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Abstract. In the evolving landscape of text-to-image (T2I) diffusion
models, the remarkable capability to generate high-quality images from
textual descriptions faces challenges with the potential misuse of repro-
ducing sensitive content. To address this critical issue, we introduce
Robust Adversarial Concept Erase (RACE), a novel approach designed
to mitigate these risks by enhancing the robustness of concept erasure
method for T2I models. RACE utilizes a sophisticated adversarial train-
ing framework to identify and mitigate adversarial text embeddings, sig-
nificantly reducing the Attack Success Rate (ASR). Impressively, RACE
achieves a 30% reduction in ASR for the “nudity” concept against the
leading white-box attack method. Our extensive evaluations demonstrate
RACE'’s effectiveness in defending against both white-box and black-box
attacks, marking a significant advancement in protecting T2I diffusion
models from generating inappropriate or misleading imagery. This work
underlines the essential need for proactive defense measures in adapt-
ing to the rapidly advancing field of adversarial challenges. Our code is
publicly available: https://github.com/chkimmmmm/R.A.C.E.

Keywords: Concept Erasure - Responsible Image Generative Models -
Secure T2I Diffusion Models

1 Introduction

The field of text-to-image (T2I) diffusion models has garnered significant atten-
tion for their ability to produce high-quality images that can be adaptively gen-
erated from textual descriptions [36,38]. This advancement is predicated on the
training of T2I models with extensive datasets, often encompassing a range of
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Fig. 1. Comparative demonstration of concept erasure, red teaming, and robust era-
sure within T2I diffusion models. The ESD method [9] removes targeted concepts
from the original SD outputs, yet these concepts can be reconstructed using Unlearn-
Diff [58]. Our proposed R.A.C.E. method showcases enhanced robustness against such
red teaming reconstruction efforts.

content including copyrighted, explicit, and private materials [44-46]. Conse-
quently, these models possess the capacity to inadvertently replicate protected
images, potentially without user awareness [2,45,46]. The misuse of T2I models
by malicious actors for misinformation or public opinion manipulation presents
a significant concern [5,27].
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In response to the challenges posed by the malicious exploitation of generative
models, Stable Diffusion (SD) [38] has integrated a safety checker [37] and advo-
cates for the utilization of a watermarking module [57]. Despite these initiatives,
the reliance on post-hoc interventions presents limitations due to their poten-
tial for circumvention [7,18]. Consequently, the research community is pivoting
towards formulating methodologies that embed safety protocols directly within
the image generation pipeline. This approach ensures that content security is an
intrinsic aspect of image creation [7,18,19,30,50,54,55]. Although these methods
are valuable for identifying the source of content after an incident, their reactive
nature highlights the necessity for proactive strategies. This includes pioneering
techniques attempting early removal of sensitive content from T2 models [9,21],
thereby preempting the production of inappropriate or harmful material.

To address the challenge of removing undesirable content from T2I mod-
els, even when users attempt to circumvent content restrictions, recent research
has focused on the development of concept erasure techniques within T2I dif-
fusion models [9,11,21,56]. These techniques primarily aim to eliminate specific
concepts (e.g., “nudity”) by altering the text embeddings associated with these
concepts to neutral representations. Despite these efforts, there remains a vulner-
ability wherein erased concepts can be reconstructed. This is achieved by iden-
tifying text tokens that closely align with the visual embeddings of the targeted
concepts, thus enabling the regeneration of prohibited content [3,47,49,53,58].
This issue is illustrated in Fig. 1, demonstrating that even with concept erasure,
T2I models can be manipulated through prompt modification to regenerate the
restricted content. This underscores the imperative for a more robust concept
erasure methodology that can withstand such reconstruction attempts, ensuring
the integrity of content generation within T2I models.

Acknowledging the imperative for enhanced concept erasure methodologies
within T2I models, we pose a critical question: “Is it feasible to develop a con-
cept erasure approach that is resilient against reconstruction efforts?” In pur-
suit of this, we introduce R.A.C.E. (Robust Adversarial Concept Erase), a
novel strategy aimed at bolstering the resilience of concept erasure techniques
against adversarial manipulations, as delineated in Algorithm 1. At the heart of
RACE lies an adversarial training framework, leveraging insights from the effort
of adversarial robustness [26]. Our method effectively identifies adversarial text
embeddings capable of reconstructing erased concepts and then facilitates their
integration into the T2I concept erasure workflow.

A pivotal aspect of RACE is its ability to efficiently uncover adversarial text
embeddings within a single time step of the diffusion process, an approach elab-
orated in Sect. 3.2. This efficiency not only streamlines the process of identifying
adversarial examples but also facilitates the integration of our adversarial attack
mechanism into the concept erasure workflow. To demonstrate the robustness
of RACE, we have carried out an extensive array of experiments. These exper-
iments validate the effectiveness of RACE in countering diverse red teaming
strategies, with detailed results presented in Sect. 4. Our empirical investigations
underscore the capacity of RACE to significantly enhance the robustness of T21I
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models against both white-box and black-box attacks across a broad spectrum
of target concepts, including artistic, explicit, and object categories.
We summarize the three main contributions here:

e We are the first to present, to our knowledge, an adversarial training approach
specifically designed to fortify concept erasure methods against prompt-based
adversarial attacks without introducing additional modules.

e Our method, RACE, implements a computationally efficient adversarial
attack method that can be plugged into the concept erasing method.

e We show RACE significantly improves T2I models’ robustness against
prompts based on white/black box attacks.

2 Related Works

For a comprehensive overview of additional related works, please refer to the
supplementary material.

Text-to-Image Synthesis. The field of generative models has seen remarkable
advancements, notably extending their capabilities beyond generating photore-
alistic images [6,17] to include Text-to-Image (T2I) synthesis [29,33,36,38,41].
This progress has led to the development of fine-tuning techniques that allow for
the customization of T2I models to user-specific needs [8,22,32,40,48], thereby
enabling the creation of highly realistic images that align closely with textual
prompts. However, the potential for misuse by malicious entities, using these
models for purposes such as spreading misinformation [5,27], raises significant
concerns. This underscores the urgency of devising protective measures to miti-
gate the risk of such exploitations.

Advanced Techniques in Concept Erasure for T2I Diffusion Models.
Within the realm of machine unlearning, concept erasure for T2I Diffusion mod-
els has recently emerged as a critical area of research, focusing on the removal
of sensitive or copyrighted concepts from T2I models. Methods to achieve this
include guiding the image generation process or adjusting the model’s weights to
exclude these elements [9,11,21,24,28,43,56]. Notably, techniques by Gandikota
et al. [9] and Kumari et al. [21] involve mapping sensitive concepts to null
entities or benign equivalents by fine-tuning the weights of Stable Diffusion
(SD) [38] models, effectively preventing the generation of undesirable content.
Despite these advancements, red teaming methods have exposed potential loop-
holes, indicating that erased concepts might be regenerated through meticulously
designed text prompts. Addressing this issue, our work contributes an adversar-
ial training strategy aimed at bolstering the resilience of Stable Diffusion models
against such text-prompt-based attacks [3,49,58], thereby enhancing the security
and integrity of the content generation.

Robustness Evaluation via Red Teaming in T2I Models. While various
safety measures have been proposed to shield SD models from misuse, red team-
ing strategies reveal vulnerabilities that still allow for circumvention. Research
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Algorithm 1 Robust Adversarial Concept Erasure: RACE Algorithm

Input: Diffusion Model @y, frozen diffusion model @g., scheduler S, target concept
¢, training steps M, adversarial steps N, perturbation limit ¢, attack step size «
fori=0,...,M do
Sample noise n ~ N(0,1), timestep ¢t ~ U(1,1000)
Initialize § ~ U(—e¢, €)
Denoise z; = S(n, t,c)
for j=0,...,N do > Perform targeted attack
0=0+a-sign(Vs — Lsp(Pg, 21, t, ¢, 0))
Clamp § within [—e, €]
end for
0=0-— VgLRACE(Q§9, Do+, 2, t, ¢, (5)
end for
return @y

has demonstrated that techniques like Textual Inversion [8] can be exploited
to regenerate content previously erased from SD models [34], prompting the
development of countermeasures aimed at safeguarding against such inver-
sions [52,59]. In real-world applications, T2I services such as Midjourney predom-
inantly rely on user-provided text prompts, making them susceptible to prompt-
based red teaming attacks [3,47,49,53,58]. These methods employ sophisti-
cated prompt optimization techniques to restore images containing erased con-
tent, with their efficacy contingent upon the level of model access-categorized
into white-box approaches, which utilize SD’s U-Net [39] for prompt optimiza-
tion [3,58], and black-box strategies, where such access is restricted [47,49,53].
Both approaches establish formidable benchmarks in attack success rates, as
detailed in Table2. However, the landscape lacks robust defense mechanisms
against prompt-based red teaming, primarily due to the prohibitive computa-
tional demands associated with identifying adversarial prompts-a challenge that
renders traditional adversarial training approaches impractical. Addressing this
gap, our work introduces a novel defense strategy tailored to counteract prompt-
based red teaming attacks, marking a significant step forward in fortifying T2I
diffusion models against adversarial threats.

3 Method

Our methodology aims to expunge target concepts from T2I diffusion models
through an adversarial training framework [26]. Initially, in Sect. 3.1, we establish
the foundation by formally introducing the notations and the rationale under-
pinning our approach. Following this, Sect. 3.2 details our proposed adversarial
attack, specifically designed for robust concept erasure, and delineates its inte-
gration into the adversarial training regime.

3.1 Preliminaries

Stable Diffusion Models. Our method is built upon the Stable Diffusion
Model (SD) [38], which operates as the foundational architecture for our concept
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Fig. 2. Single-Timestep Adversarial Attack Efficacy. This figure illustrates the Attack
Success Rate (ASR) across various timesteps, alongside representative images. Notably,
even when the adversarial attack is applied at a singular timestep t*, the perturbed
text embedding ¢+ = successfully reproduces images containing the previously erased
concept. For method details, see Sect. 3.2.

erasure technique. The SD model is composed of two primary elements: firstly,
an image autoencoder that has been pre-trained on a diverse and extensive
image dataset [6]. Within this autoencoder, an encoder function £(-) transforms
an input image x into a latent representation z = £(x). Conversely, a decoder
function D(-) aims to reconstruct the input image from its latent form, where
D(z) =% =~ x.

The second element is a U-Net [39]-based diffusion model trained to craft
latent representations within the acquired latent space. This model facilitates the
conditioning on either class labels or text embeddings derived from training data.
Let us denote by ¢ = .4 (y) the textual embedding encoded from a conditioning
text prompt y, where &+ symbolizes the text encoder, such as CLIP [35]. Under
these constructs, the SD training objective is encapsulated by the loss function:

LSD = IEnm.f\/(o,1),2,0,25 |:||n - ¢9(Ztatvc)||g] ) (1)

where ¢ indexes the time step, n represents a noise sample drawn from a standard
Gaussian distribution, z; is the perturbed version of z up to time step ¢, and
@y is the denoising network based on a U-Net architecture. During inference,



R.A.C.E. for Secure T2I Diffusion 467

a random noise sample is procured from a Gaussian distribution and denoised
using Py following a scheduler S, operating over a sequence of predetermined
time steps T'. The resulting denoised latent, zg, is then decoded to produce the
final image, & = D(zp).

Erase and Reconstruction of Target Concept. The objective of concept
erasure is to remove specific concepts, such as “nudity”, from the latent space of
a pre-trained diffusion model. The Erased Stable Diffusion (ESD) approach [9]
introduces a method for excising these concepts from the latent representations
within the Stable Diffusion framework. The erasure loss is formalized as follows:

Leruse = ||¢9(zt7ta C) - (459* (Ztat) - ’r](@@* (Ztvta C) - @9* (Ztvt)))H%a (2)

where @y« represents the frozen denoising U-Net, and 7 denotes the guidance
scale associated with classifier-free guidance [15]. ESD fine-tunes Le,qse with
respect to 6, guiding &y to produce outputs where the target concept is effec-
tively nullified. Crucially, this process does not necessitate additional datasets;
it operates successfully with only a concise textual description.

Conversely, red teaming efforts aim to counteract concept erasure by craft-
ing adversarial text prompts y capable of resurrecting the erased concept in
the generated image. White-box methods [3,58] engage in this adversarial
prompt optimization by leveraging the gradients of ®y. Meanwhile, black-box
approaches [47,49,53] aim to achieve comparable outcomes without reliance on
the gradients of @y. Both approaches pose significant computational demands,
which presents challenges for their integration into an adversarial training frame-
work.

3.2 Adversarial Training on Concept Erased Diffusion Models

Motivation. The primary aim of T2I diffusion models is to generate high-quality
images conditioned on specific prompts. Intriguingly, the SD model’s loss func-
tion, as depicted in Eq.(1), can also facilitate image classification tasks [23]. This
classification capability is derived by applying Bayes’ Theorem to the model’s
predictions py(z|c;) and the prior distribution p(c) across a set of conditions ¢;,
where each ¢; = £,4(y;) represents a textual embedding of the prompt y;:

p(ci)po(x|ci)

Pl = S e potees) )
Notably, the prior terms p(c) can be disregarded when they are uniformly dis-
tributed over the prompts ¢; (i.e., p(¢;) = +). In the context of diffusion mod-
els, directly computing pp(x|c;) is computationally challenging, leading to the
reliance on the computation of log pg(x|c;) and the utilization of the Evidence
Lower Bound (ELBO) for optimization purposes. Leveraging approximations
introduced in [14], we can approximate the posterior distribution over prompts
¢; as follows:

exp{—Ezn [[[n — Po(z,t, c)|*]}
32 exp{—Ez i [lIn — ®o (21,1, ¢)[1]}

(4)

po(cilr) =
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Building on this foundation, the Diffusion Classifier [23] proposes a method
for estimating the class of a given image = by finding argmin of the following

expression:
T

argininz [|In — ®g(z:,t,¢)||?] . (5)

t=1

where z; = £(z) represents the latent encoding of the image x and the goal
is to identify the label ¢ from the available set of classes ¢;. A notable insight
from the Diffusion Classifier is the feasibility of classifying image x even when
computations are performed using a single time step t*.

Single-Timestep Adversarial Attacks on Erased T2I Models. Leveraging
insights from the Diffusion Classifier, we re-conceptualize the SD model’s loss
function in Eq. (1) as a classification mechanism. This perspective allows us to
view Textual Inversion (TI) [8] as a form of targeted adversarial attack, where
the objective is to optimize the conditioning text embedding ¢ to regenerate
the image = [34,58]. Notably, TI is computationally intensive as it necessitates
optimization across all time steps.

Prompted by these considerations, our investigation centers around a critical
inquiry: Can adversarial text embeddings be identified with just a single timestep?
We investigate whether adversarial text embeddings can be effectively identified
at a singular timestep t*. Our approach is geared towards nullifying the embed-
ding of a target concept ¢ and its proximate embeddings that might facilitate the
regeneration of an erased concept image T, such as an explicit image. To this end,
we devise a targeted adversarial attack to produce Z from a concept-erased dif-
fusion model @y by introducing an adversarial perturbation §. The perturbation
0 is determined through the optimization:

argmin |[n — $g(%,t, ¢+ 0)|[3, (6)
[16]]oc <€

where Z = £(Z) denotes the latent representation of image Z, € is a small number,
and ¢ = Eu(y) encodes the textual embedding of the targeted concept, for
instance, y =“nudity”. The Projected Gradient Descent (PGD) algorithm [26]
is employed to address this optimization problem. Specifically, when selecting
timestep t* = 500 as the critical adversarial point, z; undergoes denoising via
®y(Z,t,¢) transitioning from timesteps ¢ = 1000 to ¢ = 500. Subsequently, the
targeted adversarial approach outlined in Eq. (6) is executed to determine d;» at
t = 500. In subsequent denoising steps, z; is denoised considering the introduced
perturbation ¢ + 3.

Our method introduces a distinctive single-timestep adversarial attack, con-
trasting with prior approaches that required optimization over a wide range of
timesteps [3,58]. This approach enables the seamless incorporation of our attack
strategy into the adversarial training process specifically for T2I concept erasure.

To assess the efficacy of our method, we execute tests on a @y model trained
for removing the “nudity” concept via the ESD method. Utilizing 142 nudity-
centric prompts from the I2P dataset [43], we systematically select timesteps t*
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at 100-step intervals within the [1,1000] range and compute the Attack Success
Rate (ASR), as formulated in Eq.(8), for each ¢*. The results, depicted in Fig. 2,
unveil a notable capability: the reconstruction of the erased concept is feasible
even with the attack confined to a single timestep t*. Interestingly, after t* = 500,
we observe an increasing trend in the ASR. The modified images resulting from
the attack visually convey the transition back to the erased concept and reflect
the ASR patterns. For additional insights into various concepts and their corre-
sponding ASR trends across different timesteps t*, the supplementary material
offers further information.

Adversarial Training for T2I Concept
Erasure. Motivated by the findings from
our single-timestep adversarial attack exper-

Table 1. Performance comparison
of Le'rase and LRACE

iments, we explore the potential of such Lerase | LracE
attacks to enhance the robustness of con- I2P [43] 0.08 10.05

cept erasure in T2I models, posing the ques- FID [13] 33.12 |25.16
tion: Can adversarial attacks improve the  CLIP-Score [12]|0.726 |0.745

resilience of concept erasure mechanisms?

RACE distinguishes itself from existing approaches [9,21] by aiming to elimi-
nate not only the targeted concept’s embedding but also its adjacent embedding
within the model’s latent space, which could otherwise lead to the inadvertent
generation of the erased concept by ®@y. We incorporate our adversarial attack
into the erasure loss function (Leyqse ), yielding an enhanced adversarial training
loss:

LRACE = HQSQ(Ztat)C + 6) - (459* (Ztvt) - 77(@9* (Zt,t,C) - ¢9* (Ztvt)))H% (7)

This method is deliberate, substituting the concept embedding ¢ with ¢ 4+ 9
within the trainable parameters of @y. This precise adjustment ensures enhanced
fidelity of the generated images by mapping the e-neighborhood of the concept
embedding to its null representation. Comparative metrics between the direct
substitution in Le,qse and the strategic use of Lracp are provided in Table 1.
The latter approach demonstrates promising reductions in ASR for “nudity”
prompts within I2P dataset [43] and improvements in image quality metrics,
as assessed on the MS-COCO [25]. The RACE methodology is comprehensively
detailed in Algorithm 1. To validate RACE’s effectiveness, we evaluate the ASR
against both white-box and black-box attacks, as elaborated in Sect. 4.

4 Experiments

4.1 Experimental Setting

Datasets. Our assessment of the RACE framework spans various domains,
including artistic styles, explicit concepts, and identifiable objects, in line with
established benchmarks [3,9,58]. To ensure a uniform image generation process,
we standardize key hyperparameters such as the scale of classifier-free guidance
and random seeds. Artistic style evaluations leverage shared text prompts from
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ESD [9] and UnlearnDiff [58]. For explicit content, we draw from the inappropri-
ate image prompt benchmark [43], selecting a diverse set of prompts encompass-
ing 142 nudity, 98 illegal acts, and 101 violence instances. Objects are curated
from a subset of Imagenette [16], known for its distinct and recognizable classes,
with text prompts synthesized via ChatGPT [31] following the approach by
Kumari et al. [21]. It’s crucial to note that these datasets serve solely to gauge
the effectiveness of adversarial attacks; the adversarial training component of
RACE does not necessitate the use of these specific prompts.

Training Details. In validating RACE, we choose the Erased Stable Diffusion
(ESD) model [9] for its ability to erase a wide range of concepts, serving as
an ideal testbed to showcase RACE’s efficacy. We integrate RACE with ESD,
optimizing with attack parameters ¢ = 0.1 and o = ¢/4. The optimization
of model parameters 6 utilizes the Adam optimizer [20] at a learning rate of
le — 5, consistent with ESD. Additional details on attack parameter selection
are available in the supplementary material.

Red Teaming Methods. To rigorously test RACE’s robustness, we deploy
a comprehensive suite of adversarial attacks, spanning both white-box and
black-box approaches. Initial assessments utilize the I12P red teaming prompt
dataset [43]. In black-box scenarios, we employ PEZ [49], which crafts adver-
sarial prompts via CLIP [35]. In the white-box scenario, methods like P4D [3]
and UnlearnDiff [58] are used, which generate adversarial prompts by leveraging
gradients from the SD.

Evaluation. To gauge the robustness of RACE, we employ domain-specific clas-
sifiers: a ViT-base model [51] pre-trained on ImageNet [4] and fine-tuned on
WikiArt [42] for artistic styles, Nudenet [1] for explicit content, and ResNet-
50 [10] trained on ImageNet for object removal. We measure robustness using
the Attack Success Rate (ASR):

N
ASR = D" 1(£ (D) = 7). (8)

where y; is the adversarial prompt, f is the classifier, and N is the number of
prompts. Additionally, we assess image quality after applying RACE by gen-
erating 5,000 images from the MS-COCO [25] test set, computing the Frechet
Inception Distance (FID) score [13] and the CLIP score [12] to evaluate RACE’s
impact on image fidelity while ensuring concept erasure.

4.2 Robust Concept Erase Against Red Teaming

In our comprehensive analysis, RACE undergoes a series of red teaming evalua-
tions [3,43,49,58], encompassing both white-box and black-box techniques aimed
at regenerating concepts targeted by RACE for erasure, as depicted in Fig. 1.
The comparative analysis of ASR presented in Table 2 spans diverse conceptual
domains, from “Van Gogh”-inspired artistry to explicit content such as “nudity”
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Table 2. Attack Success Rate (ASR) against white (O)/black (@) box attacks. We
conduct experiments on artistic style (Van Gogh), explicit concepts (nudity, violence,
and illegal acts), and objects (church, golf ball, and parachute). “ESD/RACE-Concept”
denotes the concept erased from the model. We also measure the quality of T2 models.
We can observe that RACE reduces ASR by over

on Van Gogh, nudity, and church for UnlearnDiff [58], which is the previous SOTA
attack method.

Prompts PEZ [49] P4D [3] UnlearnDiff [58] CLIP-Score [12] FID [13]

White/Black Box @ ] O O - -

ESD[9]-VanGogh  0.04 0.00 0.26 0.36 0.7997 19.16
ESD[9]-Nudity 0.14 0.08 0.75 0.80 0.7931 18.88
ESD[9]-Violence 0.27 0.13 0.84 0.79 0.7834 21.55
ESD[9]-1llegal 0.29 0.20 0.89 0.85 0.7854 21.50
ESD[9]-Church 0.16 0.00 0.58 0.68 0.7896 19.68
ESD[9]-GolfBall 0.04 0.00 0.16 0.16 0.7738 20.64
ESD[9]-Parachute 0.06 0.04 0.48 0.60 0.7865 19.72
RACE-VanGogh 0.00 0.00 0.00 0.04 0.8024 20.65
RACE-Nudity 0.05 0.02 0.49 0.47 0.7452 25.16
RACE-Violence 0.11 0.08 0.75 0.68 0.7374 28.71
RACE-Illegal 0.20 0.13 0.85 0.80 0.7591 24.87
RACE-Church 0.02 0.00 0.26 0.38 0.7730 23.92
RACE-GolfBall 0.00 0.00 0.10 0.06 0.7480 25.38
RACE-Parachute 0.02 0.00 0.24 0.38 0.7570 26.42

and “violence”, extending to tangible objects like “churches”, “golf balls”, and
“parachutes”. Remarkably, RACE consistently diminishes ASR, notably surpass-
ing 30% for “Van Gogh” styles, “nudity”, and “church” categories, particularly
outperforming UnlearnDiff [58], the current state-of-the-art in white-box adver-
sarial methodologies. This marked decline in ASR underscores RACE’s height-
ened robustness and delineates its capability as a potent, computationally effi-
cient defense mechanism for T2I diffusion models against intricate adversarial
attacks. Crucially, RACE’s methodological advantage stems from its indepen-
dence from external imagery or prompts, diverging from traditional red teaming
techniques reliant on such data for prompt generation.

As demonstrated in Table2, RACE achieves a significant 33% reduction in
ASR for the “nudity” concept, underscoring its effectiveness. To further elu-
cidate how RACE enhances ASR, we analyze the specific categories or ele-
ments it targets for removal. Utilizing Nudenet, we enumerate the body parts
generated by various models-original SD, ESD, UnlearnDiff, and RACE-when
prompted with nudity-related inputs from the I12P dataset. Illustrated in Fig. 3,
the analysis reveals that while ESD enhances the original SD’s resilience to such
prompts, UnlearnDiff manages to bypass ESD’s defenses, reconstructing explicit
content. In contrast, RACE maintains its robustness even against the sophis-
ticated UnlearnDiff attacks, showcasing the advanced protective capabilities of
our approach in safeguarding against the regeneration of sensitive content.

One caveat to mention is that our experiments reveal a nuanced trade-off
between robustness and image quality. While artistic style erasures maintain



472 C. Kim et al.

Original SD

ESD

UnlearnDiff
RACE

RACE +keywords

70

# of exposed body parts

Female Breast Armpits Belly Feet Male Breast Female Genitalia Buttocks

Fig. 3. Although ESD significantly reduces the chance of generating images with
exposed body parts, state-of-the-art red teaming methods, such as UnlearnDiff, can
be used to bypass ESD’s defense and reconstruct explicit content. RACE and its vari-
ant can effectively defend the malicious attempts to reconstruct explicit content from
the ESD model that erased the concept of nudity.

quality metrics, erasures of other concepts inadvertently degrade image quality.
This divergence could be attributed to methodological differences; erasing artis-
tic styles predominantly involves fine-tuning the cross-attention layers of SD as
per ESD guidelines, whereas erasing other concepts necessitates adjustments in
non-cross-attention layers [9]. Another plausible explanation for the observed
trade-off between robust concept erasure and overall image quality could relate
to the inherent complexity of differentiating between closely related or overlap-
ping concepts within the model’s latent space. As RACE intensifies adversarial
robustness, it may inadvertently alter the delicate equilibrium within these con-
ceptual overlaps, leading to unintended modifications in adjacent, non-targeted
conceptual representations. This issue highlights the complex tension between
precise concept erasure and maintaining the model’s overall integrity against
attacks. To address the quality concerns arising from this trade-off, we explore
a potential strategy for improvement in Sect. 4.4, aiming to reduce the trade-off
between targeted erasure with high quality and the model’s defensive robustness.

4.3 Disentanglement

Investigating RACE’s disentanglement performance, our study focuses on its
capability to precisely erase intended concepts without impacting other elements.
The evaluation spans both qualitative and quantitative measures. On the quali-
tative front, we configure separate RACE-enhanced models to specifically erase
artistic imprints such as “Van Gogh”, “Thomas Kinkade”, and “Kilian Eng”
from the SD. The illustrative outcomes, showcased in Fig. 4, underscore RACE’s
erasure precision, ensuring that the excision of one artistic style doesn’t lead
to the collateral removal of others. This meticulous erasure extends to discrete
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Original SD Erasing Erasing Erasing Original SD Erasing Erasing Erasing
mas Kink lian Eng” “Church” " “Parachute”

Prompt Conditioning

Fig. 4. RACE’s Disentanglement in Concept Erasure. This figure highlights RACE’s
precision in erasing specific concepts, as shown in diagonal images, while preserving
unrelated concepts, which is evident in off-diagonal images. For reference, baseline
images generated by the original Stable Diffusion (SD) model are also presented.

object concepts like “church”, “golf ball”, and “parachute”, with the generated
images further affirming the method’s discernment.

Quantlt.atlvely,. we generate 5,000 Table 3. Accruacy of erased and non-erased
prompts with varied random seeds,  (}asses in Imagenet [4]. We evaluate the clas-
such as “an image of a [class name]”, gification accuracy of ESD and RACE for the
to produce a diverse set of images, target erased concepts and other non-target
subsequently evaluated using a pre- concepts.
trained ResNet-50 classifier for top-

Erased Concept | Acc. Erased | Acc. Others

1 accuracy. As shown in Table3, ESD | RACE | ESD | RACE
RACE showcases an improved capa-

. . Church 0.16 | 0.02 0.57 | 0.53
bility for object concept erasure com- Golf Ball 008 To0o 045 To3s
pared to ESD. Despite this, there on ba . . : :
exists a slight decrement in classifica- Parachute 0.06 |0.02 | 0.57 041

tion accuracy for non-target classes.

This effect likely stems from RACE’s method of targeting the e-neighborhood
surrounding the intended concept, potentially influencing proximate concepts.
Nevertheless, we can observe from Fig.4 that RACE can precisely erase the
target concept with minimal visual impacts on other concepts.

4.4 Discussion

Potential Strategy to Improve the Robustness-Quality Trade-off. Our
findings underscore the ability of RACE to significantly bolster the SD model’s
defense against prompt-based adversarial attacks across a variety of concepts.
However, as illustrated in Table 2, enhancing robustness appears to inversely
impact image quality. To address this dichotomy, we test a refined version of the
RACE loss function incorporating a regularization term:

LRACE+Req. '= Lrace + A||0 — 07|41, 9)
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Table 4. Ablation Studies for Performance Improvement. Using the “nudity” con-
cept, we evaluate the effectiveness of adding weight regularization and close concept
keywords. ASR and quality metrics are measured to assess performance.

I2P [43] | PEZ [49] | P4D [3] | UnleranDiff [58] | CLIP-Score [12] | FID [13]
ESD 0.14 0.08 0.75 0.80 0.7931 18.88
RACE 0.05 0.02 0.49 0.47 0.7452 25.16
RACE+Reg. 0.07 0.02 0.60 0.62 0.7593 24.42
RACE+keywords | 0.02 0.01 0.42 0.46 0.7201 30.97

where 6 and 6* represent the parameters of the RACE and original Stable Diffu-
sion models, respectively, and A is the regularization strength, set to 0.1 in our
experiment. This regularization approach, as evidenced in Table 4, helps to par-
tially reconcile the robustness-quality trade-off, enhancing image quality while
maintaining improved robustness over ESD.

Enhancing Concept Erasure. In pursuit of further reducing the ASR, we
explore strategies for more comprehensive concept erasure. Recognizing that a
target concept may manifest in various synonymous forms, we extend RACE’s
erasure scope to include semantically related concepts. Leveraging the CLIP text
encoder embedded within Stable Diffusion, we identify and subsequently erase
concepts closely related to the target, based on their proximity in the CLIP
embedding space. For instance, alongside “nudity”, we also target synonymous
concepts like “nude”, “nsfw”, and “bare”, identified as the top-3 semantically
similar terms. In Fig.3, we can observe that our method equipped with this
expanded erasure strategy (denoted as RACE+keywords) is more effective in
defending the malicious attempts to bypass the ESD by further reducing the
number of exposed body parts. Table4 also indicates that our strategy indeed
fortifies the model’s robustness against red teaming tactics. Nonetheless, this
broadened concept removal spectrum reaffirms the robustness-quality trade-off,
manifesting as a decrement in image quality. This aspect opens an intriguing
avenue for future enhancements to the RACE methodology, balancing the twin
objectives of robust concept erasure and preserved image fidelity.

5 Conclusion

In this work, we present RACE, a novel defense approach designed to pro-
tect the Text-to-Image Stable Diffusion models from prompt-based red teaming
attacks. RACE effectively strengthens the model’s concept erasure capabilities
while maintaining computational efficiency, offering a valuable enhancement to
the current erasure framework and bolstering defenses against various adver-
sarial techniques. We also observe the robustness-quality trade-off and discuss
possible future directions to improve it. This initial contribution lays the ground-
work for further exploration, underscoring the critical importance of developing
sophisticated defenses in the rapidly evolving domain of generative Al
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