1. Grid diagnostics with realistic ocean stratification. In order to test
the behavior of different grids in an ocean-like setting, we define a realistic reference
stratification profile,

N(z) z w?
(5.2) = — ot .
7 T N R

The parameters ¢; = 4 and ¢o = 22 are chosen to ensure N(z) positive and nonva-
nishing and to establish a gentle stratification at depth. Ocean profiles are typically
dominated by the pycnocline, a region of strong stratification at or near the surface.
The intensity, center, and depth of the pycnocline are controlled via the parameters
cp = 45, 2z, = —0.03 and w, = 0.03. The resulting density and buoyancy frequency
profiles are shown in Figure 1. A high-resolution (512 equispaced layers in geopotential
coordinates) reference computation of the baroclinic modes illustrates the expected
leading barotropic mode and oscillating behavior of the baroclinic modes.
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Fic. 2. First twenty discrete baroclinic modes computed with high resolution and using twenty
equispaced layers in geopopotential, Charney, and isopycnal coordinates. Black dots indicate sign
changes in the eigenvector. Second row shows the corresponding error.

We are primarily interested in the accuracy of the structure of the baroclinic
modes, the corresponding baroclinic deformation radii, and the triad interactions
represented by the interaction coefficient. Diagnostics on the performance of the
grids focus on a limited resolution case. We compute the discrete baroclinic modes
with twenty equispaced layers in geopotential, Charney, and isopycnal coordinates.
As a reference, we use a high-resolution computation, which is well-converged for the
first twenty modes and should be representative of the continuous behavior. This
comparison primarily serves to illustrate the salutary properties of the Charney grid
in determining a spacing; it is important to note that the geopotential and isopycnal
grids used in ocean models are typically not equispaced. The Charney grid is seen to
generalize behavior from the discrete representation of constant stratification case, in
which the modes are all simple cosines, to the more complex, continuously-varying-
stratification case (see supplement SM3).

We compare the structure of the low-resolution modes along with the pointwise
error (Figure 2). As anticipated, the barotropic mode is captured across grids. The
interlacing sign-changes of the modes is also apparent across grids. The first few
baroclinic modes are fairly well resolved and display modest error. Considering the
higher-order modes (m 2 5), a marked divergence emerges. Immediate, dramatic
differences in the vertical structure are evident when using equispaced geopotential
and isopycnal grids: the largest oscillations are trapped too low in the water column
with geopotential grid and too high in the pycnocline with the isopycnal grid. The
Charney coordinate grid allows for the oscillations to remain appropriately distributed
and produces consistently low error throughout. The consistency confirms the theo-
retical prediction that a Charney-coordinate grid will require fewer layers to achieve
resolution of the highest desired mode.

The normalized baroclinic deformation radii, H/\,,, arising from the eigenvalues
of the system and their corresponding errors are plotted in Figure 3. The barotropic
mode is omitted; its zero eigenvalue and infinite radius are known to be reproduced for
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Fic. 3. Normalized baroclinic radii computed using a high-resolution reference and with twenty
equispaced layers in geopopotential, Charney, and isopycnal coordinales.

any grid. The Charney grid outperforms the geopotential and isopycnal grids for the
lowest modes and the error steadily increases with m, systematically overestimating
the radius. The overestimation is consistent with behavior expected in a generalization
of the discrete representation in a constant stratification case. The geopotential grid
suffers in the lower modes but maintains lower error for longer before reaching similar
magnitudes as the Charney grid at high m. The isopycnal grid performs worst of
the three, overestimating the large, low-mode radii and underestimating the smaller,
high-mode radii.

To assess the interaction coefficients (3.3), we use the discrete form (4.22) and ex-
amine slices with one index fixed (Figure 4). As noted, interactions with the barotropic
mode reduce to orthogonality conditions reproduced across grids. For more complex
triads, the characteristic diagonal structures present in the reference collapse under
the geopotential and isopycnal grids. Interactions between the higher modes can fully
misrepresent active and inactive triads, but even as low as the 4 or 5" mode, there
are significant errors. The Charney grid, which successfully captures the structure of
the baroclinic modes, also captures the interaction coefficients with much better accu-
racy throughout; the most significant errors are confined to the interactions with the
very highest modes represented. With the Charney grid, the largest instances of error
appear in the introduction of spurious negative interactions when £ +m + n = 2N,
echoing aliasing effects that can be shown to be present in a constant stratification
case.

The geopotential, isopycnal, and Charney grids may be understood as instances
in a parameter space by leveraging the formulation of a coordinate family (1.3). We
evaluate how the error varies in the transition between grids by testing equispaced
grids that use coordinates with values a € [0, 2] weighting the buoyancy frequency
(Figure 5). The heuristic findings underscore the unique role of a = 1 within the
parameter space to minimize error in the representation of the baroclinic modes as

This manuscript is for review purposes only.



16 R. ROBEY AND I. GROOMS
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Fia. 4. Slices of the interaction coefficient tensor ©gp,, with £ = 3 fived. A high-resolution
reference s shown, along with the values and errors computed using grids of twenty equispaced layers
in geopopotential (v =0), Charney (o = 1) and isopycnal (o = 2) coordinates.
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Fic. 5. Normalized errors in the eigenmodes (left) and eigenvalues (right) computed using
twenty-layer grids equispaced in varying « coordinates. Gray lines indicate individual modes with
darker lines at lower modes. The thicker red line highlights the maxzimum over all m.

well as the global error in the eigenvalues, indicating it is indeed an optimal choice.

6. Concluding remarks. In this paper we review the baroclinic modes govern-
ing natural vertical oscillations in the primitive and quasi-geostrophic systems along
with their known properties. Given a continuously-varying stratification, the modal
solutions cannot in general be analytically solved.

We present a derivation of the WKB approximation of the baroclinic modes for
large eigenvalues and discuss the applicability for low modes. An alternate, unapprox-
imated Liouville integral form of the modal solutions is also derived that coincides
with the WKB approximation for large eigenvalues and suggests similar sinusoidal
behavior may be present in the transformed Charney coordinate, independent of as-
ymptotic scaling assumptions.

In numerical models, the underlying baroclinic modes are not typically explicitly
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represented but instead arise from the discrete stretching matrix for the vertical dif-
ferential operator. Under common discretizations of the QG and primitive equation
systems, we show the stretching matrices coincide. We further demonstrate proper-
ties of the discrete eigensystem, including the identification of oscillatory, sign-change
requirements in the eigenvectors analogous to those of the continuous eigenfunctions.

Leveraging the analytical framework suggesting a special role of a Charney coor-
dinate in regulating the phase of the modal oscillations, and constraints in the discrete
behavior that demand layers coincide with the locations of the oscillations, we pro-
pose a new discrete grid approach with layers equispaced in the Charney coordinate.
While the coordinate has appeared in analytic treatments [4, 5], its unique properties
have not to our knowledge been exploited numerically.

The Charney grid is shown to near-optimally resolve the baroclinic modes and
interaction coefficients, as well as the baroclinic radii with much improved accuracy
compared to equispaced geopotential and isopycnal grids. With respect to exist-
ing approaches in QG literature, the Charney-coordinate approach to constructing a
grid achieves favorable resolution properties, but is also efficient and computationally
tractable enough for adaptation to primitive-equation models. Because the grid also
responds to the local stratification, resolution can be achieved globally with fewer
layers than required by a geopotential grid approach.

Building off of the theoretical basis for the Charney grid presented here, it remains
to test its performance and impact on modeled dynamics in fully nonlinear QG simu-
lations, and eventually to implement it as a vertical coordinate in a primitive-equation
model.

Appendix A. Proof of Theorem 4.1. Let

(A1) M = L PDy; where P = TDg + DT%.

Po

The proof hinges on finding an explicit form for P!, which is obtained by Gauss-
Jordan elimination.
First note that

R, -+ --- Ry
(A.2) p— oo o
R, Ry, --- Rn

Consider the application of elementary row operations to find the inverse by solving
PX = 1. The initial augmented matrix is

Ry - - Ry |1
(A3) p72 p72
Ry Ry --- Ry 1

Eliminating below the first diagonal, followed by elimination to the right of the first
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18 R. ROBEY AND I. GROOMS

diagonal, followed by a normalization of the first diagonal produces

1 1 1
0 RV R ~1 1
(A4) ’ :
0 : : -1
0 Ry’ RY | -1 1
where
(A.5) R® = R, — R, > 0.

Since the lower (N — 1) x (N — 1) submatrix on the left has the same form as the
original matrix, we can almost proceed inductively, but not quite; the column of —1 on

the right prevents this. However, we may proceed to eliminate below

the second column, then eliminate to the right of the second diagonal,

the second diagonal, which produces

1 1 1
A
(A.6) L A o
0o 0o RY 0 -1 1
0 0 R 0 -1 1

the diagonal in
then normalize

At this point we can see the pattern repeating inductively and producing the final

expression for P71

RLI + Rzn 7Ri1)
_ 1 1 4 1 1
R;I) Rél) R(SZ) RL%Q)
(A7) P = _
_ 17 17 + 17 _ 17
RE\]N,12) REVN,12) REVN 1) Rg\]N 1)

To complete the proof we need to show that — f2M ™! = L where L is the discrete

QG stretching matrix (4.3). Expanding,

2
(A8) —fAM*'= 7%13;[11)*1 —

7
2 2 2 2

7
H292

2

Hy-19%_4
2

2

!

HNgy_1

this is clearly satisfied when the reduced gravities are g; = gR,(;i)l/ 00

Ry)/po and we assume pg = R;. Further, under the identification

f2

-1

QNk—1/2 9;;_1

(4-9) 3 (hie—1 + hu)

7 s i.e. NQ(Zk_l/z) =
Ik—1

hi—1/2
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and in the limit g > ¢/ it is isomorphic to the discretization (4.1) of the continuous
QG equations,

(A.10)
_ y y _
_ N3/2 N3/2
h3z/2h1 hz/2h1
—2
N3/2
hg/aha
—2 -2 -2 -2
L= f2 Nk71/2 _ Nk—1/2 Nk+1/2 Nk+1/2
hi_1/2hk hi_1/2hK hig1/2hy hig1/2hk ’
—2
N/\/—l/z
) hN71/22hN—1
NN—1/2 _ NN—1/2
L har—1/2hn har—1/2hn

with hi:l:% = (hi + hiz+1)/2.

The difference lies in the (1, 1) entry; the layer form assumes a free surface whereas

the finite volume form imposes a stress-free boundary condition. The limit g > ¢} is
tantamount to saying that the variations in the height of the free upper surface are
small, which is appropriate for ocean mesoscales.
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