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Abstract

Motivation: Pangenome graphs offer a comprehensive way of capturing genomic variability across multiple genomes. However, current con-
struction methods often introduce biases, excluding complex sequences or relying on references. The PanGenome Graph Builder (PGGB)
addresses these issues. To date, though, there is no state-of-the-art pipeline allowing for easy deployment, efficient and dynamic use of avail-
able resources, and scalable usage at the same time.

Results: To overcome these limitations, we present nf-core/pangenome, a reference-unbiased approach implemented in Nextflow following nf-
core's best practices. Leveraging biocontainers ensures portability and seamless deployment in High-Performance Computing (HPC) environ-
ments. Unlike PGGB, nf-core/pangenome distributes alignments across cluster nodes, enabling scalability. Demonstrating its efficiency, we
constructed pangenome graphs for 1000 human chromosome 19 haplotypes and 2146 Escherichia coli sequences, achieving a two to threefold
speedup compared to PGGB without increasing greenhouse gas emissions.

Availability and implementation: nf-core/pangenome is released under the MIT open-source license, available on GitHub and Zenodo, with
documentation accessible at https://nf-co.re/pangenome/docs/usage.

1 Introduction graphs which store DNA sequences in nodes with edges con-
necting the nodes as they occur in the individual sequences

Th ilability of high-qualit lation-wide whole-
¢ avatablify of Sug-qualty pophationwide whoe (Hein 1989). Genomes are encoded as paths traversing the

genome assemblies (Liu et al. 2020, Leonard et al. 2022, d
Zhou et al. 2022, Kang et al. 2023, Liao et al. 2023, Weller ~ 1odes (Garrison et al. 2018). ,

et al. 2023) offers new opportunities to study sequence evolu- Current pangenome graph construction methf)ds. exclude
tion and variation within and between genomic populations. complex sequernces or are reference-biased (Minkin ez al.
A challenge is simultaneously representing and analyzing 2017 Chm et al. .2023)‘ One recent approach th.at overcomes
hundreds to thousands of genomes at a gigabase scale. One such limitations is the PanGenome Graph Builder (PGGB)

solution here is a pangenome. It models a population’s entire pipeline (Garrison et al. 2024). PGGB iteratively refines an
set of genomic sequences (Ballouz et al. 2019). In contrast to all-to-all whole-genome alignment graph that lets us explore
reference-based genomic approaches, which relate sequences sequence conservation and variation, infer phylogeny, and
to a linear genome, pangenomics relates each new sequence identify recombination events. PGGB has been extensively

to all the others represented in the pangenome (The  evaluated (Andreace et al. 2023, Garrison et al. 2024) and
Computational Pan-Genomics Consortium 2018, Eizenga applied to build the first draft human pangenome reference
et al. 2020, Sherman and Salzberg 2020) minimizing (Liao et al. 2023). However, PGGB is implemented in bash,
reference-bias. Pangenomes can be described as sequence which (a) makes it difficult to deploy on High-Performance
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Computing (HPC) systems, (b) does not allow for a fine gran-
ular tuning of computing resources for different steps of the
pipeline (Sztuka et al. 2024), and (c¢) limits its cluster scalabil-
ity to one node. These limitations greatly hinder the broad
application of large-scale pangenomes.

To compensate for that, we wrote nf-core/pangenome, a
reference-unbiased approach to construct pangenome graphs.
Mirroring PGGB, nf-core/pangenome is implemented in
Nextflow (Di Tommaso et al. 2017). In contrast to PGGB,
nf-core/pangenome can distribute the quadratic all-to-all
base-level alignments across nodes of a cluster by splitting the
approximate alignments into problems of equal size. We
benchmarked the time spent on base-pair level alignments
and show that it is reduced linearly with an increase in align-
ment problem chunks (Supplementary Material 5.5). We
showcase the workflow’s scalability by applying it to 1000
chromosome 19 human haplotypes and 2146 Escherichia
coli sequences, which were built in less than half the time
PGGB required while not increasing the CO2 equivalent
(CO2e) emissions (Lannelongue et al. 2021).

2 Materials and methods
2.1 Pipeline overview

The pipeline’s (Fig. 1a) input is a FASTA file compressed
with bgzip (Li et al. 2009) containing the sequences to create
the graph. Sequence names should follow the Pangenome
Sequence Naming specification (PanSN-spec) (https://github.
com/pangenome/PanSN-spec, last accessed October 2024).
The primary output is a pangenome variation graph
(Garrison et al. 2018) in the Graphical Fragment Assembly
(GFA) format version 1 (http://gfa-spec.github.io/GFA-spec/
GFA1.html, last accessed October 2024).

2.1.1 Core workflow

The core workflow of nf-core/pangenome mirrors PGGB
(Fig. 1a) with additional enhancements: (a) All concurrent
processes can be run in parallel. (b) Each process can be given
individual computing resources.

The pipeline begins with an all-to-all alignment of the input
sequences using the whole-chromosome pairwise sequence
aligner WFMASH (https://github.com/waveygang/wfmash,
last accessed October 2024), avoiding reference, order, or
orientation bias, allowing every sequence to serve as a refer-
ence. In the pangenome graph induction step SEQWISH
(Garrison and Guarracino 2023), an alignment to variation
graph inducer, converts the sequence alignments into a varia-
tion graph. The graph is then simplified using SMOOTHXG
(Garrison ef al. 2024): A 1-dimensional (1D) graph embed-
ding (Heumos et al. 2024) orders the graph’s nodes to best
match the nucleotide distances of the genomic paths of the
graph. Next, the graph is split into partially overlapping seg-
ments. The sequences of each segment are realigned with a lo-
cal Multiple Sequence Alignment (MSA) kernel, partial order
alignment (POA) (Lee et al. 2002). Afterwards, the segments
are laced back together into a variation graph. By default, the
SMOOTHXG process is applied 3 times in order to smooth
the edge effects at the boundaries of the segments. Finally, we
employ GFAFFIX (Liao et al. 2023) to systematically con-
dense redundant nodes within the graph.

Graph quality is assessed with ODGI (Guarracino et al.
2022), which provides statistics and visualizations.
Optionally, variants can be called against any (reference)
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path(s) in the graph using vg deconstruct (Garrison et al.
2018). Results are summarized in a MultiQC (Ewels et al.
2016) report. Pipeline implementation details are given in
Supplementary Material 5.1.

If desired, the pipeline performs community detection to
identify clusters of related sequences in the pangenome graph,
revealing biological patterns such as conserved or divergent
regions across genomes (Supplementary Material 5.2), with
the core workflow executed for each community in parallel.

3 Results

3.1 Building a 1000 haplotypes chr19

pangenome graph

The Human Pangenome Resource Consortium (HPRC) re-
cently built a draft human pangenome of 90 haplotypes.
However, haplotype data for thousands of individuals was al-
ready generated by the 1000 Genomes Project (1KGP) (The
1000 Genomes Project Consortium 2010). As a use case, we
used nf-core/pangenome to build a graph of 1000 chromo-
some 19 haplotypes (Kuhnle et al. 2020) in 3 days, emitting
51.07kg CO2e. PGGB took 7days for the same task
(56.32kg CO2e). In Fig. 1b the pangenome growth curve
generated with PANACUS (Liao et al. 2023) shows nucleo-
tide growth as more haplotypes are added. The softcore pan-
genome, defined as sequences traversed by 95% of
haplotypes, comprises the majority of the pangenome even
with 1000 haplotypes. This stability may be due to the exclu-
sion of complex regions like the centromere in the short-
read data.

3.2 Building a 2146 sequences E. coli

pangenome graph

To evaluate the pipeline’s scalability, we built a pangenome
graph of 2146 E. coli sequences. The nf-core/pangenome
graph was completed in 10 days, emitting 175.18 kg CO2e,
while PGGB could not finish within 30 days due to cluster
time restrictions. For the growth curve (Fig. 1c) we excluded
130 plasmid sequences. The softcore pangenome remains sta-
ble at ~3Mb, but its size constitutes less than 10% of the to-
tal pangenome. This substantial pangenomic growth is likely
driven by horizontal gene transfer, as bacteria incorporate
genes from one another at various genomic locations. Other
reasons could be sequencing errors or human contamination
(Breitwieser et al. 2019).

4 Discussion

We implemented nf-core/pangenome, an easy-to-install, porta-
ble, and cluster-scalable pipeline for unbiased pangenome vari-
ation graph construction. It is the first pangenomic pipeline
within the nf-core framework that enables the comparative
analysis of gigabase-scale pangenome datasets. While tools like
Minigraph (Li et al. 2020) or PGR-TK (Chin et al. 2023) also
address pangenome analysis, nf-core/pangenome uniquely inte-
grates this capability into the standardized nf-core framework,
offering compatibility with a wide range of modular work-
flows and community-developed best practices.

The pipeline’s core workflow has been successfully applied
to Neisseria meningitidis (Yang et al. 2023), wild grapes
(Cochetel et al. 2023), humans (Guarracino et al. 2023, Liao
et al. 2023), grapevines (Guo et al. 2024), taurines (Milia
et al. 2024), and rats (Villani e al. 2024) underpinning the
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Figure 1. (a) Schematic representation of the nf-core/pangenome workflow processes and detailed analysis steps. The input consists of one FASTA file
containing all sequences. The pipeline comes with three major entry points: (1) community detection, which identifies clusters of related sequences or
regions in the pangenome graph to reveal biologically significant patterns like conserved or divergent areas across genomes (Supplementary Material
5.2), (2) alignment distribution, and (3) core workflow. Optional community detection (1) is performed on the input sequences. If selected, the heavy all-
to-all base-pair level alignments (2) can be split into problems of equal size. nf-core/pangenome’s core workflow (3) is a direct mirror of PGGB. If running
in community mode, all communal graphs are combined into one (4) and the subsequent quality control subworkflow is executed. The output is a
pangenome graph in GFA format. (b, c) Pangenome growth curves of the built pangenome graphs. Growth type is defined as the minimum fraction of
haplotypes that must share a graph feature after each time a haplotype is added to the growth histograph. guorum > = 0: all sequences without any
filtering are considered. quorum > = 10: sequences traversed by at least 10% of the haplotypes. quorum > = 50: sequences traversed by at least 50%
of haplotypes. quorum > = 95: sequences traversed by 95% of haplotypes. (b) Pangenome growth curve of the chromosome 19 pangenome graph of
1000 haplotypes. (c) Pangenome growth curve of the Escherichia colipangenome graph of 2013 haplotypes.

community effort to focus on a best-practice workflow to cre-
ate reference-unbiased and sequence complete pangenome
graphs. The modular domain-specific language (DSL) 2 pipe-
line structure facilitates easy exchange of processes with alter-
native tools, expanding its functionality and integration with
other (sub-)workflows.

We have shown that we are able to perform all-vs-all base
pair level alignments of thousands of sequences. When exe-
cuted on an HPC, nf-core/pangenome’s parallel workflow
accelerates graph construction compared to PGGB. PGGB’s
inability to assign individual computational resources to each
pipeline step leads to the allocation of one whole node of an
HPC, despite the fact that some processes can only make use
of one thread. This blocks valuable CPU cycles. In contrast,
nf-core/pangenome leverages Nextflow’s process manage-
ment for optimal resource allocation, crucial for cloud-
based executions.

Competing pipelines either lack workflow management sys-
tem (Chin ef al. 2023), or their workflow language of choice is
e.g. Toil (Vivian et al. 2017, Hickey et al. 2024) which makes

them less user-friendly, less cluster-efficient, and less portable
(Wratten et al. 2021). nf-core/pangenome is currently the only
pangenomics pipeline that is optionally monitoring its CO2
footprint. The measurements have shown that constructing ex-
tensive pangenome graphs, such as the 2146 E. coli graph,
requires a considerable amount of energy. Therefore, we rec-
ommend assessing the rationale and methodology before con-
ducting energy-intensive experiments.

Although we expect our pipeline to scale for future chal-
lenges, such as for the next HPRC phase which targets 350
individuals, further optimizations are possible: The IMplicit
Pangenome Graph (IMPG) (https://github.com/ekg/impg, last
accessed October 2024) tool extracts homologous loci from
genomes mapped to a specific target region. This would allow
us to break the whole genome multiple alignments into
smaller pieces, construct a pangenome graph for each piece,
and lace these together into a full graph with gfalace (https://
github.com/pangenome/gfalace, last accessed October 2024).

We anticipate the pipeline, or its parts, will enhance cur-
rent single linear reference analysis methods to explore whole
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population variation instead of focusing on one reference
only. Looking ahead, pangenome construction pipelines like
nf-core/pangenome will play a pivotal role in studying entire
populations, single-cell whole genome sequencing analysis,
and constructing personalized (medical) pangenome referen-
ces (Sirén et al. 2024).
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