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Abstract: Mounting evidence suggests that geographic ranges of tree species worldwide are

shifting under global environmental changes. Little is known, however, about if and how these

species' range shifts may trigger the range shifts of various types of forests. Markowitz’s

portfolio theory of investment and its broad application in ecology suggest that the range shift of

a forest type could differ substantially from the range shifts of its constituent tree species. Here,

we tested this hypothesis using in situ forest inventory records of more than 9 million trees from

596,282 sample plots located across Alaska, Canada, and the contiguous United States. We

systematically compared historical range shifts of 43 classified forest types and the range shifts
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of constituent tree species over the past 50 years and found that forest types shifted at 86.5
km-decade' on average, more than three times as fast as the average of constituent tree species
(28.8 km-decade'). We showed that a predominantly positive covariance of the species range
and the change of species relative abundance triggers this marked difference. Our findings
provide an urgently needed scientific basis for a new paradigm of adaptive forest management

and conservation in mitigating the impacts of rapid forest transformation under climate change.

Introduction

Trees are immobile organisms, but tree species worldwide are found to undergo
substantial changes in geographic distributions under global change. Some tree species move to
higher latitudes'*, while some move southward™>>; some move longitudinally®, while other
species move altitudinally’®. Little is known, however, about whether and how this substantial
shifting and reshuffling of tree species ranges may cause an overall type of forest — a distinctive

assemblage of tree species distributed across a wide geographical extent — to shift its range.

Although past research has significantly advanced our understanding of tree species
range shifts'® and patterns of tree fecundity and recruitment’, the range shifts of forest types and
how they differ from those of tree species remain largely unknown. In forest management and
related climate change mitigation practices, forest types are often expected to shift at the same
speed as their constituent tree species®*. However, as exemplified in Markowitz’s portfolio
theory of investment!?, the change of an ensemble can differ from the changes of its constituents.
An ecological hypothesis!!'"!%, derived from the portfolio theory (hereafter, portfolio hypothesis),
postulates that the dynamics of an ecological community are not the same as the dynamics of its

constituent species. According to the portfolio hypothesis, the speed and direction of forest-type
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range shifts can differ substantially from the average speed and direction of tree species range

shifts. However, this hypothesis has never been formulated and tested for forest type dynamics.

Here, we formulated and tested the portfolio hypothesis on the divergent range shift rates
between forest types and constituent tree species. To do this, we collated a continental-scale
forest inventory database containing more than 596,282 permanent sample plots located across
North America. Based on repeated in situ measurements of more than 20 million trees in these
plots, we classified forested areas across the North American continent into 43 forest types in
eight forest biomes and three arch-biomes, using an established classification algorithm (see Fig.
1, Extended Data Table 1, and Supplementary Information for details). We then quantified
geographic ranges of forest types and individual tree species, as well as their temporal changes

between 1970-1999 and 2000-2019.

Results and Discussion
Forest types outpaced tree species in range shifts

At individual species level, Sitka spruce (Picea sitchensis) had the greatest velocity in
range shifts (480.4 km-decade™), followed by balsam fir (4bies balsamea; 438.6 km-decade™)
and gray alder (Alnus incana; 354.6 km-decade™) in terms of the distance shift of distribution
range centroids (Fig. 2a, Extended Data Table 2). In contrast, pond cypress ( Taxodium
ascendens) had the lowest velocity of all (1.5 km-decade™), followed by water-elm (Planera
aquatica; 4.5 km-decade™) and sweetgum (Liquidambar styraciflua; 4.5 km-decade™). Our
velocities of tree species range shifts are generally consistent with those reported in the previous
studies (Extended Data Table 3). Few boreal tree species have ever been assessed in terms of
shifting velocity, and here, we found that boreal tree species’ ranges are shifting much faster than

4
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temperate ones. In terms of direction, 36 out of 150 species shifted northwards, 34 eastwards, 27

southwards, and 53 westwards in the past 50 years (Extended Data Table 2).

At the forest-type level, we found that the range of Sitka spruce—western hemlock forest
(W-A) shifted with the highest velocity at 327.8 km-decade™ (Fig. 2b). Among the top six fast-
shifting forest types, three were in the boreal forest biome (B-A, B-B, and B-D, see Extended
Data Table 1 for forest type names), two were in the eastern mixed forest biome (E-A and E-K),
and one was in the Pacific-coastal forest biome (W-B) (Extended Data Table 4). The remaining
forest types shifted at a speed lower than 100 km-decade™. In terms of the direction of shift, nine
out of 43 forest types shifted westwards, 16 eastwards, 11 southwards, and seven northwards in

the past 50 years (Extended Data Table 4).

Overall, forest-type range shifts differed substantially from tree species range shifts (i.e.,
the average range shift of constituent tree species) in terms of velocity (Figs. 3, 4). On average,
forest-type ranges shifted at 86.5 km-decade™!, more than three times as fast as the weighted
average of their constituent tree species (28.8 km-decade™!) across the continent at the grid level
(Figs. 3b, 4c). For more than 75% of forest types, the range shifts at the forest-type level
substantially outpaced the average range shifts of constituent tree species, and only 10 out of 43
forest types moved more slowly than their constituent tree species in terms of range shifts (Fig.
4c, Extended Data Table 4). In the boreal and Great Lakes regions, the velocity of forest-type
range shifts exceeded that of tree species range shifts by 200 km-decade™ or more (Fig. 3b).
Along the Rocky and Appalachian Mountains, forest type ranges shifted with a lower velocity

than the ranges of their constituent tree species (Fig. 3b).

The portfolio hypothesis of range shifts
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The marked difference in the range shift velocity between forest type and constituent tree
species is mainly attributable to the portfolio effect. We derived the following hypothesis from
Markowitz’s portfolio theory of investment!® to quantify the difference in range shifts between
forest types and constituent tree species. Tree species range shift was represented by the
geographic centroid shift of its suitable habitat range. Both boundary and centroid shifts can be
relevant indicators of range shifts for both forest types and their constituent species. Forest type
boundary shifts simply depict the minimum of each constituent species’ boundary shift. As such,
they will often reflect the slowest species’ range boundary shift. Instead, the range centroid of a
forest type reflects the distribution of its most representative and abundant/dominant species,

capturing the primary function and service of this forest type.

Let a;(x) be the relative abundance of species i at spatial location x (demarcated by
coordinates of latitude and longitude). The cumulative relative abundance of species i over space
x is 21 a;(x) = A;, and the geographic centroid of species i’s range can be calculated as the
weighted mean of x, ¢; = Y, x - a;(x)/A;. The relative abundance of a forest type at location x
is the sum of its constituent species’ relative abundance at the location, a(x) = Y,;c¢ a;(x),
where G represents the set of all species of this forest type. The cumulative relative abundance of
this forest type can be computed as ), a(x) = A; let p; = A;/A, and the geographic centroid of
the forest type can be calculated as ¢ = Y., x - a(x)/A =Y;ec C; * pi- By the Leibniz product rule

of calculus, we have
Ac = Yieg Aci " pi + Xieg Gi - Ap;. (eq.1)

Because Y} p; = 1 and thus ;¢ Ap; = 0, the latter term of eq. 1 equals the covariance

between species’ centroids and the change in their cumulative relative abundance: cov(c;, Ap;) =
E(c; - Ap;) — E(cy) - E(Apy) = Xieg i - Ap;-

6
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Notably, the shift in a forest type’s centroid (Ac) is driven not only by the weighted mean
of centroid shifts at the species level (3¢ Ac; - p;), but also, counterintuitively, by the
covariance (cov(c;, Ap;)) that inflates or deflates the centroid shift of the forest type (Extended
Data Fig. 1). This covariance term, which we call the portfolio effect, can attribute to a difference
between forest-type range shift and the range shift of its constituent tree species. We therefore
made the following hypothesis: when the range shift of a forest type and its constituent tree
species are measured along a given direction, a positive covariance (cov(c;, Ap;)) will inflate the
magnitude and velocity of the forest-type range shift along this direction, while a negative
covariance will reduce the magnitude and velocity along this direction (Extended Data Fig. 1).
Our finding that the forest-type range shifts differed substantially from species range shifts

provides a strong support for the portfolio hypothesis.

In most cases, portfolio effects are expected to be positive because species at the front of
a forest-type range (i.e., in the direction of forest-type range shift) often have increasing
abundances due to preferential allocation to dispersal and reproduction, while species at the rear
of forest-type range are decreasing in abundance, reflecting the compounded effect of constituent
species’ mortality and recruitment on the centroid shift'*!®. Positive portfolio effects provide a
mechanistic underpinning of our finding that, across the North American continent, forest-type
range shifts generally outpaced tree species range shifts (Figs. 3b, 4c). In some cases, negative
covariance terms pervade, leading to reduced forest-type range shift, such as in some forests
across the Rocky and Appalachian Mountains (Fig. 3b). In these montane forest types,
constituent species increase their relative abundances in the rear edge, where investments in
competitive traits are likely to dominate, even if the species centroids drift towards the front edge

(Extended Data Fig. 1).
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Various factors in complex interactions are attributable to species abundance dynamics,
leading to positive or negative portfolio effects. While climate change (e.g., increasing
temperature and precipitation changes) is commonly considered the major driver of species

abundance dynamics and associated range shifts!°

, climate change-induced disturbances (e.g.,
fires and disease outbreaks) and human disturbances (e.g., logging and land use changes) can
further accelerate the dynamics of species abundance'®!. Although it is out of scope of this
study to assess the determinants behind species abundance dynamics, we utilized non-climate

predictor variables, including human footprint?® (Extended Data Table 5), to account for the

impacts of potential disturbances.
Impacts of forest-type range shifts

There are profound impacts of forest-type range shifts on forest biodiversity and
associated ecosystem functioning, food, water, energy security?!* human well-being®’, and
socioeconomic value?®. Forest-type range shifts can jeopardize the sustainability of local forest
industries, making them more vulnerable to timber price fluctuations®’. It can also inflate timber
procurement ranges and increase transportation costs, causing significant downstream financial
implications with serious welfare and economic consequences comparable to the impact of
COVID-19 on transportation and logistics?®. Furthermore, the collective human experiences of
rural communities embedded within these forested landscapes have strong ties to surrounding
forest types. From the Sitka spruce—western hemlock forests in the Pacific Northwest to the
oak—pine forests along the Appalachians (Extended Data Table 1), the change of native forests is
threatening the customs, identities, and culture of indigenous?® and other local communities, and
is jeopardizing the non-timber forest products supply and overall environmental justice®°. Rapid
shift of forest type places an urgent call upon human communities, especially rural populations,

to adapt their cultural norms and relationships with surrounding forests.
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Our finding that a majority of forest types shifted faster than their constituent tree species
due to positive portfolio effects suggests that the impacts of tree species’ range shifts under

global change on forest ecosystem functioning and services may be grossly underestimated.

31,32 34,35

Forest ecosystem functioning?!*2, productivity?, phenology, and population turnover***3 are
directly related to tree species composition and other forest characteristics®!-3**¢, Therefore,
existing adaptive forest management regimes, which are based primarily on individual species
range projections and associated environmental and social aspects®’*%, have likely
underestimated the impacts of global change (including climate change, land use change,
invasive species regimes, habitat fragmentation, and forest degradation). For instance, in the
central United States, a diminishing supply of various white oak species, such as white oak
(Quercus alba) and bur oak (Q. macrocarpa), caused by the shift of oak-dominated forests
(Extended Data Table 4) is threatening the entire bourbon industry?®, a staple of American
culture and tradition. As forest-level change (25% reduction in Appalachian oak—pine forest
range, Extended Data Table 1) was far more alarming than species-level change (e.g., 12.5%
reduction in Q. alba range and 6% increase in Q. macrocarpa range, Extended Data Table 2),
missing the forest for the trees for their range shift patterns can greatly reduce the capability and

preparedness of local forest industry and communities to face global change through disruptions

in timber supply chains and ecosystem benefits.

The divergent range shift patterns between forest types and tree species observed here
represent only a snapshot of a more prominent trend seen in geological time scales. Forests,
because of their sensitivity to changes of tree species compositions, have over the millennia
exhibited shorter life spans than individual species®. Positive portfolio effects provide an
urgently needed scientific basis for a new paradigm of adaptive forest management and

conservation in mitigating the impacts of rapid forest transformation under climate change.
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Figure 1. We classified forested areas across North America into 43 forest types in eight forest biomes and three arch-biomes
(East, West, and Boreal) following the existing algorithms. See Extended Data Table 1 for the definition of forest types and
constituent tree species. Colors in the circular dendrogram corresponds to those in the map of forest type distribution range.
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Figure 3. The velocity of forest-type range shift and the difference in velocity between forest types and the weighted mean of their
constituent species across the continent, mapped at a 0.025° resolution. (a) The velocity of forest type at the grid level. (b) The
difference in shift velocity between forest types and the weighted mean of their constituent species at the grid level, with warm colors
representing areas where forest-type range shifts outpaced species range shifts, and cold colors representing areas where species range

shifts outpaced forest-type range shifts.
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Figure 4. The difference between forest-type range shifts and tree species range shifts.
Scatter plots show the velocity of forest type vs. tree species range shift velocity, in terms of
latitudinal (a) and longitudinal (b) shift of geographic centroids, with positive values
representing northward (a) and eastward (b) shifts and negative values southward (a) and
westward (b) shifts. Vertical line segments represent the difference between the velocity of
forest-type range shifts and tree species range shifts, along latitude (a) and longitude (b). The
length of these segments is identical to the portfolio effect. (¢c) A comparison between the
velocity of forest type and tree species range shift velocity, regardless of the direction. The
horizontal dotted lines represent the mean velocity of forest type and tree species shists in pink
and blue, respectively. The mean velocity represents a grid-level velocity (i.e., Fig. 3a for forest
type). To ease identification of various forest types, axis text colors of the Panel (c) are
consistent with Figs. 1 and 2b.
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Methods
Definition and classification of forest type

Since certain tree species are often found together in natural forest communities, various
assemblages of tree species imply different types of forest communities which support differed
types of plants, wildlife*!, and microbiomes*?. A forest type represents a distinctive assemblage
of tree species distributed across a wide geographical range*!, which in some studies is also

4344 a tree species assemblage®’, or a forest community*®. The

referred to as a forest region
classification of forest types provides important references for forest management, conservation,
climate-change mitigation, and restoration*!. Following an established forest type classification

B4 we classified forested areas across the North American continent into 43 forest

algorithm
types in eight forest biomes and three arch-biomes (Fig. 1, Extended Data Table 1, see

Supplementary Information for details).

While existing forest type classifications is limited to either Canada or the United
States***6, our study supports ongoing and future international collaborations in forest
management and climate actions*’, with a consistent continental-wide data-driven forest type
classification scheme. Nevertheless, our classified forest types are generally compatible with

existing forest type classifications for the North American Continent**-4.
Data integration

For this study, we compiled and integrated in situ forest-tree data from independent and
standard forest inventories. Data for the United States came from the Forest Inventory and
Analysis (FIA)* and the Cooperative Alaska Forest Inventory (CAFI)*. Data for Canada came

36,50

from two independent sources: permanent sample plot networks and Canada’s National
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Forest Inventory ground plot network>!2. See Supplementary Information for a detailed

description of each data.

We derived the following data integration protocol to harmonize the different forest
inventory datasets described above into consistent continental data frames. From each dataset,
we obtained tree-level information for all the trees with a minimum diameter at breast height
(DBH) of 1 cm. We grouped these tree-level records by the year of inventory and compiled one
data frame for 2000-2019 and another data frame for 1970-1999. For each period, we
summarized tree-level information into a plot-level species abundance matrix. We calculated, for
each sample plot, the importance value index (IVI hereafter) for a species, which is the sum of
the percent number of stems and the percent basal area for the species. Frequently used in
forestry research as a typical measure of species abundance***3 IVI equally weighs the

number of stems and basal area of a particular species, and ranges from 0 to 200.

The final continental data frames consisted of plot identification and coordinates, as well
as the I'VIs of all tree species present on each plot. The plots were widely distributed across the
forested areas of the continent (Extended Data Fig. 2). For the 1970-1999 data frame, because
some trees in the genera of Aesculus, Amelanchier, Carya, Crataegus, Halesia, Malus, and Salix
were recorded only to the genus level, we also calculated the IVIs of these genera (Extended
Data Table 2). To harmonize the past and present survey data, we derived the average species
IVI of all plots located within a 0.025 by 0.025-degree (approximately 3 by 3 km) grid cell in
each past and present plot-level dataset, which is a reasonable aggregation regardless of the
distribution of species IVI (see Supplementary Information). Each forested grid cell had a
minimum 10% canopy cover based on the global forest range map>*, in accordance with FAO’s

definition of ‘forest’>.
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Our study region encompassed 1,004,358 grid cells of forested area across North
America, with a total of ~5 million km?. The tropical regions of North America, i.e., Mexico,
Central America, and the Caribbean, were not included in this analysis due to a lack of
remeasured in situ data. Our study region covered 92 terrestrial ecoregions>® across the United
States and Canada. These ecoregions were grouped into three distinct arch-biomes: West (39
ecoregions), East (33 ecoregions), and Boreal (20 ecoregions, Extended Data Fig. 2). For each
arch-biome and time frame (2000-2019 and 1970-1999), we classified forest type (see
Supplementary Information) and quantified distribution ranges of forest types and constituent

tree species separately.
Range shifts of tree species

Following the formulation of the portfolio hypothesis, the first step to quantify forest-
type range shifts is to determine constituent species’ range shift patterns, which consisted of two
steps: creating a spatially continuous map of species i’s relative abundance (a;(x)) at location x
(i.e., grid latitude and longitude) across the continent and quantifying its geographic centroid
shift (Ac;). To estimate a species’ relative abundance, we first mapped species IVI across the 4.9
million-km? study region using random forests model and 38 predictor variables. For each arch-
biome (West, East, and Boreal) and time frame (2000-2019 and 1970-1999), only species with
sufficient sample size (= 60 grids) in both time periods were included (Extended Data Table 2).
Random forests are a non-parametric ensemble learning approach®’, which combines a variant of
decision trees and an additional level of randomness by bootstrapping sub-data and different sets
of predictor variables to mitigate the multicollinearity issues that most statistical models face™®.
We used the “randomForest” package in R (version 4.0.4)>%°. Following previous research®®, we
reported the mean predicted IVI of all decision trees for each species or zero for species with

zero median and a coefficient of variation no less than 2.75 among all predicted values of
21



414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

decision trees. For each species, we built 20 random forests models to calculate an average IVI in

each grid cell.

The predictor variables we compiled consisted of 17 climate variables®'-4, 13
topographic variables®, seven soil variables®®, and human footprint?®. These predictor variables
were derived from open access satellite-based remote sensing and ground-based survey data
layers, all of which have a nominal resolution of 1 km. Detailed information on the predictor
variables is available in Extended Data Table 5. We used the “Hmisc” package in R to impute

missing data in those predictor variables®’.

Based on the estimated species [VI, we calculated species relative abundance (a;(x)) by
calculating percent IVI for each species in each grid cell. We then calculated the cumulative
relative abundance (4; = )., a;(x)) and geographic centroid (¢; = Y., x - a;(x)/A;) for each
species. The direction and velocity of species range shift were calculated based on the
displacement between the past and present geographic centroids using the “sp” and “sfsmisc”
packages in R%%_ In this study, the direction was measured in azimuth, the angle between past
and present geographic centroids around the same horizon (i.e., altitude was not considered),
ranging from 0 to 360° measured from the North direction. We also determined the total area of
each species’ range as the sum of the grid area weighted by the species’ relative abundance. Grid

area was estimated using the “raster” package in R7°.
Range shifts of forest types

We predicted the distribution ranges of forest types by first considering two candidate
imputation models: random forests and support-vector machines. Support-vector machines are
supervised learning models which construct a hyperplane or set of hyperplanes in a high- or

infinite-dimensional space to help analyze data for classification and regression analysis’!. We
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used the “e1071” package in R with the default hyperparameter setting’?. For random forests, we
used the default hyperparameter setting of the “randomForest” package in R* and the same set

of predictor variables as described in Range shifts of tree species.

To assess the performance of the imputation model in mapping forest types across the
continent, we conducted a rigorous 80/20 cross-validation using bootstrapping. In each iteration,
we used stratified sampling to split the entire dataset into the training (80%) and testing (20%)
sets and conducted the combination of under-sampling and oversampling of the training set for
both random forests and support-vector machines to balance the sample size for all classes.
Stratified sampling was conducted using the “caret” package in R7?, and under-sampling and
oversampling were conducted using the “UBL” package’®. Based on five random iterations with
sample replacement in each of the 20 repetitions, we calculated the 95% confidence interval of
classification accuracy, the Kappa statistic, and elements of the confusion matrix. For each
candidate imputation model, the output was a matrix of class probability from five iterations. We
chose the forest type of majority vote from the five iterations, and thus, our final output was a
matrix of class probability from the 20 repetitions. Based on how many repetitions, out of 20,
returned the given forest type, we calculated percent forest type in each grid cell. The random
forests model was 10—-17% and 11-20% more accurate in terms of overall accuracy and the
Kappa statistic, respectively, compared with the support vector machine model (Extended Data
Fig. 3). Therefore, we selected random forests as the final imputation model. The confusion
matrices based on random forests models were based on the number of cases in class prediction,
standardized in percentage (Extended Data Figs. 4, 5). For the present dataset, the coastal
redwood—tanoak forest (W-P) had the highest classification accuracy (88%, Extended Data Fig.
4), and the red maple—hardwood forest (E-F) had the lowest one (18%, Extended Data Fig. 4)

among all forest types.
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Following the formulation of the portfolio hypothesis, we calculated forest type-level
shift (Ac), weighted sum of species-level shifts (};c Ac; * p;), and the covariance (the portfolio
effect, cov(c;, Ap;)) for each forest type along the latitudinal and longitudinal gradient. See
Supplementary Information for determining the correspondence of past (1970-1999) and present
(2000-2019) forest types. Along each respective gradient, the weighted sum of species range
shifts (3;e¢ Ac; - p;) and covariance term (cov(c;, Ap;)) precisely matches a forest-type range
shift (Ac). In a two-dimensional space with latitude and longitude combined, we also derived the
velocity of a forest-type range shift in kilometers per decade and azimuth angle by calculating
the distance between past and present forest type centroids using “sp” and “sfsmisc” packages in
R%%_ This forest-type range shift can be visualized as a vector in a two-dimensional space of
latitude and longitude, as a resultant of two composing vectors: species-level vector and
covariance vector. Quantifying the length of these two vectors (i.e., velocity) is not practical due
to the earth’s curvature, yet we aimed to approximate it by calculating the distance between past
forest type centroid and the point to where the vector heads, both in degrees and kilometers.
Finally, to expand the velocity of forest-type and species range shifts to a grid level, we weighted
the velocity of each forest type by the percent forest type presence in each grid cell. Average

percentage of past and present forest type was used.
Data and code availability

The forest inventory data used in this study includes publicly available data: Forest
Inventory and Analysis (FIA) (https://apps.fs.usda.gov/fia/datamart/datamart.html), permanent
sample plots for Québec (https://www.donneesquebec.ca/recherche/dataset/placettes-
echantillons-permanentes-1970-a-aujourd-hui), and Canada’s National Forest Inventory

(https://nfi.nfis.org/en). Grid-level input data with tree species IVI for each region (West, East,
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and Boreal) for each time frame (2000-2019 and 1970-1999) to reproduce the results, as well as
the output forest type and biome maps (geoTIFF layers), are available through figshare
(https://doi.org/10.6084/m9.figshare.22825313.v1). The predictor variables used in this study are
all openly available; climate covariates are available through WorldClim
(https://www.worldclim.org/data/worldclim21.html), CHELSA (https://chelsa-
climate.org/bioclim/), and Trabucco & Zomer (2019)

(https://figshare.com/articles/dataset/Global Aridity Index and Potential Evapotranspiration E
TO Climate Database v2/7504448/4), topographic covariates are available through EarthEnv
(https://www.earthenv.org/topography), soil covariates are available through WISE30sec
(https://data.isric.org/geonetwork/srv/eng/catalog.search#/metadata/dc7b283a-8f19-45¢1-aaed-
€9bd515119bc), and human footprint layer is available from Venter et al. (2016)
(https://doi.org/10.5061/dryad.052q5). More details about the predictor variables are in Extended

Data Table 5.
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