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Understanding the sensitivity of spring leaf-out dates to temperature (S;)
isintegral to predicting phenological responses to climate warming and

the consequences for global biogeochemical cycles. While variationin S;

has been shown to be influenced by local climate adaptations, the impact of
biodiversity remains unknown. Here we combine 393,139 forest inventory
plots with satellite-derived S; across the northern hemisphere during 2001~
2022 to show that biodiversity greatly affects spatial variationin S; and even
surpasses theimportance of climate variables. High tree diversity significantly
weakened S;, possibly driven by changes in root depth and soil processes.

We show that current Earth system models fail to reproduce the observed
negative correlation between S; and biodiversity, withimportantimplications

for phenological responses under future pathways. Our results highlight the
need to incorporate the buffering effects of biodiversity to better understand
theimpact of climate warming on spring leaf unfolding and carbon uptake.

Plant phenology is one of the most sensitive indicators of climate
change and greatly affects interannual variations in carbon uptake of
terrestrial ecosystems"”. Over recent decades, climate warming has
led to strong advances in spring leaf-out dates®*. The responsiveness
of spring phenology to climate change is typically quantified viameas-
uring the temperature sensitivity of leaf-out (S;, leaf-out advance in
days per degree of air temperature warming). S; is the optimal strategy
evolved by plants under the selection pressure of historical climate
informationinthelocal environment, andits variations reflect adaptive

adjustments to climate change for optimizing their life cycles®®. Due to
itsroleindetermining the extent of phenological changesinresponse to
future climate warming, S; has attracted extensive attentionin observa-
tional records and warming experiments®”°. Understanding temporal
and spatial variation in S; is critical to better comprehend phenologi-
cal feedbacks to climate change, such as effects on carbon sequestra-
tion’, surface albedo and the energy budget™°. Furthermore, it is of
paramount importance for evaluating and simulating the dynamics
of ecosystems in climate change research?®, as well as for enhancing
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Fig.1|Negative correlations between biodiversity and S;. a,e-j, The results
ofthe partial correlation analysis for each plot (a), plant functional type (e,f),
biome (g,h) and climate (i j) (the full names of the abbreviationsin f,h,jcan be
found in Supplementary Tables 4-6). b, The coefficients of the global partial
correlation and sequential regression. ¢, The importance of each feature based
on Gini coefficients and the mean absolute value of SHAP. d, SHAP values based
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on the global random forest model. P, positive effect; N, negative effect.In a, the
overall percentages of positive and negative correlations and the percentages of
significant correlations (in parentheses) are given. The grey dashed lines in f,h,j
mark the transition from significant to non-significant results at < 0.05. The
significance was based on ¢ statistics using a two-tailed test. To control the false
discovery rate, the Benjamini-Hochberg method was employedina,f,h,j.

global dynamic vegetation models, global climate models and land
surface models®". Declines in S; have been observed in several tree
species over recent decades. Yet, although decreased winter chilling
hasbeen suggested as a possible factor, the underlying causes remain
poorly understood’. While previous studies have mostly focused on the
climatic drivers of S;, we still lack an understanding of the responses of
Srtochangesinthebiodiversity of animals, plants and microorganisms
and the communities they form™.

Biodiversity plays a crucial rolein regulating the growth and devel-
opment of vegetation, serving as akey factor instabilizing and adapting
ecosystems to climate change®. At a large geographical scale, plant
phenology responds to climate and environmental factors, influenc-
ing plantgrowth and resilience while also governing crucial ecosystem
functions such as pollination, herbivory and carbon uptake. Con-
sequently, warming-induced changes in spring leaf-out may lead to
asynchronous interactions among mutualistic partners within commu-
nities, affecting food web dynamics and the functioning and stability
of ecosystems™>'>', In particular, high biodiversity can influence the
phenological plasticity of individual plants, enhance the adaptability
of plants to climatic shifts, diminish the likelihood of phenological
discordance, and affect the species assemblage and functional het-
erogeneity of plant communities, thereby mitigating the effects of
climate change on ecosystem performance'®. For example, different
genotypes or genera of plants can adapt to variations in temperature
and moisture by altering gene expression, hormone levels, leaf area
and other parameters that affect phenology”. Different species have
different responses to cope with environmental fluctuations, and
higher temporal complementarity and asynchrony among species can
augment their resistance to drought®. Regions with high biodiversity

thus typically have stabler ecosystem responses to climate change,
whereas the loss of diversity may aggravate plant phenological shifts
caused by climate change™'*". In this study, we therefore aimed to test
whether biodiversity buffers the sensitivity of trees to climate warming
and how interactions between biodiversity and climate change affect
northern-hemisphere-wide phenological variation.

We compiled species richness data from the Global Forest Biodi-
versity Initiative (GFBI) in the middle and high latitudes of the northern
hemisphere, incorporating 393,139 unique forest inventory plots that
spanvarious forest types and species, to characterize biodiversity (Sup-
plementary Fig.1). Satellite-derived leaf-out datafrom 2001-2022 came
fromthe Moderate-Resolution Imaging Spectroradiometer (MODIS).
We also gathered spatially explicit climate and soil data from 2000~
2022, as well as gross primary production (GPP) data from 15 Trendy
models for2001-2021and 13 Coupled Model Intercomparison Project
Phase 6 (CMIP6) models for 2015-2100 (Supplementary Tables1-3). For
each forest plot, we calculated the optimal spring pre-season period
using partial correlation analysis and calculated S; using ordinary least
squares regression (Supplementary Fig. 2). We then used partial cor-
relation, asequential regression model, spatial autoregressive models,
astructuralequation model (SEM) and machine learning to determine
the influence of biodiversity on S; and its underlying mechanisms at
regional and global levels (Methods).

Results

The partial correlation analysis showed a predominantly negative cor-
relation between biodiversity and S; at the local scale after removing
the effects of spring temperature, radiation, precipitation, soil mois-
ture, soil organic carbon (SOC), soil nitrogen, forest age and elevation
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Fig.2|Mechanisms underlying the negative correlation between
biodiversity and S;. The results of the partial correlation analysis and SEM

are shown. The coefficients on the paths of the SEM are standardized, and the
circular maps on the paths represent the spatial distributions of the partial
correlation results. The thickness of path arrows corresponds to the size of
path coefficient, and the color to the sign, red for positive and blue for negative.
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The bar chartrepresents the direct and indirect effects. NS, not significant; BD,
soil bulk density. The significance was based on ¢ statistics using a two-tailed
test. To control the false discovery rate, the Benjamini-Hochberg method was
employedinall analyses. **P < 0.0L; *P < 0.05. x* = 48.86 + 17.05; goodness-of-fit
index, 0.93 + 0.02; root mean square error of approximation, 0.06 + 0.04; Akaike
information criterion, 89.02 + 0.34.

(Fig.1a), with 60.5% of the correlations being negative. Moreover, 8.5%
of the local correlations were significantly negative (P < 0.05), while
significant positive correlations were found for only 3.9% of the cor-
relations. The partial correlation analysis showed consistent results at
thelevels of plant functional types (Fig. 1e,f), forest biomes (Fig. 1g,h)
and Koppen-Geiger climate zones (Fig. 1i,j). For example, negative
correlations were found for all 11 plant functional types, with 9 being
significant. Similarly, four of the eight biomes showed a negative cor-
relation, and all four correlations were significant, with only deserts
and xeric shrublands (DXS) and tundra (TUN) showing anon-significant
positive correlation. Biodiversity and S; were also negatively corre-
lated in 8 of 11 climate zones (five correlations were significant) and
exhibited significant positive correlationsin 2 zones (DSB (continental,
dry summer, warm summer) and DSC (continental, dry summer, cold
summer)). Furthermore, a negative correlation between biodiversity
and S;was observed across different plant functional types, as well as
across various biomes and climate zones (Supplementary Fig. 3). In
the global analysis covering all plots, we controlled for evenness vari-
ables, inaddition to the previously mentioned environmental factors.
Consistent results were obtained from partial correlation analysis, a
sequential regression model, and spatial lag and spatial error models,
indicating an overall negative biodiversity-S; effect (Fig. 1b and Sup-
plementary Fig. 4).

Wethen analysed therelativeimportance of biodiversity in deter-
mining the changes in S; using machine learning (random forest and
Extreme Gradient Boosting (XGBoost) models). We found that biodi-
versity was amoreimportantdriver of S;than were spring temperature,
precipitation, solar radiation, soil moisture, SOC, soil nitrogen, for-
est age, elevation and evenness (Fig. 1c,d and Supplementary Fig. 5).
Additionally, the Shapley Additive Explanations (SHAP) values of the
random forest and XGBoost models revealed that plots with higher
biodiversity levels often exhibited a negative relationship between
biodiversity and S;, while regions with lower biodiversity levels might
have a positive biodiversity-S; relationship. Overall, apredominance

of negative correlations was observed, aligning with the results from
the partial correlation and sequential regression analyses. Both feature
importance metrics (Gini importance and SHAP importance), along
with the absolute coefficients of the partial correlation and sequential
regression, consistently indicate that biodiversity is the most impor-
tantdriver of S;.

We also used grid-form species richness data to ensure spatial
consistency with the scale of climate and other datasets, providing a
better match with point-form species evenness data. We replicated the
same analysis, controlling for the influences of spring temperature,
precipitation, solar radiation, soil moisture, SOC, soil nitrogen, for-
est age, elevation and evenness in all analyses. The results remained
consistent with those obtained from plot datasets, revealing anegative
effect of biodiversity on S; (Supplementary Fig. 6).

To test the possible mechanisms through which biodiversity may
affect S;, we applied an SEM and partial correlation analysis (Fig. 2).
We calculated the direct effects of biodiversity on S;in the SEM and
the indirect effects through different pathways. The results indicate
a strong direct effect of biodiversity. In addition, root depth, SOC
concentration, thesoil carbon-to-nitrogen (C/N) ratio and soil physical
properties (including bulk density and volumetric fraction of coarse
fragments (VOCF)) may be potential intermediaries between biodiver-
sity and phenological responsiveness. For example, biodiversity and
the C/N ratio were mostly positively correlated, with 11.7% and 4.1% of
correlations being significantly positive and negative, respectively.
The correlation between the C/N ratio and root depth was also posi-
tive, with 34.2% of the correlations significantly positive and only 6.8%
of the correlations significantly negative. In comparison, root depth
and S; were generally negatively correlated. Similarly, a higher SOC
concentration was associated withincreased biodiversity, but SOC con-
centration and S; were negatively correlated. Soil physical properties
may also contribute to the negative relationship between biodiversity
and S;. Biodiversity and bulk density, bulk density and the rate of soil
warming in spring (RSWS), and RSWS and S; were each consistently
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negatively correlated, with the percentages of significant positive/
negative correlations being 5.8%/26.1%, 28.7%/46.0% and 24.7%/61.4%,
respectively. In contrast to bulk density, a higher VOCF was associated
withincreased biodiversity,and biodiversity increased as S; decreased,
because VOCF and S; were negatively correlated. Overall, both the
direct and the indirect pathways support the negative correlation
between biodiversity and S;.

Wefurther tested whether Earth system models (15 Trendy models
with results over 2001-2021 and 13 CMIP6 models over 2016-2100)
can reproduce the negative correlation between S; and biodiversity
(Fig. 3). We found that most Trendy models do not capture the observed
relationships, with13 of 15 models simulating predominantly positive
correlations (positive correlations exceeding 60%) and only one of
the models reproducing the extent of observed negative correlations
(negative correlations exceeding 60%, the CABLE-POP model). The
spatial variation in the correlations simulated by the Trendy models
is shown in Fig. 3a(i)-(xv). The CMIP6 models also failed to repre-
sent the negative correlation between S; and biodiversity (Fig. 3b-d).
We found that only 4 of 13 models (ACCESS-ESM1-5, BCC-CSM2-MR,
EC-Earth3-Veg and TaiESM1) had negative S;-biodiversity relation-
ships exceeding 60% under Shared Socio-economic Pathway (SSP)
1-2.6. The number of correct models increased to 5-7 for SSP2-4.5 and
SSP5-8.5. Spatial distributions of the CMIP6 models are providedin Sup-
plementary Figs. 7-9. We also tested for spatial consistency between
the observations and simulations and found that most models did not
closely match the observed biodiversity effects (Extended Data Fig.1).

Discussion

Our findings demonstrate awidespread buffering effect of biodiversity
on the sensitivity of spring leaf-out dates to climate warming, with
weaker responses of spring leaf-out to warming in forests with multiple

species. Our models further show that biodiversity is moreimportant
thanclimate indriving spatial variationin S; (Fig. 1b-d and Supplemen-
tary Fig. 5), highlighting the importance of considering biodiversity
when predicting the effects of climate change on spring phenology and
ecosystem productivity. We further showed that current Earth system
models cannot reproduce the observed buffering effect of biodiversity
onspring phenological sensitivity. Accounting for spatial and temporal
variationinspeciesrichness will thus be of greatimportance to better
understanding the extent of shifts in foliar phenology under climate
change as well as the consequences for ecosystem functioning.

We found that biodiversity has a strong directimpact on S;inour
study. We observed that inforests with higher biodiversity, the sensitiv-
ity of tree leaf unfolding to climate warming is lower. This suggests that
inecosystems with higher biodiversity, the timing of spring leaf unfold-
ing remains more stable in the face of warming, consistent with recent
research'®”?, This direct effect canbe partly attributed to the presence
of a greater variety of species and individuals in biodiverse forests,
where different tree species may have distinct growth seasons and
leaf unfolding times. This seasonal asynchrony may, to some extent,
slow down the overall response of the ecosystem to rising tempera-
tures'*2. Consequently, the entire ecosystem exhibits lower average S;.
Conversely, in biomes or climate zones with lower biodiversity, often
dominated by afew key species, the response ismore uniform, and leaf
unfolding is more directly and significantly influenced by temperature
increase (Supplementary Fig. 3). In such cases, biodiversity may not be
able to exert a buffering effect, as observed in biomes such as deserts
and xeric shrublands (DXS) and tundra (TUN), as well as cold and dry
climate zones (DSC and DSB) (Fig. 1g-j).

While our analyses suggest a strong directimpact of biodiversity
onS;, theyalso suggest that biogeophysical and biogeochemical factors
may contribute to the decrease in S; with increasing biodiversity. We
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found that high biodiversity correlates with deeper roots, which may
facilitate access to soil nutrients and moisture during spring®. The
enhanced water supply may inturnreduce trees’ sensitivity to tempera-
ture early in the growing season, buffering against warming-induced
shifts in foliar phenology® (Extended Data Fig. 2). In agreement with
this, experiments and observations have shown reduced leaf-out sen-
sitivity to warming under drought conditions"’. Our results also agree
with studies reporting an increased importance of soil moisture in
determining the distribution of vegetation and SOC in cold regions
where warming is more pronounced?.

Our findings also support the idea that higher biodiversity
enhances the SOC concentrations in diverse forests by fixing more car-
bon™'*%, This may be due toimproved soil physicochemical properties,
suchas VOCF and pH (Extended DataFig. 3), whichinturnaccelerate the
activities of both plants and soil microorganisms'>*?¢, Enhanced soil
fertility is advantageous for plants because it promotes plant growth
and enables roots to anchor more deeply, facilitating more effective
adaptation to temperature changes". Increasing soil fertility canin turn
increase the diversity of plants and soil microorganisms, increasing
the stability and resilience of ecosystems. We also found that higher
biodiversity increases the C/N ratio, which may limit the availability
of nitrogen for plants and cause them to allocate more carbon to root
growth to enhance the uptake of water and nutrients while reducing
foliar growth to save energy for photosynthesis and transpiration®.

Higher biodiversity may contribute to improvements in soil bio-
geophysical properties, including enhanced soil aeration, thermal con-
ductivity and water retention, which may be associated with increased
soil microbial activity and plant root growth*?°, The improvement of
soil physical properties, especially water retention and buffering capac-
ity, hasbeen demonstrated to enhance the resistance of plantstostress,
thus alleviating the response of plants to warming and consequently
improving phenological stability”**. Our results also showed that S;
becomesless dependent on warming under wetter conditionsinduced
by higher biodiversity (Extended Data Fig. 2). Better soil aeration and
thermal conductivity may increase RSWS and its variability, causing a
higher frost risk. To avoid such risks, plants may therefore increasingly
rely on other signals, such as photoperiod and higher chilling require-
ments, leading to declines in $;>*. The enhancement of soil physical
properties affects the growth of plant roots and the retention of SOC
and soil nitrogen®*”, and increased rooting depth and supply with soil
nutrients are likely to drive phenological stability and reduce S; (Fig. 2).

Predictive models of vegetation leaf phenology are a crucial com-
ponentofland surface models and dynamic global vegetation models,
aswell asglobal climate models that use soil-vegetation-atmosphere
transfer schemes®". Most vegetation models and climate models con-
sider the impact of vegetation phenology on the interannual varia-
tions and trends in land carbon-water cycles and land-atmosphere
exchanges, but they still pose challenges in terms of phenology model
accuracy”. Because S; determines the extent of phenological responses
to future climate warming, itis crucial for phenological simulations to
consider this effect>” . If the buffering effects of biodiversity on S; are
not considered, inaccuracies in phenological simulations may occur,
thereby affecting the characterization of ecosystem functions. This
may be why many CMIP6 and Trendy models have failed to reproduce
the negative biodiversity-S; correlations (Fig. 3).

Our findings show that the sensitivity of spring leaf-out to warm-
ing is lower in more diverse forests, suggesting an important buffer-
ing effect of biodiversity on the phenological sensitivity of trees to
climate change. The biodiversity effects on phenological sensitivity
may be both direct and indirect. In diverse forests, the high diversity
intemperature sensitivity among species and individuals mayleadtoa
lower average temperature sensitivity thanin less diverse forests, where
single species dominate the observed community sensitivity. In addi-
tion, the biodiversity effects could be mediated by soil physicochemi-
cal properties, which may stabilize phenology by enhancing nutrient

supply, stress tolerance and productivity”**. Higher productivity in
diverse forests may also lead to changes in ecosystem function due to
shifts in species composition and community succession, water bal-
ance and climatic feedbacks®®. The inability of Earth system models
toreproduce the observed buffering effect of tree diversity on pheno-
logical sensitivity highlights the need to represent biodiversity if we
aretoaccurately predict ecosystem responses to climate change. Our
findings thus underscore the fundamental importance of biodiversity
inour understanding of phenological changes and the maintenance of
ecosystem functioning under climate change.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41558-024-02035-w.
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Methods

Biodiversity, climate and ancillary data

Wefocused our researchonareasinthe middle and high latitudes of the
northern hemisphere (>30° N), where vegetation dynamics exhibit dis-
tinct seasonal variations. We extracted species richness data covering
most of the forestsin our study area from the GFBIground observation
dataset to characterize biodiversity, which compiles extensive moni-
toring data from 777,126 permanent plots across 44 countries and 13
ecoregions. The GFBI dataset encompasses diverse forest sources and
successional stages, and more than30 million trees belonging to over
8,737 species were measured twice or more, with the aim of unveiling
global forest biodiversity patterns.

Due to the large number of duplicate coordinates in the GFBI
dataset, we used awindow size of 0.01 degrees, the minimum scale of
GFBI coordinate records, to extract the mean value within each window
asits corresponding value. In the end, we determined 393,139 unique
biodiversity records, encompassing1-190 tree species. Among these
plots, 75% were measured at two or more time points, witha minimum
timeinterval between measurements of two years or more (the global
average timeintervalis nine years), while 25% were measured only once.
Due to the majority of plots being measured multiple times, the impact
of sampling frequency on the results is probably minimal®. Notably,
deciduous broadleafforests and woody savannahs exhibit the highest
speciesrichness per plot scale, averaging six to seven species per plot,
while openshrublands, barrenlands and grasslands contain only two to
threetree species (Supplementary Fig. 1). We also used grid-form spe-
ciesrichness data, which were simulated by the original authors of the
GFBI dataset using machine learning techniques, ensuring spatial con-
sistency with the structure of the climate dataset and other datasets.

The leaf-out dates were determined from the MODIS Land Cover
Dynamics (MCD12Q2) dataset, which provides global land surface
phenology metrics annually spanning from2001to 2022 with a spatial
resolution of 500 metres®. These metrics are derived from time series
dataof'the two-band Enhanced Vegetation Index (EVI2) computed from
MODIS Nadir Bidirectional Reflectance Distribution Function-Adjusted
Reflectance. One of these metrics, leaf-out dates, is defined as the date
when the EVI2 first exceeds 15% of the segment EVI2 amplitude.

The climate datawere obtained frommonthly dataofthe ERA5-Land
dataset, whichis the fifth-generation atmospheric reanalysis produced
by the European Centre for Medium-Range Weather Forecasts®. It has
been widely used for evaluating the influence of meteorological vari-
ablesonthe Earth’s global climate. Specifically, we extracted tempera-
ture, total precipitation, solar radiation and soil moisture data from
2000 to 2022, with a spatial resolution of 0.1 degrees and a temporal
resolution of one month from ERAS-Land. Furthermore, we collected
hourly soil temperature data and calculated the daily mean for later
analysis. We computed the multi-year average climate variables and
spring average climate variables for each plot. Regarding spring average
climate variables, we identified the optimal spring pre-season period
through partial correlation analysis. We initiated the iteration from
the month of the multi-year average leaf-out dates, moving forward
continuously. In each iteration, we calculated the average variables of
the current pre-season period and computed the correlation coefficient.
We continued theiteration until the sixth month, selecting the optimal
pre-season period with the maximum partial correlation coefficient.

The soil attribute data were derived from SoilGrids, a global soil
dataset product resulting from international collaboration gener-
ated by the ISRIC—World Soil Information Center, with a resolution
of 250 metres®*. SoilGrids implements advanced machine learning
techniques, combining global soil profile data and environmental
covariate data to predict and simulate the spatial distribution of soil
properties at six standard depths globally. We used the latest version
of SoilGrids, version 2.0, to extract soil surface organic carbon content
and soil total nitrogen content, and subsequently calculated the soil
surface C/Nratio.

The GPP datawere originated from the Trendy and CMIP6 models,
used for the simulation of leaf-out dates across historical and future
periods. The Trendy model ensemble encompassed many models
reflecting estimates of terrestrial vegetation photosynthesis and was
extensively employed todelveinto diverse facets of the global carbon
cycle®. We curated GPP data spanning from 2001to 2021, encompass-
ing15 models (Supplementary Table 2). CMIP6 furnishes output data
for anarray of climate variables under different experimental designs
and emission scenarios, encompassing historical and forthcoming
epochs®®. We gathered GPP, temperature, precipitation, radiation
and soil moisture data from 2015 to 2100 across each of 13 models.
Each model encompasses three SSPs: SSP1-2.6, SSP2-4.5 and SSP5-8.5
(Supplementary Table 3).

Other auxiliary data included biomes, vegetation types, climate
zones, forest age, elevation and species evenness. The biome data
were derived from the Resolve Ecoregions 2017, which serves as a
biogeographic regionalization under an Earth’s biomes framework,
consisting of 14 terrestrial biomes made up of 846 ecoregions, defining
biogeographic assemblages and ecological habitats” (Supplementary
Table 4). The vegetation type data were obtained from the first layer
of the MCD12Ql version 6.1 dataset and represent land cover types in
the International Geosphere-Biosphere Programme classification®
(Supplementary Table 5). The climate zone data were procured from
the widely used Koppen-Geiger climate classification system, which
divides the global climate zones into five primary groups on the basis
of local vegetation types: tropical, arid, temperate, continental and
polar®. Further subdivisions of each group are based on temperature or
aridity level (Supplementary Table 6). The forest age datawere sourced
from the Max Planck Institute for Biogeochemistry in Germany. These
data provide global forest age estimations at a one-kilometre resolu-
tionand are predicted using machine learning techniques on the basis
of forest inventories, biomass measurements and climate data. The
elevation data were obtained from the Global Multi-resolution Ter-
rain Elevation Data 2010, provided by the US Geological Survey Earth
Resources Observation and Science Center. We selected the version
with a 30-arc-second spatial resolution. We used Hill’s evenness as
an indicator of species evenness, which can be roughly interpreted
as the proportion of species dominating the community in terms of
abundance. These datawere sourced fromref. 40, and evenness values
range from close to zero (indicating domination by a few species) to
one (indicating an equal number of individuals for all species in the
community).

Simulating leaf-out dates using GPP data from the Trendy and
CMIP6 models

We employed GPP datafrom the CMIP6 and Trendy models to simulate
leaf-out dates. GPP exhibits a close correlation with factors such as
vegetation coverage, leaf areaindex, temperature and precipitation—
all pivotal elements influencing vegetative leaf-out dates. The annual
fluctuation curve of GPP therefore effectively mirrors the phenologi-
cal cycles of vegetation*. Drawing on this theoretical foundation, we
used cubicsplineinterpolation for temporal sequence interpolation to
enhance data continuity, considering that the temporal resolution of
most GPP datasets is monthly. We then opted for the phenofit function
package* in the R programming language for simulation. To ensure
both efficiency and quality in simulating leaf-out dates, we employed
the ‘Elmore’ curve fitting method*®. The fitting functionis represented
by equation (1):

1 1
f(t) =mn + (mX - m7t) X (1+e—rsp([—sos) - 1+e—rau(t—eos)> (1)
where tis the corresponding date of time series GPP; mn and mx are the
minimum and maximum value of time series GPP; sos and eos denote
the start of the growing season and the end of the growing season,

respectively; rsp and rau are the rates of spring greenup and autumn
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senescence, respectively; and m,is the summer greendown parameter.
Subsequently, on the basis of the fitted curve, we used three different
methodsto extractleaf-out dates: the threshold method, the derivative
method and theinflection method. Through meticulous comparisons,
the extracted leaf-out dates exhibited harmonious interannual varia-
tions across all three methods (Supplementary Fig. 10). To maintain
congruity with MCD12Q2, we chose to showcase the 15% threshold
method as the primary approach in the main text.

Calculating S;and RSWS

We firstaggregated data from multiple sources using the coordinates
from the biodiversity data. For climate data with coarser resolutions,
we directly extracted data from the corresponding locations. For cat-
egorical datasets such as biomes, we used the mode within the corre-
sponding window size as the representative value, while for continuous
datasets such as soil properties, we used their mean values within the
grid. We then standardized all data using the Z-score method to convert
metrics of varying unitsinto auniformscale, and we excluded outliers
inaccordance with the PauTa criterion.

S;, the sensitivity of leaf-out advance to warming, is defined as
the days of advanced leaf-out dates per degree of change in air tem-
perature. For the purpose of narrative convenience, we defined the
advancement of leaf-out dates as a positive value and the delay as a
negative value, which is equivalent to taking the opposite of the tem-
perature coefficient as S;. It can be calculated using the coefficient
of temperature in a regression that relates leaf-out dates to climate
variables, as shown in equation (2):

L=Bo+(-Br)XT+PpxP+PrxR+e )

where L stands for leaf-out dates; 7, Pand R denote the mean spring
temperature, precipitation and radiation, respectively; B+, B and By
represent their corresponding regression coefficients, of which §;
signifies S;; B, is the intercept; and ¢is the residual term. To calculate
mean spring values of climate variables, we employed a partial correla-
tion method toiteratively determine the optimal length of the spring
pre-season. To fit the regression equation, we used the OLS (ordinary
least squares regression) function provided by the statsmodels** pack-
agein Python.

RSWS is defined as the speed of soil temperature change over
a period of 60 days, including 30 days before and 30 days after the
leaf-out date. To calculate RSWS, we first derived daily soil tempera-
ture data from hourly data between 2001 and 2021. We then used the
Numpy** package in Python to fit the daily mean soil temperature data
for the 60-day period in each plot, allowing us to determine the slope
(thatis, RSWS) as well as the variance, which represents the degree of
temperature variability in each plot.

Analysis

We first used partial correlation and sequential regression methods
to investigate the relationship between biodiversity and S; across
all plots (Fig. 1b). The partial correlation method was implemented
using the pingouin® package in Python. When calculating partial cor-
relation, we controlled for mean spring temperature, precipitation,
radiation and soil moisture, as well as SOC, total nitrogen, forest age,
elevation and evenness, to eliminate the influence of environmental
factors. Onthebasis of the ordinary least squares regression method,
we devised a sequential regression model to isolate the confounding
effects of environmental covariates. We regressed biodiversity onto
the environmental variables to obtain the residuals of biodiversity
without the covariances of environmental variables. Subsequently,
the residuals and environmental variables were regressed on S; to
estimate the coefficient of residuals (8;, as described in equation (4)),
which characterizes the relationship between biodiversity and S;. This
sequential regression model is expressed as:

eg =B—(Bs+ ), B xX) €))
=
St=Bo+Bs+es+Y.BixX+¢ )

i=1

where Bis biodiversity, € is the residual of biodiversity, X; is environ-
mental variable i, B;is the regression coefficient of environmental
variableiand is the residual term.

To mitigate the potentialimpact of spatial autocorrelation among
variables, we employed two spatial autoregressive models to investi-
gate therelationship between biodiversity and S;. First, the spatial lag
model introduced the lagged values of the dependent variable (that
is, the values of the dependent variable in neighbouring locations) as
explanatory variables to capture spatial dependence among adjacent
locations. Second, the spatial error model assumed that the error terms
of the model possess a spatial structure, indicating a certain level of
spatial autocorrelation in the error terms across space. The analysis
of these models was conducted using the spreg*® package in Python.

Furthermore, we used the random forest and XGBoost machine
learning algorithms, along with the SHAP method, to measure the
impact and importance of biodiversity on S;. Random forest and
XGBoost are decision-tree-based machine learning algorithms that
excel in processing large-scale data and high-dimensional features,
effectively handling nonlinear relationships between features. We
implemented these methods using the scikit-learn*” and xgboost*®
packages in Python to explore the relationships between S, biodi-
versity and other environmental variables. While the random for-
est and XGBoost models offer the Gini coefficient as an importance
metric, they fall short in illustrating the individual contribution of
eachfeaturein predicting results on a per-sample basis. To overcome
thislimitation, we used the SHAP method—arobust tool for interpret-
ing machine learning models. Rooted in Shapley values from game
theory, this method assesses the contribution of each feature value
within various possible feature combinations. It ensures afair distribu-
tion of the impact of each feature on the prediction results. Using the
shap* package in Python, we applied the SHAP method to interpret the
trained random forest and XGBoost models. This allowed us to obtain
the magnitude and direction (positive or negative) of the impact of
biodiversity on S; of each plot (Fig. 1d and Supplementary Fig. 5). We
then calculated the mean absolute SHAP values for each feature across
all samples as a measure of feature importance, referred to as SHAP
importance, as showninFig. 1c.

To address possible spatial heterogeneity issues at the global
scale, we employed two approaches to conduct analyses at asmaller
local scale. First, we divided our study area into different regions,
including land cover types, biomes and climate zones. We then con-
ducted partial correlation analysis on the data within each region.
We also conducted point-wise analyses. To do this, we first created a
distance matrix to group the pointsinto clusters on the basis of their
proximity to each other. Then, we used partial correlations to conduct
the analysis. To select the points in each group, we used the golden
section method as the search algorithm and the Akaike information
criterionto determine the optimal bandwidth size. The significance
was based on ¢ statistics using a two-tailed test, and the Benjamini-
Hochberg method was employed to control the false discovery rate.
Due to the sparseness of point-form species evenness data, there
are limitations in successfully matching it with point-form species
richness data and significant S; data, hindering further analysis. We
therefore did not use it in the local analysis (Fig. 1a,e-j). To address
this limitation, we introduced grid-form species richness data, which
perfectly match with evenness data, supporting all analyses, and the
conclusions remain consistent with the original findings (Fig. 1 and
Supplementary Fig. 6).
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To investigate the potential mechanisms underlying the impact
of biodiversity on S;, we used two methods at the point level: partial
correlationand structural equation modelling. We hypothesized that
theimpact of biodiversity on S;is mediated by its influence on soil phys-
icochemical properties and tree root growth. To test this hypothesis,
we developed an SEM incorporating six mediating variables: two soil
physical properties (bulk density and VOCF), two soil nutrient vari-
ables (SOC and C/Nratio), RSWS and root depth. Maximum likelihood
estimation was used as the target function, while the sequential least
squares programming optimization method was employed to estimate
the model parameters. We also calculated various statistics and fit
indices to evaluate the applicability and effectiveness of the model,
such as the goodness-of-fit index and the root mean square error of
approximation. Subsequently, we selected pathways that surpassed the
0.9 threshold for the goodness-of-fitindex and exhibited Benjamini-
Hochberg-corrected Pvalues below 0.05, calculating their respective
mean values. We also used partial correlation analysis as a supplement
to the SEM. While controlling for mean annual temperature, precipi-
tation and solar radiation effects, we conducted partial correlation
analyses on variables at both ends of each SEM path.

For the data from the Trendy and CMIP6 models, we followed
the same procedure as described above to calculate S; and analyse
the impact of biodiversity on it. However, due to the coarse resolu-
tion and lack of time series in these models, temporal and regional
analyses were not possible. To determine the biodiversity effects at
each point, we employed the geographically weighted regression
(GWR) method. GWRis aspatially local regression model that considers
spatial heterogeneity. Throughout the analysis, due to the absence of
future biodiversity, soil attribute and elevation data, we assumed they
remained constant and resampled them to match the resolution of the
models. We conducted year-by-year accumulation to obtain future
forest age. Due to the sparseness of the point-form species evenness
data, challenges arose in aligning them with coarse-resolution model
data and point-form species richness data, hampering further analy-
sis. We therefore did not use these data in the GWR analysis. We then
conducted GWR to analyse the relationship between the models’ S;and
factorsincludingbiodiversity, mean springtemperature, precipitation,
radiation and soil moisture, as well as SOC, soil nitrogen, forest age and
elevation. Simultaneously, we resampled the observed datato the same
resolution as each model and calculated the impact of biodiversity
on S; (Supplementary Fig. 11). Finally, we compared the biodiversity
effect of the observed results and the Trendy and CMIP6 models, and
assessed the accuracy of each model at the pixel scale (Fig. 3, Extended
DataFig.1and Supplementary Figs. 7-9).

Data availability

All the data used in this study are available online via the following
links: GFBI, https://www.gfbinitiative.org/data; ERAS5, https://doi.
org/10.24381/cds.e2161bac; Trendy, https://blogs.exeter.ac.uk/trendy;
CMIP6, https://esgf-node.lInl.gov/projects/cmip6; elevation, https://
doi.org/10.3133/0fr20111073; SoilGrids, https://doi.org/10.5194/s0il-7-
217-2021; evenness, https://doi.org/10.3929/ethz-b-000597256; forest
age, https://doi.org/10.5194/essd-13-4881-2021; MCD12Q1v061, https://
doi.org/10.5067/MODIS/MCD12Q1.061; MCD12Q2v061, https://doi.
org/10.5067/MODIS/MCD12Q2.061; Ecoregions 2017, https://ecore-
gions.appspot.com; Képpen-Geiger maps, https://doi.org/10.1038/
$41597-023-02549-6.Source data are provided with this paper.

Code availability

All the code used for data analysis and figure generation is available
on GitHub at https://github.com/spjace/asc-for-bio-effect-on-lud
(ref. 50). Furthermore, we packaged this code into the Python pack-
age phenology for phenological analysis and computing optimal
pre-season length, released on the Python Package Index at https://
pypi.org/project/phenology.
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Extended Data Fig. 1| Spatially consistent evaluation of model performances shared socioeconomic pathways (SSP1-2.6, SSP2-4.5 and SSP5-8.5), respectively.
on the sensitivity of spring leaf unfolding to warming (S;) with biodiversity. ++, The model outcomes correspond harmoniously with the observed results,
a-drepresent results for 15 Trendy models and 13 CMIP6 models under different exhibiting a positive correlation; - -, both are negative.
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Extended Data Fig. 2| Biodiversity impacts soil moisture and organic carbon
(SOC) by influencing root depth, consequently shaping the sensitivity

of spring leaf unfolding to warming (S;). a-f, represent Partial correlation
analysis results between biodiversity and root depth (a), biodiversity and spring
soil moisture (b), biodiversity and SOC (c), root depth and soil organic carbon
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(d), root depth and spring soil moisture (e), spring soil moisture and Sy (f),
respectively. The significance was based on the t statistics using a two-tailed test
and to control the false discovery rate, the Benjamini-Hochberg (BH) method was
employedina-f.*, P<0.05; **, P<0.01; NS, not significant; P, positive effect; and N,
negative effect.
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Extended Data Fig. 3 | Enhancing soil fertility through the Influence of
biodiversity on soil physicochemical properties. a-f, represent the partial
correlation analysis results between biodiversity and volumetric fraction of
coarse fragments (VOCF) (a), VOCF and soil organic carbon (SOC) (b), VOCF and
soil total nitrogen (N) (c¢), biodiversity and Soil pH (d), Soil pH and SOC (e), Soil
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pHand N (), respectively. The significance was based on the t statistics using a
two-tailed test and to control the false discovery rate, the Benjamini-Hochberg

(BH) method was employed ina-f.*, P<0.05; **, P<0.01; NS, not significant; P,
positive effect; and N, negative effect.

Nature Climate Change


http://www.nature.com/natureclimatechange

	Biodiversity buffers the response of spring leaf unfolding to climate warming

	Results

	Discussion

	Online content

	Fig. 1 Negative correlations between biodiversity and ST.
	Fig. 2 Mechanisms underlying the negative correlation between biodiversity and ST.
	Fig. 3 Evaluation of model performances on ST with biodiversity.
	Extended Data Fig. 1 Spatially consistent evaluation of model performances on the sensitivity of spring leaf unfolding to warming (ST) with biodiversity.
	Extended Data Fig. 2 Biodiversity impacts soil moisture and organic carbon (SOC) by influencing root depth, consequently shaping the sensitivity of spring leaf unfolding to warming (ST).
	Extended Data Fig. 3 Enhancing soil fertility through the Influence of biodiversity on soil physicochemical properties.




