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Biodiversity buffers the response of spring 
leaf unfolding to climate warming

Pengju Shen    1,2,14, Xiaoyue Wang    1,2,14, Constantin M. Zohner    3, 
Josep Peñuelas    4,5, Yuyu Zhou    6, Zhiyao Tang    7, Jianyang Xia    8, 
Hua Zheng    9, Yongshuo Fu    10, Jingjing Liang11, Weiwei Sun    12  , 
Yongguang Zhang    13   & Chaoyang Wu    1,2 

Understanding the sensitivity of spring leaf-out dates to temperature (ST) 
is integral to predicting phenological responses to climate warming and 
the consequences for global biogeochemical cycles. While variation in ST 
has been shown to be influenced by local climate adaptations, the impact of 
biodiversity remains unknown. Here we combine 393,139 forest inventory 
plots with satellite-derived ST across the northern hemisphere during 2001–
2022 to show that biodiversity greatly affects spatial variation in ST and even 
surpasses the importance of climate variables. High tree diversity significantly 
weakened ST, possibly driven by changes in root depth and soil processes. 
We show that current Earth system models fail to reproduce the observed 
negative correlation between ST and biodiversity, with important implications 
for phenological responses under future pathways. Our results highlight the 
need to incorporate the buffering effects of biodiversity to better understand 
the impact of climate warming on spring leaf unfolding and carbon uptake.

Plant phenology is one of the most sensitive indicators of climate 
change and greatly affects interannual variations in carbon uptake of 
terrestrial ecosystems1,2. Over recent decades, climate warming has 
led to strong advances in spring leaf-out dates3,4. The responsiveness 
of spring phenology to climate change is typically quantified via meas-
uring the temperature sensitivity of leaf-out (ST, leaf-out advance in 
days per degree of air temperature warming). ST is the optimal strategy 
evolved by plants under the selection pressure of historical climate 
information in the local environment, and its variations reflect adaptive 

adjustments to climate change for optimizing their life cycles5,6. Due to 
its role in determining the extent of phenological changes in response to 
future climate warming, ST has attracted extensive attention in observa-
tional records and warming experiments5,7–9. Understanding temporal 
and spatial variation in ST is critical to better comprehend phenologi-
cal feedbacks to climate change, such as effects on carbon sequestra-
tion7, surface albedo and the energy budget7,10. Furthermore, it is of 
paramount importance for evaluating and simulating the dynamics 
of ecosystems in climate change research8, as well as for enhancing 
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thus typically have stabler ecosystem responses to climate change, 
whereas the loss of diversity may aggravate plant phenological shifts 
caused by climate change13,16,17. In this study, we therefore aimed to test 
whether biodiversity buffers the sensitivity of trees to climate warming 
and how interactions between biodiversity and climate change affect 
northern-hemisphere-wide phenological variation.

We compiled species richness data from the Global Forest Biodi-
versity Initiative (GFBI) in the middle and high latitudes of the northern 
hemisphere, incorporating 393,139 unique forest inventory plots that 
span various forest types and species, to characterize biodiversity (Sup-
plementary Fig. 1). Satellite-derived leaf-out data from 2001–2022 came 
from the Moderate-Resolution Imaging Spectroradiometer (MODIS). 
We also gathered spatially explicit climate and soil data from 2000–
2022, as well as gross primary production (GPP) data from 15 Trendy 
models for 2001–2021 and 13 Coupled Model Intercomparison Project 
Phase 6 (CMIP6) models for 2015–2100 (Supplementary Tables 1–3). For 
each forest plot, we calculated the optimal spring pre-season period 
using partial correlation analysis and calculated ST using ordinary least 
squares regression (Supplementary Fig. 2). We then used partial cor-
relation, a sequential regression model, spatial autoregressive models, 
a structural equation model (SEM) and machine learning to determine 
the influence of biodiversity on ST and its underlying mechanisms at 
regional and global levels (Methods).

Results
The partial correlation analysis showed a predominantly negative cor-
relation between biodiversity and ST at the local scale after removing 
the effects of spring temperature, radiation, precipitation, soil mois-
ture, soil organic carbon (SOC), soil nitrogen, forest age and elevation 

global dynamic vegetation models, global climate models and land 
surface models6,11. Declines in ST have been observed in several tree 
species over recent decades. Yet, although decreased winter chilling 
has been suggested as a possible factor, the underlying causes remain 
poorly understood9. While previous studies have mostly focused on the 
climatic drivers of ST, we still lack an understanding of the responses of 
ST to changes in the biodiversity of animals, plants and microorganisms 
and the communities they form12.

Biodiversity plays a crucial role in regulating the growth and devel-
opment of vegetation, serving as a key factor in stabilizing and adapting 
ecosystems to climate change13. At a large geographical scale, plant 
phenology responds to climate and environmental factors, influenc-
ing plant growth and resilience while also governing crucial ecosystem 
functions such as pollination, herbivory and carbon uptake14. Con-
sequently, warming-induced changes in spring leaf-out may lead to 
asynchronous interactions among mutualistic partners within commu-
nities, affecting food web dynamics and the functioning and stability 
of ecosystems2,3,15,16. In particular, high biodiversity can influence the 
phenological plasticity of individual plants, enhance the adaptability 
of plants to climatic shifts, diminish the likelihood of phenological 
discordance, and affect the species assemblage and functional het-
erogeneity of plant communities, thereby mitigating the effects of 
climate change on ecosystem performance17,18. For example, different 
genotypes or genera of plants can adapt to variations in temperature 
and moisture by altering gene expression, hormone levels, leaf area 
and other parameters that affect phenology19. Different species have 
different responses to cope with environmental fluctuations, and 
higher temporal complementarity and asynchrony among species can 
augment their resistance to drought20. Regions with high biodiversity 
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Fig. 1 | Negative correlations between biodiversity and ST. a,e–j, The results 
of the partial correlation analysis for each plot (a), plant functional type (e,f), 
biome (g,h) and climate (i,j) (the full names of the abbreviations in f,h,j can be 
found in Supplementary Tables 4–6). b, The coefficients of the global partial 
correlation and sequential regression. c, The importance of each feature based 
on Gini coefficients and the mean absolute value of SHAP. d, SHAP values based 

on the global random forest model. P, positive effect; N, negative effect. In a, the 
overall percentages of positive and negative correlations and the percentages of 
significant correlations (in parentheses) are given. The grey dashed lines in f,h,j 
mark the transition from significant to non-significant results at P < 0.05. The 
significance was based on t statistics using a two-tailed test. To control the false 
discovery rate, the Benjamini–Hochberg method was employed in a,f,h,j.

http://www.nature.com/natureclimatechange


Nature Climate Change | Volume 14 | August 2024 | 863–868 865

Article https://doi.org/10.1038/s41558-024-02035-w

(Fig. 1a), with 60.5% of the correlations being negative. Moreover, 8.5% 
of the local correlations were significantly negative (P < 0.05), while 
significant positive correlations were found for only 3.9% of the cor-
relations. The partial correlation analysis showed consistent results at 
the levels of plant functional types (Fig. 1e,f), forest biomes (Fig. 1g,h) 
and Köppen–Geiger climate zones (Fig. 1i,j). For example, negative 
correlations were found for all 11 plant functional types, with 9 being 
significant. Similarly, four of the eight biomes showed a negative cor-
relation, and all four correlations were significant, with only deserts 
and xeric shrublands (DXS) and tundra (TUN) showing a non-significant 
positive correlation. Biodiversity and ST were also negatively corre-
lated in 8 of 11 climate zones (five correlations were significant) and 
exhibited significant positive correlations in 2 zones (DSB (continental, 
dry summer, warm summer) and DSC (continental, dry summer, cold 
summer)). Furthermore, a negative correlation between biodiversity 
and ST was observed across different plant functional types, as well as 
across various biomes and climate zones (Supplementary Fig. 3). In 
the global analysis covering all plots, we controlled for evenness vari-
ables, in addition to the previously mentioned environmental factors. 
Consistent results were obtained from partial correlation analysis, a 
sequential regression model, and spatial lag and spatial error models, 
indicating an overall negative biodiversity–ST effect (Fig. 1b and Sup-
plementary Fig. 4).

We then analysed the relative importance of biodiversity in deter-
mining the changes in ST using machine learning (random forest and 
Extreme Gradient Boosting (XGBoost) models). We found that biodi-
versity was a more important driver of ST than were spring temperature, 
precipitation, solar radiation, soil moisture, SOC, soil nitrogen, for-
est age, elevation and evenness (Fig. 1c,d and Supplementary Fig. 5). 
Additionally, the Shapley Additive Explanations (SHAP) values of the 
random forest and XGBoost models revealed that plots with higher 
biodiversity levels often exhibited a negative relationship between 
biodiversity and ST, while regions with lower biodiversity levels might 
have a positive biodiversity–ST relationship. Overall, a predominance 

of negative correlations was observed, aligning with the results from 
the partial correlation and sequential regression analyses. Both feature 
importance metrics (Gini importance and SHAP importance), along 
with the absolute coefficients of the partial correlation and sequential 
regression, consistently indicate that biodiversity is the most impor-
tant driver of ST.

We also used grid-form species richness data to ensure spatial 
consistency with the scale of climate and other datasets, providing a 
better match with point-form species evenness data. We replicated the 
same analysis, controlling for the influences of spring temperature, 
precipitation, solar radiation, soil moisture, SOC, soil nitrogen, for-
est age, elevation and evenness in all analyses. The results remained 
consistent with those obtained from plot datasets, revealing a negative 
effect of biodiversity on ST (Supplementary Fig. 6).

To test the possible mechanisms through which biodiversity may 
affect ST, we applied an SEM and partial correlation analysis (Fig. 2). 
We calculated the direct effects of biodiversity on ST in the SEM and 
the indirect effects through different pathways. The results indicate 
a strong direct effect of biodiversity. In addition, root depth, SOC 
concentration, the soil carbon-to-nitrogen (C/N) ratio and soil physical 
properties (including bulk density and volumetric fraction of coarse 
fragments (VOCF)) may be potential intermediaries between biodiver-
sity and phenological responsiveness. For example, biodiversity and 
the C/N ratio were mostly positively correlated, with 11.7% and 4.1% of 
correlations being significantly positive and negative, respectively. 
The correlation between the C/N ratio and root depth was also posi-
tive, with 34.2% of the correlations significantly positive and only 6.8% 
of the correlations significantly negative. In comparison, root depth 
and ST were generally negatively correlated. Similarly, a higher SOC 
concentration was associated with increased biodiversity, but SOC con-
centration and ST were negatively correlated. Soil physical properties 
may also contribute to the negative relationship between biodiversity 
and ST. Biodiversity and bulk density, bulk density and the rate of soil 
warming in spring (RSWS), and RSWS and ST were each consistently 

0

P1
P2
P3
P4
P5
P6
P7

–0.34–0.08–0.04

P2:  Bio → SOC → ST

0.33 ± 0.08 (P = 0.03)

0.21 ± 0.10 (P = 0.02)

–0.11 ± 0.10
(P = 0.02)

P*: 11.7%
N*: 4.1%

P*: 34.2%
N*: 6.8%

P*: 5.9%
N*: 27.5%

P*: 15.4%
N*: 43.0%

P*: 24.7%
N*: 61.4%

P*: 5.8%
N*: 26.1%

P*: 28.7%
N*: 46.0%

P*: 14.0%
N*: 35.7%

Biogeophysical

Biogeochemical

P*

N*

P**

N**

NS

–0.34 ± 0.08 (P = 0.02)

P1:  Bio → ST

P3:  Bio → Root depth → ST

P4:  Bio → VOCF → ST

P5:  Bio → C/N → Root depth → ST

P6:  Bio → BD → RSWS → ST

P7:  Bio → BD → Root depth → ST

Path e�ect

Biodiversity

BD RSWS

SOC

VOCF

Root depth

ST

–0.14 ± 0.08 (P = 0.02) –0.34 ± 0.09 (P = 0.00)

0.24 ± 0.08 (P = 0.03)

0.24 ± 0.09 (P = 0.02)

0.14 ± 0.08 (P = 0.03) –0.16 ± 0.10 (P = 0.02)

–0.18 ± 0.09 (P = 0.01)

0.26 ± 0.10 (P = 0.02) 0.20 ± 0.08 (P = 0.02)
C/N ratio

Fig. 2 | Mechanisms underlying the negative correlation between 
biodiversity and ST. The results of the partial correlation analysis and SEM 
are shown. The coefficients on the paths of the SEM are standardized, and the 
circular maps on the paths represent the spatial distributions of the partial 
correlation results. The thickness of path arrows corresponds to the size of 
path coefficient, and the color to the sign, red for positive and blue for negative. 

The bar chart represents the direct and indirect effects. NS, not significant; BD, 
soil bulk density. The significance was based on t statistics using a two-tailed 
test. To control the false discovery rate, the Benjamini–Hochberg method was 
employed in all analyses. **P < 0.01; *P < 0.05. χ2 = 48.86 ± 17.05; goodness-of-fit 
index, 0.93 ± 0.02; root mean square error of approximation, 0.06 ± 0.04; Akaike 
information criterion, 89.02 ± 0.34.
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negatively correlated, with the percentages of significant positive/
negative correlations being 5.8%/26.1%, 28.7%/46.0% and 24.7%/61.4%, 
respectively. In contrast to bulk density, a higher VOCF was associated 
with increased biodiversity, and biodiversity increased as ST decreased, 
because VOCF and ST were negatively correlated. Overall, both the 
direct and the indirect pathways support the negative correlation 
between biodiversity and ST.

We further tested whether Earth system models (15 Trendy models 
with results over 2001–2021 and 13 CMIP6 models over 2016–2100) 
can reproduce the negative correlation between ST and biodiversity 
(Fig. 3). We found that most Trendy models do not capture the observed 
relationships, with 13 of 15 models simulating predominantly positive 
correlations (positive correlations exceeding 60%) and only one of 
the models reproducing the extent of observed negative correlations 
(negative correlations exceeding 60%, the CABLE-POP model). The 
spatial variation in the correlations simulated by the Trendy models 
is shown in Fig. 3a(i)–(xv). The CMIP6 models also failed to repre-
sent the negative correlation between ST and biodiversity (Fig. 3b–d). 
We found that only 4 of 13 models (ACCESS-ESM1-5, BCC-CSM2-MR, 
EC-Earth3-Veg and TaiESM1) had negative ST–biodiversity relation-
ships exceeding 60% under Shared Socio-economic Pathway (SSP) 
1-2.6. The number of correct models increased to 5–7 for SSP2-4.5 and 
SSP5-8.5. Spatial distributions of the CMIP6 models are provided in Sup-
plementary Figs. 7–9. We also tested for spatial consistency between 
the observations and simulations and found that most models did not 
closely match the observed biodiversity effects (Extended Data Fig. 1).

Discussion
Our findings demonstrate a widespread buffering effect of biodiversity 
on the sensitivity of spring leaf-out dates to climate warming, with 
weaker responses of spring leaf-out to warming in forests with multiple 

species. Our models further show that biodiversity is more important 
than climate in driving spatial variation in ST (Fig. 1b–d and Supplemen-
tary Fig. 5), highlighting the importance of considering biodiversity 
when predicting the effects of climate change on spring phenology and 
ecosystem productivity. We further showed that current Earth system 
models cannot reproduce the observed buffering effect of biodiversity 
on spring phenological sensitivity. Accounting for spatial and temporal 
variation in species richness will thus be of great importance to better 
understanding the extent of shifts in foliar phenology under climate 
change as well as the consequences for ecosystem functioning.

We found that biodiversity has a strong direct impact on ST in our 
study. We observed that in forests with higher biodiversity, the sensitiv-
ity of tree leaf unfolding to climate warming is lower. This suggests that 
in ecosystems with higher biodiversity, the timing of spring leaf unfold-
ing remains more stable in the face of warming, consistent with recent 
research16,17,21. This direct effect can be partly attributed to the presence 
of a greater variety of species and individuals in biodiverse forests, 
where different tree species may have distinct growth seasons and 
leaf unfolding times. This seasonal asynchrony may, to some extent, 
slow down the overall response of the ecosystem to rising tempera-
tures14,22. Consequently, the entire ecosystem exhibits lower average ST. 
Conversely, in biomes or climate zones with lower biodiversity, often 
dominated by a few key species, the response is more uniform, and leaf 
unfolding is more directly and significantly influenced by temperature 
increase (Supplementary Fig. 3). In such cases, biodiversity may not be 
able to exert a buffering effect, as observed in biomes such as deserts 
and xeric shrublands (DXS) and tundra (TUN), as well as cold and dry 
climate zones (DSC and DSB) (Fig. 1g–j).

While our analyses suggest a strong direct impact of biodiversity 
on ST, they also suggest that biogeophysical and biogeochemical factors 
may contribute to the decrease in ST with increasing biodiversity. We 
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found that high biodiversity correlates with deeper roots, which may 
facilitate access to soil nutrients and moisture during spring23. The 
enhanced water supply may in turn reduce trees’ sensitivity to tempera-
ture early in the growing season, buffering against warming-induced 
shifts in foliar phenology13 (Extended Data Fig. 2). In agreement with 
this, experiments and observations have shown reduced leaf-out sen-
sitivity to warming under drought conditions1,9. Our results also agree 
with studies reporting an increased importance of soil moisture in 
determining the distribution of vegetation and SOC in cold regions 
where warming is more pronounced24.

Our findings also support the idea that higher biodiversity 
enhances the SOC concentrations in diverse forests by fixing more car-
bon13,18,25. This may be due to improved soil physicochemical properties, 
such as VOCF and pH (Extended Data Fig. 3), which in turn accelerate the 
activities of both plants and soil microorganisms12,25,26. Enhanced soil 
fertility is advantageous for plants because it promotes plant growth 
and enables roots to anchor more deeply, facilitating more effective 
adaptation to temperature changes13. Increasing soil fertility can in turn 
increase the diversity of plants and soil microorganisms, increasing 
the stability and resilience of ecosystems. We also found that higher 
biodiversity increases the C/N ratio, which may limit the availability 
of nitrogen for plants and cause them to allocate more carbon to root 
growth to enhance the uptake of water and nutrients while reducing 
foliar growth to save energy for photosynthesis and transpiration27.

Higher biodiversity may contribute to improvements in soil bio-
geophysical properties, including enhanced soil aeration, thermal con-
ductivity and water retention, which may be associated with increased 
soil microbial activity and plant root growth23,26. The improvement of 
soil physical properties, especially water retention and buffering capac-
ity, has been demonstrated to enhance the resistance of plants to stress, 
thus alleviating the response of plants to warming and consequently 
improving phenological stability23,25. Our results also showed that ST 
becomes less dependent on warming under wetter conditions induced 
by higher biodiversity (Extended Data Fig. 2). Better soil aeration and 
thermal conductivity may increase RSWS and its variability, causing a 
higher frost risk. To avoid such risks, plants may therefore increasingly 
rely on other signals, such as photoperiod and higher chilling require-
ments, leading to declines in ST

5,28. The enhancement of soil physical 
properties affects the growth of plant roots and the retention of SOC 
and soil nitrogen23,25, and increased rooting depth and supply with soil 
nutrients are likely to drive phenological stability and reduce ST (Fig. 2).

Predictive models of vegetation leaf phenology are a crucial com-
ponent of land surface models and dynamic global vegetation models, 
as well as global climate models that use soil–vegetation–atmosphere 
transfer schemes6,11. Most vegetation models and climate models con-
sider the impact of vegetation phenology on the interannual varia-
tions and trends in land carbon–water cycles and land–atmosphere 
exchanges, but they still pose challenges in terms of phenology model 
accuracy29. Because ST determines the extent of phenological responses 
to future climate warming, it is crucial for phenological simulations to 
consider this effect5,7–9. If the buffering effects of biodiversity on ST are 
not considered, inaccuracies in phenological simulations may occur, 
thereby affecting the characterization of ecosystem functions. This 
may be why many CMIP6 and Trendy models have failed to reproduce 
the negative biodiversity–ST correlations (Fig. 3).

Our findings show that the sensitivity of spring leaf-out to warm-
ing is lower in more diverse forests, suggesting an important buffer-
ing effect of biodiversity on the phenological sensitivity of trees to 
climate change. The biodiversity effects on phenological sensitivity 
may be both direct and indirect. In diverse forests, the high diversity 
in temperature sensitivity among species and individuals may lead to a 
lower average temperature sensitivity than in less diverse forests, where 
single species dominate the observed community sensitivity. In addi-
tion, the biodiversity effects could be mediated by soil physicochemi-
cal properties, which may stabilize phenology by enhancing nutrient 

supply, stress tolerance and productivity17,18,20. Higher productivity in 
diverse forests may also lead to changes in ecosystem function due to 
shifts in species composition and community succession, water bal-
ance and climatic feedbacks30. The inability of Earth system models 
to reproduce the observed buffering effect of tree diversity on pheno-
logical sensitivity highlights the need to represent biodiversity if we 
are to accurately predict ecosystem responses to climate change. Our 
findings thus underscore the fundamental importance of biodiversity 
in our understanding of phenological changes and the maintenance of 
ecosystem functioning under climate change.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
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Methods
Biodiversity, climate and ancillary data
We focused our research on areas in the middle and high latitudes of the 
northern hemisphere (>30° N), where vegetation dynamics exhibit dis-
tinct seasonal variations. We extracted species richness data covering 
most of the forests in our study area from the GFBI ground observation 
dataset31 to characterize biodiversity, which compiles extensive moni-
toring data from 777,126 permanent plots across 44 countries and 13 
ecoregions. The GFBI dataset encompasses diverse forest sources and 
successional stages, and more than 30 million trees belonging to over 
8,737 species were measured twice or more, with the aim of unveiling 
global forest biodiversity patterns.

Due to the large number of duplicate coordinates in the GFBI 
dataset, we used a window size of 0.01 degrees, the minimum scale of 
GFBI coordinate records, to extract the mean value within each window 
as its corresponding value. In the end, we determined 393,139 unique 
biodiversity records, encompassing 1–190 tree species. Among these 
plots, 75% were measured at two or more time points, with a minimum 
time interval between measurements of two years or more (the global 
average time interval is nine years), while 25% were measured only once. 
Due to the majority of plots being measured multiple times, the impact 
of sampling frequency on the results is probably minimal20. Notably, 
deciduous broadleaf forests and woody savannahs exhibit the highest 
species richness per plot scale, averaging six to seven species per plot, 
while open shrublands, barren lands and grasslands contain only two to 
three tree species (Supplementary Fig. 1). We also used grid-form spe-
cies richness data, which were simulated by the original authors of the 
GFBI dataset using machine learning techniques, ensuring spatial con-
sistency with the structure of the climate dataset and other datasets.

The leaf-out dates were determined from the MODIS Land Cover 
Dynamics (MCD12Q2) dataset, which provides global land surface 
phenology metrics annually spanning from 2001 to 2022 with a spatial 
resolution of 500 metres32. These metrics are derived from time series 
data of the two-band Enhanced Vegetation Index (EVI2) computed from 
MODIS Nadir Bidirectional Reflectance Distribution Function-Adjusted 
Reflectance. One of these metrics, leaf-out dates, is defined as the date 
when the EVI2 first exceeds 15% of the segment EVI2 amplitude.

The climate data were obtained from monthly data of the ERA5-Land 
dataset, which is the fifth-generation atmospheric reanalysis produced 
by the European Centre for Medium-Range Weather Forecasts33. It has 
been widely used for evaluating the influence of meteorological vari-
ables on the Earth’s global climate. Specifically, we extracted tempera-
ture, total precipitation, solar radiation and soil moisture data from 
2000 to 2022, with a spatial resolution of 0.1 degrees and a temporal 
resolution of one month from ERA5-Land. Furthermore, we collected 
hourly soil temperature data and calculated the daily mean for later 
analysis. We computed the multi-year average climate variables and 
spring average climate variables for each plot. Regarding spring average 
climate variables, we identified the optimal spring pre-season period 
through partial correlation analysis. We initiated the iteration from 
the month of the multi-year average leaf-out dates, moving forward 
continuously. In each iteration, we calculated the average variables of 
the current pre-season period and computed the correlation coefficient. 
We continued the iteration until the sixth month, selecting the optimal 
pre-season period with the maximum partial correlation coefficient.

The soil attribute data were derived from SoilGrids, a global soil 
dataset product resulting from international collaboration gener-
ated by the ISRIC—World Soil Information Center, with a resolution 
of 250 metres34. SoilGrids implements advanced machine learning 
techniques, combining global soil profile data and environmental 
covariate data to predict and simulate the spatial distribution of soil 
properties at six standard depths globally. We used the latest version 
of SoilGrids, version 2.0, to extract soil surface organic carbon content 
and soil total nitrogen content, and subsequently calculated the soil 
surface C/N ratio.

The GPP data were originated from the Trendy and CMIP6 models, 
used for the simulation of leaf-out dates across historical and future 
periods. The Trendy model ensemble encompassed many models 
reflecting estimates of terrestrial vegetation photosynthesis and was 
extensively employed to delve into diverse facets of the global carbon 
cycle35. We curated GPP data spanning from 2001 to 2021, encompass-
ing 15 models (Supplementary Table 2). CMIP6 furnishes output data 
for an array of climate variables under different experimental designs 
and emission scenarios, encompassing historical and forthcoming 
epochs36. We gathered GPP, temperature, precipitation, radiation 
and soil moisture data from 2015 to 2100 across each of 13 models. 
Each model encompasses three SSPs: SSP1-2.6, SSP2-4.5 and SSP5-8.5 
(Supplementary Table 3).

Other auxiliary data included biomes, vegetation types, climate 
zones, forest age, elevation and species evenness. The biome data 
were derived from the Resolve Ecoregions 2017, which serves as a 
biogeographic regionalization under an Earth’s biomes framework, 
consisting of 14 terrestrial biomes made up of 846 ecoregions, defining 
biogeographic assemblages and ecological habitats37 (Supplementary 
Table 4). The vegetation type data were obtained from the first layer 
of the MCD12Q1 version 6.1 dataset and represent land cover types in 
the International Geosphere-Biosphere Programme classification38 
(Supplementary Table 5). The climate zone data were procured from 
the widely used Köppen–Geiger climate classification system, which 
divides the global climate zones into five primary groups on the basis 
of local vegetation types: tropical, arid, temperate, continental and 
polar39. Further subdivisions of each group are based on temperature or 
aridity level (Supplementary Table 6). The forest age data were sourced 
from the Max Planck Institute for Biogeochemistry in Germany. These 
data provide global forest age estimations at a one-kilometre resolu-
tion and are predicted using machine learning techniques on the basis 
of forest inventories, biomass measurements and climate data. The 
elevation data were obtained from the Global Multi-resolution Ter-
rain Elevation Data 2010, provided by the US Geological Survey Earth 
Resources Observation and Science Center. We selected the version 
with a 30-arc-second spatial resolution. We used Hill’s evenness as 
an indicator of species evenness, which can be roughly interpreted 
as the proportion of species dominating the community in terms of 
abundance. These data were sourced from ref. 40, and evenness values 
range from close to zero (indicating domination by a few species) to 
one (indicating an equal number of individuals for all species in the 
community).

Simulating leaf-out dates using GPP data from the Trendy and 
CMIP6 models
We employed GPP data from the CMIP6 and Trendy models to simulate 
leaf-out dates. GPP exhibits a close correlation with factors such as 
vegetation coverage, leaf area index, temperature and precipitation—
all pivotal elements influencing vegetative leaf-out dates. The annual 
fluctuation curve of GPP therefore effectively mirrors the phenologi-
cal cycles of vegetation41. Drawing on this theoretical foundation, we 
used cubic spline interpolation for temporal sequence interpolation to 
enhance data continuity, considering that the temporal resolution of 
most GPP datasets is monthly. We then opted for the phenofit function 
package42 in the R programming language for simulation. To ensure 
both efficiency and quality in simulating leaf-out dates, we employed 
the ‘Elmore’ curve fitting method36. The fitting function is represented 
by equation (1):

f(t) = mn + (mx −m7t) × ( 1
1+e−rsp(t−sos)

− 1
1+e−rau(t−eos)

) (1)

where t is the corresponding date of time series GPP; mn and mx are the 
minimum and maximum value of time series GPP; sos and eos denote 
the start of the growing season and the end of the growing season, 
respectively; rsp and rau are the rates of spring greenup and autumn 
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senescence, respectively; and m7 is the summer greendown parameter. 
Subsequently, on the basis of the fitted curve, we used three different 
methods to extract leaf-out dates: the threshold method, the derivative 
method and the inflection method. Through meticulous comparisons, 
the extracted leaf-out dates exhibited harmonious interannual varia-
tions across all three methods (Supplementary Fig. 10). To maintain 
congruity with MCD12Q2, we chose to showcase the 15% threshold 
method as the primary approach in the main text.

Calculating ST and RSWS
We first aggregated data from multiple sources using the coordinates 
from the biodiversity data. For climate data with coarser resolutions, 
we directly extracted data from the corresponding locations. For cat-
egorical datasets such as biomes, we used the mode within the corre-
sponding window size as the representative value, while for continuous 
datasets such as soil properties, we used their mean values within the 
grid. We then standardized all data using the Z-score method to convert 
metrics of varying units into a uniform scale, and we excluded outliers 
in accordance with the PauTa criterion.

ST, the sensitivity of leaf-out advance to warming, is defined as 
the days of advanced leaf-out dates per degree of change in air tem-
perature. For the purpose of narrative convenience, we defined the 
advancement of leaf-out dates as a positive value and the delay as a 
negative value, which is equivalent to taking the opposite of the tem-
perature coefficient as ST. It can be calculated using the coefficient 
of temperature in a regression that relates leaf-out dates to climate 
variables, as shown in equation (2):

L = β0 + (−βT) × T + βP × P + βR × R + ε (2)

where L stands for leaf-out dates; T, P and R denote the mean spring 
temperature, precipitation and radiation, respectively; βT, βP and βR 
represent their corresponding regression coefficients, of which βT 
signifies ST; β0 is the intercept; and ε is the residual term. To calculate 
mean spring values of climate variables, we employed a partial correla-
tion method to iteratively determine the optimal length of the spring 
pre-season. To fit the regression equation, we used the OLS (ordinary 
least squares regression) function provided by the statsmodels43 pack-
age in Python.

RSWS is defined as the speed of soil temperature change over 
a period of 60 days, including 30 days before and 30 days after the 
leaf-out date. To calculate RSWS, we first derived daily soil tempera-
ture data from hourly data between 2001 and 2021. We then used the 
Numpy44 package in Python to fit the daily mean soil temperature data 
for the 60-day period in each plot, allowing us to determine the slope 
(that is, RSWS) as well as the variance, which represents the degree of 
temperature variability in each plot.

Analysis
We first used partial correlation and sequential regression methods 
to investigate the relationship between biodiversity and ST across 
all plots (Fig. 1b). The partial correlation method was implemented 
using the pingouin45 package in Python. When calculating partial cor-
relation, we controlled for mean spring temperature, precipitation, 
radiation and soil moisture, as well as SOC, total nitrogen, forest age, 
elevation and evenness, to eliminate the influence of environmental 
factors. On the basis of the ordinary least squares regression method, 
we devised a sequential regression model to isolate the confounding 
effects of environmental covariates. We regressed biodiversity onto 
the environmental variables to obtain the residuals of biodiversity 
without the covariances of environmental variables. Subsequently, 
the residuals and environmental variables were regressed on ST to 
estimate the coefficient of residuals (βB, as described in equation (4)), 
which characterizes the relationship between biodiversity and ST. This 
sequential regression model is expressed as:

εB = B − ( βB +
n
∑
i=1

βi × Xi) (3)

ST = β0 + βB + εB +
n
∑
i=1

βi × Xi + ε (4)

where B is biodiversity, εB is the residual of biodiversity, Xi is environ-
mental variable i, βi is the regression coefficient of environmental 
variable i and ε is the residual term.

To mitigate the potential impact of spatial autocorrelation among 
variables, we employed two spatial autoregressive models to investi-
gate the relationship between biodiversity and ST. First, the spatial lag 
model introduced the lagged values of the dependent variable (that 
is, the values of the dependent variable in neighbouring locations) as 
explanatory variables to capture spatial dependence among adjacent 
locations. Second, the spatial error model assumed that the error terms 
of the model possess a spatial structure, indicating a certain level of 
spatial autocorrelation in the error terms across space. The analysis 
of these models was conducted using the spreg46 package in Python.

Furthermore, we used the random forest and XGBoost machine 
learning algorithms, along with the SHAP method, to measure the 
impact and importance of biodiversity on ST. Random forest and 
XGBoost are decision-tree-based machine learning algorithms that 
excel in processing large-scale data and high-dimensional features, 
effectively handling nonlinear relationships between features. We 
implemented these methods using the scikit-learn47 and xgboost48 
packages in Python to explore the relationships between ST, biodi-
versity and other environmental variables. While the random for-
est and XGBoost models offer the Gini coefficient as an importance 
metric, they fall short in illustrating the individual contribution of 
each feature in predicting results on a per-sample basis. To overcome 
this limitation, we used the SHAP method—a robust tool for interpret-
ing machine learning models. Rooted in Shapley values from game 
theory, this method assesses the contribution of each feature value 
within various possible feature combinations. It ensures a fair distribu-
tion of the impact of each feature on the prediction results. Using the 
shap49 package in Python, we applied the SHAP method to interpret the 
trained random forest and XGBoost models. This allowed us to obtain 
the magnitude and direction (positive or negative) of the impact of 
biodiversity on ST of each plot (Fig. 1d and Supplementary Fig. 5). We 
then calculated the mean absolute SHAP values for each feature across 
all samples as a measure of feature importance, referred to as SHAP 
importance, as shown in Fig. 1c.

To address possible spatial heterogeneity issues at the global 
scale, we employed two approaches to conduct analyses at a smaller 
local scale. First, we divided our study area into different regions, 
including land cover types, biomes and climate zones. We then con-
ducted partial correlation analysis on the data within each region. 
We also conducted point-wise analyses. To do this, we first created a 
distance matrix to group the points into clusters on the basis of their 
proximity to each other. Then, we used partial correlations to conduct 
the analysis. To select the points in each group, we used the golden 
section method as the search algorithm and the Akaike information 
criterion to determine the optimal bandwidth size. The significance 
was based on t statistics using a two-tailed test, and the Benjamini–
Hochberg method was employed to control the false discovery rate. 
Due to the sparseness of point-form species evenness data, there 
are limitations in successfully matching it with point-form species 
richness data and significant ST data, hindering further analysis. We 
therefore did not use it in the local analysis (Fig. 1a,e–j). To address 
this limitation, we introduced grid-form species richness data, which 
perfectly match with evenness data, supporting all analyses, and the 
conclusions remain consistent with the original findings (Fig. 1 and 
Supplementary Fig. 6).
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To investigate the potential mechanisms underlying the impact 
of biodiversity on ST, we used two methods at the point level: partial 
correlation and structural equation modelling. We hypothesized that 
the impact of biodiversity on ST is mediated by its influence on soil phys-
icochemical properties and tree root growth. To test this hypothesis, 
we developed an SEM incorporating six mediating variables: two soil 
physical properties (bulk density and VOCF), two soil nutrient vari-
ables (SOC and C/N ratio), RSWS and root depth. Maximum likelihood 
estimation was used as the target function, while the sequential least 
squares programming optimization method was employed to estimate 
the model parameters. We also calculated various statistics and fit 
indices to evaluate the applicability and effectiveness of the model, 
such as the goodness-of-fit index and the root mean square error of 
approximation. Subsequently, we selected pathways that surpassed the 
0.9 threshold for the goodness-of-fit index and exhibited Benjamini–
Hochberg-corrected P values below 0.05, calculating their respective 
mean values. We also used partial correlation analysis as a supplement 
to the SEM. While controlling for mean annual temperature, precipi-
tation and solar radiation effects, we conducted partial correlation 
analyses on variables at both ends of each SEM path.

For the data from the Trendy and CMIP6 models, we followed 
the same procedure as described above to calculate ST and analyse 
the impact of biodiversity on it. However, due to the coarse resolu-
tion and lack of time series in these models, temporal and regional 
analyses were not possible. To determine the biodiversity effects at 
each point, we employed the geographically weighted regression 
(GWR) method. GWR is a spatially local regression model that considers 
spatial heterogeneity. Throughout the analysis, due to the absence of 
future biodiversity, soil attribute and elevation data, we assumed they 
remained constant and resampled them to match the resolution of the 
models. We conducted year-by-year accumulation to obtain future 
forest age. Due to the sparseness of the point-form species evenness 
data, challenges arose in aligning them with coarse-resolution model 
data and point-form species richness data, hampering further analy-
sis. We therefore did not use these data in the GWR analysis. We then 
conducted GWR to analyse the relationship between the models’ ST and 
factors including biodiversity, mean spring temperature, precipitation, 
radiation and soil moisture, as well as SOC, soil nitrogen, forest age and 
elevation. Simultaneously, we resampled the observed data to the same 
resolution as each model and calculated the impact of biodiversity 
on ST (Supplementary Fig. 11). Finally, we compared the biodiversity 
effect of the observed results and the Trendy and CMIP6 models, and 
assessed the accuracy of each model at the pixel scale (Fig. 3, Extended 
Data Fig. 1 and Supplementary Figs. 7–9).

Data availability
All the data used in this study are available online via the following 
links: GFBI, https://www.gfbinitiative.org/data; ERA5, https://doi.
org/10.24381/cds.e2161bac; Trendy, https://blogs.exeter.ac.uk/trendy; 
CMIP6, https://esgf-node.llnl.gov/projects/cmip6; elevation, https://
doi.org/10.3133/ofr20111073; SoilGrids, https://doi.org/10.5194/soil-7-
217-2021; evenness, https://doi.org/10.3929/ethz-b-000597256; forest 
age, https://doi.org/10.5194/essd-13-4881-2021; MCD12Q1v061, https://
doi.org/10.5067/MODIS/MCD12Q1.061; MCD12Q2v061, https://doi.
org/10.5067/MODIS/MCD12Q2.061; Ecoregions 2017, https://ecore-
gions.appspot.com; Köppen–Geiger maps, https://doi.org/10.1038/
s41597-023-02549-6. Source data are provided with this paper.

Code availability
All the code used for data analysis and figure generation is available 
on GitHub at https://github.com/spjace/asc-for-bio-effect-on-lud  
(ref. 50). Furthermore, we packaged this code into the Python pack-
age phenology for phenological analysis and computing optimal 
pre-season length, released on the Python Package Index at https://
pypi.org/project/phenology.
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Extended Data Fig. 1 | Spatially consistent evaluation of model performances 
on the sensitivity of spring leaf unfolding to warming (ST) with biodiversity. 
a-d represent results for 15 Trendy models and 13 CMIP6 models under different 

shared socioeconomic pathways (SSP1-2.6, SSP2-4.5 and SSP5-8.5), respectively. 
+ +, The model outcomes correspond harmoniously with the observed results, 
exhibiting a positive correlation; – –, both are negative.
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Extended Data Fig. 2 | Biodiversity impacts soil moisture and organic carbon 
(SOC) by influencing root depth, consequently shaping the sensitivity 
of spring leaf unfolding to warming (ST). a-f, represent Partial correlation 
analysis results between biodiversity and root depth (a), biodiversity and spring 
soil moisture (b), biodiversity and SOC (c), root depth and soil organic carbon 

(d), root depth and spring soil moisture (e), spring soil moisture and ST (f), 
respectively. The significance was based on the t statistics using a two-tailed test 
and to control the false discovery rate, the Benjamini-Hochberg (BH) method was 
employed in a-f. *, P<0.05; **, P<0.01; NS, not significant; P, positive effect; and N, 
negative effect.
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Extended Data Fig. 3 | Enhancing soil fertility through the Influence of 
biodiversity on soil physicochemical properties. a-f, represent the partial 
correlation analysis results between biodiversity and volumetric fraction of 
coarse fragments (VOCF) (a), VOCF and soil organic carbon (SOC) (b), VOCF and 
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pH and N (f), respectively. The significance was based on the t statistics using a 
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(BH) method was employed in a-f. *, P<0.05; **, P<0.01; NS, not significant; P, 
positive effect; and N, negative effect.
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