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Abstract—This paper focuses on fuzzing document software
or precisely, software that processes document files (e.g.,
HTML, PDF, and DOCX). Document software typically
requires highly-structured inputs, which general-purpose
fuzzing cannot handle well. We propose two techniques to
facilitate fuzzing on document software. First, we design an
intermediate document representation (DIR) for document
files. DIR describes a document file in an abstract way that
is independent of the underlying format. Reusing common
SDKs, a DIR document can be lowered into a desired format
without a deep understanding of the format. Second, we
propose multi-level mutations to operate directly on a DIR
document, which can more thoroughly explore the searching
space than existing single-level mutations. Combining these
two techniques, we can reuse the same DIR-based genera-
tions and mutations to fuzz any document format, without
separately handling the target format and re-engineering the
generation/mutation components.

To assess utility of our DIR-based fuzzing, we applied it
to 6 PDF and 6 HTML applications (48-hour) demonstrated
superior performance, outpacing general mutation-based
fuzzing (AFL++), ML-based PDF fuzzing (LEARN&FUZZ),
and structure-aware mutation-based fuzzing (NAUTILUS)
by 33.87%, 127.74%, and 25.17% in code coverage, respec-
tively. For HTML, it exceeded AFL++ and generation-based
methods (FREEDOM and DOMATO) by 28.8% and 14.02%.

1. Introduction

Document files (e.g., HTML, PDF, and WORD) are
used everywhere. For instance, Adobe estimated there
may be up to 2.5 trillion PDF files in the world [1].
Software processing document files (e.g., PDFium Viewer
and Office Word) has, thus, become a part of our daily
life. However, this type of software often has a large
codebase and high complexity, consequently containing
many bugs that endanger security. For instance, over 600
vulnerabilities in Acrobat Reader were reported to the
CVE database in the past 10 years [2], which affected a
huge number of users. Therefore, it is critical to develop
techniques to discover bugs in such software.

To find bugs in software, fuzzing [3] is one of the
most practical techniques, thanks to its easy application
to production-grade software. General-purpose fuzzing
tools, such as AFL [4] and AFL++ [5], can also be
applied to document-processing software (or document
software for short). However, such fuzzing tools are less
effective, as they cannot produce the highly-structured in-
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puts desired by document software. Compared to general-
purpose fuzzing, generation-based fuzzing is a more ef-
fective approach. Technically, generation-based fuzzing
follows a grammar model of the target document format—
summarized manually [6], [7] or obtained using machine
learning [8], [9]—to assemble structure-correct testcases.
Generation-based fuzzing can be further enhanced by
integrating coverage-guided, structure-aware mutation [6],
[10], [11].

While existing generation-based fuzzing and structure-
aware mutation tools have demonstrated success on doc-
ument formats such as HTML [6] and XML [8], they
still carry two major limitations when applied or extended
to other formats. First, following these tools, we need to
create a grammar model for every new format. If done
manually, this can require intensive human effort [6], [7].
Alternatively, we may leverage automated methods like
machine learning [8], [9] to derive the grammar models.
However, these methods tend to only cover simple or
partial grammar. Second, these tools typically only run
mutations at a single level. For instance, NAUTILUS [10]
represents a document as a tree and performs mutations
at the sub-tree level. In contrast, FREEDOM [6] conducts
mutations at the attribute level of HTML files. Focusing
mutations on a single level cannot sufficiently gain the
benefits of other mutations and, thus, limit the exploration
space.

In this paper, we present a new scheme to overcome
the above two challenges in fuzzing document software.
Sitting at the core of our scheme are two ideas. First, we
introduce an intermediate document representation, named
DIR, to describe a document file in an abstract way. At a
high level, DIR represents a document as a set of pages
where each page consists of a group of objects (e.g., text,
figure, table, etc.). Each object is described by its attributes
(e.g., a text object can be described by its location, data,
font, size, and color). By design, DIR is general enough to
support the various document formats we are using today.
Thus, the generators and mutation components built for
DIR can be reused for any format. To actually fuzz the
target software, we still need to lower a DIR document,
produced by the generators or derived by the mutation
components, to the target format, which would still require
a grammar model of the target format. Fortunately, we
find that many SDKs exist to process common document
formats. These SDKs often provide interfaces that can
be reused to lower a DIR document to the target format
without understanding the underlying grammar. Thus, by
combining the DIR-based generation/mutation and the



proper SDKs, we can easily fuzz any desired document
format.

Second, we propose to run structure-aware mutations
at various levels of the DIR documents, including the page
level, the object level, and the attribute level. Contrary
to single-level mutations, our multi-level mutations offer
a more comprehensive exploration of the search space
and thus, can more thoroughly cover the code space and
discover bugs. To further introduce unexpectedness, we
finally couple the structure-aware mutations with random
mutations offered by popular tools such as AFL and
AFL++.

To understand the feasibility and utility of our DIR-
based, multi-level fuzzing scheme, we apply the scheme to
build a fuzzing tool called MODIFIER for both PDF and
HTML. We show that by leveraging our DIR and the Foxit
PDF SDK [12]/WebTookKit [13], MODIFIER can effec-
tively generate and mutate PDF or HTML files with only
a basic understanding of their grammar. This demonstrates
the feasibility of our fuzzing scheme. The performance of
MODIFIER was compared to other fuzzing tools on 6
PDF applications and 6 HTML applications. Using edge
coverage as the metric, MODIFIER outperforms general
mutation-based fuzzing (AFL++ [5]) by 33.87%, ML-
enabled generation-based fuzzing (LEARN&FUZZ [9])
by 127.74%, and structure-aware mutation-based fuzzing
(NAUTILUS [10]) by 25.17% on PDEF. Applied to
HTML applications, MODIFIER outperformed gen-
eral mutation-based fuzzing (AFL++ [5]) by 28.83%
and generation-based fuzzing (FREEDOM [6] and DoO-
MATO [7]) by 14.02%.

In summary, we make the following contributions.

e We design a general intermediate representation (DIR)
to describe document files, facilitating fuzzing on various
downstream document formats without a deep under-
standing of their grammar.

e We propose multi-level DIR mutations for document

files. Our multi-level mutations can enable better ex-
ploration of the code space and improve the fuzzing
effectiveness on document files.

e We apply DIR-based fuzzing and multi-level muta-
tions to PDF and HTML. Our evaluation shows that
our fuzzing tool outperforms the existing ones, demon-
strating the benefit of our fuzzing scheme. Our code
has been anonymously released at https://github.com/
junxzm1990/hierachy-fuzzing.

2. Background and Motivation

2.1. Document Software Fuzzing

To test document software, an effective approach is
generation-based fuzzing. Generation-based fuzzing [14]
follows the grammar of the target document to assemble
inputs that are lexically and syntactically correct, offering
a higher probability of reaching deeper code. There are
two major strategies to build the grammar. The first strat-
egy relies on manual efforts to summarize the grammar
and encode the grammar as production rules. The strategy
has been applied on HTML [6], CSS [7], and SVG [7].
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Figure 1: An example PDF file displaying “Hello, World”
at the beginning of the first page. The file spans 2 columns.

In contrast, the second strategy learns the grammar from
a large corpus of existing documents, which has been
employed to fuzz XML [8], XSL [8], and PDF [9].

Pure generation-based fuzzing runs in a blackbox
manner without using any runtime feedback, which may
lack the guidance to cover many code paths. This moti-
vated the follow-up research to introduce coverage-guided,
structure-aware mutation on generated document files [6],
[10]. NAUTILUS [10] represents a generated input as a
derivation tree (similar to an abstract syntax tree) and runs
mutations at the subtree level (e.g., replacing a subtree
with another). New inputs produced during the mutations,
if covering new code, will be kept as targets of future
mutations. GRAMATRON [11] adopts a similar approach.
Alternatively, FREEDOM [6], focusing on HTML fuzzing,
performs mutations at a more fine-grained level. It mutates
the attributes on the DOM tree and the CSS rules referred
to by the DOM tree.

2.2. Limitations of Existing Tools

While existing tools running generation-based fuzzing
plus structure-aware mutation demonstrated effectiveness
in testing document software, they still carry two limita-
tions.

First, they need to build a separate grammar model
for each document format. If all is done manually, this
can incur extensive labor costs. Using machine learning
can reduce such costs. However, machine learning may
only learn simpler grammar or partial grammar due to
imperfections in algorithms and data. Consider PDF as an
example. PDF has a very complex grammar, whose speci-
fication requires a document with nearly 1,000 pages [15].
Just displaying the text of “Hello, World” would need a
file as complicated as Fig. 1. Even the state-of-the-art ML-
based tool [9] can only learn grammar models to generate
independent PDF objects instead of complete PDF docu-
ments. Another issue of using separate grammar models
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(o) = (pages)
(pages) = (page) | (page); (pages)
(page) = (size); (objects)
(objects) = (object) | (object); (objects)
(object) = (text) | (figure) | (table) | (form) | ...
(texty = (position); (font); (data); (ref); (event)...
(figure) = (position); (size); (title); (source); (event)
(font) = (Helvetic)...

Figure 2: Grammar of DIR. Other production rules are
omitted for the simplicity of presentation.

is that the mutations need to be engineered separately for
different document formats.

Second, the existing tools run mutations at a single
level. For instance, NAUTILUS [10] does mutations
at the coarse-grained, subtree level, and FREEDOM [6]
conducts mutations at the fine-grained, attribute level.
However, mutations at different levels can bring non-
overlapping benefits in covering code and activating bugs.
Thus, those tools cannot sufficiently exploit the potential
of mutations.

3. Our Approach

In this paper, we propose a new fuzzing scheme to
test document software. In principle, our scheme also
follows the idea of combining generation-based fuzzing
and structure-aware mutations. However, it involves two
new techniques — intermediate document representation
and multi-level document mutations — to address the two
limitations discussed in Section. 2.2

3.1. Intermediate Document Representation

A document file, no matter which format it follows,
can be described in an abstract way that is independent
of its actual format. For instance, the document presented
in Fig. 1 can be described as:

A document that has one page and displays “Hello,
World” at the location of (posl, pos2) using font type A,
font size B, and color black.

The above observation brings us the key insight of creating
an intermediate representation, named DIR, for document
files. Following the grammar of the DIR, we can generate
documents that can be lowered to any desired format. This
way, we only need to build a grammar model for the DIR,
but we can enable generation-based fuzzing for various
formats. Moreover, we can perform many mutations di-
rectly on the DIR, avoiding the necessity of re-engineering
the mutation components for different document formats.

Design of DIR. DIR is intended to support heterogeneous
document formats. Thus, its design should be generic
enough to represent various types of documents. To satisfy
this requirement, we propose DIR with grammar shown
in Fig. 2.

In general, DIR represents a document as a set of
<pages> where each <page> consists of a group of
<objects>. An <object> can be a piece of <text>,
a <figure>, a <table>, or other common types of
document components (e.g., a fillable <form>). Each ob-
ject is described by its <attributes>. Some attributes
are shared by all kinds of objects, such as <position>
of the object on the current page. Other attributes are
unique to an object type. For instance, text objects have
the <font> attribute that other objects do not have. A
special attribute is <event>, which defines handlers to
handle events pertaining to an object (e.g., the handler of
clicking a button). The DIR also restricts the attributes
of an object based on the object’s type. For instance, it
disallows adding a <source> attribute to a <text>
object. To better illustrate the idea of DIR, we re-present
the document shown in Fig. 1 as a DIR document below:

1 Doc:

2 Pages: Pagel

3 Pagel: Textl

4 Textl: [Pos: 0, 0] [Font: Helvetica] [Size: 1lpt]
[Color: Black] [Data: ‘‘Hello, World’’]

DIR has a different design goal from IRs used in
previous document fuzzing tools. Consider the FD-IR
from FREEDOM [6] as an example. FD-IR is created
to describe Document Object Model (DOM) specifically.
Thus, its design is heavily tailored toward DOM (e.g.,
following the DOM structure, encoding CSS rules, and
maintaining event handlers). Reusing FD-IR for other doc-
ument formats, if possible, will mandate heavy extensions
or customizations.

3.2. Multi-level Document Mutation

Leveraging the DIR, we will follow the workflow
presented in Fig. 3 to fuzz a target document software.
The first step is to build a corpus of seed documents.
Unlike existing tools [6], [10] that directly build the
target documents, we alternatively create documents in
the format of DIR, using two different methods. The
first method is to follow the DIR grammar to generate
DIR documents randomly. The other method is to convert
existing documents in any format to DIR documents. At
this point, we have developed DIR converters for PDF and
HTML.

After building the DIR documents, our scheme will
run a series of mutations. Most mutations will be applied
directly to the DIR documents, avoiding the need to
build the mutation components for every target format.
Most importantly, our mutations span multiple granularity
levels, which can more thoroughly exploit the benefits of
mutations than existing tools.

Page-level mutations work on pages contained in a DIR
document. They issue the following operations:

e Duplicating pages randomly duplicates pages. Similar
to the idea of random recursive mutation proposed in [6],
the operation will also recursively duplicate a page for a
random number of times.

e Removing pages randomly removes pages.



® Reordering pages perturbs the orders of different pages,
such as swapping the first page and the last page.

e Borrowing pages resembles the splicing mutation used
in [10] and [11]. It exchanges pages across DIR
documents. The exchanging can be done on individual
pages (i.e., exchanging a single page) or a sequence of
pages (i.e., exchanging a set of contiguous pages).

In certain cases, an object may cross the boundary of
two pages. To avoid breaking the object, we will consider
the two pages as a single one during mutations.

Object-level mutations are applied to objects in a single
page. The mutations will include all the four operations we
designed for pages. In addition, the mutations will further
incorporate object insertions, where newly generated ob-
jects (using approaches like the one presented in [9]) are
inserted into random places in the page. Different from
pages that are typically independent of each other, ob-
jects can have dependencies. For instance, a <figure>
object may have a child <text> object in its title. When
running object-level mutations, we will aim to maintain
the dependency by adjusting the newly introduced object.
For example, when replacing a <figure> object with a
<table> object, we will tailor the <table> object to
reuse the <text> object in the <figure>’s title for its
own title.

Attribute-level mutations operate on the attributes of a
single object in the following ways.

e Adding attributes adds attributes to the target object.
Strictly following the DIR grammar, the operation can
only add attributes that are compatible with the object.
To enlarge the mutation space and create unexpectedness,
we loosen the grammar to allow adding any attributes to
an object when performing this operation.

e Replacing attributes replaces an existing attribute with
a new one. The new attribute can be generated following
the grammar or borrowed from other objects.

e Deleting attributes randomly removes an object’s at-
tributes.

o Changing an attribute value alters the value of an
attribute, such as replacing the <Data> attribute in a
<text> object with a longer string.

Lowering DIR to target formats is the step following
the above DIR mutations. The goal is to translate a DIR
document, derived from generation or mutations, to a tar-
get document (e.g., a PDF file). If the lowered document
brings new branch coverage in the target software (e.g.,
PDFIUM), the corresponding DIR document will be added
to the seed queue for Post-DIR mutations.

A key challenge in this step is the need for a separate
converter for each target format. Building such converters
from scratch can be labor-intensive. To tackle this chal-
lenge without incurring high manual costs, we exploit the
observation that many SDKs exist to process common
document files. These SDKs provide interfaces to create
and manipulate document files. For better usability, the
interfaces provide an abstraction of the underlying format,
which often resembles our DIR. For instance, the Foxit
PDF SDK [12] provides APIs to insert/delete pages in
a PDF document, add/remove objects into pages, and

manipulate the attributes of objects. There are also similar
SDKs for other popular document formats, such as the
Open XML SDK [16] for Word and the API2ZHTML
SDK [17] for HTML. Leveraging these SDKs, we can
easily produce a document in the target format by calling
the APIs corresponding to the DIR constructs. The exam-
ple below shows the sequence of Foxit SDK APIs needed
to generate the PDF document presented in Fig. 1.

APIs:
FoxitSDK * FQL = new FoxitSDK (Linux)
/*Set up the location of the starting pagex+/

FQL->SetGlobalOrigin (5)
/+ Create first page; A
FQL->InsertPages (-1, 1)
/* Append 2 pages */
FQL->InsertPages (1, 2)
9 /+ Select 2nd page for creating text =/
10 FQL->SelectPage (2)

1 /+ Add font =*/

12 Font\_ID = FQL->AddStandardFont (3)

13 /+ Select font x/

14 FQL->SelectFont (Font\_ID)

15 /% Set text color */

16 FQL->SetTextColor(0.85, 0, 0)

17 /+ Set text size */

18 FQL->SetTextSize (11)

19 /+ Draw text at position (100, 100) =/
20 FQL->DrawText (100, 100, L"Hello, World")
21 FQL->SaveToFile (L"hello\_world.pdf")

dummy page =/

% w9 U R W —

Post-DIR mutations are performed on the target docu-
ments lowered from DIR documents. For example, we
may simply borrow the mutations together with the dic-
tionaries from AFL/AFL++.

4. Applications

We apply our fuzzing scheme to both PDF and HTML
following the workflow presented in Fig. 3. The selection
of PDF and HTML is driven by their significance in our
daily life. In addition, the high complexity of the two
formats, indicated by their reference manual containing
hundreds of pages [18], [19], presents a more significant
challenge to fuzzing.

4.1. Building Seed DIR Files

We start with building a set of seed DIR files to
support follow-up mutations, using two different methods.

Generating DIR Files From Scratch. This method fol-
lows the DIR grammar to randomly assemble DIR files.

Extracting DIR Files From Existing Documents. As
introduced before, we have built converters from HTML
and PDF to DIR. Both converters adopt the same idea:
reusing existing HTML/PDF tools to parse a given file
and map its structures to DIR structures:

@ The format of PDF is very close to DIR, which consists
of pages, objects, and attributes. We build a parser on
top of PyPDF2 [20], an open-source toolkit enabling
comprehensive analysis of PDF files.

® The design of HTML differs more from DIR. HTML
does not have the concept of a page. Thus, we convert
every HTML file into a single DIR page and lay out all
the objects on that page. Our HTML parser is developed
based on Beautiful Soup version 4.9 [21].
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Figure 3: Workflow of our fuzzing scheme.

It should be noted the DIR files generated by
PDF/HTML-to-DIR converters can be reused for any other
format, and we do not need to create separate converters
for different formats.

4.2. DIR-based Mutations

At the high level, DIR-based mutations can simply
follow the guidance presented in Section. 3 to derive new
DIR documents from the initial corpus. However, applying
the guidance in practice can encounter two challenges.

Challenge 1: Getting coverage feedback is very slow. By
design, we need to lower every mutated DIR document to
a PDF file or HTML file, and measure the code coverage
of the PDF or HTML software. This process involves
many heavy computations and is very slow. As a result,
it significantly reduces the efficiency of mutations and
becomes a bottleneck of the fuzzing system.

To address the challenge, we propose an optimization.
As demonstrated before, a DIR document can be lowered
to a PDF or HTML document through a sequence of
SDK API calls. In this sense, the API sequence is another
representation of the DIR document. This inspires us to
directly mutate the API sequence instead of mutating the
DIR document. Once generating an API sequence, we run
it and measure its code coverage in the SDK as feedback.
If new SDK code is covered, the API sequence is consid-
ered valuable and kept for future mutations. This way, we
avoid running the lowered PDF/HTML document in the
target software for feedback. Technically, we use APIs
from the Foxit PDF SDK [12] for PDF and APIs from
WebToolKit [13] for HTML. A summary of the utilized
APIs can be found on an anonymized page at [22].
We leverage the FRIDA mode [23] offered by AFL++
to support coverage-guided mutations on the APIs. The
FRIDA mode supports binary-only instrumentation on
code ranges picked at run-time. In our applications, we
run the FRIDA mode to only collect coverage of code
belonging to the PDF SDK or WebToolKit when executing
the APIs.

We run FRIDA to enable two forms of mutations:
API sequence mutations and API argument mutations.
To enable API sequence mutations, we encode the API
sequence as a part of the fuzzer input, where the value of
each byte of the input indicates which API to include.
By mutating those input bytes, FRIDA can essentially
mutate the API sequence. We can use a similar approach
to achieve coverage-guided mutations on API arguments.
Briefly, we can assign different parts of the fuzzer input
to the arguments. This way, FRIDA can automatically
mutate the arguments based on code coverage of the
corresponding APIs.

Challenge 2: SDK APIs may not support certain fine-
grained mutations. The SDK APIs follow deterministic
templates to generate PDF or HTML constructs. The APIs
may not support the desired mutations in two scenarios.

First, the APIs often enforce internal restrictions to
ensure the rationality of the resulting document. For in-
stance, RotatePage (int32) from Foxit PDF SDK [12]
only accepts an integer argument of 90, 180, or 360. This
is reasonable in a general sense since we typically only
rotate a PDF page for 90/180/360 degrees. However, this
may limit the unexpectedness in the resulting PDF file,
potentially hurting the fuzzing effectiveness.

Second, the APIs can only generate complete, valid
objects. It cannot support fine-grained mutations such as
mixing two heterogeneous objects and adding an incom-
patible attribute to an object. For instance, we can neither
insert a table cell object into a figure object nor add a font
attribute to the table cell. This limits the mutation space
of fuzzing and the potential of finding bugs.

To overcome the above two limitations, we introduce a
set of post-DIR mutations. These mutations directly work
on the generated PDF and HTML documents, using the
code coverage in the target software as feedback.

4.3. Post-DIR Mutations

PDFobj Mutations. Internally, PDF organizes everything
as “objects”. To avoid confusion with the concept of
object in DIR, we will use PDFobj to refer to the internal
“objects” contained in a PDF document. More specifically,
PDF utilizes PDFobjs to organize all types of constructs
(page, object, attributes, etc). For example, line 15 - 23
in Fig. 1 shows a single PDFobj which represents the
first page in the PDF file. We apply three fine-grained
mutations on the PDFobjs that cannot be completed at
the DIR level.

Same-type mutations: PDFobjs can be classified into
8 basic types: boolean, integer and real number, string,
name, array, dictionaries, streams, and the null object. Our
first mutation respects the type of the target PDFobj. The
specific operations are as follows.

o If the PDFobj has a primitive type (boolean, integer and
real number, string, or name), we randomly assign a new
value of the same type to the PDFob;.

e If the PDFobj has an array type, we randomly resize
the array and randomly replace the values in the array.

o If the PDFobj has a stream type (a sequence of bytes
that encode multiple PDF objects together), we replace
it with another stream object from the current/another
document.
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Figure 4: Our Framework of PDF and HTML fuzzing.

e If the PDFobj has a type of null object (i.e., a nonex-
istent PDFobj), we replace it with a random non-null
object picked from the current/another document.

Cross-type mutations: These mutations run similar
operations to same-type mutations but without respecting
the types (e.g., we may replace an array with a PDFobj
of any type).

Type-independent mutations: The last group of mu-
tations is independent of the type of the target PDFobj.
They involve three major operations: (i) inserting a ran-
dom PDFobj picked from the current document or other
documents to a random location; (ii) duplicating a PDFobj
for a random number of times; (iii) deleting a randomly
selected PDFobj.

PDF uses an XRef table to manage all the PDFobjs.
The XRef table records the basic information of each
PDFobj, such as location and size. Changing a single
PDFobj can result in an invalid XRef table, making the
PDF document not parsable. This will lead the PDF
software to dump the document at an early stage. To
handle this problem, we update the XRef table when we
finish a mutation to a PDFobj. This will keep the PDF file
parsable.

HTMLele Mutations. The structure of all HTML files
is organized using elements (HTMLele for short). Each
element is defined by a start tag, the content, and an
end tag. The elements can be classified into different
categories, such as document structure, head, and body
elements. An HTML file can be represented as trees of
elements. We apply three mutations designed for PDFobj
to HTMLele, including same-type mutations, cross-type
mutations, and type-independent mutations. The mutations
are applied to not only individual elements but also trees
of elements.

AFL++ Mutations. At the lowest level, we ran AFL++
on the target software, using PDF documents produced by
other mutations as the seed inputs.

4.4. Putting Everything Together

Putting all our components together, we assemble a
fuzzing framework called MODIFIER, shown as Fig. 4.
Running MODIFIER in practice, we will have to answer

two general questions that every mutation-based fuzzer
faces: (i) how to schedule the seed DIR documents (or API
sequences) and (ii) when to stop the mutation on a specific
DIR document. To answer the first question, we design
an algorithm to rank the DIR documents. Specifically, we
generate the API sequence for each DIR document and
calculate the appearance frequency of each API among
all the sequences. We further measure the execution time
of the API sequence of each DIR document. A DIR
document with less-frequently covered APIs and a shorter
execution time will receive a higher ranking. To answer
the second question, we rely on the quality of a seed
DIR document to decide when to stop the mutations. If
mutating the DIR document (i.e., the API sequence) does
not lead to new code coverage after a certain amount of
time, we switch the mutation to the next DIR document.
In our experiment, we move on to the next DIR file only
after observing a 15-minute period during which there is
no new coverage.

5. Evaluation

To understand the utility of our DIR-based fuzzing,
we conduct a series of evaluations on MODIFIER. Our
evaluation centers around three questions:

e Ql: Can MODIFIER outperform existing fuzzing
tools?

e Q2: Can multi-level mutations help MODIFIER ?

e Q3: Can MODIFIER discover bugs from real-world
software?

5.1. Experimental Setup

Benchmarks. To support our evaluation of PDF and
HTML fuzzing, we collect a group of 6 PDF applications
and 6 HTML applications. Details are summarized in
Table. 1. The applications are widely used and tested in
both industry and academia. They also vary in functional-
ity, size, and complexity. To help detect bugs, we enable
AddressSanitizer [37] when building these programs.

Seed Inputs. MODIFIER can work with both a single
seed input and a large corpus. Thus, we create two differ-
ent sets of seed inputs. The first set includes a single PDF



TABLE 1: PDF and HTML benchmarks used in our evaluation.

Applications / Libraries AFL Settings
Name Version Driver Source Seed (s) Options
MUPDF 1.18.0 MUTOOL [24] [25]/ [26] draw @@
PDFIuM commit [27] PDFIUM_TEST [27] [25]/ [26] @@
PDF XPDF 4.02 PDFTOPS/TEXT [28] [25]/ [26] @@ /dev/null
PoDoFo 0.9.7 TXTEXTRACT [29] [25]/ [26] @@
QPDF 10.0.4 [30] [31] [25]/ [26] @@
CHROMIUM 111.0.5535.2 BLINK_HTML_TOKENIZER_FUZZER [32] [33]/ [34] @@
CHROMIUM 111.0.5535.2 HTML_PRELOAD_SCANNER_FUZZER [32] [33]/ [34] @@
CHROMIUM 111.0.5535.2 MHTML_PARSER_FUZZER [32] [33]/ [34] @@
HTML CHROMIUM 111.0.5535.2 CSS_PARSER_FAST_PATHS_FUZZER [32] [33]/ [34] @@
HTML TipY 5.9.20 TIDY [35] [33]/ [34] @@
LIBXML2 21100 XMLLINT [36] [33]/ [34] ~html @ @
TABLE 2: MODIFIER vs. AFL++ & NAUTILUS on PDF fuzzing.
Code Coverage Comparison
Prog. 1 Seed File 100 Seed Files
AFL++ | MODIFIER AFL++ | NAUTILUS | MODIFIER
Edge # | Edge # | Increase (/) Edge # | Edge # | Edge # [ Increase vs. AFL++ (%) [ Increase vs. NAUTILUS (%)
MUPDF 10503 16280 55.00 16175 17068 22205 37.28 30.10
PDFIUM 29407 31468 7.01 29966 30274 44706 49.19 47.67
XPDF 6512 9620 47.73 10518 11051 11893 13.07 7.62
QPDF 14134 16398 16.01 17781 18013 18767 5.55 4.19
POPPLER 5957 15055 152.73 20214 22053 26555 31.37 20.41
PODOFO 2660 3784 42.26 3885 3908 3996 2.86 2.25
Ave. H 11529 \ 15434 \ 33.87 H 16423 \ 17061 \ 21355 \ 30.03 25.17

file [25] that contains semantic-rich structures (tables,
forms, and vector graphics). The second set includes 100
PDF files refined from 10K real-world samples. Specifi-
cally, we crawl 10K diverse PDF files from the wild using
Google Search. Ranking the PDF files with the approach
described in Section. 4.4, we pick the top 100 as the
second seed set. For HTML, we also use two sets of seed
input, one with a single HTML file [33] and one with
100 HTML files [34]. The 100 HTML files were selected
from 10K real-world HTML files, using the same method
applied to the PDF files.

Configurations. We run AFL++ [5], LEARN&FUZZ [9],
and NAUTILUS [10] as baselines for PDF evaluation,
and AFL++, FREEDOM [6], and DOMATO [7] for HTML
evaluation.

o MODIFIER is tested separately on the two sets of seed
inputs. We allocate three CPU cores to respectively run
the DIR documentation generation, the DIR-based mu-
tations, and the post-DIR mutations. We further launch
4 AFL++ instances to randomly mutate the generated
testcases.

o AFL++ [5] [for both PDF and HTML] is a general-
purpose fuzzing tool that can be applied to any software.
We run two experiments with AFL++, respectively on
the two sets of seed inputs. In each experiment, we
launch 7 parallel fuzzing instances on the target program,
where each instance is affiliated with a CPU core.

o LEARN&FUZz [9] [for PDF] is the only PDF-focused
fuzzing solution that we can identify in the literature.
At a high level, LEARN&FUZZ is a purely generation-
based fuzzing tool. In our evaluation, we re-implemented
the algorithm presented in [9] to train a LEARN&FuUzZz

model, using the 10k PDF files we described above
as training data. The resulting model is a sequence-to-
sequence recurrent-neural-network consisting of 2 layers
and 512 hidden units in each layer. We then run the
model to generate individual PDF objects and insert
those objects into two template PDF files to derive new
testcases. The two template files are picked from the
training dataset, which have larger code coverage than
the remaining seed files. We run the model on 3 parallel
CPU cores to generate PDF files.

o NAUTILUS [10] [for PDF] is a tool invented for
fuzzing targets that require highly structured inputs. By
design, NAUTILUS is very similar to MODIFIER: It
applies structure-aware mutation on top of generation-
based fuzzing. In the case of fuzzing PDF programs, we
adapt the NAUTILUS algorithm following [10] to work
on PDFE. Specifically, we exchange the PDFobjs across
different PDF files. If a PDFobj has child PDFobjs,
the child PDFobjs will be exchanged recursively. In our
evaluation, we run NAUTILUS on one CPU core and
run 6 AFL++ instances in parallel to NAUTILUS. All
the testcases generated by NAUTILUS are sent to the
AFL++ instances, if the testcases cover new code.

o FREEDOM [6] [for HTML] is a Document Object
Model generator created specifically for HTML. It shares
similarities with MODIFIER in that both rely on a
context-aware intermediate representation to describe file
formats. However, MODIFIER is more generic, as it
can describe other highly structured formats than HTML.
When fuzzing HTML programs, FREEDOM was config-
ured to generate HTML files for 48 hours on 3 CPU
cores.



o DOMATO [7] [for HTML] follows a set of grammars
to generate random, valid, or semi-valid structures of
HTML pages with CSS and JavaScript objects from
scratch. DOMATO was also run for 48 hours on 3 CPU
cores.

Environments. We run all our experiments on a 64-core
server running Ubuntu 20.04.1 LTS with Intel(R) Xeon(R)
Silver 4216 CPU @ 2.10GHz and 128GB of RAM, fol-
lowing the above settings. We run each experiment for 48
hours and repeat each experiment 10 times. All the results
reported in this section are averaged on the 10 times of
experiments.

5.2. Comparing with Existing Tools

In this evaluation, we compare MODIFIER with the
three baseline tools, using edge coverage as the metric.

Comparing with AFL++ on both PDF and HTML.
We compare MODIFIER and AFL++ in two settings:
using one seed input and using 100 seed inputs. We
observe that MODIFIER can generate excessively large
test cases, significantly slowing down AFL++. As such,
we exclude test cases over 2MB from the mutations of
AFL++. We also do not count those test cases when
measuring MODIFIER’s code coverage.

Using One Seed File: In PDF evaluation, as shown
in Table. 2, MODIFIER covers 33.87% more edges than
AFL++. The evaluation of HTML shows similar results.
On average, MODIFIER covers 21.27% more edges than
AFL++ (see Table. 4).

Using 100 Seed Files: When applied to PDF, MOD-
IFIER covers 30.03% more edges than AFL++ on aver-
age. The evaluation of HTML fuzzing shows a similar
trend. Averagely, MODIFIER produces 28.83% more
edge coverage than AFL++.

Comparing with LEARN&FUZZ on PDF. In 48 hours,
LEARN&FUZZ-MODEL generates 18,568 PDFobjs. In-
jecting the PDFobjs into the two PDF templates described
before, we obtain 37,163 valid PDF files. In this part of
evaluation, we perform two types of comparison. First,
we compare the number of “valuable” PDF files generated
by LEARN&FUZzZ and the DIR-mutation components of
MODIFIER. Specifically, we run AFL-CMIN (AFL-CMIN
is a AFL utility to find the smallest subset from a corpus
of inputs to cover the same amount of code.) on the PDF
files generated by the two tools and then count the number
of resulting PDF files. As the result of AFL-CMIN varies
across different target programs, we repeat the comparison
separately on each benchmark program. Eventually, the
37,136 PDF files generated by LEARN&FUZZ are nar-
rowed down to 6 - 280 PDF files, depending on which
benchmark program we consider. In contrast, MODIFIER
generated 147,564 PDF files, which were refined to 1,923
- 7,039 PDF files. These results demonstrate that MOD-
IFIER is better at generating PDF files that are valuable
to fuzzing.

Second, we compare the number of edges covered
by LEARN&FUZZ and the DIR-mutation components
of MODIFIER. As shown in Table. 3, MODIFIER
outperforms LEARN&FUZZ on every program. On av-
erage, MODIFIER covers 127.74% more edges than

TABLE 3: MODIFIER vs. LEARN&FUZzZ on PDF
fuzzing with 100 seed inputs. For MODIFIER, we only
considered test cases generated by DIR-based mutations
and post-DIR mutations (including those greater than
2MB). Test cases produced by AFL++ mutations are
excluded.

Code Coverage Comparison

Programs | LEARN&FUZZ MODIFIER
Edge # Edge # | Increase (%)

MUPDF 16268 34380 111.35
PDFIUM 34610 77871 125.00
XPDF 14841 32091 116.23
QPDF 23359 61212 162.05
POPPLER 21602 48816 125.98
PODOFO 4244 7592 78.89
Ave. [ 19171 [ 43660 | 127.74

LEARN&FUZZ. This evaluation shows that MODIFIER
has a better generation capability than LEARN&FUZZ,
illustrating the utility of our DIR-based mutations.

Comparing with NAUTILUS on PDF. As aforemen-
tioned, NAUTILUS and MODIFIER both run structure-
aware mutations atop generation-based fuzzing. This eval-
uation compares the edge covered by [NAUTILUS and
AFL++ ] and [MODIFIER and AFL++ ] in 48 hours.
As shown in Table. 2, MODIFIER presents a better
performance than NAUTILUS on every PDF program.
On average, MODIFIER covers 25.17% more edges than
NAUTILUS. Further, we can observe that MODIFIER
presents a bigger advantage over NAUTILUS on larger
software. For instance, MODIFIER outperforms NAU-
TILUS the most on the largest program (i.e., PDF1UM)
and the least on the smallest program (i.e., PODOFO).
This brings evidence that our multi-level mutations per-
forms better than the single-level mutation adopted by
NAUTILUS.

Comparing with FREEDOM on HTML. FREEDOM
generated 487,831 HTML files in 48 hours. We run
AFL-CMIN on the outputs to determine the number of
”valuable” HTML files. Depending on the HTML pro-
gram, the 487,831 HTML files were refined to 191 -
6,398 HTML files. In comparison, MODIFIER generated
311,566 HTML files in 48 hours, which were narrowed
down to 388 - 9,579 HTML files.

Further, we compared the edge coverage of FREEDOM
and MODIFIER. In this evaluation, we only considered
the test cases generated by MODIFIER’s DIR-based mu-
tations and post-DIR mutations. All test cases produced by
AFL++ are ignored. The results, as presented in Table. 5,
show that MODIFIER consistently outperforms FREE-
DoM on all programs, with coverage of 13.02% more
edges on average.

Comparing with DOMATO on HTML. DOMATO gener-
ated 500,065 HTML files within 48 hours. After running
AFL-CMIN, this corpus was reduced to 56 - 6,302 HTML
files, depending on which target program we run. In con-
trast, MODIFIER generated 311,566 HTML files, which
were AFL-CMINed to 388 - 9,579 HTML files.

A comparison was also made between the edges
covered by DOMATO and MODIFIER. Again, we only



TABLE 4: MODIFIER vs. AFL++ on HTML fuzzing.

Code Coverage Comparison
1 Seed File 100 Seed Files
Programs AFL++ MODIFIER AFL++ MODIFIER
Edge # | Edge # | Increase (%) Edge # | Edge # | Increase (%)
HTML_PRELOAD_SCANNER_FUZZER 59097 68984 16.73 63576 76651 20.57
BLINK_HTML_TOKENIZER_FUZZER 50689 53083 4.72 55200 66129 19.80
MHTML_PARSER_FUZZER 40261 47694 18.46 46703 60361 29.24
CSS_PARSER_FAST_PATHS_FUZZER 37894 42599 12.42 40513 47702 17.75
TIDY 50053 66871 33.60 51150 73575 43.84
XMLLINT 32466 46009 41.71 33959 50611 49.04
Ave. || 45077 | 54206 21.27 || 48517 | 62505 | 28.83

TABLE 5: MODIFIER vs. DOMATO and FREEDOM on HTML fuzzing with 100 seed inputs. For MODIFIER, we
only considered test cases generated by DIR-based mutations and post-DIR mutations (including those greater than
2MB). The two columns under Increase (%), from left to right, represent the increase of code coverage brought by

MODIFIER to DoOMATO and FREEDOM, respectively.

Code Coverage Comparison
Programs DOMATO | FREEDOM MODIFIER

Edge # Edge # Edge # | Increase (%)
HTML_PRELOAD_SCANNER_FUZZER 60039 62311 76177 26.88 24.62
BLINK_HTML_TOKENIZER_FUZZER 60569 65089 63700 5.17 1.57
MHTML_PARSER_FUZZER 54803 55609 57872 5.60 4.07
CSS_PARSER_FAST_PATHS_FUZZER 43206 44017 45918 6.28 4.32
TIDY 58976 58031 67062 13.71 15.56
XMLLINT 35377 36029 46110 30.34 27.98
Ave. H 52162 \ 53514 H 59473 \ 14.02 \ 13.02

count edge coverage of MODIFIER’s DIR-based muta-
tions and post-DIR mutations. All test cases produced by
AFL++ are disregarded. The results, presented in Table. 5,
demonstrate that MODIFIER consistently outperformed
FREEDOM on all programs, producing an average 14.02%
increase in edge coverage.

The comparison with both FREEDOM and DOMATO
illustrates the advantages of MODIFIER over purely
generation-based fuzzing. Guided by its structure-aware
and multi-level mutations, MODIFIER can generate more
valuable test cases and contribute to higher code coverage.

5.3. Contribution of Multi-level Mutations

Our comparison between MODIFIER and NAU-
TILUS shows that our multi-level mutation outperforms
the single-level mutation of NAUTILUS. In this part
of evaluation, we aim to understand the contribution of
mutations at different levels. Specifically, we calculate
the unique edge coverage (An edge is considered unique
only when it is never covered by more than one level
of mutations.) brought by each level of mutations in the
48-hour experiments.

The results are summarized in Table. 6. Evidently,
each level of mutation brings unique contributions. Specif-
ically, DIR-based mutation contributes the most unique
edges in HTML fuzzing. In PDF fuzzing, each level’s
contribution varies across the programs. DIR-based muta-
tions contribute the most in MUPDF fuzzing, while Post-
DIR mutations contribute the most in POPPLER fuzzing.
Other than those, AFL++ mutations bring the most unique
coverage edges.

5.4. Finding Bugs

In the evaluation described above, MODIFIER trig-
gers 8,973 total unique crashes in the PDF and HTML
programs according to AFL++’s metric. After triaging the
crashes based on the bug type and location reported by
AddressSanitizer [37], we manually analyze the results
and identify 16 previously unknown bugs (summarized in
Table. 7). All the bugs have been reported to the develop-
ers. In addition, as we can observe from Table. 7, MODI-
FIER finds more bugs than AFL++, LEARN&FUZZ, and
NAUTILUS. More importantly, all the bugs discovered
by the three tools are also covered by MODIFIER.

To verify that the finding of the bugs is indeed
attributed to the strategies of MODIFIER instead of
AFL++ alone, we construct the lineage of the inputs
triggering the bugs (i.e., we trace how the inputs are de-
rived from the seed inputs and the MODIFIER-generated
test cases). We find that the first input triggering every
bug is directly generated by MODIFIER or mutated
from PDF/HTML files generated by MODIFIER. This
demonstrates that the finding of the bugs indeed benefits
from the strategies of MODIFIER.

Case Study. To further illustrate how the mutation strate-
gies of MODIFIER can help find bugs, we present a
case study. In List. 1, we show the PDFobjs correspond-
ing to a set of form fields organized in a parent-child
relation. Specifically, the ”10 O obj” is the parent field,
while ”11 0 obj” and 712 0 obj” are both child fields.
List. 2 shows a code snippet from XPDF that handles the
form fields in List. 1. The code will recursively call the
scanField function to handle the child fields. When our



TABLE 6: Unique edge coverage by mutations at different levels. In this evaluation, test cases larger than 2MB are

included.
SETTINGS
Pl‘og[‘ams DIR-based Mutations \ Post-DIR Mutations \ AFL++ Mutations
1 Seed | 100 Seeds | 1 Seed | 100 Seeds | 1 Seed [ 100 Seeds
MUPDF 4582 4745 314 603 908 1996
PDFIUM 529 759 252 1208 3694 4590
XPDF 72 125 379 1016 605 1994
PDF QPDF 57 67 234 1392 507 666
POPPLER 217 492 1272 4920 837 2318
PODOFO 56 326 117 187 155 166
BLINK_HTML_TOKENIZER_FUZZER 1798 2116 676 1076 77 101
HTML_PRELOAD_SCANNER_FUZZER 308 1582 273 2306 201 792
MHTML_PARSER_FUZZER 1350 5011 490 3361 137 532
HTML CSS_PARSER_FAST_PATHS_FUZZER 1498 1757 395 1607 176 302
TIDY 767 1505 1055 1169 359 563
XMLLINT 1553 2090 578 723 197 201

TABLE 7: Unique crashes/bugs discovered by different fuzzing tools. The bugs are accumulated from all 10 experiments.

DoMATO and FREEDOM did not trigger crashes.

AFL++ Nautilus

Learn & Fuzz Modifier

Prog. Crash Bug Crash Bug Crash Bug Crash Bug Bug Types
Heap Buffer Over-read
MUPDF 0 0 0 0 0 0 632 3 NULL Pointer Dereference
PDF Heap Buffer Over-read
XPDF 85 1 589 3 12 1 4,572 7 NULL Pointer Dereference
Stack Exhaustion
POPPLER 0 0 0 0 0 0 362 1 Stack Buffer Over-read
Heap Buffer Over-read
PODOFO 736 ! 901 ! 0 0 2,003 2 NULL Pointer Dereference
Memory Leak
HTML TIDY 0 0 - - 0 0 344 3 NULL Pointer Dereference
| Total | 81 | 2 | 149 | 4 | 12 | 1 | 8973 | 16 | —
DIR-mutations duplicate the child field a large number 8 scanField (skidRef)
of times, too many recursions of scanField will happen K )
. . . 10 kidRef.free ()
and result in a stack-exhaustion bug. As shown in the " }
case, triggering this bug requires duplicating the correct 12 /* The two ob never be freed if the kid
. . . . . array 1 */
structure Qf the child field quite a few times, which is hard 5 Kidsobj. free ()
to be achieved by random mutations like AFL++. 14
15 fieldObj.free ()

Listing 1: Illustration of form fields organized in a parent-
child structure.

110 0 /* Parent : Radio button field #*/
2 /FT /Btn

3

4 /Kids [ 11 0 R 12 0 R ]

5

6

7

g8 11 0 /% Child : First checkbox */
9 /Parent 10 0 R

10

11

12

13

14 12 0 /# Child : Second checkbox x/
15 /Parent 10 0 R

16
17
18

Listing 2: Simplified version of a buffer overflow in XPDF

AcroForm: :scanField (Object xfieldRef) ({
/% create Objects =/

Object fieldObj, kidRef, kidObj

(i = 0; i < kidsObj.arrayGetLength () i) {

N U AW =

~sively call scanField */

/* recu

6. Related Works

6.1. Generation Based Fuzzing

Generation-based fuzzing can produce highly struc-
tured inputs for real-world applications. Three main ap-
proaches for structured test case generation are commonly
used.

Manually summarizing grammar rules. Generation-
based fuzzers require well-written grammar rules prior to
generating test cases. Examples of such fuzzers, designed
for producing syntax-correct HTML files, include DO-
MATO [38], FREEDOM [6], and DOMFUZZ [39]. DOM-
FUZZ also employs a grammar-based splicing technique,
which inspires our hierarchy object exchanging method.
For fuzzing JavaScript codes, techniques like [40], [41],
and [42] use random generation or combination of code
based on provided syntax rules. Favocado [43] generates
syntactically correct binding code for fuzzing JavaScript
engines, using semantic information.



Grammar generation with machine learning. Learn-
&Fuzz [9] is a generation-based fuzzer that leverages ma-
chine learning to learn the grammar rules of PDF objects.
However, it only generates random PDF objects and fails
to capture the complexities of other elements in the PDF
format, such as header, Xref, and trails. Skyfire [8] uses
a context-sensitive grammar model with a probabilistic
ML algorithm for fuzzing HTML and XSL files. DEPP-
FUZZ [44] employs a generative Sequence-to-Sequence
model for C code generation, and Godefroid et al. [45]
implement a dynamic test case generation algorithm for
fuzzing IE7’s JavaScript interpreter.

IR assisted generation. PolyGlot [46] is a fuzzing frame-
work that creates high-quality test cases for different
programming languages by using a uniform immediate
representation (IR). Unlike other generation based fuzzing
frameworks, PolyGlot uses grammar for mutation instead
of pure seed generation, allowing for better code cov-
erage. However, PolyGlot is limited by the requirement
for a BNF grammar, and can still generate syntactically
incorrect test cases due to inconsistent grammar inputs.

6.2. Mutation Based Fuzzing

Mutation-based fuzzing distinguishes itself from
generation-based fuzzing by necessitating less human ef-
fort. However, the success of this approach is highly con-
tingent on the availability of a high-quality input corpus.
Many of the mutation-based fuzzing tools, following the
footsteps of AFL [4], begin with a collection of initial
seeds and then devise new test cases drawing from the
feedback received during the execution of the target pro-
gram.

Various methods can be applied to boost the effi-
cacy of mutation-based fuzzing. One common approach
is to refine the process of seed scheduling, mutation, and
distribution, taking into account code coverage feedback.
Another perspective is to explore more effective feedback.
AFL [47] considers code branches as feedback, which is
refined by Steelix [48], CollAFL [49], and PTrix [50] to
incorporate extra control-flow information. More aggres-
sively, TaintScope [51], Vuzzer [52], GREYONE [53],
REDQUEEN [54], and Angora [55] exploit feedback in-
formed by data flow.

Mutation-based fuzzing has been extended to the test-
ing of document software, including software dealing
with PDFs. For instance, Feldmann [56] used 220 unique
paths—narrowed down from an initial set of 80,000 PDF
files—as the input to mutation-based fuzzing. This was an
attempt to uncover vulnerabilities in software like FOX-
ITREADER, PDFXCHAN-GEVIEWER, and XnView.
Alon and Ben-Simon [57] have also worked on mutation-
based fuzzing for PDF applications, using WINAFL on
manually created fuzzing harnesses derived from the
JP2KLIB.DLL library in Adobe Reader.However, this
conventional mutation-based fuzzing struggles with pre-
serving the structure of complex file formats, leading to
generated seeds failing early-stage syntax checks during
program execution. In contrast, MODIFIER selectively
filters the most fuzzing-friendly and diverse files from a
large corpus. Thanks to its use of intermediate representa-
tion, our file collection isn’t limited to just PDF formats.

7. Conclusion

This paper presents a new scheme to facilitate fuzzing
on document software. The approach involves an in-
termediate document representation, called DIR, to de-
scribe document files in various mainstream formats. By
further applying multi-level mutations on the DIR and
lowering the DIR document to a desired format using
common SDKs, our approach can use the same set of
DIR-based tools to enable fuzzing on various document
formats without intensive human efforts. Applying our
DIR-based approach to PDF and HTML, we showcase
that the approach can work well on complicated document
formats and outperform the existing tools. Our source
code has been released at https://github.com/junxzm1990/
hierachy-fuzzing, which can be reused for further research
in the same direction.
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