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Abstract

Language Models (LM) have been exten-

sively utilized for learning DNA sequence pat-

terns and generating synthetic sequences. In

this paper, we present a novel approach for

the generation of synthetic DNA data using

pangenomes in combination with LM. We in-

troduce three innovative pangenome-based to-

kenization schemes, including two that can

decouple from private data, while enhance

long DNA sequence generation. Our exper-

imental results demonstrate the superiority

of pangenome-based tokenization over clas-

sical methods in generating high-utility syn-

thetic DNA sequences, highlighting a promis-

ing direction for the public sharing of genomic

datasets.

1 Introduction

Public availability of genome datasets, such

as the Human Genome Project (HGP) (Lander

et al., 2001), the 1000 Genomes Project (Con-

sortium et al., 2012), The Cancer Genome Atlas

(TCGA) (Weinstein et al., 2013), GenBank (Ben-

son et al., 2012), the International HapMap

Project (Gibbs et al., 2003), the Human Pangenome

Project (Liao et al., 2023), and the Telomere-

to-Telomere project (Nurk et al., 2022), has

been instrumental in advancing genomics research.

However, large-scale genome sequencing remains

costly and resource intensive due to the sophis-

ticated equipment and computational resources

required (Wetterstrand, 2021; Van Dijk et al.,

2018). Additionally, the release of real genomic

data raises significant privacy concerns, as re-

identification risks persist despite anonymization

efforts (Sweeney et al., 2013; Wjst, 2010; Ohm,

2009).

Synthetic data generation offers a scalable and

relatively private alternative, enabling researchers

to perform analyzes without exposing sensitive in-

formation (Yelmen et al., 2021). Specific tasks

such as De Novo genome assembly (Tran et al.,

2017, 2019; Yang et al., 2019) and genotype impu-

tation (Browning and Browning, 2016) inherently

involve the generation of unknown sequences, mak-

ing them also suitable applications for synthetic

data. A good generative model can significantly

improve their accuracy and efficiency by predicting

missing or incomplete segments.

Deep learning models are widely used in differ-

ent tasks, even in processing genome sequences

and related data (Yun et al., 2020; Kolesnikov et al.,

2021; Kim and Kim, 2018; Elbashir et al., 2019).

While generative adversarial networks (GANs)

have been explored for synthetic genome genera-

tion, their output is limited to short sequences (Bae

et al., 2019; Gupta and Zou, 2018). LMs have

shown their capability to generate synthetic nat-

ural languages that are almost indistinguishable

from real data. The generated language text can

be used to train other models (Kumar et al., 2020;

Yoo et al., 2021; Hartvigsen et al., 2022), including

those in the medical domain (Peng et al., 2023b;

Guevara et al., 2024). Proven to be extraordinarily

good at processing human language, LMs can also

interpret and generate broader text, such as code

for programming tasks (Chen et al., 2021), thereby

pushing the boundaries of their application beyond

strictly spoken language-based domains.

While LMs present a promising alternative for

generating long synthetic DNA sequences, effec-

tive tokenization of DNA sequences is crucial for

leveraging LMs. Traditional methods, such as sin-

gle nucleotide tokenization and k-mer tokenization,

segment sequences into individual nucleotides or

substrings of length k (Lanchantin et al., 2017; Bae

et al., 2019; Yelmen et al., 2021; Peng et al., 2023b;

Alipanahi et al., 2015; An et al., 2022; Fishman

et al., 2023). Classical approaches like k-mer to-

kenization (GKMT) are particularly sensitive to

small mutations such as insertions or deletions: a

single-base shift can disrupt all downstream tokens,
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severely affecting model stability and learning. Ad-

ditionally, its divergence from natural language

processing (NLP) segmentation approaches limits

the model’s ability to capture DNA sequence pat-

terns. Byte Pair Encoding (BPE) is used in recent

work (Zhou et al., 2023), but still requires segment-

ing long DNA sequences into shorter chunks due

to computational and memory constraints during

tokenizer training. This study explores how NLP

and pangenome-inspired tokenization can enhance

LMs’ ability to learn DNA sequence structures.

To build a practical genome sequence genera-

tion model that protects the privacy of the dataset,

we propose LM-based synthetic data generation

using two novel pangenome graph (see §2.2)-based

tokenization schemes: Pangenome-based Node To-

kenization (PNT) and Pangenome-based k-mer To-

kenization (PKMT). PNT leverages nodes in the

graph as tokens, while PKMT segments sequences

using graph nodes before generating k-mers, en-

abling future applications of privacy techniques

such as differential privacy (DP).

This work presents the first comparative analy-

sis of classical and pangenome-based tokenization

schemes for LMs, specifically GPT-2 and Llama,

in learning DNA sequence patterns and generating

long synthetic sequences. Our findings reveal that

the pangenome graph structure embeds significant

information that enhances neural networks’ com-

prehension of DNA sequences. Representing DNA

sequence segmentation through node-based tok-

enization improves the understanding of sequence

structures and model performance. Additionally,

including positional information from node IDs fur-

ther boosts the training and predictive performance

of DNA LMs. Our results show that pangenome-

based tokenization schemes reduce training time

and improve scalability compared to traditional

methods, addressing the computational challenges

of training LMs. Our contributions are as follows:

1. We introduce two pangenome graph-based to-

kenization schemes, PNT and PKMT, which

provide more contextual information, enhanc-

ing LMs’ ability to learn DNA sequence pat-

terns and structures.

2. We propose a variant of pangenome graph

segmentation that decouples from any pri-

vate training data, enabling potential privacy-

preserving training.

3. We demonstrate through experiments that our

tokenization schemes outperform classical

methods in training efficiency, predictive ac-

curacy, and generation quality for LMs.

Following the introduction, the paper is struc-

tured as follows: Section 2 covers background on

synthetic genome generation, Section 3 details to-

kenization schemes, Section 4 outlines evaluation

metrics, Section 5 presents experiments, Section 6

discusses related work, and Section 7 concludes

with limitations, implications, and future direc-

tions.

2 Background

2.1 Language Models

Large language models are advanced artificial in-

telligence systems designed to understand and gen-

erate language text based on the data on which they

have been trained. These models, such as Mis-

tral (Jiang et al., 2023), Anthropic’s Claude (An-

thropic, 2023), OpenAI’s GPT series (Radford

et al., 2019; OpenAI, 2023), Google’s T5 (Raffel

et al., 2020), Lamda (Thoppilan et al., 2022) and

Gemini (Team et al., 2023), Meta’s OPT (Zhang

et al., 2022), BLOOM (Le Scao et al., 2023) and

LLama (Touvron et al., 2023a,b), etc., take advan-

tage of vast amounts of textual information to learn

patterns, nuances, and complexities of language.

LMs can perform a variety of language-related

tasks, including answering questions, translating

languages, and even participating in casual con-

versations. Their ability to process and generate

coherent and contextually appropriate responses

makes them invaluable tools across multiple fields,

from customer service and education to creative

writing and technical support.

In this paper, we focus on text generation tasks

using LMs. The process involves three key steps:

Tokenization: The raw input text is converted

into tokens based on different tokenization ap-

proaches.

Training: The model is trained from scratch on

specific datasets.

Generation: In generative models such as GPT,

the trained model predicts the next tokens given an

initial prompt.

2.2 Pangenome Graph

The pangenome graph (Eizenga et al., 2020) rep-

resents genetic diversity within a species by in-

tegrating multiple genome sequences into a sin-

gle comprehensive graph. In a pangenome graph,
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An alternative is Genome-based k-mer Tokeniza-

tion (GKMT), where k-mers, substrings of length

k, used as tokens. For example, all 3-mers in the

sequence “ACGTAG” are “ACG”, “CGT”, “GTA”,

and “TAG”. Depending on the stride, the k-mers

may overlap or not overlap (with a stride equal to

k). We focus on the non-overlapping alternative.

Compared to GSNT, GKMT provides a longer ef-

fective context length, but is also highly sensitive

to sequence mutations or errors: a single nucleotide

insertion or deletion can change all subsequent to-

kens as shown in Figure 2.

3.1.3 Genome-based BPE Tokenization

(GBPET)

Genome-based Byte Pair Encoding Tokenization

(GBPET), which is also used in recent stud-

ies (Zhou et al., 2023), applies the BPE algo-

rithm (Sennrich et al., 2016) to genome sequences.

BPE begins with single nucleotide tokens and iter-

atively merges the most frequent pairs of adjacent

tokens to create a vocabulary of longer subword-

like tokens. However, BPE training requires too

large computational resources if very long DNA se-

quences are given as inputs. Manual segmentation

is needed in GBPET, which could cause the same

issue as GKMT.

3.2 Pangenome graph based tokenization

To address the limitations of standard schemes, we

propose three novel tokenization methods based on

the pangenome graph, illustrated in Figure 3.

3.2.1 Pangenome-based Node Tokenization

(PNT)

The first scheme, Pangenome-based Node Tok-

enization (PNT), tokenizes DNA sequences based

on the nodes in the pangenome graph. In this

method, each node is treated as a token, where

a node contains both the DNA sequence it repre-

sents and its position on the graph. Multiple nodes

may correspond to the same DNA sequence but

differ due to their positions in the graph. Conse-

quently, the node ID vocabulary can be much larger

(e.g., around 400K) compared to standard language

vocabularies (e.g., 50K), presenting challenges for

model training. To reduce the vocabulary size, we

split the node IDs into two parts (first and second

half) and include an additional indicator for se-

quence reversion (e.g., node 198202 in Figure 3

with reversion representing “GGCC” would be to-

kenized as ’198’ and ’202+’, and the unreverted

node 198202 should be “CCGG”).

A limitation of PNT is that it does not accom-

modate new sequences in the existing pangenome

graph. Introducing new sequences requires rebuild-

ing the entire graph, generating new IDs, and po-

tentially altering the representation of previously

established sequences learned by the model.

3.2.2 Pangenome-based k-mer Tokenization

(PKMT)

The second scheme, Pangenome-based k-mer Tok-

enization (PKMT) segments DNA by splitting each

node’s sequence in the pangenome graph into non-

overlapping k-mers. Unlike PNT, it uses nucleotide

sequences rather than node IDs. We set k = 6
without padding; for example, the node sequence

“TAGGCTAGAT” yields “TAGGCT” and “AGAT”

in Figure 3. PKMT is more robust to insertions

or deletions than GKMT, as the graph preserves

alignment and isolates variations to affected nodes.

However, it lacks the graph’s positional encoding

found in PNT, which may limit its ability to capture

structural patterns in DNA.

3.2.3 Pangenome-based BPE Tokenization

(PBPET)

The third scheme, Pangenome-based BPE Tok-

enization (PBPET), applies the Byte Pair Encod-

ing algorithm to the sequences of nodes in the

pangenome graph. Instead of segmenting node

sequences into fixed-length k-mers as in PKMT,

PBPET learns a vocabulary of frequently occur-

ring sub-sequences across the nodes. In Figure 3,

sub-sequences like “AG” or “AT” are identified.

The learned vocabulary is then used to tokenize se-

quences, still with a first-step segmentation already

done between nodes. This approach retains the

graph-informed alignment of sequences, similar to

PKMT, but benefits from the adaptive vocabulary

of BPE.

4 Evaluating synthetic DNA generation

quality

A main challenge of proving the utility of our

schemes is how to evaluate the quality of the syn-

thetic genome sequence generation. In our study,

we use the prediction accuracy of the model to

measure the quality of the generative model. Fur-

thermore, we compare the similarity between syn-

thetic and real genome sequences through sequence

alignment.

4

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 27, 2025. ; https://doi.org/10.1101/2024.09.18.612131doi: bioRxiv preprint 



4.1 Model prediction accuracy

Next token prediction accuracy: measures how

often the model correctly predicts the next token

given the correct previous tokens, making it the

primary metric for models like GPT. However, this

does not fully reflect sequence accuracy when tok-

enization is not single nucleotide-based. Predicting

“AAAAAC” or “GCTGCT” for the true k -mer to-

ken “AAAAAA” count both as simply incorrect.

Character-level prediction accuracy: mea-

sures the percentage of nucleotides predicted cor-

rectly for each token, providing a more granular

assessment of prediction quality. For example, pre-

dicting “AAAAAC” for the true token “AAAAAA”

yields an accuracy of 0.83, while predicting “GCT-

GCT” results in an accuracy of 0.

4.2 Sequence alignment scores

The measurement of similarity between two

genome sequences is done using sequence align-

ment, which is an essential process in many bioin-

formatic and computational biology tasks. Se-

quence alignment involves arranging the sequences

of DNA, RNA, or even proteins, usually to identify

regions of similarity. In our case, we use wfmash

(Guarracino et al., 2021) where the wavefront algo-

rithm (Marco-Sola et al., 2021) is primarily used

for pairwise alignment between real and generated

DNA sequences. Visualized results (introduced

and shown in §5) and multiple scores can be used

to evaluate the quality of the alignment.

An example of alignment between a reference se-

quence and a query sequence is shown in Figure 4.

Figure 4: An alignment between two sequence. Cap-

italized nucleotide and green links indicate matches;

lowercase nucleotide and red crosses indicate no match;

the dashes in the sequences represent the gaps during

matching.

An alignment score of 0 indicates no similar-

ity, while a score of 1 represents a perfect match.

Alignment scores can be defined and computed in

two primary ways:

• BLAST identity (BI): 7/10 = 0.7. Defined as

the number of matching bases in relation to

the number of alignment columns.

• Gap-Compressed Identity (GI): 7/9 = 0.78.

Counting the consecutive gaps in the query as

one difference.

DNA sequences, including those in the MHC re-

gion, naturally exhibit high homology even across

individuals, due to fundamental biological con-

straints. The alignment scores themselves can be

considered sufficient as a representation of the util-

ity of the synthetic sequences by measuring how

close they are to the real data, preserving the proper-

ties needed. Alignment metrics align directly with

the practical goals of genomic applications com-

pared to divergence measures (Pillutla et al., 2021).

Previous academic discussions (Frith, 2020; Durbin

et al., 1998) have shown that alignment score ef-

fectively shows sequence similarity, and scores can

indicate the potential usefulness of the compared

data in downstream genomic tasks ( 5 in §2.3). A

typical workflow involves projecting reads or map-

ping new data onto the reference genome, and then

calling variants such as single nucleotide polymor-

phisms (SNPs) and insertions/deletions (indels). A

higher score of a generated sequence against the

real sequence suggests that the synthetic data can

reliably substitute the real data, as further discussed

in Appendix D.

5 Experiments

5.1 Datasets and LM choice

In our experiments, we used the human major his-

tocompatibility complex (MHC) region of chro-

mosome 6 as our dataset, which is cut out of the

PGGB graph of HPRC year 1 assemblies (Liao

et al., 2023). A total of 126 samples with 447 mil-

lion nucleotides are in the dataset, with 80% of

the samples used as the training set and 20% as

the test set. During hyperparameter tuning, the

“reference genome” was temporarily used as a vali-

dation set before being added back to the training

set for final training. We tested the performance of

the openly available GPT-2 (Radford et al., 2019)

and Llama (Touvron et al., 2023a) model archi-

tectures with 90M parameters, which support a

prompt length of 1024/2048 tokens, using the Hug-

ging Face 4.24.0 library of transformers (Wolf,

2019). GPT-2 and Llama are chosen due to their

well-established performance and robustness as a

classical publicly available language model, and

the relatively small 90M total parameter size is se-

lected to balance performance and computational
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overhead. We split the long genome into 10k base

pairs sequences in GBPET training and set the vo-

cabulary size to 4096 for both BPE methods, as in

DNABERT2 (Zhou et al., 2023).

Table 1: Training time (hours) of each tokenization

scheme on 90M models for 90 epochs.

Model GSNT GKMT PKMT GBPET PBPET PNT

GPT-2 56 11 15 17 24 7

LLaMA 20 5 6 9 12 3

5.2 Experiment results

We trained the GPT-2 and Llama models on the

dataset using four tokenization schemes: GSNT,

GKMT, PNT and PKMT. Training was carried

out for 90 epochs (§B.1 shows results with more

epochs) with a batch size of 16/8 and 1024/2048-

token sequences for GPT-2/Llama. The dataset

comprises 124 DNA samples totaling 447 million

nucleotides. Training times are shown in Table 1,

obtained on 8 NVIDIA A5500 GPUs. Figure 5

displays token and character-level prediction ac-

curacies. PNT not included in the character-level

accuracy figures due to the vague definition on pre-

dictions and targets with too varied lengths.

Training times and model performance differ

significantly across tokenization schemes as shown

in Table 1 and Figure 5. The final accuracies are

shown in Table 2. PNT demonstrated the fastest

training time, while GSNT is generally the slow-

est due to its larger token set. BPE based method

are slower than k-mer based but faster than GSNT.

PNT reaches the best peak accuracy the fastest,

while GKMT has the worst performance. GSNT

initially trains much faster than PKMT for token

prediction, but converges to a similar final accu-

racy. We will see how they perform differently in

the alignment. Despite having almost the same to-

ken tables, we can clearly tell PKMT’s pangenome

graph-aided segmentation helps the model to out-

perform the on trained by GSNT. The training of

PBPET tokenizer takes around 20 seconds, while

the training of GBPET tokenizer takes about 10

minutes, largely due to the larger sequence chunks,

and they both have moderate training time.

We present the alignment results for the GPT-2

generated sequences of the tokenization schemes

in Figure 6 (GKMT barely generates sequences

that align at all), aligned against the reference se-

quence of the dataset. The X-axis represents ref-

erence sequence positions, and the Y-axis shows

different generated sequences aligned to the ref-

Table 2: Final accuracy of each tokenization scheme on

90M models trained for 90 epochs.

Model GSNT GKMT PKMT GBPET PBPET PNT

Token Prediction Accuracy

GPT-2 97.1% 65.9% 96.9% 97.9% 98.0% 98.6%
LLaMA 98.7% 81.8% 97.7% 98.5% 98.6% 98.8%

Character-Level Accuracy

GPT-2 97.1% 78.3% 97.9% 98.6% 99.0% –
LLaMA 98.7% 85.3% 98.6% 99.0% 99.3% –

erence. Each dot or line marks a generated se-

quence position aligned with the reference genome.

After 90 epochs, only PNT generates sequences

closely aligned with the reference over long con-

texts for GPT-2. Some sequences show no align-

ment, likely due to random sampling for diversity

and learned misalignments from the training data.

Llama, achieving comparable token prediction ac-

curacy, performs very similar to GPT-2 results.

However, it is generally with less dense dots and

dashes, indicating fewer matches, as shown in Ap-

pendix B. Llama is also capable of generating long

sequences using PNT. However, the alignments

tend to terminate prematurely. Even with longer

prompts, Llama appears to struggle more in regions

with higher mutation rates (observe the denser dots

along the alignment lines), causing the generation

to deviate more easily from the intended sequence.

Llama cannot generate long sequences even with

PKMT or PBPET.

To quantify generation quality, we show the

alignment scores of the generated sequences

against the entire data set (the best match of a query

against the entire dataset) in Table 3, with the re-

sults for real data as a comparison. In addition to

GI / BI scores, we show the alignment percentage,

indicating the proportion of well-aligned sequences.

The segment length refers to the size of the min-

imizer window during alignment. PNT achieves

the highest alignment scores across all segment

lengths, while GSNT performs the worst.

PNT demonstrates superior token-level predic-

tion accuracy, while GKMT achieves the highest

character-level accuracy in GPT-2 and closely ri-

vals PNT in Llama. Traditional methods under-

perform, with GKMT achieving less than 70%

accuracy and GSNT training significantly slower.

The accuracy gap is more pronounced in alignment

scores (Table 3), where PNT consistently excels

with GI and BI scores of around 0.99 in segment

lengths of 1k to 200k, closely mirroring the per-

formance of real data. Although PKMT produces

fewer high-quality sequences than GSNT that align
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prompt will completely fix this issue.

Discussion. To our knowledge, this work is the

first to compare the effectiveness of pangenome-

based tokenization schemes to classical tokeniza-

tion schemes when utilizing the LMs to learn the

pattern of DNA sequences; and also the one of the

first to demonstrate the efficacy of LMs in generat-

ing very long DNA.

Our findings reveal that the pangenome graph

structure embeds significant and meaningful infor-

mation, improving neural networks’ understanding

of DNA sequences. Our experiments demonstrate

how this information can be effectively exploited.

The significant gap between GKMT and PKMT

emphasizes the effectiveness of leveraging graph

structure in tokenization. Despite having similar to-

ken tables, the graph-aided segmentation of PKMT

provides more stable and learnable structural in-

formation, resulting in better model training speed

and overall generation quality. Our results under-

score the trade-offs between computational cost

and model performance, with pangenome graph-

based tokenization schemes showing higher accu-

racy across tasks. Previous work (Liao et al., 2023)

demonstrates how improved matching is the key

point of the pangenome, which “aligns” with our

use of the pangenome graph here.

6 Related work

In this section, we introduce two common genome

tasks wwith machine learning application. Table 7

in Appendix C summarizes this section.

6.1 Classification Tasks

Classification tasks are common in genomics, in-

cluding (more details in Appendix D):

Variant Calling: ML models identify genetic

variants such as SNPs and indels in genomes, link-

ing them to diseases or traits. DeepVariant (Poplin

et al., 2018), a CNN-based variant caller, outper-

forms traditional methods, influencing many oth-

ers (Yun et al., 2020; Kolesnikov et al., 2021). Clair-

voyante (Luo et al., 2019) excels in single-molecule

sequencing (SMS), while Clair (Luo et al., 2020)

offers faster RNN-based inference with fewer pa-

rameters, without sacrificing accuracy.

Gene Expression Analysis: ML models analyze

gene expression data to reveal gene-disease rela-

tionships. Classical methods like KNN (Kim and

Kim, 2018), linear/logistic regression (Han et al.,

2019), and SVMs (Wan et al., 2019) are used to

predict driver genes or cancer risk. CNNs (Lyu and

Haque, 2018; Elbashir et al., 2019) are also applied

for cancer classification with RNA-seq data.

Beyond these, CNNs model protein binding (Ali-

panahi et al., 2015), cell type identification (Yao

et al., 2019), and non-coding variants (Zhou and

Troyanskaya, 2015). RNNs predict non-coding

DNA functions (Quang and Xie, 2016) and RNA-

protein binding preferences (Shen et al., 2020).

Transformer models like DNA-BERT (Ji et al.,

2021; Zhou et al., 2023; Dalla-Torre et al., 2023,

2025) provide strong contextual embeddings for

molecular phenotype prediction but face context

size limitations due to quadratic scaling. Recent

models like Hyena (Nguyen et al., 2024b) and

MambaDNA (Schiff et al., 2024) address these

limitations with sub-quadratic scaling for longer

contexts. More recent applications of DNA LM

like MoDNA (An et al., 2022) for promoter predic-

tion, and GENA (Fishman et al., 2023) for multiple

tasks, both use traditional GKMT. Some papers like

GPN-MSA (Benegas et al., 2024) for genome-wide

variant effect prediction uses GSNT. DNABERT-

2 (Zhou et al., 2023) and following work (Karollus

et al., 2024) for evolutionary conservation and func-

tional annotation prediction use BPE.

A recent paper (Zhang et al., 2024) presents a

similar tokenization approach using pangenome

graphs. Although both works independently de-

velop this idea, ours differs by incorporating PNT

and PBPET, and focusing on long-sequence gen-

eration. In contrast, their work handles shorter

sequences (max 5000bp) with node-aided k-mer

tokenization and focuses on classification tasks.

6.2 Generation Tasks

Synthetic Data Generation: Synthetic data mim-

ics real data for privacy concerns. GANs have been

used for synthetic medical data (Bae et al., 2019)

and DNA sequences coding for proteins (Gupta and

Zou, 2018), though limited by fixed output sizes

and requiring DP for stronger guarantees. Some

work (Avdeyev et al., 2023) utilizes transformers

but with limited generation length, and a more re-

cent large model (Nguyen et al., 2024a) shows gen-

eration of submillions in length with a certain level

of genomic organization.

De Novo Genome Assembly: This involves re-

constructing a genome from short DNA fragments

without a reference. Deep learning has been ap-

plied to de novo peptide sequencing (Tran et al.,

2017, 2019; Yang et al., 2019).
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7 Limitations

While our study focused on smaller models to estab-

lish a proof-of-concept for our tokenization scheme,

we acknowledge that larger models may improve re-

sults but raise practical concerns around efficiency

and resource use. Furthermore, emerging architec-

tures designed for long-context processing (e.g.,

(Gu et al., 2021; Nguyen et al., 2024b,a; Gu and

Dao, 2023; Peng et al., 2023a)) could potentially

further enhance the performance of all tokeniza-

tion schemes. These models, by enabling longer

effective context windows, could improve both the

understanding of long-range dependencies in DNA

and the consistency of sequence generation. Al-

though we believe that pangenome-based tokeniza-

tion retains advantages in effective segmentation,

such models may help close the performance gap

for other tokenization methods. We agree that this

is a valuable direction and suggest that future work

explores scaling to larger models and incorporating

long-context architectures to more fully assess their

potential impact.
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A More on tokenization schemes

A.1 Glossary of Frequent Acronyms

Table 4: Glossary of Frequent Acronyms

Acronym Explanation

GSNT Genome-based Single Nucleotide Tokenization

GKMT Genome-based k-mer Tokenization

GBPET Genome-based BPE Tokenization

PNT Pangenome-based Node Tokenization

PKMT Pangenome-based k-mer Tokenization

PBPET Pangenome-based BPE Tokenization

A.2 Public graph-based PKMT tokenization

The proposed PKMT schemes aim to provide more

context and help models learn DNA sequence pat-

terns more effectively. However, they can also

risk leaking sensitive information about individ-

ual samples. For additional techniques like Differ-

entially Private Stochastic Gradient Descent (DP-

SGD) to be implemented during training, tokeniza-

tion should be independent of the private dataset or

protected by appropriate mechanisms for the whole

scheme to be DP compatiable.

Making PNT DP-friendly is challenging, as the

ID-to-sequence mapping can expose private data.

Although the static vocabulary of PKMT avoids

this issue during token mapping, the use of the

pangenome graph, where segmentation depends

on every sequence in the dataset, still breaks the

guarantee. To mitigate this, we propose building a

“public” pangenome graph from publicly accessible
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Algorithm 1 Gpub ← ΠPubGraph(G,Pub): Define Public Pangenome Graph Nodes

1: Input: A pangenome graph G, list of indexes Pub with public sequences. We use G[i][j] to represent

the node j of the sequence i in G and Seq(G[i][j]) to represent the actual sequence.

2: Output: The way nodes are merged in the public pangenome graph recorded in Mpub.

3: Initialization:

4: Initialize Mpub as an empty dictionary to store the public pangenome graph nodes.

5: for each sequence i in Pub do

6: for each node j in G[i] do

7: if G[i][j] has fixed previous/next nodes in G then

8: Combine G[i][j] with the fixed previous/next nodes as a single node.

9: Record the combined node in Mpub.

10: else

11: Record G[i][j] as an independent node in Mpub.

12: end if

13: end for

14: end for

15: Return: Mpub as the public pangenome graph nodes.

Algorithm 2 Segmented← ΠPKMT (G,Pub, Priv): Perform PKMT Based on Public Sequences Only

1: Input: A pangenome graph G, list of indexes Pub with public sequences and Priv with private

sequences. We use G[i][j] to represent the node j of the sequence i in G. We use Seq(G[i][j]) to

represent the actual sequence.

2: Output: Segmented DNA sequences recorded in Segmented.

3: Gpub = ΠPubGraph(G,Pub, Priv)
4: Initialize Segmented = {}
5: for each sequence i in {Pub, Priv} do

6: Initialize Chain = [ ]
7: Initialize UndefinedChain = [ ]
8: Initialize Segmented[i] = [ ]
9: for each node j in G[i] do

10: Add Seq(G[i][j]) to Chain

11: if current node chain ends according to Mpub then

12: Append UndefinedChain to Segmented[i] as a segment of the sequence G[i]
13: Append Chain to Segmented[i] as a segment of the sequence G[i]
14: Clear UndefinedChain

15: Clear Chain

16: else if current node pattern is not recorded in Mpub then

17: Append Chain to UndefinedChain

18: Clear Chain

19: end if

20: end for

21: Cut each segment in Segmented[i] into non-overlapping 6-mers

22: end for

23: Return: Segmented
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(a) GSNT (b) PKMT (c) GBPET (d) PBPET (e) PNT

Figure 10: Alignment of a batch of LLaMA-generated sequences against the reference. The X-axis is the reference,

and the Y-axis shows the generated sequences. Longer lines indicate consistent alignment, and denser dots indicate

frequent short matches.

Table 6: Alignment percentages and weighted GI/BI scores of the 20 generated sequences each scheme for different

segment lengths of the generated sequences with extensively trained GPT-2 model, against the test set as reference.

Segment 1k 5k 20k

Align % GI BI Align % GI BI Align % GI BI

GSNT 90.67 0.8818 0.9972 75.52 0.8922 0.9926 42.17 0.8916 0.9920

PKMT 81.42 0.9842 0.9978 81.87 0.9027 0.9969 79.74 0.9044 0.9956

Segment 50k 100k 200k

Align % GI BI Align % GI BI Align % GI BI

GSNT 9.76 0.8801 0.9916 0.00 0.0000 0.0000 0.00 0.0000 0.0000

PKMT 72.52 0.9011 0.9940 65.51 0.8936 0.9943 16.19 0.8883 0.9935

(a) GSNT (b) PKMT

Figure 11: Alignment of a batch of generated sequences

(after extensive GPT-2 training) against training se-

quences. The X-axis is the reference; the Y-axis con-

tains generated sequences. Longer lines indicate consis-

tent alignments, while denser dots reflect frequent short

matches.

putational power has its potential.

C Summarizing related work

Here we provide a table to summarize our discus-

sion in §6, with a detailed list of the related work

of ML/DL doing genomic tasks.

D Alignment scores and downstream

tasks

Alignment-based evaluations provide a more direct

assessment of how well synthetic data supports real-

world genomic applications. For example, datasets

like those from the Human Pangenome Project de-

pend heavily on alignment-based metrics to assess

data quality and interpret genetic variation. Read

alignment to a reference genome followed by vari-

ant calling is a widely adopted pipeline, and here

alignment consistency and accuracy are critical. In

this context, alignment scores are not only practi-

cal but also well-recognized within the genomics

community as meaningful indicators of quality.

In this section, we introduce two essential tasks

to show how alignment scores can determine the

utility of sequences, and how synthetic sequences

can play a role.

D.1 Variant calling

Read alignment and variant calling are founda-

tional tasks in bioinformatics pipelines, especially

in genome resequencing studies. In this process,

DNA reads generated by sequencing technologies

are aligned to a reference genome to reconstruct

the original genetic material and identify variants

(e.g., calling the inserting and deletion in the bot-

tom two sequences when compared with the top

reference in Figure 2). Determining an accurate

alignment is critical because downstream variant

calling algorithms rely on these mappings to com-

pare the sample DNA against the reference. Numer-

ous tools have been developed to perform this task

efficiently and accurately, including Minimap2 (Li,

2018) and wfmash (Guarracino et al., 2021). Most

work in §6.1 measure the alignment in their experi-

ment.

A high alignment score indicates a strong match

between the sequenced read and a region in the ref-

erence genome, minimizing mismatches, gaps, or

ambiguous placements. This is essential to identify

true variants confidently, ruling out sequencing er-

rors or misalignments. An incorrect alignment may

map a query DNA sequence to the wrong location

in the reference genome, leading to wrong variant
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calls. An example is given in Figure 12. Synthetic

sequences can serve as references in variant calls

or generate potential variant combinations that are

not observed in natural samples.

Reference Sequence

…GGGAGCT AGCT AGCT AGCTGGG…

Alignment 1
…GGGAGCT AGCT AGCT AGCTGGG…

Alignment 2
…GGGAGCT AGCT      AGCTGGG…

A

AAGCT

Figure 12: Two possible alignment of a sequence to a

reference sequence. Alignment 1 calls for one insertion

while Alignment 2 calls for 4 deletion then 5 insertion.

Alignment 1 will have higher alignment scores with

more matched nucleotides, and is considered a better

alignment. Therefore the variant calling based on Align-

ment 1 is considered better than Alignment 2.

D.2 De novo assembly

De novo assembly reconstructs a genome from

short sequencing reads without relying on a ref-

erence genome. This process stitches overlapping

reads into contiguous sequences (contigs) or scaf-

folds, aiming to rebuild the original genome as

accurately as possible. Since there is no reference

during assembly, evaluation is typically performed

by aligning the assembled contigs back to a trusted

reference genome, or comparing them to known

markers or conserved genes.

A high alignment score here indicates that the

assembler has likely reconstructed a biologically

accurate sequence. This suggests high contiguity,

low error rates, and minimal misassemblies. Low

alignment scores often signal fragmented or mis-

assembled regions. Synthetic sequences can act as

trussted reference, improving the assembly.

Many utility metrics used in existing genome

modeling studies are fundamentally rooted in

sequence alignment. For example, in recent

work such as (Nguyen et al., 2024a), tools like

CheckM (Parks et al., 2015) are used to report qual-

ity metrics, including gene density and stop codon

frequencies. These tools rely on foundational com-

ponents like profile Hidden Markov Models (pH-

MMs) that are directly constructed from multiple

sequence alignments, with alignment quality and

consistency playing a central role in shaping their

parameters and performance. In this context, a

high alignment score indicates strong homology

or functional similarity between the generated se-

quence and known sequences, providing evidence

of biological plausibility.
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Table 7: DL models used in genome tasks.

Job Type Paper Task Architecture Input

Classification (Poplin et al., 2018;
Yun et al., 2020;
Kolesnikov et al., 2021)

Variant Calling CNN hundreds of base pairs

(Luo et al., 2019) Variant Calling CNN hundreds of base pairs
(Lyu and Haque, 2018;
Elbashir et al., 2019)

Cancer Prediction CNN RNA-seq gene expression data

(Alipanahi et al., 2015) Protein Binding CNN 10-100 nucleotides & binding
specificities

(Zeng et al., 2016) Protein Binding CNN 10-100 base pairs & binding
specificities

(Yao et al., 2019) Cell Type Identification CNN cell images
(Zhou and Troyanskaya,
2015)

Non-coding DNA function
prediction

CNN 1k base pairs

(Luo et al., 2020) Variant Calling RNN binary alignment map (BAM)
(Shen et al., 2020) RNA-protein binding

preference
LSTM embedded k-mers

(Quang and Xie, 2016) Non-coding DNA function
prediction

CNN/BLSTM one hot encoded nucleotides

(Kim and Kim, 2018) Cancer Prediction KNN SNP genotype syntaxes
(8-mers)

(Han et al., 2019) Cancer Prediction Rao score Mutation Annotation Format
(MAF)

(Wan et al., 2019) Cancer Prediction SVM Human EDTA plasma samples
(Ji et al., 2021; Zhou
et al., 2023)

Molecular Phenotype
Prediction

Transformer tokenized k-mers

(Dalla-Torre et al.,
2023)

Molecular Phenotype
Prediction

Transformer tokenized k-mers

(Nguyen et al., 2024b) 5-way Species
Classification

Transformer single nucleotide tokens

(Schiff et al., 2024) Genome Tasks Mamba single nucleotide tokens
(Luo et al., 2019) Variant Calling CNN Hundreds of base pairs
(An et al., 2022) Promoter Prediction Transformer 6-mers of up to 512bp
(Karollus et al., 2024) Evolutionary Conservation

/ Functional Annotations
Transformer 6-mers for 128bp sequences

(Fishman et al., 2023) Multiple Tasks Transformer BPE tokens, up to 36000bp
sequence

(Benegas et al., 2024) Genome-wide Variant
Effect Prediction

Transformer GSNT for 128bp sequences

(Dalla-Torre et al.,
2025)

Multiple Prediction Tasks Transformer Thousands of k-mer tokens

Generation (Tran et al., 2017) De novo peptide
sequencing

LSTM/CNN tandem mass spectrometry
(MS/MS) Spectrum

(Tran et al., 2019) De novo peptide
sequencing

LSTM/CNN data-independent acquisition
(DIA) mass spectrometry data

(Yang et al., 2019) De novo peptide
sequencing

learning-to-
rank

tandem mass spectrometry data

(Bae et al., 2019) Synthetic Medical Data GAN medical data
(Gupta and Zou, 2018) Synthetic DNA Sequences GAN DNA sequences
(Avdeyev et al., 2023) Synthetic DNA Sequences Transformer Up to 1024 base-pairs
(Nguyen et al., 2024a) Synthetic DNA Sequences Transformer Up to 131072 base-pairs
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