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ABSTRACT
Multiple versions of the same dataset can exist in a data repository
(e.g., data warehouses, data lakes, etc.), mainly because of the in-
teractive and collaborative nature of data science. Data creators
generally update existing datasets and upload them as new datasets
to data repositories without proper documentation. Identifying
such versions helps in data management, data governance, and
making better decisions using data. However, there is a dearth of
benchmarks to develop and evaluate data versioning techniques,
which requires a lot of human effort. Thus, this work introduces
a novel framework to generate benchmarks for data versioning
using Generative AI (specifically Large Language Models). The pro-
posed framework offers properties that existing benchmarks do not
have, including proper documentation, version lineage, and com-
plex transformations generated by an LLM. We also share VerLLM-
v1, the first version of the benchmark that features these properties,
and compare it to existing benchmarks.

CCS CONCEPTS
• Information systems → Deduplication; Data cleaning; Media-
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1 INTRODUCTION
Enterprise and government organizations store massive numbers of
datasets (tables) in centralized storage such as data lakes [9]. Gen-
erally, they upload each table to the data lake as an independent
file (e.g., CSV file) [17, 22], typically using superficial documen-
tation, e.g., embedded in filenames. Furthermore, when data in
a table needs an update, the necessary amendments are made to
the original table that may already exist in the data lake [24]. The
amendments could include adding a new row, deleting an existing
column, changing a cell value, and more. The amended table is then
uploaded to the data lake as a new dataset.
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Example 1. To illustrate the real-world necessity, consider Ta-
bles (a) and (b) in Fig. 1 that are snippets of real Open Data Ta-
bles [10]. The tables show the budgets allocated for different areas
in Fiscal Years (a) 2013 and (b) 2015. The table for 2015 is clearly
generated by amending the table for 2013 (i.e., a version of it). Yet,
these tables are not labeled as such. For illustration, we highlight
the changes between the tables in each row with the same color.
Note, again, that these changes are not marked in a typical case.
The first two rows have the updates in the amounts allocated for the
same functions. The third row of Table (b) have different Program,
Fund Name, and Amount than Table (a). The fourth row of Table (a)
about Libraries, Culture, and Recreation is replaced with General
Government Function in Table (b). The last rows of the tables have
different programs (Programs Name).

Function Department Program Name Fund Name Amount

Community Development and Housing Housing and Community Affairs Multi-Family Housing Montgomery Housing In. 1114441

Environment Environmental Protection Watershed Management Water Quality Protection 5030

Health and Human Services Health and Human Services Community Action Agency Grants 5169

Libraries, Culture, and Recreation Public Libraries Public Library Services General Fund 2430

Public Safety Police Field Services General Fund 193146

(a) Fiscal Year 2013 Budget

(b) Fiscal Year 2015 Budget

Function Department Program Name Fund Name Amount

Community Development and Housing Housing and Community Affairs Multi-Family Housing Montgomery Housing In. 1757420

Environment Environmental Protection Watershed Management Water Quality Protection 130020

Health and Human Services Health and Human Services Assessment & Case Mgmt. Elder Affairs Grants 1796

General Government Technology Services County Cable Montgomery Cable TV 13956

Public Safety Police Patrol Services General Fund 85880

Figure 1: Tables (a) and (b) are Open Data Table snippets that
are versions of each other and show budgets allocated in 2013
and 2015, respectively. Cells with different values between
the two tables are highlighted using the same colors.

Identifying the versions of data lake tables could help in efficient
data management, effective data analysis, and proper decision-
making, featuring research questions such as Given a pair of tables,
are they versions of one another or are both of them versions of an
original (root) table present in the data lake? Note that a newer ver-
sion of a table may be a complex transformation over the original
table, or even over another table that is a version of the original
table. For instance, continuing from Ex. 1, one may update the rows
and columns of the table for Fiscal Year 2015 (Table (b)) and cre-
ate a new dataset for Fiscal Year 2016, which would be a two-hop
transformed version of Table (b) for Fiscal Year 2013. However,
the version detection techniques have been developed and evalu-
ated over manually created benchmarks by considering one-hop
versions and only for simpler transformations such as detecting
normalized columns, arithmetic transformation over a column, and
so on [16, 24]. This is mainly because it is not straightforward and
very labor-intensive tomanually create data versioning benchmarks
with complex multi-hop transformations.
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Figure 2: Data Versioning Benchmark Creation Framework

Recently, Large Language Models (LLMs) have been showing
promising results in annotation and semantic tasks such as column
type detection [14], entity matching [21], benchmarking table union
search [19], and more [4, 7]. Therefore, in this work, we propose a
novel LLM-based method for creating data versioning datasets that
can be used to develop and evaluate the data versioning techniques.
We consider five different transformations that cover cell-level,
column-level, and row-level differences between the table versions.

We summarize our contributions on the following points.

• We present a novel LLM-based data versioning benchmark
generation method that considers five transformations over
the original table to create its newer versions.

• We create a novel data versioning benchmark that covers
multi-hop transformation over the original table to better
represent real data lake scenarios.

• We open-source our code and benchmarks: https://github.
com/danielcfox/genbenchver.

Related Work. Prior work creates datasets for other tasks by
changing contents of an existing table [13, 18]. For instance, Park
et. al. [20] developed a method for synthesizing a table based on
the content of an existing table to anonymize data in an existing
table using CNN-based Generative Adversarial Networks (table-
GAN). Xu and Veeramachaneni [25] also developed such a method
using an RNN-based architecture. Zhang et al. [27] developed a
method to predict cell values of tables. They pre-trained an auto-
regressive Language Model (LM) on a corpus drawn from a public
tabular dataset and fine-tuned it for their downstreaming tasks.
Furthermore, Pal et al. [19] created a benchmark for unionable
table search task [13, 18] using an LLM. Specifically, they prompted
the model to generate a pair of unionable and non-unionable tables
which they post-processed to obtain query and data lake tables
for the search task. All these works, however, create benchmarks
that are not for data version detection in data lakes, which is our
focus. The closest work to ours is Explain-Da-V framework [24],
which takes two different versions of the same table and explains
the data transformations that are necessary to migrate from one
table to the other. However, they employ manual transformations to
create their dataset which limits their scalability. Also, they consider
single hop transformations whereas our framework, powered by
an LLM [12], enables multi-hop transformations to better represent
the table versioning scenario in the data lakes. Earlier work on data
versioning emphasizes its management [5, 6, 23] and thus does not
generate or provide publicly available benchmarks.

2 METHODOLOGY
Now we explain our framework to create datasets for the data ver-
sioning task. Fig. 2 shows a high-level architecture of our system.
The input is a table, which we call a root (seed) table, along with
some description. Furthermore, we allow users to select the col-
umn(s) within the table to guide the version creation process, which
we call a semantic key. We then apply a number of transformations,
which the user can select over the input table and create its versions,
also accounting for multi-hop transformations. We first explain the
transformations that we use in our system. Then, we discuss how
we use them to create multi-hop versions of the seed tables.

2.1 Transformations
We propose different transformations over the seed tables on cell
level, column level, and row level to account for the possible trans-
formations that could be applied in the data lake tables.
Update Cell Values: As discussed in Ex. 1, a new table can be
created by updating the cell values of an existing table. Such trans-
formation is accounted by the Add Cell Values component in our
system. For the given seed table, this component randomly replaces
its values with LLM-generated values. We prompt the seed table to
the LLM, along with its description and semantic key, as follows:

For {description}, retrieve a missing value of real data (not fictional)
from externally available resources, corresponding to the first row
and attribute named {attribute}, with a dtype of {col_dtype}, within
the following table: {table}
Retrieve the attribute value according to the values of the semantic
key: {key[i]} = {semantic_values[i]}
Fill in the missing data, and output the resulting table in {delimiter}-
delimited .csv format. Then output from where the data was retrieved.

Add Columns: Another important transformation applied in data
versioning is the addition of new columns to the existing table.
In a new version based on column addition, the added columns
are generally related to the existing columns and their semantics.
So, to cover this, we present the Add Columns component to our
benchmark generator. This component inputs column headers, a
table description, and the semantic key. The column headers are
ones either currently present or were present within the table’s
lineage. The latter are added to ensure that duplicate tables are not
created within a benchmark. Then, based on the table semantics
captured by its semantic key(s), it uses the following LLM prompt
to generate additional column(s) that we add to the seed table:

Generate {ncols} new attributes for a table about {description}. The
{delimiter}-separated header of attributes to not generate is: {header}
Generate real attributes. Do not generate fictional ones. Here are the
{delimiter}-separated rows of the table by semantic key only:
{table_key_only}.
Generate values of real data for all existing rows of the table. Gen-
erate and output a new table, include the table header, with only
the attributes {[keys[i]]} and the new attributes in the format of a
{delimiter}-separated .csv file. Then explain the source of the new data.

Delete Columns: A new version of the table can also be generated
by deleting certain columns from the seed table. To capture this, we
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include the Delete Columns component, which randomly deletes
some columns to create a new table. As this component does not
need semantic modification, it does not involve an LLM.
Add Rows: Next, we include an Add Rows transformation to the
system that adds rows to the new version that are not already
present in the seed table. We use an LLM to generate such rows. For
this, it is important to understand what the table and its columns
are. So, we input the seed table and the set of its column headers.
Moreover, we do not want to generate the rows that are now or
were previously present in the table’s lineage (the latter to prevent
duplicated tables included in the benchmark). And since the token
limit can be an issue to input all the rows, we specify values from
only the semantic key column(s) of the seed table in the prompt,
which we input into the LLM to generate additional rows that can
extend the seed table vertically.

Generate {nrows} new rows for a table of {description}. The {delim-
iter}-separated headers of attributes for the table are: {header}
Generate the rows from real known data. Here is a list of {delimiter}-
separated rows not to be generated by semantic key only: {table_inel-
igible_rows}. Output the rows in the format of a {delimiter}-separated
.csv file with a column header. Then explain the source of the new
data.

Delete Rows: Next, we include the Delete Rows component in our
benchmark generator, which randomly deletes a given number of
existing rows from the seed table to generate a new version.

2.2 Version Generation
To generate versions of a table, we input the table, its description,
semantic key, and the number of versions to be generated.

T1

T2 T3

T4

T5
T6

𝑭𝑭𝟐𝟐(𝑻𝑻𝟏𝟏)

T7

𝑭𝑭𝟏𝟏(𝑻𝑻𝟒𝟒)

Figure 3: Illustration of applying different transformations
over the seed table.

Fig. 3 shows the process of creating new versions from the seed
table. Specifically, the benchmark generator randomly applies dif-
ferent transformations(see Sec. 2.1) over the input table to create
a version. Furthermore, to create multi-hop transformations, the
system also selects a newly generated table and applies a trans-
formation over it. The output of this step will generate the set of
tables, along with a ground truth for each of them, which shows
their parent tables and the applied transformations.

Example 2. In Fig. 3, we show an example of generating the
versions of seed Table )1. First, we apply transformation �1 over )1.
Then to ensure multi-hop transformation, we apply �4 and �2 over

Table )2 to generate Tables )5 and )6 respectively. As Table )6 has
Table )2 as a parent, Table )6 is related with )1 by two hops.

As presented in Fig. 3, our framework generates and maintains
the lineage of the versions created for a seed table. This feature
is not currently available in existing data versioning benchmarks
and is an important property in the management of versions [5,
6, 23]. Using this feature, we can explore the following problem:
Given a set of versions +1,+2, . . . ,+= , construct a directed version
graph, describing the lineage of their generation. Existing frameworks
like DataHub [5] can use this graph for tracking, in which nodes
correspond to versions and a directed edge between +8 and +9
represents that +9 was derived from +8 . Being storage-oriented, the
edge annotations in DataHub correspond to storage and recreation
costs. In our generated graph, the edge annotations are associated
with the transformations used to generate the versions.

Latin Name Kingdom Genus Common Name Size
Didelphis virginiana Eukarya Didelphis Virginia Opossum Medium
Latrodectus mactans Eukarya Latrodectus Black Widow Small
Alligator mississippiensis Eukarya Alligator American Alligator Large
Lumbricus terrestris Eukarya Lumbricus Earthworm Small
Limulus polyphemus Eukarya Limulus Horseshoe Crab Medium
Mytilus edulis Eukarya Mytilus Blue Mussel Small
Squalus spp. Eukarya Squalus Dogfish Shark Medium
Anguilla anguilla Eukarya Anguilla European Eel Medium
Accipiter cooperii Eukarya Accipiter Cooper’s Hawk Small
Elasmobranchii Eukarya Sharks, Rays, Skates Medium

Table 1: Subset of the Biology Seed Table

Example 3. Table 1 illustrates a subset of the Biology seed tablea

created for the first version of our benchmark (see below). Table 2
presents a subset of version 5 of the Biology tableb. Note that there
are 5 (0–4) intermediate version between the two as can be seen
in the documentation of version 5 (see Biology_5.json). The docu-
mentation also provides details on what changed, the exact lineage,
creation time and others. Version 5 features two added columns
(green left most columns) and three added rows (blue bottom rows),
all LLM-generated. In addition, a column was removed (Kingdom
in Table 1) and an LLM-generated cell update (9th row marked in
orange) was applied. Note that the added values are valid (yet not
verified). For example, Dogfish Shark habitat is the Ocean and
the Black Widow is, in fact, Carnivorous. Using the provided doc-
umentation, we can see, for example, that the cell update was done in
the generation of version 3 (see Biology_3.json), the provided source
is allaboutbirds.org/ guide/Coopers_Hawk/ id/ # and the attached
confidence for the change is 95%.
afull table: github.com/danielcfox/genbenchver/blob/main/tables/Biology.csv
bfull table: github.com/danielcfox/genbenchver/blob/main/tables/Biology_5.csv

3 BENCHMARK DESCRIPTION
We now describe a benchmark that we create using our benchmark
generator. A summary of the existing benchmarks and the new one
is given in Table 3. More details are provided below.

3.1 Existing Data Versioning Benchmarks
Existing benchmarks include the Semantic Data Versioning Bench-
mark (SDVB) we manually curated [24] and the Auto-Pipeline
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Diet Habitat Latin Name Genus Common Name Size
Omnivore Deciduous and Pine Forests, Urban Areas Didelphis virginiana Didelphis Virginia Opossum Medium
Carnivore Varied, including human structures Latrodectus mactans Latrodectus Black Widow Small
Carnivore Freshwater Swamps, Marshes, Rivers Alligator mississippiensis Alligator American Alligator Large
Detritivore Soil Lumbricus terrestris Lumbricus Earthworm Small
Omnivore Estuaries, Shallow Ocean Water Limulus polyphemus Limulus Horseshoe Crab Medium
Insectivore Urban Areas, Forests Mytilus edulis Mytilus Blue Mussel Small
Carnivore Ocean Squalus spp. Squalus Dogfish Shark Medium
Carnivore Freshwater and Marine Water Anguilla anguilla Anguilla European Eel Medium
Carnivore Woodlands, Forests Accipiter cooperii Accipiter Cooper’s Hawk 16.15 in
Carnivore Ocean Elasmobranchii Sharks, Rays, Skates Medium
Herbivore Freshwater Mayaheros urophthalmus Cichlasoma Convict Cichlid 6 inches
Carnivore Marine Carcharodon carcharias Carcharodon Great White Shark 15-20 feet
Omnivore Terrestrial Canis lupus familiaris Canis Domestic Dog 24-36 inches

Table 2: Subset of Version 5 in the Biology Benchmark

Benchmark Topic (Name) Original
Tuples

Created
Tuples

Original
Attributes

Created
Attributes Versions Version-

pairs
Linage
Length

Meta-
data

Auto-Pipeline [26] GitHub data pipelines (GitHub) 1–200k 0 1–27 0 2–4 158 1 -
SDVB [24] Movies and TV shows (IMDB) 1,000 0 6 0 72 29 1 -
SDVB [24] NBA Players (NBA) 11,700 0 9 0 68 27 1 -
SDVB [24] Wines Reviews (WINE) 129,971 0 6 0 72 29 1 -
SDVB [24] Iris Flowers (IRIS) 150 0 5 0 58 22 1 -
SDVB [24] Titanic Passengers (TITANIC) 891 0 6 0 72 29 1 -
Ours (VerLLM-v1) Living Organisms (Biology) 10 11 11 8 18 109 12 +
Ours (VerLLM-v1) Regional Climate (Climatology) 7 6 11 2 18 108 10 +
Ours (VerLLM-v1) Plant-based Food (Horticulture) 16 21 12 3 19 125 11 +
Ours (VerLLM-v1) Classical Literature (Literature) 10 5 10 6 20 105 9 +
Ours (VerLLM-v1) Mythical Creatures (Mythology) 13 13 4 9 20 131 7 +

Table 3: Data Versioning Benchmarks including Auto-Pipeline, SDVB, and VerLLM-v1 (Ours)

Benchmark [26] we adopted, both were reused by Lou et al. [16]
and Glavic et al. [8]. Auto-Pipeline [26]1 was originally designed
for data-pipelines and was transformed into a versioning bench-
mark by Shraga and Miller [24]. It contains tables of different topics,
each containing 2–4 versions and range in size. SDVB was directly
generated for data versioning. Its creation was mostly manual and
included multiple steps to achieve valuable verification.

Both benchmarks do not contain documentation of transfor-
mations that were applied, lineage and meta-data including, for
example, the description of the table. These features are available
in the first version of our benchmark generator – VerLLM-v1.

3.2 New Versioning Benchmark (VerLLM-v1)
VerLLM-v1 uses the Mistral.AI Mixtral 8x7b Instruct model version
0.1 LLM (mistralai/Mixtral-8x7B-Instruct-v0.1) [27]. The framework
builds the model and executes the prompt natively using nnsight [1].
Our framework can use any LLM, hosted or open source with small
modifications. We used five root tables from a recent work by Pal et.
al. [19], who also uses Mixtral 8x7b to generate tables. Compared
to existing benchmarks, the lineage of the VerLLM-v1 results in
many more version pairs. Each version pair involved documented,
intermediate versions from the same seed table. In Example 3, for
example, there are 5 intermediate versions between Table 1 and
Table 2. It is also noteworthy that, while the seed tables we use
are fairly small, we create multiple rows and columns using LLMs,
making the variety of changes more challenging for future systems.

3.3 Challenges and Future Outlook
The new benchmark addresses new problems for a which a solution
is yet to-be-developed. Thus, the core future work includes devel-
oping such solutions and experimenting with the new benchmark.
1https://gitlab.com/jwjwyoung/autopipeline-benchmarks

LLMs have a limited context length making it challenging to
generate large data. In our context, being able to generate versions
to a large seed table is the challenge. First, we would have to feed
the large table as an input, which requires a significant amount of
tokens. Second, we would also require the model to generate large-
scale data by having it add a column. Another well-known issue
in LLMs is hallucination [11].The problem is also mitigated as the
new data only has to seem correct enough to be challenging. This
is where a human could be employed to determine veracity if that
is important enough. In addition, when crafting our prompts, we
instruct the model to “explain the source of the new data”; however,
we still do not have a systematic way of verifying the sources. Also,
it is known that the LLM’s response to an input prompt can change
with even subtle changes to the prompt [15, 28]. We have experi-
mented with several prompt designs but note that with new models
becoming available in an accelerated rate (e.g., Llama-3 [2] and
GPT-4o [3]), new prompting challenges will arise. Finally, applying
domain-specific knowledge to generate complex transformations,
while out of the scope of this effort, was purposely kept in mind
when developing the framework. Such transformations may be
injected into the automated process with little effort.

4 CONCLUSION
Our work offers a unique feature of utilizing LLMs in the creation
and maintenance of versions. Our code and the first version of a
new benchmark are publicly available on GitHub. We believe that
a structured creation of data versioning benchmarks will foster
future research and allow the development of new, exciting work.
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