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This paper presents the implementation of a parameter-free third-order recon-
struction method for cell-centered finite volume solvers on unstructured grids. The
reconstruction is based on nodal gradients obtained using the least squares approach
from solutions at adjacent cell centers. The cell and face gradients are computed by
simple arithmetic averaging of vertex gradients, while the face values are obtained
through quadratic interpolation. Importantly, the current reconstruction method
does not require explicit second derivatives, and its stencil remains as compact as
that used in traditional linear reconstruction methods. The third-order accuracy
of the left and right states at the face values, along with the second-order accuracy
of the face gradients, is numerically verified on various unstructured grids. This
verified third-order accuracy is a crucial condition for ensuring the overall accuracy
of the finite volume solver.

I. Introduction

The finite volume method (FVM) in Computational Fluid Dynamics (CFD) emphasizes the
conservation of physical quantities by integrating the governing partial differential equations over
discrete control volumes. The integral form of the conservation laws ensures that fluxes entering and
exiting each control volume are accurately accounted for. In a cell-centered finite volume method,
the unknowns are stored at the centers of the cells, and only the cell averages at these centers are
directly solved for. To update these cell averages, it is necessary to evaluate the advective and
diffusive fluxes between adjacent cells (cf. Fig. 1). In FVM, a numerical advective flux function
requires the left and right states of the solution at the cell interface as inputs, while a diffusive
flux function needs the solution gradient at the interface. Since only the cell averages are directly
available from the solution process, the left and right states and the solution gradient at the interface
must be "reconstructed" using the known cell-center solutions and the underlying mesh geometry.

To achieve sufficient accuracy for practical applications, reconstruction must be implemented
carefully to ensure that the solutions at cell interfaces reach at least second-order accuracy (i.e.,
linear reconstruction, as commonly used in most commercial CFD packages). To obtain accuracy
higher than second-order, three primary approaches are typically used in the reconstruction process.
The first is the MUSCL (Monotonic Upstream-centered Scheme for Conservation Laws) method.
The second involves constructing high-degree polynomial fits to interpolate the solution across each
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Figure 1: Flux calculation in a cell-centered finite volume solver.

control volume. The third approach utilizes the WENO (Weighted Essentially Non-Oscillatory)
method. For structured meshes, all of these methods can achieve third-order accuracy relatively
easily. However, many practical CFD solvers employ unstructured meshes to discretize complex
computational domains, and achieving consistent third-order accuracy on arbitrary grids is not a
trivial task.

The MUSCL approach uses a parameter to achieve third-order accuracy. A detailed study of
the U-MUSCL scheme, first introduced in,1 was conducted by Padway and Nishikawa.7 Their
research concluded that the U-MUSCL scheme can achieve third-order accuracy for linear problems
on regular grids. However, for unstructured grids and/or nonlinear problems, the U-MUSCL scheme
cannot maintain third-order accuracy. The approach based on high-degree polynomials, such as the
k-exact method,6 typically requires a larger stencil compared to linear reconstruction in order to
achieve higher than second-order accuracy. The WENO approach, on the other hand, combines
multiple potential reconstruction stencils weighted by smoothness indicators,3,4 which also results
in a non-compact stencil. In practice, the k-exact reconstruction is often combined with the WENO
method to enhance stability near discontinuities.

In the author’s view, a successful third-order reconstruction strategy must fulfill the following
two fundamental criteria:

• Suitability for Arbitrary Grids: The strategy should ideally be parameter-free and appli-
cable to any grid type.

• Compact Reconstruction Stencil: The stencil should only involve immediate neighboring
cells, which is crucial for parallel computing based on mesh partitioning.

To ensure global third-order accuracy in a cell-centered finite volume (FV) solver for advection-
diffusion-type equations, such as the Navier-Stokes equations, it is essential that the reconstruction
meets the following conditions:

• The left and right states of the solution at the cell interfaces must be third-order accurate.
• The gradient of the solution at the cell interfaces must be second-order accurate.

This paper presents our implementation of a parameter-free third-order accurate reconstruction for
multi-dimensional, arbitrarily unstructured grids. Our approach closely follows the reconstruction
strategy for 1-D grids, which has been verified to achieve third-order accuracy. We focus on numer-
ically verifying the claimed order of accuracy for reconstructing cell-interface values on arbitrarily
unstructured meshes.

2 of 20

American Institute of Aeronautics and Astronautics



This paper is organized as follows. Section II provides a review of the reconstruction method for
1-D grids, offering three interpretations of the same reconstruction formulation. Section III describes
various reconstruction strategies for multi-dimensional grids that closely mirror the 1-D methods.
In Section IV, numerical tests are carried out to reveal a truly third order accurate reconstruction
on arbitrarily unstructured grids. Finally, section V offers conclusions and further discussion.

II. Review of Third Oder Reconstruction in 1-D Grids

We begin by reviewing the reconstruction process in one dimension. For a cell-centered finite
volume solver to achieve overall third-order accuracy, it is essential that the solution at the cell
interface be reconstructed to third-order accuracy. Starting with the known solution at the cell
centers, the reconstructed solution gradient at the cell centers, the solution at the face centers, and
the solution gradient at the face centers are the key quantities used to assess the order of accuracy.

Considering the 1-D reconstruction stencil as shown in Fig. 2. As can be seen, this is the
most compact 3-point stencil. The whole-number indices represent cell centers and the half-number
indices represent vertices (or faces in 1-D). Assuming the grid is evenly spaced with �x = xi+1�xi.
Given the solutions at the cell centers, i.e. ui�1, ui and ui+1, the goal is to reconstruct the solution
gradient at cell i.

Figure 2: Reconstruction stencil in 1-D. Cell centers are represented by circles.

• Method 1 : use central differencing to obtain (ux)i directly, namely,

(ux)i =
ui+1 � ui�1

2�x
(1)

which is clearly a second-order accurate approximation of the first derivative.

• Method 2 : first use simple linear interpolation to find the solution at vertices (or faces for 1-D
grids) as follows

ui�1/2 =
1

2
(ui�1 + ui) and ui+1/2 =

1

2
(ui + ui+1) (2)

then (ux)i can be obtained via the following central differencing

(ux)i =
ui+1/2 � ui�1/2

�x
=

1
2(ui + ui+1)� 1

2(ui�1 + ui)

�x
=

ui+1 � ui�1

2�x
(3)

which is the same as the second-order approximation (1).

• Method 3 : first use central differencing to obtain the solution gradient at vertices (aka faces
for 1-D grids) as follows

(ux)i�1/2 =
ui � ui�1

�x
and (ux)i+1/2 =

ui+1 � ui
�x

(4)

then (ux)i can be obtained via linear interpolation of solution gradients

(ux)i =
1

2

�
(ux)i�1/2 + (ux)i+1/2

�
=

1

2

✓
ui � ui�1

�x
+

ui+1 � ui
�x

◆
=

ui+1 � ui�1

2�x
(5)

which is also the same as the second-order approximation (1).
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As observed, all three methods lead to the same second order accurate approximation for the solution
gradient at the cell center (cf. Eqs. (1), (3) and (5)). While it may seem trivial to use Eq. (3) or Eq.
(5) instead of Eq. (1) in the calculation of the solution gradient at the cell center, this observation
offers valuable insight. It serves as an important foundation for calculating similar quantities on an
unstructured multi-dimensional grid, as will be discussed in Sec. III.

Now we proceed to compute the left state of the solution at face i + 1
2 . The most commonly

used approach is to use the linear reconstruction via

uLi+1/2 = ui + (ux)i

✓
�x

2

◆
= ui +

ui+1 � ui�1

2�x

✓
�x

2

◆
= ui +

1

4
(ui+1 � ui�1) (6)

Without increasing the size of the stencil, one can achieve a third-order reconstruction as follows.
First the second derivative of the solution at cell i is approximated using the solution gradients at
vertices (4) via

(uxx)i =
(ux)i+1/2 � (ux)i�1/2

�x
=

ui+1�ui

�x � ui�ui�1

�x

�x
=

ui+1 � 2ui + ui�1

�x2

then the solution at the face can be computed using quadratic Taylor expansions via

uLi+1/2 = ui + (ux)i
�x

2
+

1

2
(uxx)i

✓
�x

2

◆2

= ui +
ui+1 � ui�1

2�x

✓
�x

2

◆
+

1

2

ui+1 � 2ui + ui�1

�x2

✓
�x

2

◆2

= ui +
1

4
(ui+1 � ui�1) +

ui+1 � 2ui + ui�1

8
=

1

8
(3ui+1 + 6ui � ui�1) (7)

which happens to be the QUICK scheme2 that is a third-order accurate approximation.
Note that Eq. (7) can also be obtained via

uLi+1/2 = ui +
(ux)i + (ux)i+1/2

2

�x

2
(8)

where (ux)i and (ux)i+1/2 are given by Eq. (5) and Eq. (4), respectively. The advantage of using
Eq. (8) is that it does not require the explicit computation of the second derivative of the solution.

Though the 1-D test for verifying the order of accuracy of above reconstruction process is trivial.
It is included here for completeness. We start with exact solutions at cell centers. The following
analytical solution that describes a raised cosine function in the domain x 2 [�1, 1]

u(x) =

8
<

:
1 + 1

2

⇥
1 + cos

�
4⇡x
3

�⇤
|x|  0.75

0 elsewhere
(9)

is used as an example. A series of meshes obtained via isotropic subdivision are used in the conver-
gence study process. The l1 norm of the reconstruction error is computed as follows

✏ =
1

N

NX

i=1

|uhi � uexacti | (10)

where N is the number of entities (cells or faces) across the entire mesh. The numerical order of
accuracy is computed according to

order =
log(✏i/✏i�1)

log(0.5)
i = 1, 2, · · · (11)
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where the subscript ’i’ stands for the refinement level of the meshes with ✏0 representing the error
from the coarsest mesh.

Table 1 shows the error norms and corresponding order of accuracy of the reconstructed solution
gradient at cell centers, reconstructed gradient at faces and the reconstructed solution at faces. As
can be seen, the quadratic reconstruction for the solution at faces using Eq. (7) achieves third-order
accuracy.

Table 1: Accuracy of the solution reconstruction in 1-D grids.

Number (ux)c from Eq. (1) or (3) or (5) (ux)f from Eq. (4) uLf from Eq. (7)
of cells error order error order error order

6 4.392568e-01 - 8.811850e-02 - 5.087634e-02 -
12 1.113321e-01 1.98 2.442422e-02 1.85 6.364477e-03 3.00
24 2.915719e-02 1.93 6.145001e-03 1.99 8.214035e-04 2.95
48 7.295913e-03 2.00 1.566612e-03 1.97 1.033307e-04 2.99
96 1.824393e-03 2.00 3.944622e-04 1.99 1.296400e-05 2.99
192 4.561242e-04 2.00 9.890699e-05 2.00 1.623628e-06 3.00

III. Reconstruction in Multi-dimensions

We aim to adapt the three methods (cf. Eqs. (1), (3) and (5)) used for 1-D grids to construct the
solution gradient at cell centers on multi-dimensional grids. The reconstruction procedure begins
with the solutions at the cell centers, i.e. uc.

It can be shown that the least squares method is equivalent to central differencing on structured
grids where the grid lines align with the coordinate axes. However, for unstructured grids, standard
central differencing cannot be applied. In such cases, the least squares method is used whenever
central differencing needs to be approximated.

III.A. Gradient Reconstruction at Cell Centers in Multi-dimensions

III.A.1. Method 1: Least Square Construction Using the Solutions at Cell Centers

In this method, to mimic Eq. (1), the solutions gradient at the center of a cell center is obtained
via the least square procedure by minimizing the following objective function

S =

nfX

i=1

(uc +ruc ·�xc,i � uc,i)
2 (12)

where nf is the number of faces this cell has. uc,i is the solution at the ith neighboring cell.
Another slightly different version is to minimize the objective function

S =

nfX

i=1

✓
ruc · nc,i �

✓
uc,i � uc
||�x||c,i

◆◆2

=

nfX

i=1

1

||�x||2c,i
(uc +ruc ·�xc,i � uc,i)

2 . (13)

Here �xc,i = xc,i � xc is the displacement vector connecting the centroids of the two neighboring
cells, and nc,i = �xc,i/||�xc,i||. The latter can be considered as an inverse distance weighted least
square method. For unstructured grids, it can be shown that the inverse distance weighted least
square method yields more accurate results.
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For example, minimizing (13) leads to the following system for a 2-D mesh
2

4
Pnf

i
�x2

i
||�x||c,i

Pnf

i
�xi�yi
||�x||c,iPnf

i
�xi�yi
||�x||c,i

Pnf

i
�y2i

||�x||c,i

3

5
"

(ux)c
(uy)c

#
=

" Pnf

i
�xi

||�x||c,i (uc,i � uc)
Pnf

i
�yi

||�x||c,i (uc,i � uc)

#
(14)

III.A.2. Method 2: Least Square Construction Using the Solutions at Vertices

Since the solution is known only at the cell centers, an interpolation method is required to estimate
the solution at the mesh vertices. In this approach, we obtain the solution at a vertex by using the
inverse distance weighted average of the solutions at its neighboring cell centers, i.e.

uv =

Pnc
i=1

uc,i

riPnc
i=1

1
ri

(15)

where ri = |xv � xc,i| and nc is the number of surrounding cells of the vertex under consideration.
xc,i and uc,i are the location and solution at the ith neighboring cell, respectively. Such averaging
ensures that uv will not exceed the range defined by solutions at its surrounding cell centers and is
second-order accurate. In our earlier work,9 we stated that inverse distance weighted interpolation
is the most robust method when the vertex lies outside the convex hull formed by its surrounding
cell centers, which is a possible situation when high aspect ratio cells are used near the walls with
large local surface curvature.

To mimic Eq. (3), the least square method is then used to minimize the following inverse
distance weighted objective function

S =
nvX

i=1

✓
ruc · nv,i �

✓
uv,i � uc
||�x||v,i

◆◆2

=
nvX

i=1

1

||�x||2v,i
(uc +ruc ·�xv,i � uv,i)

2 (16)

over each cell. Here �xv,i = xv,i � xc, nv,i = �xv,i/||�xv,i|| and nv is the number of vertices
forming the cell. The least square method needs to solve an nsd⇥nsd system for each variable. nsd
is the number of spatial dimensions. For example, minimizing (16) leads to the following system for
a 2-D mesh

2

4
Pnv

i
�x2

i
||�x||v,i

Pnf

i
�xi�yi
||�x||v,iPnv

i
�xi�yi
||�x||v,i

Pnf

i
�y2i

||�x||v,i

3

5
"

(ux)c
(uy)c

#
=

" Pnv
i

�xi
||�x||v,i (uv,i � uc)

Pnv
i

�yi
||�x||v,i (uv,i � uc)

#
(17)

Alternatively, one can also use the Green-Gauss theorem to compute the solution gradient inside
the cell as follows:

ruc =
1

|⌦c|

nfX

i=1

uf,iAini (18)

where nf is the number of faces surrounding the cell under consideration and uf,i is the interpolated
solution (simple arithmetic average of the solution at vertices) at the ith face. Ai and ni are the
area and the outward unit normal of the ith face, respectively. |⌦c| is the volume of the cell under
consideration. The Green-Gauss theorem based method is more efficient since it does not require
to solve an equation system.
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III.A.3. Method 3: Interpolation Using the Solution Gradient at Vertices

In 1-D, the solution gradient at vertices can be straightforwardly obtained via Eq. (4). For multi-
dimensional unstructured grids, the computation of the solution gradient at vertices is more involved.
Since the most natural analogy to central differencing in multi-dimensions is the least squares
method, the following objective function is minimized

S =
ncX

i=1

✓
ruv · nc,i �

✓
uc,i � uv
||�x||c,i

◆◆2

=
nvX

i=1

1

||�x||2c,i
(uv +ruv ·�xc,i � uc,i)

2 (19)

to find the solution gradient at each vertex. Here �xc,i = xc,i � xv and nc,i = �xc,i/||�xc,i||.
Considering a 2-D example, the least squares method results in the following equation system for
the solution and its gradient at a vertex

2

664

Pnc
i

1
||�x||c,i

Pnc
i

�xi
||�x||c,i

Pnc
i

�xi
||�x||c,iPnc

i
�xi

||�x||c,i
Pnc

i
�x2

i
||�x||c,i

Pnc
i

�xi�yi
||�x||c,iPnc

i
�yi

||�x||c,i
Pnc

i
�xi�yi
||�x||c,i

Pnc
i

�y2i
||�x||c,i

3

775

2

64
uv

(ux)v
(uy)v

3

75 =

2

664

Pnc
i

1
||�x||c,iuc,iPnc

i
�xi

||�x||c,iuc,iPnc
i

�yi
||�x||c,iuc,i

3

775 (20)

Once the solution gradients at vertices become available, the solution gradient at the center of
a cell can be obtained via simple averaging, namely,

ruc =
1

nv

nvX

i=1

(ruv)i (21)

where nv is the number of vertices forming this cell.

III.B. Gradient Reconstruction at Face Centers in Multi-dimensions

III.B.1. Method 1: Based on the Solution Gradient at Vertices

If the solution gradients at vertices are available via the least square approach (19), the solution
gradient at a face center can be obtained via the following simple arithmetic averaging

ruf =
1

nv

nvX

i=1

(ruv)i. (22)

where nv is the number of vertices forming this face.

III.B.2. Method 2: Based on the Solution Gradient at Cell Centers

If the solution gradients at vertices are not available, then the solution gradient at a face center can
be obtained via

ruf =
uj � ui
�rij · n

n+

✓
ruf �

ruf ·�rij
�rij · n

n

◆
(23)

or

ruf =
uj � ui
||�rij ||

nij +

✓
ruf �

ruf ·�rij
||�rij ||

nij

◆
(24)
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Figure 3: Stencil to compute the solution gradient at the face.

where
ruf =

1

2
(rui +ruj)

and �rij is the displacement vector connecting cell centroids i and j, n is the unit normal of face
k and nij = �rij/||�rij ||.

Note that in one-dimension or multi-dimensions with grid lines aligned with coordinate axes,
the second term on the right hand side of Eq. (23) and Eq. (24) is zero, thus recovering Eq. (4).

III.C. Solution Reconstruction at Face Centers in Multi-dimensions

Once the solution gradients at cell centers are available, the solution at a face can be easily computed.
In a typical data structure for unstructured meshes, a face connects to its two neighboring cells.

III.C.1. Linear Reconstruction

The left and right states of the solution at the face (cf. Fig. 1) can be calculated via

uLf = uc,i + (ruc)i · (xf � xc,i), and (25a)

uRf = uc,j + (ruc)j · (xf � xc,j) (25b)

respectively. Here, (ruc)i and (ruc)j are the solution gradients at the ith and jth cell, respectively.

III.C.2. Quadratic Reconstruction

To derive the quadratic reconstruction formula, first note that the linear reconstruction Eq. (25a)
can be rewritten as follows

uLf = uc,i + (ruc)i ·
✓

xf � xc,i

||xf � xc,i||

◆
||xf � xc,i|| = uc,i +

du
dl

||xf � xc,i||

where
du
dl

= ruc,i · nl (26)

with
nl =

xf � xc,i

||xf � xc,i||
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being the unit direction vector of the line segment that starts at xc,i and ends at xf . du
dl is simply

the directional gradient along this line segment.
A quadratic reconstruction can be achieved via

uLf = uc,i +
du
dl

||xf � xc,i||+
1

2

d2u

dl2
||xf � xc,i||2 (27)

where the second derivative of the solution along the line segment can be obtained via the known
solution gradient at the face, i.e.

du
dl

+
d2u

dl2
||xf � xc,i|| = ruf · nl.

Simple algebraic manipulation leads to

d2u

dl2
=

(ruf � (ruc)i) · nl

||xf � xc,i||
=

(ruf � (ruc)i) · (xf � xc,i)

||xf � xc,i||2
(28)

which can be put back to Eq. (27) to yield the following form of the quadratic reconstruction

uLf = uc,i + (ruc)i · (xf � xc,i) +
1

2
(ruf � (ruc)i) · (xf � xc,i)

= uc,i +
1

2
(ruf + (ruc)i) · (xf � xc,i) (29)

The right state of the solution at the face can be computed similarly, i.e.

uRf = uc,j +
1

2
(ruf + (ruc)j) · (xf � xc,j) (30)

As can be seen in Eqs. (29) and (30), the quadratic reconstruction does not require the explicit
knowledge about the second derivatives of the solution. In addition, Eqs. (29) and (30) are similar
to Eq. (8) for 1-D grids.

IV. Numerical Tests

In this section, we conduct a series of tests to evaluate the reconstruction accuracy of various
reconstruction strategies. Our focus is on the reconstruction of the solution gradient at cell centers,
as well as the solution and its gradient at face centers. We assess the reconstruction error and the
numerical order of convergence for each strategy on different types of meshes. The following three
reconstruction strategies are tested, with each method designed to mimic the corresponding 1-D
reconstruction discussed in Sec. II.

• Method 1 :

– Compute the solution gradient at a cell center via the least square approach utilizing the
known solutions at immediate cell neighbors, i.e. via Eq. (14).

– Compute the solution gradient at a face center using Eq. (24).
– Compute the left state of the solution at a face center using Eq. (29).

• Method 2 :

– Obtain the solutions at vertices via inverse distance weighted averaging of the solutions
at immediate cell neighbors, i.e. via Eq. (15).
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– Compute the solution gradient at a cell center according to either the least square ap-
proach (17) or the Green-Gauss approach (18) utilizing the available solutions at vertices.

– Compute the solution gradient at a face center using Eq. (24).
– Compute the left state of the solution at a face center using Eq. (29).

• Method 3 :

– Obtain the solution and its gradient at vertices via the least square approach (20).
– Compute the solution gradient at a cell center using the simple average of the solution

gradients at neighboring vertices, i.e. via (21).
– Compute the solution gradient at a face center using the simple average of the solution

gradients at neighboring vertices, i.e. via Eq. (22).
– Compute the left state of the solution at a face center using Eq. (29).

Note that the reconstruction is implemented in parallel using the mesh partitioning technique (cf.
Fig. 4) and the Message Passing Interface (MPI) library. Thanks to the compact stencil in the
reconstruction, the inter-processor communication involves only nodes, faces and elements on the
partition boundaries (cf. Fig. 5). This compactness makes it trivial to attain high parallelizability
using MPI for fixed-topology meshes. Very efficient non-blocking MPI functions can be called to
set up the inter-processor “gather” and “scatter” routines in the pre-processing stage.8

Inter-process boundary

Figure 4: Mesh partitioning.

Figure 5: Inter-process communication. Left: element communication. Middle: face communica-
tion. Right: vertex communication.

IV.A. 2-D Tests

The following 2-D analytical field in the computational domain [�1, 1] ⇥ [�1, 1] is used to demon-
strate the numerical order of accuracy of different reconstruction strategies on various meshes.

u(x, y) =

8
<

:
1 + 1

4

⇥
1 + cos

�
4⇡x
3

�⇤ h
1 + cos

⇣
4⇡y
3

⌘i
|x|  0.75, and |y|  0.75

0 elsewhere
(31)
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Figure 6 shows various meshes used in the tests. Each type of mesh is isotropically subdivided
repeatedly to obtain a series of refined meshes. The l1 reconstruction error is computed according
to Eq. (10) and the numerical order of convergence is computed according to Eq. (11).

(a) (b) (c)

(d) (e) (f)

Figure 6: 2-D meshes used in the tests. (a) Rectangular mesh containing 36 cells (6 ⇥ 6). (b)
Structured triangular mesh of type 1 containing 72 cells (tri6-type1). (c) Structured triangular
mesh of type 2 containing 72 cells (tri6-type2). (d) Unstructured triangular mesh containing 90
cells (tri6-type3). (e) Perturbed quadrilateral mesh containing 36 cells (quad-6). (f) Hybrid quadri-
lateral/triangular mesh containing 40 quadrilaterals and 18 triangles.

Tables 2, 3 and 4 show the reconstruction error and order of accuracy for each of the three
reconstruction methods on rectangular meshes (cf. Fig. 6a). As can be seen, all methods are
second order accurate in reconstructing the solution gradient at cell centers and face centers, and
third order accurate in reconstructing the solution at face centers. Since 2-D rectangular grids are
tensor products of 1-D grids, the order of accuracy of each reconstruction method is expected to be
the same as the 1-D counterpart.

Table 2: Accuracy of reconstruction on rectangular grids via Method 1.

Mesh (ux)c (ux)f uLf
error order error order error order

6⇥ 6 1.59E-01 - 9.43E-02 - 2.08E-02 -
12⇥ 12 5.14E-02 1.63 3.08E-02 1.62 2.96E-03 2.81
24⇥ 24 1.00E-02 2.36 8.12E-03 1.92 3.57E-04 3.05
48⇥ 48 2.59E-03 1.95 2.13E-03 1.93 4.51E-05 2.98
96⇥ 96 6.53E-04 1.99 5.41E-04 1.98 5.62E-06 3.00

Tables 5, 6 and 7. show the reconstruction order of accuracy for each of the three reconstruction
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Table 3: Accuracy of reconstruction on rectangular grids via Method 2.

Mesh (ux)c (ux)f uLf
error order error order error order

6⇥ 6 1.91E-01 - 1.22E-01 - 2.40E-02 -
12⇥ 12 7.08E-02 1.43 4.10E-02 1.58 3.78E-03 2.67
24⇥ 24 1.52E-02 2.22 1.11E-02 1.89 4.60E-04 3.04
48⇥ 48 3.94E-03 1.94 2.92E-03 1.92 5.82E-05 2.98
96⇥ 96 9.94E-04 1.99 7.44E-04 1.97 7.25E-06 3.00

Table 4: Accuracy of reconstruction on rectangular grids via Method 3.

Mesh (ux)c (ux)f uLf
error order error order error order

6⇥ 6 1.91E-01 - 1.27E-01 - 3.00E-02 -
12⇥ 12 7.08E-02 1.43 4.17E-02 1.61 4.80E-03 2.64
24⇥ 24 1.52E-02 2.22 1.13E-02 1.89 5.91E-04 3.02
48⇥ 48 3.94E-03 1.94 2.94E-03 1.94 7.57E-05 2.97
96⇥ 96 9.94E-04 1.99 7.47E-04 1.98 9.43E-06 3.00

methods on the structured triangular meshes of type I (cf. Fig 6b). As can be seen, Methods 1
and 2 are both first order accurate in reconstructing the solution gradient at cell centers and second
order accurate in reconstructing the solution gradient at face centers and second order accurate
in reconstructing the solution at face centers. However, Method 3 is second order accurate in
reconstructing the solution gradient at both cell centers and face centers and third order accurate
in reconstructing the solution at face centers.

Table 5: Accuracy of reconstruction on structured triangular grids of type I via Method 1.

Mesh (ux)c (ux)f uLf
error order error order error order

tri6-type1 1.33E-01 - 7.57E-02 - 9.34E-03 -
tri12-type1 5.55E-02 1.26 2.62E-02 1.53 1.71E-03 2.45
tri24-type1 2.63E-02 1.08 6.23E-03 2.07 3.45E-04 2.31
tri48-type1 1.31E-02 1.01 1.65E-03 1.92 8.20E-05 2.07
tri96-type1 6.54E-03 1.00 4.24E-04 1.96 2.01E-05 2.03

Tables 8, 9 and 10. show the reconstruction order of accuracy for each of the three reconstruction
methods on the structured triangular meshes of type II (cf. Fig 6c). As shown, Methods 1 and 2
both first order accurate in reconstructing the solution gradient at both cell centers and face centers
and second order accurate in reconstructing the solution at face centers. However, Method 3 is
second order accurate in reconstructing the solution gradient at both cell centers and face centers
and third order accurate in reconstructing the solution at face centers.

Tables 11, 12 and 13. show the reconstruction order of accuracy for each of the three reconstruc-
tion methods on the unstructured triangular meshes (cf. Fig 6d). As can be seen, Method 1 is first
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Table 6: Accuracy of reconstruction on structured triangular grids of type I via Method 2.

Mesh (ux)c (ux)f uLf
error order error order error order

tri6-type1 1.91E-01 - 1.08E-01 - 1.36E-02 -
tri12-type1 8.45E-02 1.18 3.96E-02 1.45 2.50E-03 2.44
tri24-type1 3.99E-02 1.08 9.87E-03 2.00 5.12E-04 2.29
tri48-type1 1.95E-02 1.03 2.63E-03 1.91 1.16E-04 2.14
tri96-type1 9.66E-03 1.01 6.77E-04 1.96 2.78E-05 2.06

Table 7: Accuracy of reconstruction on structured triangular grids of type I via Method 3.

Mesh (ux)c (ux)f uLf
error order error order error order

tri6-type1 1.91E-01 - 1.47E-01 - 2.08E-02 -
tri12-type1 5.93E-02 1.69 5.14E-02 1.51 3.31E-03 2.65
tri24-type1 1.45E-02 2.04 1.27E-02 2.01 4.06E-04 3.03
tri48-type1 3.81E-03 1.92 3.36E-03 1.92 5.34E-05 2.93
tri96-type1 9.73E-04 1.97 8.62E-04 1.96 6.84E-06 2.96

Table 8: Accuracy of reconstruction on structured triangular grids of type II via Method 1.

Method (ux)c (ux)f uLf
error order error order error order

tri6-type2 1.45E-01 - 1.09E-01 - 1.49E-02 -
tri12-type2 6.43E-02 1.17 5.32E-02 1.03 2.88E-03 2.37
tri24-type2 3.12E-02 1.04 2.36E-02 1.17 6.80E-04 2.08
tri48-type2 1.56E-02 1.00 1.14E-02 1.05 1.68E-04 2.02
tri96-type2 7.81E-03 1.00 5.56E-03 1.03 4.16E-05 2.01

Table 9: Accuracy of reconstruction on structured triangular grids of type II via Method 2.

Mesh (ux)c (ux)f uLf
error order error order error order

tri6-type2 2.19E-01 - 1.27E-01 - 1.87E-02 -
tri12-type2 1.03E-01 1.09 4.76E-02 1.41 3.35E-03 2.48
tri24-type2 5.16E-02 0.99 1.60E-02 1.58 6.92E-04 2.28
tri48-type2 2.57E-02 1.01 6.76E-03 1.24 1.57E-04 2.14
tri96-type2 1.28E-02 1.00 3.06E-03 1.14 3.77E-05 2.06
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Table 10: Accuracy of reconstruction on structured triangular grids of type II via Method 3.

Mesh (ux)c (ux)f uLf
error order error order error order

tri6-type2 1.94E-01 - 1.48E-01 - 2.15E-02 -
tri12-type2 5.82E-02 1.74 4.99E-02 1.56 3.22E-03 2.74
tri24-type2 1.41E-02 2.05 1.24E-02 2.00 3.90E-04 3.05
tri48-type2 3.68E-03 1.93 3.27E-03 1.93 5.05E-05 2.95
tri96-type2 9.35E-04 1.98 8.34E-04 1.97 6.42E-06 2.97

order accurate in reconstructing the solution gradient at cell centers and second order accurate at
reconstructing solution gradients at face centers. Method 2 is first order accurate in reconstructing
the solution gradient at both cell centers and face centers. Both Method 1 and Method 2 yield
second order accuracy in reconstructing the solution at face centers. However, Method 3 is second
order accurate in reconstructing the solution gradient at both cell centers and face centers and third
order accurate in reconstructing the solution at face centers.

Table 11: Accuracy of reconstruction on unstructured triangular grids via Method 1.

Mesh (ux)c (ux)f uLf
error order error order error order

tri6-type3 1.03E-01 - 6.79E-02 - 6.87E-03 -
tri12-type3 4.78E-02 1.11 2.10E-02 1.69 1.37E-03 2.33
tri24-type3 2.31E-02 1.05 5.79E-03 1.86 2.97E-04 2.20
tri48-type3 1.15E-02 1.01 1.68E-03 1.78 7.09E-05 2.07
tri96-type3 5.72E-03 1.01 4.56E-04 1.88 1.73E-05 2.03

Table 12: Accuracy of reconstruction on unstructured triangular grids via Method 2.

Mesh (ux)c (ux)f uLf
error order error order error order

tri6-type3 1.38E-01 - 8.12E-02 - 9.73E-03 -
tri12-type3 5.90E-02 1.23 2.70E-02 1.59 1.67E-03 2.55
tri24-type3 2.85E-02 1.05 1.01E-02 1.42 3.63E-04 2.20
tri48-type3 1.49E-02 0.94 4.65E-03 1.11 9.05E-05 2.00
tri96-type3 7.97E-03 0.90 2.17E-03 1.10 2.38E-05 1.93

Tables 14, 15 and 16. show the reconstruction order of accuracy for each of the three recon-
struction methods on the perturbed quadrilateral meshes (cf. Fig 6e). As can be seen, Method 1 is
second order accurate in reconstructing the solution gradient at both cell centers and face centers
and third order accurate in reconstructing the solution at face centers. Method 2 tends to be first
order accurate in reconstructing the solution gradient at both cell centers and face centers and
second order accurate in reconstructing the solution at face centers. However, Method 3 is second
order accurate in reconstructing the solution gradient at both cell centers and face centers and third
order accurate in reconstructing the solution at face centers.
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Table 13: Accuracy of reconstruction on unstructured triangular grids via Method 3.

Mesh (ux)c (ux)f uLf
error order error order error order

tri6-type3 1.21E-01 - 1.05E-01 - 1.26E-02 -
tri12-type3 3.83E-02 1.66 3.39E-02 1.63 1.90E-03 2.73
tri24-type3 1.02E-02 1.92 9.28E-03 1.87 2.40E-04 2.99
tri48-type3 2.76E-03 1.88 2.56E-03 1.86 3.33E-05 2.85
tri96-type3 7.42E-04 1.89 6.97E-04 1.88 4.51E-06 2.88

Table 14: Accuracy of reconstruction on perturbed quadrilateral grids via Method 1.

Mesh (ux)c (ux)f uLf
error order error order error order

quad-6 1.63E-01 - 1.10E-01 - 2.15E-02 -
quad-12 4.81E-02 1.76 3.69E-02 1.58 3.00E-03 2.84
quad-24 1.61E-02 1.58 1.25E-02 1.56 4.67E-04 2.68
quad-48 4.34E-03 1.89 3.56E-03 1.81 6.90E-05 2.76
quad-96 1.21E-03 1.85 9.73E-04 1.87 9.59E-06 2.85

Table 15: Accuracy of reconstruction on perturbed quadrilateral grids via Method 2.

Mesh (ux)c (ux)f uLf
error order error order error order

quad-6 2.24E-01 - 1.36E-01 - 2.71E-02 -
quad-12 7.50E-02 1.58 4.58E-02 1.57 4.36E-03 2.63
quad-24 3.12E-02 1.27 1.95E-02 1.23 8.09E-04 2.43
quad-48 1.20E-02 1.37 7.50E-03 1.38 1.47E-04 2.46
quad-96 5.15E-03 1.22 3.11E-03 1.27 2.89E-05 2.34

Table 16: Accuracy of reconstruction on perturbed quadrilateral grids via Method 3.

Mesh (ux)c (ux)f uLf
error order error order error order

quad-6 2.23E-01 - 1.44E-01 - 3.31E-02 -
quad-12 6.55E-02 1.77 4.46E-02 1.69 5.19E-03 2.67
quad-24 2.02E-02 1.69 1.44E-02 1.63 7.69E-04 2.75
quad-48 5.22E-03 1.96 4.01E-03 1.85 1.07E-04 2.84
quad-96 1.42E-03 1.88 1.08E-03 1.89 1.44E-05 2.89
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Tables 17, 18 and 19. show the reconstruction order of accuracy for each of the three recon-
struction methods on the hybrid quadrilateral/triangular meshes (cf. Fig 6f). As can be seen, the
orders of accuracy are similar to those on the perturbed quadrilateral meshes.

Table 17: Accuracy of reconstruction on unstructured hybrid quadrilateral/triangular grids via
Method 1.

Mesh (ux)c (ux)f uLf
error order error order error order

hybrid-6 1.24E-01 - 1.02E-01 - 1.39E-02 -
hybrid-12 4.13E-02 1.59 3.55E-02 1.52 2.44E-03 2.51
hybrid-24 1.32E-02 1.64 1.09E-02 1.71 3.63E-04 2.75
hybrid-48 4.49E-03 1.56 3.22E-03 1.75 5.35E-05 2.76
hybrid-96 1.52E-03 1.57 8.93E-04 1.85 7.77E-06 2.78

Table 18: Accuracy of reconstruction on unstructured hybrid quadrilateral/triangular grids via
Method 2.

Mesh (ux)c (ux)f uLf
error order error order error order

hybrid-6 1.18E-01 - 9.93E-02 - 1.25E-02 -
hybrid-12 4.56E-02 1.37 3.71E-02 1.42 2.37E-03 2.40
hybrid-24 2.02E-02 1.18 1.52E-02 1.29 4.52E-04 2.39
hybrid-48 9.79E-03 1.04 6.52E-03 1.22 9.44E-05 2.26
hybrid-96 4.78E-03 1.03 2.91E-03 1.16 2.05E-05 2.21

Table 19: Accuracy of reconstruction on unstructured hybrid quadrilateral/triangular grids via
Method 3.

Mesh (ux)c (ux)f uLf
error order error order error order

hybrid-6 1.35E-01 - 9.34E-02 - 1.50E-02 -
hybrid-12 4.07E-02 1.74 3.10E-02 1.59 2.82E-03 2.41
hybrid-24 1.16E-02 1.81 9.42E-03 1.72 4.39E-04 2.68
hybrid-48 3.33E-03 1.80 2.79E-03 1.75 6.35E-05 2.79
hybrid-96 9.08E-04 1.88 7.84E-04 1.83 8.85E-06 2.84

Based on the test results, it can be concluded that only Method 3 performs consistently on all
types of meshes. Specifically, it is second-order accurate in reconstructing solution gradients at both
the cell centers and face centers, and third-order accurate in reconstructing solutions at the face
centers.
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IV.B. 3-D Tests

We also provide 3-D tests. The following analytical solution is used for this purpose

u(x, y, z) =

8
<

:
1 + 1

8

⇥
1 + cos

�
4⇡x
3

�⇤ h
1 + cos

⇣
4⇡y
3

⌘i ⇥
1 + cos

�
4⇡z
3

�⇤
|x|  0.75, |y|  0.75 and |z|  0.75

0 elsewhere
(32)

where the computational domain is [�1, 1]⇥ [�1, 1]⇥ [�1, 1].
Since it was concluded from the previous 2-D tests that only Method 3 behaves consistently

across all types of meshes, Method 3 will be the sole method used in the current 3-D tests. Figure
7 shows the various 3-D meshes used in this test. Each type of mesh is isotropically subdivided
repeatedly to obtain a series of refined meshes. Note that when the tetrahedral mesh (cf. Fig. 7f)
is subdivided, each tetrahedral element is subdivided into four child tetrahedra and one octahedron
to preserve the mesh quality of the subsequent meshes.

(a) (b) (c)

(d) (e) (f)

Figure 7: 3-D meshes used in the tests. (a) hexahedral mesh. (b) structured prismatic mesh of
Type I. (c) structured prismatic mesh of Type II. (d) unstructured prismatic mesh. (e) hybrid
unstructured prismatic mesh. and (f) unstructured tetrahedral mesh.

Tables 20-25 shows the reconstruction order of accuracy of Method 3 on each of the meshes
shown in Fig. 7. As can be seen, Method 3 exhibits consistent orders of accuracy in all kinds
of meshes, i.e. second order accurate in reconstructing solution gradients at cell centers and face
centers and third order accurate in reconstructing solution at face centers.

The results from the above 3-D tests further reinforce the conclusion drawn from the 2-D tests:
the reconstruction process based on Method 3 consistently achieves second-order accuracy in re-
constructing the gradients at both the cell centers and face centers, and third-order accuracy in
reconstructing the solutions at the face centers.
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Table 20: Accuracy of reconstruction of Method 3 on structured hexahedral grids.

ncell (ux)c (ux)f uLf
error order error order error order

hex-6 8.87E-02 - 6.28E-02 - 1.38E-02 -
hex-12 3.27E-02 1.44 2.38E-02 1.40 2.38E-03 2.54
hex-24 7.38E-03 2.15 6.03E-03 1.98 2.98E-04 3.00
hex-48 1.92E-03 1.95 1.59E-03 1.93 3.80E-05 2.97
hex-96 4.84E-04 1.99 4.04E-04 1.97 4.74E-06 3.00

Table 21: Accuracy of reconstruction of Method 3 on structured prismatic grids of Type I.

ncell (ux)c (ux)f uLf
error order error order error order

pri-6-type1 8.36E-02 - 6.83E-02 - 1.10E-02 -
pri-12-type1 2.85E-02 1.55 2.45E-02 1.48 1.86E-03 2.57
pri-24type1 7.15E-03 1.99 6.28E-03 1.96 2.34E-04 2.98
pri-48type1 1.87E-03 1.93 1.67E-03 1.92 3.03E-05 2.95
pri-96type1 4.77E-04 1.97 4.27E-04 1.96 3.83E-06 2.98

Table 22: Accuracy of reconstruction of Method 3 on structured prismatic grids of Type II.

ncell (ux)c (ux)f uLf
error order error order error order

pri-6-type2 8.52E-02 - 6.83E-02 - 1.13E-02 -
pri-12-type2 2.82E-02 1.60 2.42E-02 1.50 1.86E-03 2.60
pri-24-type2 6.98E-03 2.02 6.13E-03 1.98 2.31E-04 3.01
pri-48-type2 1.83E-03 1.93 1.62E-03 1.92 2.97E-05 2.96
pri-96-type2 4.63E-04 1.98 4.15E-04 1.97 3.74E-06 2.99

Table 23: Accuracy of reconstruction of Method 3 on prismatic grids of Type III.

ncell (ux)c (ux)f uLf
error order error order error order

pri-6-type3 6.41E-02 - 5.46E-02 - 9.07E-03 -
pri-12-type3 2.19E-02 1.55 1.84E-02 1.57 1.49E-03 2.61
pri-24-type3 5.96E-03 1.88 5.22E-03 1.82 2.05E-04 2.86
pri-48-type3 1.61E-03 1.89 1.44E-03 1.86 2.80E-05 2.87
pri-96-type3 4.25E-04 1.92 3.86E-04 1.90 3.73E-06 2.91
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Table 24: Accuracy of reconstruction of Method 3 on prismatic grids of Type IV.

ncell (ux)c (ux)f uLf
error order error order error order

pri-6-type4 6.38E-02 - 5.09E-02 - 9.19E-03 -
pri-12-type4 2.12E-02 1.59 1.74E-02 1.55 1.68E-03 2.45
pri-24-type4 6.03E-03 1.82 5.21E-03 1.74 2.51E-04 2.74
pri-48-type4 1.70E-03 1.82 1.51E-03 1.79 3.48E-05 2.85
pri-96-type4 4.61E-04 1.89 4.17E-04 1.85 4.74E-06 2.88

Table 25: Accuracy of reconstruction of Method 3 on unstructured tetrahedral meshes.

ncell (ux)c (ux)f uLf
error order error order error order

tet-6 4.72E-02 - 4.16E-02 - 5.26E-03 -
tet-12 1.62E-02 1.54 1.44E-02 1.53 1.03E-03 2.35
tet-24 4.70E-03 1.79 4.30E-03 1.74 1.90E-04 2.44
tet-48 1.38E-03 1.76 1.30E-03 1.73 3.02E-05 2.66
tet-96 4.03E-04 1.78 3.85E-04 1.75 4.47E-06 2.76

V. Conclusions and Future Work

In this paper, we numerically verified a third-order accurate reconstruction method for arbitrary
2-D and 3-D unstructured grids. The multi-dimensional reconstruction follows a similar approach
to that used for 1-D grids. To summarize, the reconstruction is implemented as follows:

• Start with the known solutions at cell centers.
• Obtain the solution and its gradient at vertices via the least square approach using the known

solutions at surrounding cell centers (19).
• Obtain the solution gradient at the cell center via simple arithmetic averaging of the solution

gradient at vertices (21).
• Obtain the solution gradient at the face center via simple arithmetic averaging of the solution

gradient at vertices (22).
• Obtain the solution at the face center via the quadratic fits (29) and (30) using the solution

gradients at both the cell center and the face center.

The current third-order reconstruction method utilizes a compact stencil and does not require
explicit knowledge of the second derivatives of the solution. The primary computational cost lies in
determining the nodal gradients using the least squares method, which can be easily implemented
in a parallel finite volume (FV) solver based on mesh partitioning.

Although the third-order accuracy of the reconstruction has been numerically verified — a
necessary condition for the overall accuracy of a finite volume solver — the total accuracy in an
actual FV solver requires further validation. In an FV solver, the overall accuracy depends not
only on the interface flux computation but also on the spatial and temporal integration methods.
High-order FV solvers typically use quadrature rules for integrating the inter-cell fluxes. For a third-
order FV solver, third-order accuracy can be achieved with a single quadrature point at the face
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center, along with a curvature correction, as demonstrated in.5 The author intends to implement
this third-order accurate reconstruction in their FV solvers.

Several issues warrant further investigation, including: (1) the impact of equation nonlinearity
on the accuracy of the reconstruction; (2) the need for special attention to reconstruction near
domain boundaries, as inaccuracies there can degrade the overall accuracy; and (3) how the choice
of cell averages or point values affects the reconstruction.
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