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36 

Abstract: Mounting evidence suggests that geographic ranges of tree species worldwide are 37 

shifting under global environmental changes. Little is known, however, about if and how these 38 

species' range shifts may trigger the range shifts of various types of forests. Markowitz’s 39 

portfolio theory of investment and its broad application in ecology suggest that the range shift of 40 

a forest type could differ substantially from the range shifts of its constituent tree species. Here, 41 

we tested this hypothesis using in situ forest inventory records of more than 9 million trees from 42 

596,282 sample plots located across Alaska, Canada, and the contiguous United States. We 43 

systematically compared historical range shifts of 43 classified forest types and the range shifts 44 
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of constituent tree species over the past 50 years and found that forest types shifted at 86.5 45 

km·decade-1 on average, more than three times as fast as the average of constituent tree species 46 

(28.8 km·decade-1). We showed that a predominantly positive covariance of the species range 47 

and the change of species relative abundance triggers this marked difference. Our findings 48 

provide an urgently needed scientific basis for a new paradigm of adaptive forest management 49 

and conservation in mitigating the impacts of rapid forest transformation under climate change. 50 

51 

Introduction 52 

Trees are immobile organisms, but tree species worldwide are found to undergo 53 

substantial changes in geographic distributions under global change. Some tree species move to 54 

higher latitudes1-4, while some move southward3,5; some move longitudinally6, while other 55 

species move altitudinally7,8. Little is known, however, about whether and how this substantial 56 

shifting and reshuffling of tree species ranges may cause an overall type of forest – a distinctive 57 

assemblage of tree species distributed across a wide geographical extent – to shift its range.  58 

Although past research has significantly advanced our understanding of tree species 59 

range shifts1-8 and patterns of tree fecundity and recruitment9, the range shifts of forest types and 60 

how they differ from those of tree species remain largely unknown. In forest management and 61 

related climate change mitigation practices, forest types are often expected to shift at the same 62 

speed as their constituent tree species3,4. However, as exemplified in Markowitz’s portfolio 63 

theory of investment10, the change of an ensemble can differ from the changes of its constituents. 64 

An ecological hypothesis11-13, derived from the portfolio theory (hereafter, portfolio hypothesis), 65 

postulates that the dynamics of an ecological community are not the same as the dynamics of its 66 

constituent species. According to the portfolio hypothesis, the speed and direction of forest-type 67 
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range shifts can differ substantially from the average speed and direction of tree species range 68 

shifts. However, this hypothesis has never been formulated and tested for forest type dynamics. 69 

Here, we formulated and tested the portfolio hypothesis on the divergent range shift rates 70 

between forest types and constituent tree species. To do this, we collated a continental-scale 71 

forest inventory database containing more than 596,282 permanent sample plots located across 72 

North America. Based on repeated in situ measurements of more than 20 million trees in these 73 

plots, we classified forested areas across the North American continent into 43 forest types in 74 

eight forest biomes and three arch-biomes, using an established classification algorithm (see Fig. 75 

1, Extended Data Table 1, and Supplementary Information for details). We then quantified 76 

geographic ranges of forest types and individual tree species, as well as their temporal changes 77 

between 1970–1999 and 2000–2019. 78 

79 

Results and Discussion 80 

Forest types outpaced tree species in range shifts 81 

At individual species level, Sitka spruce (Picea sitchensis) had the greatest velocity in 82 

range shifts (480.4 km·decade-1), followed by balsam fir (Abies balsamea; 438.6 km·decade-1) 83 

and gray alder (Alnus incana; 354.6 km·decade-1) in terms of the distance shift of distribution 84 

range centroids (Fig. 2a, Extended Data Table 2). In contrast, pond cypress (Taxodium 85 

ascendens) had the lowest velocity of all (1.5 km·decade-1), followed by water-elm (Planera 86 

aquatica; 4.5 km·decade-1) and sweetgum (Liquidambar styraciflua; 4.5 km·decade-1). Our 87 

velocities of tree species range shifts are generally consistent with those reported in the previous 88 

studies (Extended Data Table 3). Few boreal tree species have ever been assessed in terms of 89 

shifting velocity, and here, we found that boreal tree species’ ranges are shifting much faster than 90 
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temperate ones. In terms of direction, 36 out of 150 species shifted northwards, 34 eastwards, 27 91 

southwards, and 53 westwards in the past 50 years (Extended Data Table 2). 92 

At the forest-type level, we found that the range of Sitka spruce—western hemlock forest 93 

(W-A) shifted with the highest velocity at 327.8 km·decade-1 (Fig. 2b). Among the top six fast-94 

shifting forest types, three were in the boreal forest biome (B-A, B-B, and B-D, see Extended 95 

Data Table 1 for forest type names), two were in the eastern mixed forest biome (E-A and E-K), 96 

and one was in the Pacific-coastal forest biome (W-B) (Extended Data Table 4). The remaining 97 

forest types shifted at a speed lower than 100 km·decade-1. In terms of the direction of shift, nine 98 

out of 43 forest types shifted westwards, 16 eastwards, 11 southwards, and seven northwards in 99 

the past 50 years (Extended Data Table 4). 100 

Overall, forest-type range shifts differed substantially from tree species range shifts (i.e., 101 

the average range shift of constituent tree species) in terms of velocity (Figs. 3, 4). On average, 102 

forest-type ranges shifted at 86.5 km·decade-1, more than three times as fast as the weighted 103 

average of their constituent tree species (28.8 km·decade-1) across the continent at the grid level 104 

(Figs. 3b, 4c). For more than 75% of forest types, the range shifts at the forest-type level 105 

substantially outpaced the average range shifts of constituent tree species, and only 10 out of 43 106 

forest types moved more slowly than their constituent tree species in terms of range shifts (Fig. 107 

4c, Extended Data Table 4). In the boreal and Great Lakes regions, the velocity of forest-type 108 

range shifts exceeded that of tree species range shifts by 200 km·decade-1 or more (Fig. 3b). 109 

Along the Rocky and Appalachian Mountains, forest type ranges shifted with a lower velocity 110 

than the ranges of their constituent tree species (Fig. 3b). 111 

The portfolio hypothesis of range shifts 112 
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The marked difference in the range shift velocity between forest type and constituent tree 113 

species is mainly attributable to the portfolio effect. We derived the following hypothesis from 114 

Markowitz’s portfolio theory of investment10 to quantify the difference in range shifts between 115 

forest types and constituent tree species. Tree species range shift was represented by the 116 

geographic centroid shift of its suitable habitat range. Both boundary and centroid shifts can be 117 

relevant indicators of range shifts for both forest types and their constituent species. Forest type 118 

boundary shifts simply depict the minimum of each constituent species’ boundary shift. As such, 119 

they will often reflect the slowest species’ range boundary shift. Instead, the range centroid of a 120 

forest type reflects the distribution of its most representative and abundant/dominant species, 121 

capturing the primary function and service of this forest type. 122 

Let ܽ௜(ܠ) be the relative abundance of species ݅ at spatial location ݔ (demarcated by 123 

coordinates of latitude and longitude). The cumulative relative abundance of species ݅ over space 124 ݔ is ∑ ܽ௜(ݔ)௫ =  ௜, and the geographic centroid of species ݅’s range can be calculated as the 125ܣ

weighted mean of ݔ, ܿ௜ = ∑ ݔ ∙ ܽ௜(ݔ)/ܣ௜௫ . The relative abundance of a forest type at location 126ݔ 

is the sum of its constituent species’ relative abundance at the location, ܽ(ݔ) = ∑ ܽ௜(ݔ)௜∈ீ , 127 

where ܩ represents the set of all species of this forest type. The cumulative relative abundance of 128 

this forest type can be computed as ∑ ௫(ݔ)ܽ = ௜݌ let ;ܣ =  and the geographic centroid of 129 ,ܣ/௜ܣ

the forest type can be calculated as ܿ = ∑ ݔ ∙ ܣ/(ݔ)ܽ =௫ ∑ ܿ௜ ∙௜∈ீ  ௜. By the Leibniz product rule 130݌

of calculus, we have 131 

∆ܿ = ∑ ∆ܿ௜ ∙ ீ∋௜௜݌ + ∑ ܿ௜ ∙ ீ∋௜௜݌∆ .    (eq.1) 132 

Because ∑ ீ∋௜௜݌ = 1 and thus ∑ ீ∋௜௜݌∆ = 0, the latter term of eq. 1 equals the covariance 133 

between species’ centroids and the change in their cumulative relative abundance: cov(ܿ௜ (௜݌∆, =134 E(ܿ௜ ⋅ −(௜݌∆ E(ܿ௜) ⋅ E(∆݌௜) = ∑ ܿ௜ ∙ ீ∋௜௜݌∆ . 135 
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 Notably, the shift in a forest type’s centroid (∆ܿ) is driven not only by the weighted mean 136 

of centroid shifts at the species level (∑ ∆ܿ௜ ⋅ ீ∋௜௜݌ ), but also, counterintuitively, by the 137 

covariance (cov(ܿ௜  ௜)) that inflates or deflates the centroid shift of the forest type (Extended 138݌∆,

Data Fig. 1). This covariance term, which we call the portfolio effect, can attribute to a difference 139 

between forest-type range shift and the range shift of its constituent tree species. We therefore 140 

made the following hypothesis: when the range shift of a forest type and its constituent tree 141 

species are measured along a given direction, a positive covariance (cov(ܿ௜  ௜)) will inflate the 142݌∆,

magnitude and velocity of the forest-type range shift along this direction, while a negative 143 

covariance will reduce the magnitude and velocity along this direction (Extended Data Fig. 1). 144 

Our finding that the forest-type range shifts differed substantially from species range shifts 145 

provides a strong support for the portfolio hypothesis. 146 

In most cases, portfolio effects are expected to be positive because species at the front of 147 

a forest-type range (i.e., in the direction of forest-type range shift) often have increasing 148 

abundances due to preferential allocation to dispersal and reproduction, while species at the rear 149 

of forest-type range are decreasing in abundance, reflecting the compounded effect of constituent 150 

species’ mortality and recruitment on the centroid shift14,15. Positive portfolio effects provide a 151 

mechanistic underpinning of our finding that, across the North American continent, forest-type 152 

range shifts generally outpaced tree species range shifts (Figs. 3b, 4c). In some cases, negative 153 

covariance terms pervade, leading to reduced forest-type range shift, such as in some forests 154 

across the Rocky and Appalachian Mountains (Fig. 3b). In these montane forest types, 155 

constituent species increase their relative abundances in the rear edge, where investments in 156 

competitive traits are likely to dominate, even if the species centroids drift towards the front edge 157 

(Extended Data Fig. 1). 158 
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Various factors in complex interactions are attributable to species abundance dynamics, 159 

leading to positive or negative portfolio effects. While climate change (e.g., increasing 160 

temperature and precipitation changes) is commonly considered the major driver of species 161 

abundance dynamics and associated range shifts1,2,6, climate change-induced disturbances (e.g.,162 

fires and disease outbreaks) and human disturbances (e.g., logging and land use changes) can 163 

further accelerate the dynamics of species abundance16-19. Although it is out of scope of this 164 

study to assess the determinants behind species abundance dynamics, we utilized non-climate 165 

predictor variables, including human footprint20 (Extended Data Table 5), to account for the 166 

impacts of potential disturbances. 167 

Impacts of forest-type range shifts 168 

There are profound impacts of forest-type range shifts on forest biodiversity and 169 

associated ecosystem functioning, food, water, energy security21-24, human well-being25, and 170 

socioeconomic value26. Forest-type range shifts can jeopardize the sustainability of local forest 171 

industries, making them more vulnerable to timber price fluctuations27. It can also inflate timber 172 

procurement ranges and increase transportation costs, causing significant downstream financial 173 

implications with serious welfare and economic consequences comparable to the impact of 174 

COVID-19 on transportation and logistics28. Furthermore, the collective human experiences of 175 

rural communities embedded within these forested landscapes have strong ties to surrounding 176 

forest types. From the Sitka spruce—western hemlock forests in the Pacific Northwest to the 177 

oak–pine forests along the Appalachians (Extended Data Table 1), the change of native forests is 178 

threatening the customs, identities, and culture of indigenous29 and other local communities, and 179 

is jeopardizing the non-timber forest products supply and overall environmental justice30. Rapid 180 

shift of forest type places an urgent call upon human communities, especially rural populations, 181 

to adapt their cultural norms and relationships with surrounding forests. 182 
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Our finding that a majority of forest types shifted faster than their constituent tree species 183 

due to positive portfolio effects suggests that the impacts of tree species’ range shifts under 184 

global change on forest ecosystem functioning and services may be grossly underestimated. 185 

Forest ecosystem functioning31,32, productivity33, phenology, and population turnover34,35 are 186 

directly related to tree species composition and other forest characteristics31-33,36. Therefore, 187 

existing adaptive forest management regimes, which are based primarily on individual species 188 

range projections and associated environmental and social aspects37,38, have likely 189 

underestimated the impacts of global change (including climate change, land use change, 190 

invasive species regimes, habitat fragmentation, and forest degradation). For instance, in the 191 

central United States, a diminishing supply of various white oak species, such as white oak 192 

(Quercus alba) and bur oak (Q. macrocarpa), caused by the shift of oak-dominated forests 193 

(Extended Data Table 4) is threatening the entire bourbon industry39, a staple of American 194 

culture and tradition. As forest-level change (25% reduction in Appalachian oak–pine forest 195 

range, Extended Data Table 1) was far more alarming than species-level change (e.g., 12.5% 196 

reduction in Q. alba range and 6% increase in Q. macrocarpa range, Extended Data Table 2), 197 

missing the forest for the trees for their range shift patterns can greatly reduce the capability and 198 

preparedness of local forest industry and communities to face global change through disruptions 199 

in timber supply chains and ecosystem benefits. 200 

The divergent range shift patterns between forest types and tree species observed here 201 

represent only a snapshot of a more prominent trend seen in geological time scales. Forests, 202 

because of their sensitivity to changes of tree species compositions, have over the millennia 203 

exhibited shorter life spans than individual species40. Positive portfolio effects provide an 204 

urgently needed scientific basis for a new paradigm of adaptive forest management and 205 

conservation in mitigating the impacts of rapid forest transformation under climate change. 206 
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317 
Figure 1. We classified forested areas across North America into 43 forest types in eight forest biomes and three arch-biomes 318 
(East, West, and Boreal) following the existing algorithms. See Extended Data Table 1 for the definition of forest types and 319 
constituent tree species. Colors in the circular dendrogram corresponds to those in the map of forest type distribution range. 320 
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321 
Figure 2. The velocity of (a) tree species range shifts and (b) forest-type range shifts. Velocity of shifts (here in logarithmic scale) is 322 
defined as the distance between past and present centroids of range in kilometers per decade (km·decade-1). See Extended Data Table 1 323 
for the definition of forest types and constituent tree species. 324 

325 
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326 
Figure 3. The velocity of forest-type range shift and the difference in velocity between forest types and the weighted mean of their 327 
constituent species across the continent, mapped at a 0.025° resolution. (a) The velocity of forest type at the grid level. (b) The 328 
difference in shift velocity between forest types and the weighted mean of their constituent species at the grid level, with warm colors 329 
representing areas where forest-type range shifts outpaced species range shifts, and cold colors representing areas where species range 330 
shifts outpaced forest-type range shifts. 331 
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332 
Figure 4. The difference between forest-type range shifts and tree species range shifts.333 
Scatter plots show the velocity of forest type vs. tree species range shift velocity, in terms of 334 
latitudinal (a) and longitudinal (b) shift of geographic centroids, with positive values 335 
representing northward (a) and eastward (b) shifts and negative values southward (a) and 336 
westward (b) shifts. Vertical line segments represent the difference between the velocity of 337 
forest-type range shifts and tree species range shifts, along latitude (a) and longitude (b). The 338 
length of these segments is identical to the portfolio effect. (c) A comparison between the 339 
velocity of forest type and tree species range shift velocity, regardless of the direction. The 340 
horizontal dotted lines represent the mean velocity of forest type and tree species shists in pink 341 
and blue, respectively. The mean velocity represents a grid-level velocity (i.e., Fig. 3a for forest 342 
type). To ease identification of various forest types, axis text colors of the Panel (c) are 343 
consistent with Figs. 1 and 2b.  344 



19 

Methods 345 

Definition and classification of forest type 346 

Since certain tree species are often found together in natural forest communities, various 347 

assemblages of tree species imply different types of forest communities which support differed 348 

types of plants, wildlife41, and microbiomes42. A forest type represents a distinctive assemblage 349 

of tree species distributed across a wide geographical range41, which in some studies is also 350 

referred to as a forest region43,44, a tree species assemblage45, or a forest community46. The 351 

classification of forest types provides important references for forest management, conservation, 352 

climate-change mitigation, and restoration41. Following an established forest type classification 353 

algorithm43,45, we classified forested areas across the North American continent into 43 forest 354 

types in eight forest biomes and three arch-biomes (Fig. 1, Extended Data Table 1, see 355 

Supplementary Information for details). 356 

While existing forest type classifications is limited to either Canada or the United 357 

States43-46, our study supports ongoing and future international collaborations in forest 358 

management and climate actions47, with a consistent continental-wide data-driven forest type 359 

classification scheme. Nevertheless, our classified forest types are generally compatible with 360 

existing forest type classifications for the North American Continent43-46. 361 

Data integration 362 

For this study, we compiled and integrated in situ forest-tree data from independent and 363 

standard forest inventories. Data for the United States came from the Forest Inventory and 364 

Analysis (FIA)48 and the Cooperative Alaska Forest Inventory (CAFI)49. Data for Canada came 365 

from two independent sources: permanent sample plot networks36,50 and Canada’s National 366 
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Forest Inventory ground plot network51,52. See Supplementary Information for a detailed 367 

description of each data. 368 

We derived the following data integration protocol to harmonize the different forest 369 

inventory datasets described above into consistent continental data frames. From each dataset, 370 

we obtained tree-level information for all the trees with a minimum diameter at breast height 371 

(DBH) of 1 cm. We grouped these tree-level records by the year of inventory and compiled one 372 

data frame for 2000–2019 and another data frame for 1970–1999. For each period, we 373 

summarized tree-level information into a plot-level species abundance matrix. We calculated, for 374 

each sample plot, the importance value index (IVI hereafter) for a species, which is the sum of 375 

the percent number of stems and the percent basal area for the species. Frequently used in 376 

forestry research as a typical measure of species abundance43,45,53, IVI equally weighs the 377 

number of stems and basal area of a particular species, and ranges from 0 to 200. 378 

The final continental data frames consisted of plot identification and coordinates, as well 379 

as the IVIs of all tree species present on each plot. The plots were widely distributed across the 380 

forested areas of the continent (Extended Data Fig. 2). For the 1970-1999 data frame, because 381 

some trees in the genera of Aesculus, Amelanchier, Carya, Crataegus, Halesia, Malus, and Salix382 

were recorded only to the genus level, we also calculated the IVIs of these genera (Extended 383 

Data Table 2). To harmonize the past and present survey data, we derived the average species 384 

IVI of all plots located within a 0.025 by 0.025-degree (approximately 3 by 3 km) grid cell in 385 

each past and present plot-level dataset, which is a reasonable aggregation regardless of the 386 

distribution of species IVI (see Supplementary Information). Each forested grid cell had a 387 

minimum 10% canopy cover based on the global forest range map54, in accordance with FAO’s 388 

definition of ‘forest’55. 389 
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Our study region encompassed 1,004,358 grid cells of forested area across North 390 

America, with a total of ~5 million km2. The tropical regions of North America, i.e., Mexico, 391 

Central America, and the Caribbean, were not included in this analysis due to a lack of 392 

remeasured in situ data. Our study region covered 92 terrestrial ecoregions56 across the United 393 

States and Canada. These ecoregions were grouped into three distinct arch-biomes: West (39 394 

ecoregions), East (33 ecoregions), and Boreal (20 ecoregions, Extended Data Fig. 2). For each 395 

arch-biome and time frame (2000–2019 and 1970–1999), we classified forest type (see 396 

Supplementary Information) and quantified distribution ranges of forest types and constituent 397 

tree species separately. 398 

Range shifts of tree species 399 

Following the formulation of the portfolio hypothesis, the first step to quantify forest-400 

type range shifts is to determine constituent species’ range shift patterns, which consisted of two 401 

steps: creating a spatially continuous map of species ݅’s relative abundance (ܽ௜(ݔ)) at location 402ݔ 

(i.e., grid latitude and longitude) across the continent and quantifying its geographic centroid 403 

shift (∆ܿ௜). To estimate a species’ relative abundance, we first mapped species IVI across the 4.9 404 

million-km2 study region using random forests model and 38 predictor variables. For each arch-405 

biome (West, East, and Boreal) and time frame (2000–2019 and 1970–1999), only species with 406 

sufficient sample size (≥ 60 grids) in both time periods were included (Extended Data Table 2). 407 

Random forests are a non-parametric ensemble learning approach57, which combines a variant of 408 

decision trees and an additional level of randomness by bootstrapping sub-data and different sets 409 

of predictor variables to mitigate the multicollinearity issues that most statistical models face58. 410 

We used the “randomForest” package in R (version 4.0.4)59,60. Following previous research53, we 411 

reported the mean predicted IVI of all decision trees for each species or zero for species with 412 

zero median and a coefficient of variation no less than 2.75 among all predicted values of 413 
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decision trees. For each species, we built 20 random forests models to calculate an average IVI in 414 

each grid cell.  415 

 The predictor variables we compiled consisted of 17 climate variables61-64, 13 416 

topographic variables65, seven soil variables66, and human footprint20. These predictor variables 417 

were derived from open access satellite-based remote sensing and ground-based survey data 418 

layers, all of which have a nominal resolution of 1 km. Detailed information on the predictor 419 

variables is available in Extended Data Table 5. We used the “Hmisc” package in R to impute 420 

missing data in those predictor variables67. 421 

 Based on the estimated species IVI, we calculated species relative abundance (ܽ௜(ݔ)) by 422 

calculating percent IVI for each species in each grid cell. We then calculated the cumulative 423 

relative abundance (ܣ௜ = ∑ ܽ௜(ݔ)௫ ) and geographic centroid (ܿ௜ = ∑ ݔ ∙ ܽ௜(ݔ)/ܣ௜௫ ) for each 424 

species. The direction and velocity of species range shift were calculated based on the 425 

displacement between the past and present geographic centroids using the “sp” and “sfsmisc” 426 

packages in R68,69. In this study, the direction was measured in azimuth, the angle between past 427 

and present geographic centroids around the same horizon (i.e., altitude was not considered), 428 

ranging from 0 to 360° measured from the North direction. We also determined the total area of 429 

each species’ range as the sum of the grid area weighted by the species’ relative abundance. Grid 430 

area was estimated using the “raster” package in R70. 431 

Range shifts of forest types 432 

We predicted the distribution ranges of forest types by first considering two candidate 433 

imputation models: random forests and support-vector machines. Support-vector machines are 434 

supervised learning models which construct a hyperplane or set of hyperplanes in a high- or 435 

infinite-dimensional space to help analyze data for classification and regression analysis71. We 436 
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used the “e1071” package in R with the default hyperparameter setting72. For random forests, we 437 

used the default hyperparameter setting of the “randomForest” package in R59 and the same set 438 

of predictor variables as described in Range shifts of tree species. 439 

 To assess the performance of the imputation model in mapping forest types across the 440 

continent, we conducted a rigorous 80/20 cross-validation using bootstrapping. In each iteration, 441 

we used stratified sampling to split the entire dataset into the training (80%) and testing (20%) 442 

sets and conducted the combination of under-sampling and oversampling of the training set for 443 

both random forests and support-vector machines to balance the sample size for all classes. 444 

Stratified sampling was conducted using the “caret” package in R73, and under-sampling and 445 

oversampling were conducted using the “UBL” package74. Based on five random iterations with 446 

sample replacement in each of the 20 repetitions, we calculated the 95% confidence interval of 447 

classification accuracy, the Kappa statistic, and elements of the confusion matrix. For each 448 

candidate imputation model, the output was a matrix of class probability from five iterations. We 449 

chose the forest type of majority vote from the five iterations, and thus, our final output was a 450 

matrix of class probability from the 20 repetitions. Based on how many repetitions, out of 20, 451 

returned the given forest type, we calculated percent forest type in each grid cell. The random 452 

forests model was 10–17% and 11–20% more accurate in terms of overall accuracy and the 453 

Kappa statistic, respectively, compared with the support vector machine model (Extended Data 454 

Fig. 3). Therefore, we selected random forests as the final imputation model. The confusion 455 

matrices based on random forests models were based on the number of cases in class prediction, 456 

standardized in percentage (Extended Data Figs. 4, 5). For the present dataset, the coastal 457 

redwood—tanoak forest (W-P) had the highest classification accuracy (88%, Extended Data Fig. 458 

4), and the red maple—hardwood forest (E-F) had the lowest one (18%, Extended Data Fig. 4) 459 

among all forest types. 460 
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 Following the formulation of the portfolio hypothesis, we calculated forest type-level 461 

shift (∆ܿ), weighted sum of species-level shifts (∑ ∆ܿ௜ ∙ ீ∋௜௜݌ ), and the covariance (the portfolio 462 

effect, cov(ܿ௜  ௜)) for each forest type along the latitudinal and longitudinal gradient. See 463݌∆,

Supplementary Information for determining the correspondence of past (1970–1999) and present 464 

(2000–2019) forest types. Along each respective gradient, the weighted sum of species range 465 

shifts (∑ ∆ܿ௜ ⋅ ீ∋௜௜݌ ) and covariance term (cov(ܿ௜  ௜)) precisely matches a forest-type range 466݌∆,

shift (∆ܿ). In a two-dimensional space with latitude and longitude combined, we also derived the 467 

velocity of a forest-type range shift in kilometers per decade and azimuth angle by calculating 468 

the distance between past and present forest type centroids using “sp” and “sfsmisc” packages in 469 

R68,69. This forest-type range shift can be visualized as a vector in a two-dimensional space of 470 

latitude and longitude, as a resultant of two composing vectors: species-level vector and 471 

covariance vector. Quantifying the length of these two vectors (i.e., velocity) is not practical due 472 

to the earth’s curvature, yet we aimed to approximate it by calculating the distance between past 473 

forest type centroid and the point to where the vector heads, both in degrees and kilometers. 474 

Finally, to expand the velocity of forest-type and species range shifts to a grid level, we weighted 475 

the velocity of each forest type by the percent forest type presence in each grid cell. Average 476 

percentage of past and present forest type was used. 477 

Data and code availability 478 

The forest inventory data used in this study includes publicly available data: Forest 479 

Inventory and Analysis (FIA) (https://apps.fs.usda.gov/fia/datamart/datamart.html), permanent 480 

sample plots for Québec (https://www.donneesquebec.ca/recherche/dataset/placettes-481 

echantillons-permanentes-1970-a-aujourd-hui), and Canada’s National Forest Inventory 482 

(https://nfi.nfis.org/en). Grid-level input data with tree species IVI for each region (West, East, 483 
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and Boreal) for each time frame (2000–2019 and 1970–1999) to reproduce the results, as well as 484 

the output forest type and biome maps (geoTIFF layers), are available through figshare 485 

(https://doi.org/10.6084/m9.figshare.22825313.v1). The predictor variables used in this study are 486 

all openly available; climate covariates are available through WorldClim 487 

(https://www.worldclim.org/data/worldclim21.html), CHELSA (https://chelsa-488 

climate.org/bioclim/), and Trabucco & Zomer (2019) 489 

(https://figshare.com/articles/dataset/Global_Aridity_Index_and_Potential_Evapotranspiration_E490 

T0_Climate_Database_v2/7504448/4), topographic covariates are available through EarthEnv 491 

(https://www.earthenv.org/topography), soil covariates are available through WISE30sec 492 

(https://data.isric.org/geonetwork/srv/eng/catalog.search#/metadata/dc7b283a-8f19-45e1-aaed-493 

e9bd515119bc), and human footprint layer is available from Venter et al. (2016) 494 

(https://doi.org/10.5061/dryad.052q5). More details about the predictor variables are in Extended 495 

Data Table 5. 496 
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