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Abstract

Language Models (LM) have been exten-
sively utilized for learning DNA sequence pat-
terns and generating synthetic sequences. In
this paper, we present a novel approach for
the generation of synthetic DNA data using
pangenomes in combination with LM. We in-
troduce three innovative pangenome-based to-
kenization schemes, including two that can
decouple from private data, while enhance
long DNA sequence generation. Our exper-
imental results demonstrate the superiority
of pangenome-based tokenization over clas-
sical methods in generating high-utility syn-
thetic DNA sequences, highlighting a promis-
ing direction for the public sharing of genomic
datasets.

1 Introduction

Public availability of genome datasets, such
as the Human Genome Project (HGP) (Lander
et al., 2001), the 1000 Genomes Project (Con-
sortium et al., 2012), The Cancer Genome Atlas
(TCGA) (Weinstein et al., 2013), GenBank (Ben-
son et al., 2012), the International HapMap
Project (Gibbs et al., 2003), the Human Pangenome
Project (Liao et al., 2023), and the Telomere-
to-Telomere project (Nurk et al., 2022), has
been instrumental in advancing genomics research.
However, large-scale genome sequencing remains
costly and resource intensive due to the sophis-
ticated equipment and computational resources
required (Wetterstrand, 2021; Van Dijk et al.,
2018). Additionally, the release of real genomic
data raises significant privacy concerns, as re-
identification risks persist despite anonymization
efforts (Sweeney et al., 2013; Wjst, 2010; Ohm,
2009).

Synthetic data generation offers a scalable and
relatively private alternative, enabling researchers
to perform analyzes without exposing sensitive in-
formation (Yelmen et al., 2021). Specific tasks

such as De Novo genome assembly (Tran et al.,
2017, 2019; Yang et al., 2019) and genotype impu-
tation (Browning and Browning, 2016) inherently
involve the generation of unknown sequences, mak-
ing them also suitable applications for synthetic
data. A good generative model can significantly
improve their accuracy and efficiency by predicting
missing or incomplete segments.

Deep learning models are widely used in differ-
ent tasks, even in processing genome sequences
and related data (Yun et al., 2020; Kolesnikov et al.,
2021; Kim and Kim, 2018; Elbashir et al., 2019).
While generative adversarial networks (GANs)
have been explored for synthetic genome genera-
tion, their output is limited to short sequences (Bae
et al., 2019; Gupta and Zou, 2018). LMs have
shown their capability to generate synthetic nat-
ural languages that are almost indistinguishable
from real data. The generated language text can
be used to train other models (Kumar et al., 2020;
Yoo et al., 2021; Hartvigsen et al., 2022), including
those in the medical domain (Peng et al., 2023b;
Guevara et al., 2024). Proven to be extraordinarily
good at processing human language, LMs can also
interpret and generate broader text, such as code
for programming tasks (Chen et al., 2021), thereby
pushing the boundaries of their application beyond
strictly spoken language-based domains.

While LMs present a promising alternative for
generating long synthetic DNA sequences, effec-
tive tokenization of DNA sequences is crucial for
leveraging LMs. Traditional methods, such as sin-
gle nucleotide tokenization and k-mer tokenization,
segment sequences into individual nucleotides or
substrings of length £ (Lanchantin et al., 2017; Bae
et al., 2019; Yelmen et al., 2021; Peng et al., 2023b;
Alipanahi et al., 2015; An et al., 2022; Fishman
et al., 2023). Classical approaches like k-mer to-
kenization (GKMT) are particularly sensitive to
small mutations such as insertions or deletions: a
single-base shift can disrupt all downstream tokens,
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severely affecting model stability and learning. Ad-
ditionally, its divergence from natural language
processing (NLP) segmentation approaches limits
the model’s ability to capture DNA sequence pat-
terns. Byte Pair Encoding (BPE) is used in recent
work (Zhou et al., 2023), but still requires segment-
ing long DNA sequences into shorter chunks due
to computational and memory constraints during
tokenizer training. This study explores how NLP
and pangenome-inspired tokenization can enhance
LMs’ ability to learn DNA sequence structures.

To build a practical genome sequence genera-
tion model that protects the privacy of the dataset,
we propose LM-based synthetic data generation
using two novel pangenome graph (see §2.2)-based
tokenization schemes: Pangenome-based Node To-
kenization (PNT) and Pangenome-based k-mer To-
kenization (PKMT). PNT leverages nodes in the
graph as tokens, while PKMT segments sequences
using graph nodes before generating k-mers, en-
abling future applications of privacy techniques
such as differential privacy (DP).

This work presents the first comparative analy-
sis of classical and pangenome-based tokenization
schemes for LMs, specifically GPT-2 and Llama,
in learning DNA sequence patterns and generating
long synthetic sequences. Our findings reveal that
the pangenome graph structure embeds significant
information that enhances neural networks’ com-
prehension of DNA sequences. Representing DNA
sequence segmentation through node-based tok-
enization improves the understanding of sequence
structures and model performance. Additionally,
including positional information from node IDs fur-
ther boosts the training and predictive performance
of DNA LMs. Our results show that pangenome-
based tokenization schemes reduce training time
and improve scalability compared to traditional
methods, addressing the computational challenges
of training LMs. Our contributions are as follows:

1. We introduce two pangenome graph-based to-
kenization schemes, PNT and PKMT, which
provide more contextual information, enhanc-
ing LMs’ ability to learn DNA sequence pat-
terns and structures.

2. We propose a variant of pangenome graph
segmentation that decouples from any pri-
vate training data, enabling potential privacy-
preserving training.

3. We demonstrate through experiments that our

tokenization schemes outperform classical
methods in training efficiency, predictive ac-
curacy, and generation quality for LMs.

Following the introduction, the paper is struc-
tured as follows: Section 2 covers background on
synthetic genome generation, Section 3 details to-
kenization schemes, Section 4 outlines evaluation
metrics, Section 5 presents experiments, Section 6
discusses related work, and Section 7 concludes
with limitations, implications, and future direc-
tions.

2 Background
2.1 Language Models

Large language models are advanced artificial in-
telligence systems designed to understand and gen-
erate language text based on the data on which they
have been trained. These models, such as Mis-
tral (Jiang et al., 2023), Anthropic’s Claude (An-
thropic, 2023), OpenAl’s GPT series (Radford
et al., 2019; OpenAl, 2023), Google’s T5 (Raffel
et al., 2020), Lamda (Thoppilan et al., 2022) and
Gemini (Team et al., 2023), Meta’s OPT (Zhang
et al., 2022), BLOOM (Le Scao et al., 2023) and
LLama (Touvron et al., 2023a,b), etc., take advan-
tage of vast amounts of textual information to learn
patterns, nuances, and complexities of language.
LMs can perform a variety of language-related
tasks, including answering questions, translating
languages, and even participating in casual con-
versations. Their ability to process and generate
coherent and contextually appropriate responses
makes them invaluable tools across multiple fields,
from customer service and education to creative
writing and technical support.

In this paper, we focus on text generation tasks
using LMs. The process involves three key steps:

Tokenization: The raw input text is converted
into tokens based on different tokenization ap-
proaches.

Training: The model is trained from scratch on
specific datasets.

Generation: In generative models such as GPT,
the trained model predicts the next tokens given an
initial prompt.

2.2 Pangenome Graph

The pangenome graph (Eizenga et al., 2020) rep-
resents genetic diversity within a species by in-
tegrating multiple genome sequences into a sin-
gle comprehensive graph. In a pangenome graph,



bioRxiv preprint doi: hitps://doi.org/10.1101/2024.09.18.612131; this version posted June 27, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

: Optional: Differential Privacy

®Raw Data " @Tokenization ®Training | @Generation ®Downstream
: ! Tasks
Genome : 1 .| Synthetic R
Database | ‘ O Lh 1~ Database > f
: Tokens :

Figure 1: The whole pipeline of synthetic data generation and utilization.

nodes represent sequences of nucleotides, edges
connect these sequences, showing the possible
paths through the graph, and the paths through the
pangenome graph represent the genomes of indi-
viduals, as demonstrated in Figure 3. The nodes
in the pangenome graph represent the genetic se-
quences that are shared between the groups, while
the edges represent the genetic variations. Tasks
like genome-wide association (GWA) focus on the
genotype matrix of the graph rather the exact DNA
sequences. In this sense, it is the graph structure
rather than the actual nucleotides that carries infor-
mation.

2.3 Synthetic Genome Sequence Generation
using LMs

In this work, our aim is to generate a synthetic
genome sequence using LMs. In this section,
we describe the complete pipeline for synthetic
genome sequence generation using LMs, detailing
cach step from the original data processing to the
downstream tasks, as shown in Figure 1.

(D Raw Data (§5.1). The process begins with
the acquisition of genomic data, which provides
the genetic information needed for LM training.

@ Tokenization (§3). Genomic sequences are
converted into smaller units suitable for training
using certain tokenization schemes.

@ LM Training. Tokenized sequences are used
to train a GPT-style model using a next-token pre-
diction approach, allowing the LM to learn patterns
from the data without supervision.

@ Generation (§5.1). The trained LM gen-
erates synthetic genomic sequences by predicting
subsequent tokens based on learned patterns.

@ Downstream Tasks (§4). Genomic tasks to
which synthetic sequences can be applied.

We compare our schemes with the classical
schemes by comprehensive experiments in §5.2.

3 Tokenization of a genome sequence

In this section, we first describe the widely used
tokenization schemes and then introduce our tok-
enization schemes based on the pangenome graph.

A glossary is provided in Table 4 in §A.1.

3.1 Classical tokenizations

3.1.1 Genome-based Single Nucleotide
Tokenization (GSNT)

Genome-based Single Nucleotide Tokenization
(GSNT) is a straightforward method to tokenize
genome sequences, previously applied in (Nguyen
et al., 2024b; Schiff et al., 2024). In this scheme,
each nucleotide (A, C, G, T) is treated as an indi-
vidual token. For instance, the genome sequence
“ACGTA” would be tokenized as “A”, “C”, “G”,
“T”, and “A”.

3.1.2 Genome-based k-mer Tokenization

(GKMT)
Original Sequence GKMT Tokens
( AGCTAGCTA.. ———»AGCT)AGCT)...

After 1 Insersion *Changed "

(_ AGCTAAGCTA... GKMT @

After 1 Deletion éChanged

(_AGCT GCTA.. )—Mr GCTA

Figure 2: Insertion or Deletion of a sigle nucleotide
change all following GKMT (stride equal to £ = 4)
tokens.

Revertion

199301

Revertion
199304

198202
Revertion 199203
PNT
198]200-]199|301+]199|304+
PKMT  ,——6-mers segmentation inside nodes

AGCATG | CI|ITAGGCT | AGAT)| TATAT
PBPET »—— BPE segmentation inside nodes

AG| CATGC/|TAGGCT | AG | AT)|[TAT |AT

Figure 3: The pangenome graph based tokenizations
output different segmented sequences of the red path.
The above graph shows a slice of a pangenome graph
with nodes marking the variations, edges marking possi-
ble paths, and the numbers marking the IDs.
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An alternative is Genome-based k-mer Tokeniza-
tion (GKMT), where k-mers, substrings of length
k, used as tokens. For example, all 3-mers in the
sequence “ACGTAG” are “ACG”, “CGT”, “GTA”,
and “TAG”. Depending on the stride, the k-mers
may overlap or not overlap (with a stride equal to
k). We focus on the non-overlapping alternative.
Compared to GSNT, GKMT provides a longer ef-
fective context length, but is also highly sensitive
to sequence mutations or errors: a single nucleotide
insertion or deletion can change all subsequent to-
kens as shown in Figure 2.

3.1.3 Genome-based BPE Tokenization
(GBPET)

Genome-based Byte Pair Encoding Tokenization
(GBPET), which is also used in recent stud-
ies (Zhou et al., 2023), applies the BPE algo-
rithm (Sennrich et al., 2016) to genome sequences.
BPE begins with single nucleotide tokens and iter-
atively merges the most frequent pairs of adjacent
tokens to create a vocabulary of longer subword-
like tokens. However, BPE training requires too
large computational resources if very long DNA se-
quences are given as inputs. Manual segmentation
is needed in GBPET, which could cause the same
issue as GKMT.

3.2 Pangenome graph based tokenization

To address the limitations of standard schemes, we
propose three novel tokenization methods based on
the pangenome graph, illustrated in Figure 3.

3.2.1 Pangenome-based Node Tokenization
(PNT)

The first scheme, Pangenome-based Node Tok-
enization (PNT), tokenizes DNA sequences based
on the nodes in the pangenome graph. In this
method, each node is treated as a token, where
a node contains both the DNA sequence it repre-
sents and its position on the graph. Multiple nodes
may correspond to the same DNA sequence but
differ due to their positions in the graph. Conse-
quently, the node ID vocabulary can be much larger
(e.g., around 400K) compared to standard language
vocabularies (e.g., SOK), presenting challenges for
model training. To reduce the vocabulary size, we
split the node IDs into two parts (first and second
half) and include an additional indicator for se-
quence reversion (e.g., node 198202 in Figure 3
with reversion representing “GGCC” would be to-
kenized as 198’ and ’202+’, and the unreverted

node 198202 should be “CCGG”).

A limitation of PNT is that it does not accom-
modate new sequences in the existing pangenome
graph. Introducing new sequences requires rebuild-
ing the entire graph, generating new IDs, and po-
tentially altering the representation of previously
established sequences learned by the model.

3.2.2 Pangenome-based k-mer Tokenization
(PKMT)

The second scheme, Pangenome-based k-mer Tok-
enization (PKMT) segments DNA by splitting each
node’s sequence in the pangenome graph into non-
overlapping k-mers. Unlike PNT, it uses nucleotide
sequences rather than node IDs. We set k = 6
without padding; for example, the node sequence
“TAGGCTAGAT” yields “TAGGCT” and “AGAT”
in Figure 3. PKMT is more robust to insertions
or deletions than GKMT, as the graph preserves
alignment and isolates variations to affected nodes.
However, it lacks the graph’s positional encoding
found in PNT, which may limit its ability to capture
structural patterns in DNA.

3.2.3 Pangenome-based BPE Tokenization
(PBPET)

The third scheme, Pangenome-based BPE Tok-
enization (PBPET), applies the Byte Pair Encod-
ing algorithm to the sequences of nodes in the
pangenome graph. Instead of segmenting node
sequences into fixed-length k-mers as in PKMT,
PBPET learns a vocabulary of frequently occur-
ring sub-sequences across the nodes. In Figure 3,
sub-sequences like “AG” or “AT” are identified.
The learned vocabulary is then used to tokenize se-
quences, still with a first-step segmentation already
done between nodes. This approach retains the
graph-informed alignment of sequences, similar to
PKMT, but benefits from the adaptive vocabulary
of BPE.

4 Evaluating synthetic DNA generation
quality

A main challenge of proving the utility of our
schemes is how to evaluate the quality of the syn-
thetic genome sequence generation. In our study,
we use the prediction accuracy of the model to
measure the quality of the generative model. Fur-
thermore, we compare the similarity between syn-
thetic and real genome sequences through sequence
alignment.
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4.1 Model prediction accuracy

Next token prediction accuracy: measures how
often the model correctly predicts the next token
given the correct previous tokens, making it the
primary metric for models like GPT. However, this
does not fully reflect sequence accuracy when tok-
enization is not single nucleotide-based. Predicting
“AAAAAC” or “GCTGCT” for the true &k -mer to-
ken “AAAAAA” count both as simply incorrect.

Character-level prediction accuracy: mea-
sures the percentage of nucleotides predicted cor-
rectly for each token, providing a more granular
assessment of prediction quality. For example, pre-
dicting “AAAAAC” for the true token “AAAAAA”
yields an accuracy of 0.83, while predicting “GCT-
GCT” results in an accuracy of 0.

4.2 Sequence alignment scores

The measurement of similarity between two
genome sequences is done using sequence align-
ment, which is an essential process in many bioin-
formatic and computational biology tasks. Se-
quence alignment involves arranging the sequences
of DNA, RNA, or even proteins, usually to identify
regions of similarity. In our case, we use wfmash
(Guarracino et al., 2021) where the wavefront algo-
rithm (Marco-Sola et al., 2021) is primarily used
for pairwise alignment between real and generated
DNA sequences. Visualized results (introduced
and shown in §5) and multiple scores can be used
to evaluate the quality of the alignment.

An example of alignment between a reference se-
quence and a query sequence is shown in Figure 4.

Reference Sequence Query Sequence
(_..AGCTAAGTA.. ) (_ ..AGCTACTA.. )

..AGCTAag-TA..
..AGCTA--cTA..

-

Figure 4: An alignment between two sequence. Cap-
italized nucleotide and green links indicate matches;
lowercase nucleotide and red crosses indicate no match;
the dashes in the sequences represent the gaps during
matching.

An alignment score of 0 indicates no similar-
ity, while a score of 1 represents a perfect match.
Alignment scores can be defined and computed in
two primary ways:

» BLAST identity (BI): 7/10 = 0.7. Defined as

the number of matching bases in relation to

the number of alignment columns.

» Gap-Compressed Identity (GI): 7/9 = 0.78.
Counting the consecutive gaps in the query as
one difference.

DNA sequences, including those in the MHC re-
gion, naturally exhibit high homology even across
individuals, due to fundamental biological con-
straints. The alignment scores themselves can be
considered sufficient as a representation of the util-
ity of the synthetic sequences by measuring how
close they are to the real data, preserving the proper-
ties needed. Alignment metrics align directly with
the practical goals of genomic applications com-
pared to divergence measures (Pillutla et al., 2021).
Previous academic discussions (Frith, 2020; Durbin
et al., 1998) have shown that alignment score ef-
fectively shows sequence similarity, and scores can
indicate the potential usefulness of the compared
data in downstream genomic tasks (@ in §2.3). A
typical workflow involves projecting reads or map-
ping new data onto the reference genome, and then
calling variants such as single nucleotide polymor-
phisms (SNPs) and insertions/deletions (indels). A
higher score of a generated sequence against the
real sequence suggests that the synthetic data can
reliably substitute the real data, as further discussed
in Appendix D.

5 Experiments

5.1 Datasets and LM choice

In our experiments, we used the human major his-
tocompatibility complex (MHC) region of chro-
mosome 6 as our dataset, which is cut out of the
PGGB graph of HPRC year 1 assemblies (Liao
et al., 2023). A total of 126 samples with 447 mil-
lion nucleotides are in the dataset, with 80% of
the samples used as the training set and 20% as
the test set. During hyperparameter tuning, the
“reference genome” was temporarily used as a vali-
dation set before being added back to the training
set for final training. We tested the performance of
the openly available GPT-2 (Radford et al., 2019)
and Llama (Touvron et al., 2023a) model archi-
tectures with 90M parameters, which support a
prompt length of 1024/2048 tokens, using the Hug-
ging Face 4.24.0 library of transformers (Wolf,
2019). GPT-2 and Llama are chosen due to their
well-established performance and robustness as a
classical publicly available language model, and
the relatively small 90M total parameter size is se-
lected to balance performance and computational
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overhead. We split the long genome into 10k base
pairs sequences in GBPET training and set the vo-
cabulary size to 4096 for both BPE methods, as in
DNABERT?2 (Zhou et al., 2023).

Table 1: Training time (hours) of each tokenization
scheme on 90M models for 90 epochs.

Model | GSNT GKMT PKMT GBPET PBPET PNT
GPT-2 56 11 15 17 24 7
LLaMA | 20 5 6 9 12 3

5.2 Experiment results

We trained the GPT-2 and Llama models on the
dataset using four tokenization schemes: GSNT,
GKMT, PNT and PKMT. Training was carried
out for 90 epochs (§B.1 shows results with more
epochs) with a batch size of 16/8 and 1024/2048-
token sequences for GPT-2/Llama. The dataset
comprises 124 DNA samples totaling 447 million
nucleotides. Training times are shown in Table 1,
obtained on 8 NVIDIA A5500 GPUs. Figure 5
displays token and character-level prediction ac-
curacies. PNT not included in the character-level
accuracy figures due to the vague definition on pre-
dictions and targets with too varied lengths.

Training times and model performance differ
significantly across tokenization schemes as shown
in Table 1 and Figure 5. The final accuracies are
shown in Table 2. PNT demonstrated the fastest
training time, while GSNT is generally the slow-
est due to its larger token set. BPE based method
are slower than k-mer based but faster than GSNT.
PNT reaches the best peak accuracy the fastest,
while GKMT has the worst performance. GSNT
initially trains much faster than PKMT for token
prediction, but converges to a similar final accu-
racy. We will see how they perform differently in
the alignment. Despite having almost the same to-
ken tables, we can clearly tell PKMT’s pangenome
graph-aided segmentation helps the model to out-
perform the on trained by GSNT. The training of
PBPET tokenizer takes around 20 seconds, while
the training of GBPET tokenizer takes about 10
minutes, largely due to the larger sequence chunks,
and they both have moderate training time.

We present the alignment results for the GPT-2
generated sequences of the tokenization schemes
in Figure 6 (GKMT barely generates sequences
that align at all), aligned against the reference se-
quence of the dataset. The X-axis represents ref-
erence sequence positions, and the Y-axis shows
different generated sequences aligned to the ref-

Table 2: Final accuracy of each tokenization scheme on
90M models trained for 90 epochs.

Model | GSNT GKMT PKMT GBPET PBPET PNT

Token Prediction Accuracy
97.1% 659% 96.9% 97.9%
98.7% 81.8% 97.7% 98.5%

Character-Level Accuracy
97.1% 783% 97.9% 98.6%
98.7% 85.3% 98.6% 99.0%

GPT-2
LLaMA

98.0%
98.6%

98.6%
98.8%

GPT-2
LLaMA

99.0% -
99.3% -

erence. Each dot or line marks a generated se-
quence position aligned with the reference genome.
After 90 epochs, only PNT generates sequences
closely aligned with the reference over long con-
texts for GPT-2. Some sequences show no align-
ment, likely due to random sampling for diversity
and learned misalignments from the training data.
Llama, achieving comparable token prediction ac-
curacy, performs very similar to GPT-2 results.
However, it is generally with less dense dots and
dashes, indicating fewer matches, as shown in Ap-
pendix B. Llama is also capable of generating long
sequences using PNT. However, the alignments
tend to terminate prematurely. Even with longer
prompts, Llama appears to struggle more in regions
with higher mutation rates (observe the denser dots
along the alignment lines), causing the generation
to deviate more easily from the intended sequence.
Llama cannot generate long sequences even with
PKMT or PBPET.

To quantify generation quality, we show the
alignment scores of the generated sequences
against the entire data set (the best match of a query
against the entire dataset) in Table 3, with the re-
sults for real data as a comparison. In addition to
GI / Bl scores, we show the alignment percentage,
indicating the proportion of well-aligned sequences.
The segment length refers to the size of the min-
imizer window during alignment. PNT achieves
the highest alignment scores across all segment
lengths, while GSNT performs the worst.

PNT demonstrates superior token-level predic-
tion accuracy, while GKMT achieves the highest
character-level accuracy in GPT-2 and closely ri-
vals PNT in Llama. Traditional methods under-
perform, with GKMT achieving less than 70%
accuracy and GSNT training significantly slower.
The accuracy gap is more pronounced in alignment
scores (Table 3), where PNT consistently excels
with GI and BI scores of around 0.99 in segment
lengths of 1k to 200k, closely mirroring the per-
formance of real data. Although PKMT produces
fewer high-quality sequences than GSNT that align
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Figure 5: Model prediction accuracies of all tokenization schemes during GPT-2 training.
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Figure 6: Alignment of a batch of GPT-2 generated sequences against the reference sequence. The X-axis represents
the reference sequence; the Y-axis shows generated sequences. Longer lines indicate consistent alignment, and
denser dots represent frequent short matches. Alignment results from Llama are presented in Appendix B.

Table 3: Alignment percentages and weighted GI/BI scores of the 20 generated sequences per scheme for different
segment lengths, aligned against the original dataset. Real data metrics are computed using 80% of samples as

references and 20% as queries.

Segment 1k 20k 50k 200k

GPT-2 Align % GI BI |Align % GI BI |Align % GI BI |Align % GI BI
GSNT 81.66 0.8712 0.9955| 21.55 0.8834 0.9893| 142 0.8323 09849 0.00 0.0000 0.0000
PKMT 5296 0.9443 09856 | 50.34 09036 0.9932| 47.87 0.8977 0.9936| 8.82 0.8656 0.9919
GBPET 71.81 09873 0.9981| 53.19 09105 0.9931| 36.93 0.9041 0.9921| 0.00 0.0000 0.0000
PBPET 4475 09081 0.9914| 42.03 09044 0.9943| 4229 09007 0.9935| 9.39  0.9029 0.9955
PNT 89.34  0.9977 09999 | 31.01 0.9961 0.9990| 3327 0.9920 0.9985| 36.96 0.9873 0.9982
LLaMA Align % GI BI |Align % GI BI |Align % GI BI |Align % GI BI
GSNT 7.17  0.7927 0.9906| 0.00 0.0000 0.0000| 0.00 0.0000 0.0000| 0.00 0.0000 0.0000
PKMT 3445 09666 0990 | 21.19 0.8323 0.9907| 6.85 0.8232 09876 0.00 0.0000 0.0000
GBPET 1290 09543 0.9870| 0.00 0.0000 0.0000| 0.00 0.0000 0.0000| 0.00 0.0000 0.0000
PBPET 33.00 09817 0999 | 6.41 0.8533 09861 | 5.86 0.8356 09878 0.00 0.0000 0.0000
PNT 28.80 0979 0.9958| 597 0.9970 0.9984| 849 0.9958 0.9987| 15.02 0.9938 0.9977
Realdata 99.97 0.9994 0.9999] 6923 0.9996 0.9999] 61.37 0.9991 0.9997] 50.67 0.9981 0.9993

with the reference, it achieves slightly higher align-
ment scores than GSNT in more settings and has a
chance for relatively good generation for large seg-
ments. The newer non-pengenome-based method,
GBPET, performs better in alignment score specifi-
cally under smaller segment length, but still lacks
stable long-sequence generation compared with
pangenome powered PBPET. PN'T-generated se-
quences hold greater potential for applications re-
sembling real data, while others may require further
refinement or model optimization. Llama overall
shows the same trend, but lags behind GPT-2 in se-
quence generation, despite higher prediction accu-

racy and longer prompt length, likely due to greater
performance degradation in very limited parameter
numbers for continuous predictions. Llama specifi-
cally underperforms in non-pangenome based tok-
enization methods. Overall, PKMT performs better
than GSNT (and GKMT), and PBPET performs
better than GBPET, directly indicating the useful-
ness of involving pangenome graph structure in
tokenization. One limitation we observe is that
pangenome-based models occasionally generate al-
most entire no match. Classical methods, although
they generate fragmented pieces, do not completely
miss. For PNT specifically, adding a small 20 token
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prompt will completely fix this issue.

Discussion. To our knowledge, this work is the
first to compare the effectiveness of pangenome-
based tokenization schemes to classical tokeniza-
tion schemes when utilizing the LMs to learn the
pattern of DNA sequences; and also the one of the
first to demonstrate the efficacy of LMs in generat-
ing very long DNA.

Our findings reveal that the pangenome graph
structure embeds significant and meaningful infor-
mation, improving neural networks’ understanding
of DNA sequences. Our experiments demonstrate
how this information can be effectively exploited.
The significant gap between GKMT and PKMT
emphasizes the effectiveness of leveraging graph
structure in tokenization. Despite having similar to-
ken tables, the graph-aided segmentation of PKMT
provides more stable and learnable structural in-
formation, resulting in better model training speed
and overall generation quality. Our results under-
score the trade-offs between computational cost
and model performance, with pangenome graph-
based tokenization schemes showing higher accu-
racy across tasks. Previous work (Liao et al., 2023)
demonstrates how improved matching is the key
point of the pangenome, which “aligns” with our
use of the pangenome graph here.

6 Related work

In this section, we introduce two common genome
tasks wwith machine learning application. Table 7
in Appendix C summarizes this section.

6.1 Classification Tasks

Classification tasks are common in genomics, in-
cluding (more details in Appendix D):

Variant Calling: ML models identify genetic
variants such as SNPs and indels in genomes, link-
ing them to diseases or traits. Deep Variant (Poplin
et al., 2018), a CNN-based variant caller, outper-
forms traditional methods, influencing many oth-
ers (Yun et al., 2020; Kolesnikov et al., 2021). Clair-
voyante (Luo et al., 2019) excels in single-molecule
sequencing (SMS), while Clair (Luo et al., 2020)
offers faster RNN-based inference with fewer pa-
rameters, without sacrificing accuracy.

Gene Expression Analysis: ML models analyze
gene expression data to reveal gene-disease rela-
tionships. Classical methods like KNN (Kim and
Kim, 2018), linear/logistic regression (Han et al.,
2019), and SVMs (Wan et al., 2019) are used to

predict driver genes or cancer risk. CNNs (Lyu and
Haque, 2018; Elbashir et al., 2019) are also applied
for cancer classification with RNA-seq data.

Beyond these, CNNs model protein binding (Ali-
panahi et al., 2015), cell type identification (Yao
et al., 2019), and non-coding variants (Zhou and
Troyanskaya, 2015). RNNs predict non-coding
DNA functions (Quang and Xie, 2016) and RNA-
protein binding preferences (Shen et al., 2020).
Transformer models like DNA-BERT (Ji et al.,
2021; Zhou et al., 2023; Dalla-Torre et al., 2023,
2025) provide strong contextual embeddings for
molecular phenotype prediction but face context
size limitations due to quadratic scaling. Recent
models like Hyena (Nguyen et al., 2024b) and
MambaDNA (Schiff et al., 2024) address these
limitations with sub-quadratic scaling for longer
contexts. More recent applications of DNA LM
like MoDNA (An et al., 2022) for promoter predic-
tion, and GENA (Fishman et al., 2023) for multiple
tasks, both use traditional GKMT. Some papers like
GPN-MSA (Benegas et al., 2024) for genome-wide
variant effect prediction uses GSNT. DNABERT-
2 (Zhou et al., 2023) and following work (Karollus
et al., 2024) for evolutionary conservation and func-
tional annotation prediction use BPE.

A recent paper (Zhang et al., 2024) presents a
similar tokenization approach using pangenome
graphs. Although both works independently de-
velop this idea, ours differs by incorporating PNT
and PBPET, and focusing on long-sequence gen-
eration. In contrast, their work handles shorter
sequences (max 5000bp) with node-aided k-mer
tokenization and focuses on classification tasks.

6.2 Generation Tasks

Synthetic Data Generation: Synthetic data mim-
ics real data for privacy concerns. GANs have been
used for synthetic medical data (Bae et al., 2019)
and DNA sequences coding for proteins (Gupta and
Zou, 2018), though limited by fixed output sizes
and requiring DP for stronger guarantees. Some
work (Avdeyev et al., 2023) utilizes transformers
but with limited generation length, and a more re-
cent large model (Nguyen et al., 2024a) shows gen-
eration of submillions in length with a certain level
of genomic organization.

De Novo Genome Assembly: This involves re-
constructing a genome from short DNA fragments
without a reference. Deep learning has been ap-
plied to de novo peptide sequencing (Tran et al.,
2017, 2019; Yang et al., 2019).



bioRxiv preprint doi: https://doi.org/10.1101/2024.09.18.612131; this version posted June 27, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

7 Limitations

While our study focused on smaller models to estab-
lish a proof-of-concept for our tokenization scheme,
we acknowledge that larger models may improve re-
sults but raise practical concerns around efficiency
and resource use. Furthermore, emerging architec-
tures designed for long-context processing (e.g.,
(Gu et al., 2021; Nguyen et al., 2024b,a; Gu and
Dao, 2023; Peng et al., 2023a)) could potentially
further enhance the performance of all tokeniza-
tion schemes. These models, by enabling longer
effective context windows, could improve both the
understanding of long-range dependencies in DNA
and the consistency of sequence generation. Al-
though we believe that pangenome-based tokeniza-
tion retains advantages in effective segmentation,
such models may help close the performance gap
for other tokenization methods. We agree that this
is a valuable direction and suggest that future work
explores scaling to larger models and incorporating
long-context architectures to more fully assess their
potential impact.
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A More on tokenization schemes

A.1 Glossary of Frequent Acronyms

Table 4: Glossary of Frequent Acronyms

Acronym | Explanation

GSNT Genome-based Single Nucleotide Tokenization
GKMT Genome-based k-mer Tokenization

GBPET Genome-based BPE Tokenization

PNT Pangenome-based Node Tokenization

PKMT Pangenome-based k-mer Tokenization

PBPET Pangenome-based BPE Tokenization

A.2 Public graph-based PKMT tokenization

The proposed PKMT schemes aim to provide more
context and help models learn DNA sequence pat-
terns more effectively. However, they can also
risk leaking sensitive information about individ-
ual samples. For additional techniques like Differ-
entially Private Stochastic Gradient Descent (DP-
SGD) to be implemented during training, tokeniza-
tion should be independent of the private dataset or
protected by appropriate mechanisms for the whole
scheme to be DP compatiable.

Making PNT DP-friendly is challenging, as the
ID-to-sequence mapping can expose private data.
Although the static vocabulary of PKMT avoids
this issue during token mapping, the use of the
pangenome graph, where segmentation depends
on every sequence in the dataset, still breaks the
guarantee. To mitigate this, we propose building a
“public” pangenome graph from publicly accessible
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Figure 7: Model prediction accuracy of the four tokenization schemes during LLaMA training. PNT is excluded
from the character-level accuracy plot due to the ambiguity in defining accuracy when predicted and target sequences

differ in length.

Table 5: Alignment percentages and weighted GI/BI scores for segment lengths Sk and 100k.

Segment 5k 100k

Model  Align % GI  BI |Align % GI BI
GPT-2

GSNT 5949 0.8919 0.9910| 0.00 0.0000 0.0000
PKMT 53.76  0.9015 0.9960| 38.43 0.8928 0.9939
GBPET 63.20  0.9082 0.9961| 14.62 0.9035 0.9884
PBPET 4622  0.9019 0.9966| 38.04 0.8927 0.9920
PNT 7327 09970 0.9997| 33.17 0.9945 0.9988
LLaMA

GSNT 0.41 0.7414 0.9784| 0.00 0.0000 0.0000
PKMT 30.82  0.8362 0.9917| 0.00  0.0000 0.0000
GBPET 0.10  0.3070 0.9479| 0.00 0.0000 0.0000
PBPET 2475  0.8609 0.9916| 0.00  0.0000 0.0000
PNT 2579  0.9977 0.9997| 10.96 0.9964 0.9990
Realdata 97.97 0.9994 0.9999| 60.44 0.9989 0.9997

datasets. This graph can then be used to tokenize
the private dataset. Subsequences identified in the
public graph are tokenized as corresponding nodes,
while unrecognized subsequences are tokenized as
standard k-mers, preserving privacy. The pseudo-
code for this segmentation is provided in §A.2,
and is used in the experiments for PKMT. As the
key idea behind PKMT is to be more extendable
than PNT to new unknown (test) data, we use this
realization in our experiments with the graph only
built on the training set.

In our experiment, we split an existing graph
as a public graph and the private sequences. We
build the public pangenome graph as shown in Pro-
tocol 1 and then complete the PKMT as shown in
Protocol 2.

B More experiment details and results

We run the experiments in a cluster of 8 NVIDIA
AS5500 GPUs. The GPT-2 model uses the gelu_new

13

activation function, consists of 12 transformer lay-
ers, each with 12 attention heads, and an embed-
ding dimension of 768 with maximum prompt be-
ing 1024. The LLaMA model uses the SiL.U activa-
tion function and consists of 6 transformer layers,
each with 8 attention heads, and an embedding
dimension of 768. It has an intermediate size of
4096, and supports sequences up to a maximum
of 2048 positions. We used a grid search for the
best hyperparameters. We use 3e-4 (except Se-4 for
GSNT - GPT-2 and 1le-4 for le-4 for GSNT Llama)
leaning rate, batch size 8/16 for GPT-2/Llama train-
ing; and topk=10, topp=0.92, topk_decend_min=5
for generation, which is also determined by grid
search. To avoid the risk of memorization, we en-
sure the enough randomness in the generation, and
that the alignment scores are not perfect (up to 1)
and include real-to-real alignment baselines as a
reference. We show additional alignment scores
in Table 5 and the Llama accuracy in Figure 7. A
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Algorithm 1 G, <— H pypcraph (G, Pub): Define Public Pangenome Graph Nodes

1:

—_ = =
N 22

13:
14:
15:

R A O S i

Input: A pangenome graph G, list of indexes Pub with public sequences. We use G[i][j] to represent
the node j of the sequence i in G and Seq(G[i][j]) to represent the actual sequence.

Output: The way nodes are merged in the public pangenome graph recorded in M,
Initialization:
Initialize M, as an empty dictionary to store the public pangenome graph nodes.
for each sequence ¢ in Pub do
for each node j in G[i] do
if G[t][j] has fixed previous/next nodes in G then
Combine G[i][j] with the fixed previous/next nodes as a single node.
Record the combined node in M.
else
Record G[i][j] as an independent node in My,
end if
end for
end for
Return: M, as the public pangenome graph nodes.

Algorithm 2 Segmented < Il px a7 (G, Pub, Priv): Perform PKMT Based on Public Sequences Only

1:

R A O

—
—_

12:

20:
21:
22:
23:

,_
9

Input: A pangenome graph G, list of indexes Pub with public sequences and Priv with private
sequences. We use G[i][j] to represent the node j of the sequence 7 in G. We use Seq(G[i][j]) to
represent the actual sequence.
Output: Segmented DNA sequences recorded in Segmented.
Gpub = U pubGrapn (G, Pub, Priv)
Initialize Segmented = {}
for each sequence i in { Pub, Priv} do
Initialize Chain = []
Initialize UndefinedChain = [ |
Initialize Segmented[i] = [
for each node j in G[i] do
Add Seq(GTi][j]) to Chain
if current node chain ends according to M, then
Append UndefinedChain to Segmented[i] as a segment of the sequence G|i]
Append Chain to Segmented]:] as a segment of the sequence G|i]
Clear UndefinedChain
Clear Chain
else if current node pattern is not recorded in M, then
Append Chain to UndefinedChain
Clear Chain
end if
end for
Cut each segment in Segmented|i] into non-overlapping 6-mers
end for
Return: Segmented

14
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Figure 8: Alignment of a single generated sequence against the reference. Longer lines represent continuous
alignment regions, while scattered dots show shorter matching fragments.

P

- e

Figure 9: The pangenome graph of the human major
histocompatibility complex (MHC) region of chromo-
some 6 of the PGGB graph of HPRC year 1 assemblies,
with 2D graph visualization (above) and matrix view
(below). The circled in the 2D graph and the gaps in the
matrix view indicate mutations.

clearer single query view of alignment is shown
in Figure 8 for a single generated sequence, and
the alignment figures for Llama are in Figure 10.
Figure 9 shows a simple illustration of a small
pangenome graph of the MHC data we use.
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B.1 Effects of extensive training

During our experiment, we found that PNT,
GBPET and PBPET did not benefit from more
training epochs but GSNT and PKMT had the
potential for further improvement. We trained
the better-performing GPT-2 model on half of the
training dataset for an extra 200 epochs, keeping
other parameters the same to further investigate the
best possible performance these two tokenization
schemes can provide. The token prediction accu-
racy increased by about 0.4% for PKMT and 0.3%
for GSNT, which is marginal, but we observed
significant improvements in generation quality for
both methods in alignment score. While predic-
tion accuracy gains may appear small, they have a
compounding effect during generation, where er-
rors accumulate across long sequences. Accuracy
reflects only top-1 correctness for the next token,
whereas generation samples probabilistically from
the top candidates, making it more sensitive to dis-
tributional improvements. The results are shown
in Figure 11 and Table 6. Both methods achieved
slightly higher alignment scores and aligned length,
especially with larger segments. Both tokenization
schemes still underperformed compared to PNT,
even after extensive training. Figure 11 addition-
ally clearly shows that GKMT generates relatively
longer sequences with more longer lines.

The higher utility of the extensively trained
model indicates that substantial investment in com-
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Figure 10: Alignment of a batch of LLaMA-generated sequences against the reference. The X-axis is the reference,
and the Y-axis shows the generated sequences. Longer lines indicate consistent alignment, and denser dots indicate

frequent short matches.

Table 6: Alignment percentages and weighted GI/BI scores of the 20 generated sequences each scheme for different
segment lengths of the generated sequences with extensively trained GPT-2 model, against the test set as reference.

Segment 1k 5k 20k

Align % GI BI |Align % GI BI |Align % GI BI
GSNT 90.67 0.8818 0.9972| 75.52 0.8922 0.9926| 42.17 0.8916 0.9920
PKMT 81.42 0.9842 0.9978| 81.87 0.9027 0.9969| 79.74 0.9044 0.9956
Segment 50k 100k 200k

Align % GI BI |Align % GI BI |Align % GI BI
GSNT 9.76  0.8801 0.9916| 0.00 0.0000 0.0000| 0.00 0.0000 0.0000
PKMT 72.52  0.9011 0.9940| 65.51 0.8936 0.9943| 16.19 0.8883 0.9935
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Figure 11: Alignment of a batch of generated sequences
(after extensive GPT-2 training) against training se-
quences. The X-axis is the reference; the Y-axis con-
tains generated sequences. Longer lines indicate consis-
tent alignments, while denser dots reflect frequent short
matches.

putational power has its potential.

C Summarizing related work

Here we provide a table to summarize our discus-
sion in §6, with a detailed list of the related work
of ML/DL doing genomic tasks.

D Alignment scores and downstream
tasks

Alignment-based evaluations provide a more direct
assessment of how well synthetic data supports real-
world genomic applications. For example, datasets
like those from the Human Pangenome Project de-
pend heavily on alignment-based metrics to assess
data quality and interpret genetic variation. Read
alignment to a reference genome followed by vari-
ant calling is a widely adopted pipeline, and here
alignment consistency and accuracy are critical. In
this context, alignment scores are not only practi-
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cal but also well-recognized within the genomics
community as meaningful indicators of quality.

In this section, we introduce two essential tasks
to show how alignment scores can determine the
utility of sequences, and how synthetic sequences
can play a role.

D.1 Variant calling

Read alignment and variant calling are founda-
tional tasks in bioinformatics pipelines, especially
in genome resequencing studies. In this process,
DNA reads generated by sequencing technologies
are aligned to a reference genome to reconstruct
the original genetic material and identify variants
(e.g., calling the inserting and deletion in the bot-
tom two sequences when compared with the top
reference in Figure 2). Determining an accurate
alignment is critical because downstream variant
calling algorithms rely on these mappings to com-
pare the sample DNA against the reference. Numer-
ous tools have been developed to perform this task
efficiently and accurately, including Minimap?2 (Li,
2018) and wfmash (Guarracino et al., 2021). Most
work in §6.1 measure the alignment in their experi-
ment.

A high alignment score indicates a strong match
between the sequenced read and a region in the ref-
erence genome, minimizing mismatches, gaps, or
ambiguous placements. This is essential to identify
true variants confidently, ruling out sequencing er-
rors or misalignments. An incorrect alignment may
map a query DNA sequence to the wrong location
in the reference genome, leading to wrong variant



bioRxiv preprint doi: https://doi.org/10.1101/2024.09.18.612131; this version posted June 27, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

calls. An example is given in Figure 12. Synthetic ~ of biological plausibility.
sequences can serve as references in variant calls

or generate potential variant combinations that are

not observed in natural samples.

Reference Sequence
¢ ..GGGAGCT AGCT AGCT AGCTGGG.. )
Alignment 1

..GGGAGCT AGCTAAGCT AGCTGGG..

Alignment 2
..GGGAGCT AGCT AAGCTAGCTGGG...

Figure 12: Two possible alignment of a sequence to a
reference sequence. Alignment 1 calls for one insertion
while Alignment 2 calls for 4 deletion then 5 insertion.
Alignment 1 will have higher alignment scores with
more matched nucleotides, and is considered a better
alignment. Therefore the variant calling based on Align-
ment 1 is considered better than Alignment 2.

D.2 De novo assembly

De novo assembly reconstructs a genome from
short sequencing reads without relying on a ref-
erence genome. This process stitches overlapping
reads into contiguous sequences (contigs) or scaf-
folds, aiming to rebuild the original genome as
accurately as possible. Since there is no reference
during assembly, evaluation is typically performed
by aligning the assembled contigs back to a trusted
reference genome, or comparing them to known
markers or conserved genes.

A high alignment score here indicates that the
assembler has likely reconstructed a biologically
accurate sequence. This suggests high contiguity,
low error rates, and minimal misassemblies. Low
alignment scores often signal fragmented or mis-
assembled regions. Synthetic sequences can act as
trussted reference, improving the assembly.

Many utility metrics used in existing genome
modeling studies are fundamentally rooted in
sequence alignment. For example, in recent
work such as (Nguyen et al., 2024a), tools like
CheckM (Parks et al., 2015) are used to report qual-
ity metrics, including gene density and stop codon
frequencies. These tools rely on foundational com-
ponents like profile Hidden Markov Models (pH-
MMs) that are directly constructed from multiple
sequence alignments, with alignment quality and
consistency playing a central role in shaping their
parameters and performance. In this context, a
high alignment score indicates strong homology
or functional similarity between the generated se-
quence and known sequences, providing evidence

17
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Table 7: DL models used in genome tasks.

Job Type Paper Task Architecture | Input
Classification | (Poplin et al., 2018; Variant Calling CNN hundreds of base pairs
Yun et al., 2020;
Kolesnikov et al., 2021)
(Luo et al., 2019) Variant Calling CNN hundreds of base pairs
(Lyu and Haque, 2018; | Cancer Prediction CNN RNA-seq gene expression data
Elbashir et al., 2019)
(Alipanahi et al., 2015) | Protein Binding CNN 10-100 nucleotides & binding
specificities
(Zeng et al., 2016) Protein Binding CNN 10-100 base pairs & binding
specificities
(Yao et al., 2019) Cell Type Identification CNN cell images
(Zhou and Troyanskaya, | Non-coding DNA function | CNN 1k base pairs
2015) prediction
(Luo et al., 2020) Variant Calling RNN binary alignment map (BAM)
(Shen et al., 2020) RNA-protein binding LSTM embedded k-mers
preference
(Quang and Xie, 2016) | Non-coding DNA function | CNN/BLSTM | one hot encoded nucleotides
prediction
(Kim and Kim, 2018) Cancer Prediction KNN SNP genotype syntaxes
(8-mers)
(Han et al., 2019) Cancer Prediction Rao score Mutation Annotation Format
(MAF)
(Wan et al., 2019) Cancer Prediction SVM Human EDTA plasma samples
(Jietal., 2021; Zhou Molecular Phenotype Transformer tokenized k-mers
et al., 2023) Prediction
(Dalla-Torre et al., Molecular Phenotype Transformer | tokenized k-mers
2023) Prediction
(Nguyen et al., 2024b) 5-way Species Transformer single nucleotide tokens
Classification
(Schiff et al., 2024) Genome Tasks Mamba single nucleotide tokens
(Luo et al., 2019) Variant Calling CNN Hundreds of base pairs
(An et al., 2022) Promoter Prediction Transformer | 6-mers of up to 512bp
(Karollus et al., 2024) Evolutionary Conservation | Transformer 6-mers for 128bp sequences
/ Functional Annotations
(Fishman et al., 2023) Multiple Tasks Transformer BPE tokens, up to 36000bp
sequence
(Benegas et al., 2024) Genome-wide Variant Transformer GSNT for 128bp sequences
Effect Prediction
(Dalla-Torre et al., Multiple Prediction Tasks Transformer | Thousands of k-mer tokens
2025)
Generation (Tran et al., 2017) De novo peptide LSTM/CNN | tandem mass spectrometry
sequencing (MS/MS) Spectrum
(Tran et al., 2019) De novo peptide LSTM/CNN | data-independent acquisition
sequencing (DIA) mass spectrometry data
(Yang et al., 2019) De novo peptide learning-to- tandem mass spectrometry data
sequencing rank
(Bae et al., 2019) Synthetic Medical Data GAN medical data
(Gupta and Zou, 2018) | Synthetic DNA Sequences | GAN DNA sequences
(Avdeyev et al., 2023) Synthetic DNA Sequences | Transformer Up to 1024 base-pairs
(Nguyen et al., 2024a) Synthetic DNA Sequences | Transformer | Up to 131072 base-pairs
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