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Abstract. In verifiable secret sharing (VSS), a dealer shares a secret
input among several parties, ensuring each share is verifiable. Motivated
by its applications in the blockchain space, we focus on a VSS where
parties holding shares are not allowed to reconstruct the dealer’s secret
(even partially) on their own terms, which we address as privacy-targeted
collusion if attempted.

In this context, our work investigates mechanisms deterring such col-
lusion in VSS among rational and malicious parties. For this problem,
we make both algorithmic and combinatorial contributions:

1. We provide two collusion-deterrent mechanisms to discourage par-
ties from colluding and recovering the dealer’s secret. Notably, when
it is desired to achieve fairness—where non-colluding parties are not
at a loss—while allowing for the best achievable malicious fault tol-
erance, we define “trackable access structures” (TAS) and design
a deterrence mechanism tailored for VSS on these structures.

2. We estimate the size of the optimal TAS, construct them from
Steiner systems, provide highly robust TAS using partial Steiner
systems, and present efficient secret sharing schemes for the latter
close-to-optimal TAS for various parameter regimes.

3. We demonstrate that trackability in access structures is connected
to combinatorial objects like (partial) Steiner systems, uniform sub-
sets with restricted intersections, and appropriate binary codes. The
robustness of access structures is equivalent to the minimum vertex
cover of hypergraphs.

We believe these connections between cryptography, game theory, and
discrete mathematics will be of broader interest.

1 Introduction

Consider a threshold multi-device cryptocurrency wallet [2,38]. A user shares
her transaction signing key among many servers using a secret sharing scheme,
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and a threshold number of servers are expected to endorse transactions on the
user’s behalf using aggregatable partial signatures. However, nothing stops these
servers from performing unauthorized transactions on the user’s behalf by gen-
erating unauthorized partial signatures or simply reconstructing her signing key.
This is not an isolated risk; in most secret-sharing applications, colluding actors
may surreptitiously recover cryptographic secrets before they are allowed to. This
concern of collusion to break privacy is commonplace in secret-sharing appli-
cations such as secure multi-party computations (MPC) [8,16,23,43,51], time-
release cryptography [44],and distributed randomness beacons [1]: universally,
all bets are off when more than a threshold number of servers get compromised.

Considering the potentially catastrophic loss, this work disincentivizes collu-
sion by relying on rational behavior—the threat of snitching will keep bad (yet
sensible) actors in line. Here, rationality means taking actions that maximize
one’s utility. Previously, traceable secret sharing [12,25] traced colluder(s) only
when given access to a pirate reconstruction program created by colluding par-
ties. Dziembowski et al. [21] allowed a colluder to generate fraud proofs against
a target party when they collude via MPC (assuming the hardness of computing
many hashes quickly with MPC). Rational parties are then discouraged from
such collusion. However, as in the above applications, colluding parties need not
necessarily construct a reconstruction box for a detector to query or run MPC.
Instead, they may collude over alternative (even unforeseen) channels, e.g., out-
sourced cloud computing based on homomorphic encryption.

As such, our work investigates mechanisms to disincentivize collusion in ver-
ifiable secret sharing (VSS) [19] in a significantly harsher setting. We make no
assumptions on how parties collude; unlike the aforementioned works, there is
no pirate reconstruction program or MPC transcripts. We only rely on some
parties being rational; others are malicious and can behave arbitrarily—even
engaging in self-harm. Note that we only deter successful collusion where some
party learns some non-trivial secret information (described in Sect.4.1).

Gong et al. [24] recently studied collusion deterrence in multiserver private
information retrieval with a singleton access structure.! Their mechanism cre-
ated a race among colluding parties to report and prove some non-trivial secret
information; then nobody wanted others to learn about the secret. Incorporating
their mechanism into secret sharing encounters two challenges. First, their mech-
anism fails even when one party is missing during reconstruction, for example,
due to a benign failure. To address this, we measure and increase the robustness
of access structures—the smallest number of absences that stall reconstruction.?

Finally, more worryingly, when used in general access structures, a colluding
group can frame innocents. Consider the k-out-of-n threshold access structure:
k parties can collude and frame any other party as a colluder because the par-
ties are interchangeable, and the mechanism cannot tell the colluder set. We

1 All queried parties need to provide inputs to reconstruct the client’s queried index.
2 In robust secret sharing [10,18], robustness is the ability to tolerate wrong shares in
reconstruction. In VSS, shares are already verifiable, so the threat of wrong shares is
mitigated. In our context, robustness then only concerns absentees in reconstruction.
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Table 1. Evaluation of our two mechanisms. For fixed n, k, the function f(™" (w) is
monotonically increasing in w; summarized in Table 2.

Malicious fault bounds Fairness Applicable access

Mechanisms . K Robustness
Fairness Effectiveness hazard structures
(Wo,P) k-2 k—2 n—=k Any n—k+1
(W,P) k-1 E—1-w 0 w-trackable k) (W)

then define trackable access structures (TAS) and design a collusion deterrence
mechanism W7 (described on page 7) for TAS.

1.1 Contributions

In summary, first, we design a collusion deterrence mechanism for VSS on arbi-
trary access structures. Second, we identify more structured homogeneous access
structures — TAS — and create a deterrence mechanism with stronger guarantees
for VSS over a TAS. We investigate the structural properties of TAS construc-
tions by connecting them to various combinatorial objects.

Collusion Deterrence Mechanisms. Consider n parties where a strict sub-
set of them are malicious, and the rest are rational. For 2 < k < n, we
consider (monotone) k—homogeneous access structures A C 2" where [n] =
{1,2,...,n}: All minimal sets in it have size k. An access structure A is
w — trackable when any size-w subset is contained in at most one minimal set.
For example, an (n, k,w)-design, as defined in Sect.6.1, is w-trackable; every
size-w subset appears in a unique minimal set in this design.
In Table 1, We compare the two mechanisms along the following metrics.

t.~-Effective: The mechanism induces the non-collusion outcome when there are
< t. malicious parties.

t-Fair: Non-colluding parties are not at a loss in this mechanism with < ¢
malicious parties.

p-Fairness hazard: With (k — 1) malicious parties, the maximum meaningful
number to consider, the mechanism mislabels < ¢ non-colluders as colluders.

t. -Robust: The protocol-initiated reconstruction can be stalled only by > t,.
absentees. That is, reconstruction goes through with < ¢, absentees.

Note that ¢, < (n — k + 1) because any minimal set has size > k. Naturally,
it is only meaningful to consider t.,t; < k; otherwise, the situation is hopeless
since k malicious parties can reconstruct the secret at will. For these metrics,
increasing t.,?¢,t, and decreasing ¢ is desirable.

Our First Mechanism. For an arbitrary k-homogeneous access structure, we pro-
vide a mechanism (W, P) on page 6. Here, Wy, is the winner selection rule, and
P is the payment rule. The mechanism (W, P) is a public algorithm specified by
the two rules, and any party can observe and interact with it. It is (k—2)-effective,
(k — 2)-fair, has (n — k)-fairness hazard, and has optimal (n — k + 1)-robustness.
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The mechanism is similar to the one in [24]. It encourages colluders to call
attention to collusion by proving their knowledge of the secret. It discourages
collusion by inducing a race among rational colluders to be the first to submit
proofs, resulting in parties who are not faster than others unwilling to collude.

Our Second Mechanism. For w-trackable access structures (1 < w < k), we pro-
pose (W1, P) on page 7. It is (k — 1)-fair, (k — 1 — w)-effective and has optimal
0 fairness hazard. Its robustness is f (”’k)(w), an appropriate increasing function
defined in Table 2, indicating a trade-off between effectiveness and robustness
when setting w. In Sect. 5.1, we prove that trackability is necessary to achieve
zero fairness hazard: zero fairness hazard is impossible to achieve in untrackable
access structures.

Informally, in W, while parties from multiple minimal sets may report, the
mechanism penalizes the last free rider (i.e., a party who does not make up a
complete minimal set along with any other reporters) or the last reporter if there
are no free riders. Otherwise, it locates a unique minimal set in the TAS and
penalizes the remaining parties in it.

TAS and VSS. Given parameters n, k, w, our objective is to construct efficient
secret-sharing schemes on (n, k,w)-TAS with high robustness. We systematically
examine secret sharing on TAS, uncovering several connections with combina-
torics: We establish links between TAS and well-known concepts in combinatorial
design, coding theory, extremal graph theory, and additive combinatorics.

Specifically, TAS is equivalent to the partial Steiner system, binary constant
weight code with high distance, and uniform subsets with restricted intersections.
Additionally, there is a natural equivalence between the robustness of an access
structure and the minimum vertex cover in hypergraphs, with its dual notion
being the independence number. Leveraging these connections, we employ tech-
niques and results from these fields to derive the following results:

1) A tight upper bound on the size of any TAS (Theorem 3).

2) Constructions of TAS with optimal size (Theorem 5) and near-optimal size
(Theorems 6 & 7).

3) Constructions of TAS with (asymptotically) optimal robustness (Corollary 3).

We present an efficient construction of secret sharing for (n, k, 2)-TAS with
(asymptotically) optimal robustness—the ratio between the number of parties
to corrupt and the number of parties tends to one. In (n, k, 2)-TAS, the number
of minimal authourized sets is O(n?) (see Theorem 3). Naively applying generic
constructions [9,29] results in an information ratio of O(n?), while the informa-
tion ratio of our construction is O(n), demonstrating a factor of n improvement.
For w > 3, we apply the generic constructions for any access structures, result-
ing in an information ratio of roughly O((n/k)“). More efficient constructions
remain open and are left for future work. Finally, the verifiable version of the
secret sharing scheme can be constructed by applying generic transformations [5].

Lower Bound. The family of TAS is a subclass of k-homogeneous access struc-
tures. Recently, Beimel [6] proves a lower bound of 2(n?~'/®*=1/k) for some
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(a) Consider a 2-trackble access struc-
ture for 7 parties with minimal sets
(1,2,3}, {145}, {167}, {2,5,6}
{3,4,6}, {3,5,7}, {2,4,7} where any 2
parties pinpoint one minimal set. Suppose

1,3,4,5,6,7 (marked in pink) colluded.

:

(c) Given that 6 and 7 will not report, party
3 is considered a free rider (and unfortu-
nately, the last one). If party 3 is rational,
it does not report due to the penalty on the

@aasa)

(b) Suppose parties 1, 3, 4, 5, and 6 have
submitted reports. If party 7 reports, 7
is considered the last reporter, and there
will be no free riders by then. If 7 is ratio-
nal, it does not report due to the penalty
on the last reporter (induced by rule 1.B)
in W;. The same reasoning applies to
party 6 given that 7 will not report.

@ e s

(d) Given that party 3 will not report,
party 5 is considered the last reporter. If 5
reports, it is penalized as the last reporter.
Otherwise, 5 is penalized as the remaining
colluder of the group {1,4,5} (due to rule
2) in W1. This in turn discourages 5 from

last free rider (induced by rule 1.A) in W;. colluding with 1,4.

Fig. 1. An example illustrating that the slowest parties in minimal sets are disincen-
tivized from collusion under (W1, P). Colluding parties are colored in pink. (Color

figure online)

explicit k-homogeneous access structures—a simple variant of the ones consid-
ered by Csirmaz [20]. Interestingly, these structures are also (k — 2)-trackable.
As a result, the lower bound extends to TAS.
An Example. Figurela presents a Steiner system S(n = 7,k = 3,w = 2).
Construct an w = 2-trackable access structure .4 whose minimal sets are the
hyperedges in the Steiner system; there are (Z) . (k)7 7 such sets. This
system has a minimum vertex cover of size ¢, = 3. Our (W1, P) mechanism is
(k —1) = 2-fair, (k — 1 — w) = O-effective, has 0 fairness hazard and ¢, = 3-
robustness.

Likewise, consider the Steiner system S(13,4,2), the projective plane of order
3, is 2-trackable. In a projective plane, the vertices of any hyperedge form a
minimum vertex cover; so, here ¢, = 4. Our (W1, P) mechanism is 3-fair, 1-
effective, has 0 fairness hazard, and 4-robustness.

2 Technical Overview

2.1 Collusion-Deterrent Mechanisms

Starting Point. In privacy-targeted collusion in secret sharing, colluding parties
can reconstruct the secret using external unobserved communication channels.
Our goal is to design a mechanism that indirectly deters privacy-targeted collu-
sion, assuming a blend of rational and malicious parties. Recall that we consider
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homogeneous access structures with size-k minimal sets. We eventually aim to

tolerate up to (k — 1) malicious parties—which is optimal when allowing for

adaptive malicious corruptions—with the remaining parties being rational.
First, consider the following simple mechanism:

Winner selection rule (Wy): The first party to prove non-trivial knowledge of
the secret is selected as the winner; All other parties are marked as colluders.
Payment rule (P): Reward the (selected) winner and penalize the (marked)
colluders with appropriate amounts.

We define the proof of knowledge and parameterize payment amounts explic-
itly in Sect.4 and 5. With proper proof verification and payment parameteriza-
tion, (Wy, P) discourages collusion when there are at least two rational parties
in each access group in A. The simple scheme (W, P) tolerates (k—2) malicious
parties as we make use of the race between the two remaining rational parties.
Informally, the rationale is that first, rational colluders are incentivized to submit
a proof to escape the penalty. Second, since at most one rational colluding party
can become the winner, at least one rational party without a network advantage
in submitting reports is restrained from collusion.

However, when one more malicious party is present, collusion can take place
since the only remaining rational party in the access group may collude, report,
become the winner, and avoid penalty. In this case of (k — 1) malicious parties,
(Wy, P) becomes ineffective, and (n — k) non-colluding parties bear penalties.

Consequently, we desire to reduce the fairness hazard, preferably to 0, where
non-colluding parties are never at a loss when faced with up to (k — 1) malicious
parties. An immediate attempt is to select a general number of winners, say
w < k winners. However, this does not boost the mechanism’s fault tolerance
because it still only treats the collusion reports as the signal of collusion ezistence,
not its participants. Besides, it reduces the malicious fault tolerance to (k—1—w).

Tolerate (k—1) Malicious Parties. Intuitively, the ability to locate remaining
colluders given a strict subset of colluding parties can potentially help improve
malicious fault tolerance for achieving fairness. To this end, we are interested in
one trait of a k-homogeneous access structure: given any set of w (1 < w < k)
parties, is there either a unique minimal set in the access structure that contains
them or none? We address this trait as w-trackability: any w parties belong to
at most one minimal group. Given an (n,k,w)-TAS, a naive extension to the
previous mechanism is as follows with the same payment rule P:

Winner selection rule (Wl): The first w parties to prove non-trivial knowl-
edge of the secret are selected as winners. If there is a unique minimal access
group containing the winners, mark the remaining parties therein as colluders.

Now the w parties not only signal the existence but also potential participants
of collusion. When exactly one minimal set colludes, the extended mechanism
achieves effective collusion deterrence against (kK — 1 — w) malicious parties and
achieves fairness against (k — 1) malicious parties. The latter bound is because
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(k — w) malicious parties suffice to trigger collusion in their access group and
(w — 1) remaining malicious parties can help with falsely incriminating non-
colluding parties in the worst case.

However, when more minimal sets collude in close time proximity (measured
according to network delays), the above scheme loses its charm. This is because
the first w parties revealing collusion are now potentially from distinct groups
and a third party (i.e., a public algorithm or an entity implementing the mech-
anism) cannot tell. Non-colluding parties can be falsely located, and fairness
can no longer be guaranteed. Worse still, non-colluding parties can be the only
ones marked as colluders, rendering the mechanism ineffective in deterring col-
lusion. For example, consider four 2-trackable minimal groups {1, 2, 3}, {1, 4,5},
{2,4,6}, {3,5,6}. Suppose 1, 3,4, 5,6 collude, and 1, 3 report first. W, identifies
2 as colluder. This is neither effective nor fair even when no party is malicious.

Hence, trackability alone does not guarantee fairness and effectiveness. We
need to update the winner selection rule so that a sufficient number of colluding
parties report to help spot colluders without noises that inculpate non-colluding
parties. In this way, collusion among parties from more than one access group
does not neutralize the mechanism’s effectiveness or jeopardize fairness. The
updated rule W aims to encourage w colluding parties in any one of the col-
luding groups to submit reports and others to stay silent to avoid noisy signals.

Winner selection rule (Wy):

1. When there are more than w but less than k£ reporters, jump to rule B.

When there are > k reporters, go to rule A.

A. For a party that does not make up a complete access group along with
any other (k — 1) reporters, mark it as free rider. The last free rider is
marked as colluder and all other reporters are marked as winners.

B. Otherwise, mark the last reporter as colluder and others as winners.

2. When there are w reporters, and there exists a unique minimal group con-
taining them, mark the w reporters as winners and the remaining parties
in that group as colluders.

In other cases, dismiss the reports.

We demonstrate that parties are disincentivized from colluding under W; in
Sect. 5 and give a visual proof in Fig. 1. Intuitively, this is because it filters out
noises in reports: under Wy, when a minimal group already exposes itself with
w reporters, rational colluding parties from other minimal groups are disincen-
tivized to report as they risk being the last free rider or the last reporter; the
slowest parties in the access group with the fastest w parties are then discouraged
from collusion, and so on.

2.2 TAS and VSS

Let A* denote the minimal sets of an (n, k, w)-trackable access structure A. As
before, we also address A* as the minimal access structure.
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Equivalence Between TAS and Partial Steiner System. A partial Steiner
system is a combinatorial structure generalizing the Steiner system. In a Steiner
system, the main idea is to find subsets (blocks) of a given ground set such
that every subset of a certain size (called the “block size”) is covered by exactly
one block. In a partial Steiner system, this requirement is relaxed such that
every subset of the given size is covered by at most one block. This allows for
more flexibility in the construction of the system and can lead to partial solu-
tions when full Steiner systems are not feasible or available. More formally, an
Sp(n, k,w) partial Steiner system is defined by a subset K C ([2]) such that for

any subset T' € ([Z]) , there is at most one subset K € KsatisfyingT' C K. Observe
that an S,(n, k,w) partial Steiner system is an (n, k, w)-TAS, and vice-versa.

TAS as a Special Case of Uniform Subsets with Restricted Intersec-
tions. Fix a set L C {0,1,2,...}. A family of k-uniform subsets S C ([Z]) is
L-intersecting if all distinct subsets E, F' € S satisfy |[E N F| € L. Observe that
a (n,k,w)-TAS is a k-uniform subsets with L = {1,2,...,w — 1}.

Remark 1. In secret sharing context, recent works starting from [35] use (sparse)
matching vectors and conditional disclosure of secret protocols to construct more
efficient secret sharing for general access structures (see |7, page 5]).

Upper Bound of the Size of Any (n,k,w)-TAS. From a coding theory
perspective, a subset of [n] can be mapped to a bit string in {0,1}", with each
bit indicating the membership of each element. A minimal access structure A*
is a set of weight-k bit strings with (w — 1) pair-wise intersection. Thus, the set
of bit strings in A* form a (non-linear) code of distance at least 2k — 2(w — 1).
Applying the well-known Johnson bound [30] for binary constant weight code

yields the desired bound (Z) . (k)_l. The optimal ones can attain the bound if

and only if a Steiner system S(ﬁ, k,w) exists.

Optimal TAS. It follows from the upper bound that constructing optimal TAS
reduces to constructing binary constant-weight codes, particularly Steiner sys-
tems for some parameter regime. We focus on specific parameters because in
general, constructing the maximum size of constant weight codes and Steiner
systems is a notoriously challenging problem. Constructing optimal binary con-
stant weight codes and (n, k, w)-Steiner systems for large values of n,k,w is a
long-standing open problem in coding theory and combinatorial design. We then
construct TAS with the largest size for some parameter regimes based on existing
constructions of Steiner systems and binary constant weight codes in Sect. 6.3.

Near-Optimal TAS. Optimal TAS is theoretically intriguing. However, as
mentioned above, their constructions pose significant challenges, particularly for
large parameters. In practical applications, such as the mechanism under consid-
eration in this work, efficient constructions and high robustness are paramount.
Moreover, as previously observed, access structures with efficient constructions
and concise descriptions are more likely to facilitate efficient secret-sharing con-
structions. We therefore turn to investigate near-optimal sized TAS with efficient
constructions and high robustness.
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Parameters. n, k,w satisfying n > 2k>. Let p be a prime between n/k and 2n/k.
Evaluation places. Let Pi, P, ..., P, be k distinct evaluation places in F},.
Access Structure. Let the set of n parties contains the set {(P;, @): ¢ € [k],Q € Fp}.
The access structure is defined as

A (n,k,w) = { {(P [(P)) i € K]} & ] € Fylal, deg(f) <w |

Fig. 2. TAS construction with near-optimal size using Reed-Solomon codes.

Parameters. n, k, w satisfying k = ©(n). Let F//F, be an algebraic function field.
Evaluation places. Let D = P, + P> +--- + Pk be the sum of k distinct places of
F/F, of degree one.

Access structure. Let G be a divisor with disjoint support from D and £(G) be
the Rieman-Roch space associated with G. Let the set of n parties contain the set
{(P;,Q): i € [k],Q € Fy}. The access structure is defined as

A (nkw) = {{(P, f(P)): i€ M} : feL@) ]

Fig. 3. TAS construction with near-optimal size using algebraic geometry codes.

The first construction, depicted in Fig. 2, relies on Reed-Solomon codes. This
construction is a common technique in the literature of uniform subsets with
restricted intersections (refer to Theorem 4.11 in [3]). It is effective when k is of
order v/n. We demonstrate that the ratio between the robustness and the number
of parties n, called the fractional robustness, of this access structure is 1/k. To
address the cases where k is larger, we naturally extend this construction to
Fig. 3, based on algebraic geometry codes, albeit with a slight trade-off in other
parameters. Notably, both constructions are efficient.

Remark 2. There are randomized constructions for near-optimal partial Steiner
Systems and thus for TAS from combinatorial design [45]. We leave constructing
efficient secret sharing for these access structures as an open problem.

High Robustness. Recall that the robustness of an access structure is the min-
imum number of parties to corrupt to make reconstruction impossible. Observe
that it is equivalent to the minimum cover of the hypergraph representing the
access structure—FEach party is a vertex, and each minimal set is a hyperedge.
By the monotone property, the robustness equals the minimum cover of the
hypergraph representing the minimal access structure.

It is well-known that the dual of the minimum cover problem is the maximum
independence set problem. The sum of the minimum cover and the maximum
independence set in a hypergraph equals the total number of vertices. Thus,
a high robustness access structure is equivalent to a hypergraph with a small
independence number—the size of the smallest independent set.
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Table 2. Robustness for different values of k and w, where w < k. A question mark
symbol “?” indicates that the respective setting is an open problem.

w=1 w=2 w=3 |w=3k/4 | lw=k-1
k=n 1 1 1 1 1
k=n/3 ? ? ? ? ?
k=ncc<1/8n'~° ? ? n— knl/2ln — kinme
k= (logn)¢ | n/k ? ? n— k*nl/2 n— kint
k=4 n/4 | n—n09 In(1l—o(1))
k=3 n/3 n— (logS)l,Ul
k=2 n/2

Our construction of highly robust TAS is based on the construction of par-

tial Steiner systems with small independence numbers, which are well-studied in
combinatorial design and extremal graph theory. Fix k and w, using the random-
ized construction of partial Steiner systems [45], we show that there exists a ran-
domized construction of (n, k,w)-TAS such that the fractional robustness tends
to 1 as n tends to infinity. Recently, in the context of randomness extractors,
Chattopadhyay and Goodman [14] have presented a deterministic construction
based on binary BCH codes and recent results in additive combinatorics. It is
also worth mentioning that in an earlier work of [14], Chattopadhyay, Good-
man, Goyal, and Li [15] constructed a deterministic construction for a special
Sp(n, 3,2) using the connections with the well-known cap set problems. Table 2
summarizes the best-known lower bound for the optimal robustness value of
(n, k,w)-TAS.
Construct VSS. A straightforward method for constructing trackable secret
sharing with generic approaches [9,29] would entail each party’s share size being
proportionate to the minimal access structure’s size, which is approximately (Z)
for (n,k,w)-trackable access structures with the largest size. This means that
the information ratio can be huge for access structures of large sizes. A natural
objective is to construct secret-sharing schemes more efficiently.

The Fano plane access structure—the S(n,3,2) Steiner triple system in
Fig. la admits an ideal secret-sharing scheme [39,40]. More generally, Marti-
Farré and Padré [39] provided a complete characterization of the ideal access
structures with an intersection number equal to one, i.e., structures in which at
most one participant is in the intersection of any two different minimal autho-
rized subsets. Notice that [39] characterizes which (n, k,2)-TAS admit an ideal
secret sharing. Therefore, an (n, k,2)-TAS is ideal if and only if each of its con-
nected components is a complete bipartite graph, a star, the Fano plane access
structure, or some specific small graphs.? Here, an access structure is a star if a
party is contained in every authorized set. Using this characterization [39] and
decomposition techniques [9,50], we construct secret sharing on (n, k,2)-TAS:
(i) Decompose the (n, k,w)-TAS into n stars, one for each party, and construct

3 Connected components of an (n,k,w)-TAS are the connected components of the
hypergraph corresponding to it.
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an ideal secret sharing for each star. (ii) Applying the well-known decomposition
techniques [9,50] yields a linear secret sharing with information ratio n.

Instantiating the above construction for the TAS with high robustness yields
a secret sharing for (n,k,2)-TAS with asymptotically optimal robustness. We
finally apply the generic compiler [4] that transforms any secret sharing to the
verifiable one to obtain the verifiable secret sharing.

Overall, TAS is a mathematically interesting object, and interesting connec-
tions can be discovered in future work.

3 Definitions and Model

This section introduces the core definitions. We add additional preliminar-
ies including commitments (with committing function Comm(-)) and zero-
knowledge succinct non-interactive arguments of knowledge (zkSNARKS) in the
full version.

3.1 Secret Sharing Related Definitions

TAS. We consider monotone access structures: if a set is in an access struc-
ture, then its supersets are also in the access structure. We also consider k-
homogeneous access structures where their minimal sets are of size k (2 < k < n).

Definition 1 (Access structure). Given a set [n] = {1,...,n} of n parties,
an access structure A on [n] is a collection of subsets of [n], A C 2"

We address a set in A as an access group or an authorized set. We now
define two key traits of the access structure of our interest, robustness and
trackability.

Definition 2 (Robustness). The robustness of an access structure A, denoted
as r(A), is the minimum number of parties that need to be corrupted to make
reconstruction impossible.

Definition 3. (w-trackability). An access structure is w-trackable if given
any w parties, there exists either none or a unique minimal set containing them.

We later provide equivalent definitions in Sect. 6. For a k-homogeneous access
structure defined on party set [n] and with w-trackability, we denote it as
(n, k,w)-TAS. In our context, a meaningful w satisfies w < k — 1.

Ideal Functionality for Non-interactive VSS Fyrvss. The NI-VSS ideal
functionality interacts with the dealer, an ideal adversary or the simulator S, and
n parties. The functionality is parameterized by an access structure A on party
set [n] and with the minimum size of its minimal sets being k and ¢ (¢t < k —1).
S can corrupt a set of ¢ parties. S can also corrupt the dealer. Note that the
access structure can be but does not have to be k-homogeneous or trackable.

Definition 4. (Non-interactive VSS, adapted from [17,32]). A protocol
N7 vss is a secure NI-VSS if it securely achieves the NI-VSS ideal functionality
defined in Fig. 4 assuming a public-key infrastructure.
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Fss

The simulator S specifies a set C C [n] of ¢ maliciously corrupted parties. S controls
C by determining their inputs to and observing their received messages from }'\t,’é%.
The simulator S controls the dealer in the same way if S corrupts it.

Dealing. (1) Upon receiving (sid, Deal, s*) from the dealer, and it is not corrupted
by S:

(i) Compute shares {s;};c[n). Obtain the receipt of committing s* and {s;};c[n) from

FCommit, denoted as cmt.

(2) Upon receiving (sid, Deal, s*) from S, and the dealer is corrupted by S:

(i) Wait for {s;};c[n) and cmt from S. If the shares violate A, ignore the message.®
After step (i):

(if) For ¢ € [n]\C, send s; to i. If the dealer is not corrupted, also send {s;};cc to S.
(iii) Store tab(i) = (s, s;) for all i € [n].

Verification. Upon receiving (Verify, i,cmt) from a party i, check if all shares are
consistent via Fcommit. If confirmed, send (Verify,,valid) to all parties; otherwise,
send (Verify, i, invalid) to all parties and abort.

Reconstruction. Upon receiving (Reconstruct) from any party, send (Reconstruct)
to S. If S responds with (Reconstruct), send (Reconstruct) to all parties and collect
responses §; € {s;, Silent} from each i € [n]\C and §; € {s;, L, Silent} from j € C. For
all i € [n], if tab(i) = (s*, 3;), add 7 to set I. Wait until I € A, send s* to all.

% The shares do not comply with access structure A if any set of shares corresponding to an

access group in A does not allow the reconstruction of a unique secret, e.g., the degree of the
polynomial is > t in a (¢, n)-threshold secret sharing.

Fig. 4. Ideal NI-VSS functionality _7—'{5,’%, parameterized by ¢t and access structure A.
ff;;g calls an ideal commitment functionality Fcommit such as [13].

3.2 Game Theory Definitions

Game Representation. In game theory, a normal-form game can be charac-
terized by parties and their action space and utility functions. In our setting, let
N, C [n] be the set of malicious parties where |Np,| < k—1, N, = [n] — N,
be the set of rational parties (|NV,| = (n — k 4+ 1)), X;en, A; be the rational
parties’ joint action space with A; being party ¢’s individual action space, and
{ui}ien, be their utility functions. We can then represent the game as a tuple
(N, Xien,.Ai, {u; }ien, ). Considering that parties’ interactions are sequential in
our proposed mechanisms, we additionally need to capture parties’ knowledge of
past actions and beliefs of others’ future actions when describing the game. In
our design, the mechanisms are public knowledge, and parties act openly. This
means that parties have complete information about the game structure and
perfect information about historical moves.

Solution Concepts. A strategy s; of party i is a probability distribution D over
action space A;, with all mass concentrated at one action for a pure strategy. We
denote i’s strategy space as D;. We denote malicious parties’ joint strategy space
as Djs (which is unknown). The utility function of ¢ can then be described more
explicitly as a function mapping all parties’ strategies to real-valued utilities,
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u; : (Xjen,Dj) x Dy — R. A strategy profile then records the strategies of all
rational parties. Strategy profiles yielding certain desired properties are called
equilibria or solution concepts. For example, in a Nash equilibrium (NE), no party
can increase its utility by unilaterally deviating from the equilibrium strategy.
The solution concept we adopt is Subgame Perfect Equilibrium (SPE [47]),
where the equilibrium strategy profile specifies the NE strategies for each party
for every subgame. Here, a subgame at a step (where any party needs to make
a move) is the continuation of the complete game from this step. SPE is a
refinement of NE as NE is susceptible to empty (non-credible) threats.

Definition 5. (SPE [47]). A Nash equilibrium (NE) is a strategy profile s where
no party increases utility by unilaterally deviating from s. A subgame perfect
equilibrium (SPE) is a strategy profile s that forms an NE for any subgame.

Fairness Hazard. Given an equilibrium strategy profile s*, we now formally
define “fairness”. Denote the honest non-colluding strategy played by party ¢ as
s the strategy profile of all other rational parties in equilibrium as s*,, and
the arbitrary strategy profile of malicious parties as sy;.

Definition 6. (Fairness). For all i € N, Vs; € D;Vsyy € Dy,
wi(st,s*, sar) = ui(si, 8, 80)-

This means that regardless of malicious parties’ actions, the honest non-
colluding strategy is the dominant strategy for rational parties in equilibrium.
A collusion deterrence mechanism is fair if it ensures fairness for every non-
colluding rational party in equilibrium. If a mechanism does not ensure fairness
given (k — 1) malicious parties, we capture the risk of falsely implicating non-
colluding parties with the fairness hazard notion.

Definition 7. (Fairness hazard). Given (k — 1) malicious parties, fairness
hazard counts the number of parties among (n — k + 1) rational parties whose
utilities can be strictly increased by not playing the honest strategy.

3.3 Model

System. A dealer shares private input s* among a group of n parties with a
secure VSS on access structure A. The share-holding parties do not have private
inputs and are only allowed to reconstruct after certain conditions are satisfied.
This is controlled by an external function, and we focus on ensuring secrecy
before the conditions are met. These parties can hold arbitrary prior knowledge
about the secret input and can communicate over any unobserved channels. We
aim to discourage parties from learning non-trivial information about the secret
s* for a privacy protection window A*. We discuss setting A* in Sect. 4.3.

Assumptions. We assume up to (k — 1) of the n parties are malicious, and
the malicious adversary corrupts parties adaptively. The remaining parties are
rational. We assume rational parties are initially incentivized to participate in
the VSS application. We also assume that they have quasi-linear utilities and
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that there are no unknown and unbounded externalities from unmodeled third
parties. When they collude, we assume they know which of their inputs are being
used in the reconstruction.

4 The First Collusion-Deterrence Mechanism

We first look at mechanism (Wy,P) in a single run of IINryss. Recall that a
mechanism is simply a public algorithm consisting of a winner selection rule and
a payment rule. We start with an honest host that implements the mechanism
and has access to private authenticated channels. We later employ a secure
distributed system (without private channels) as the host in Sect.4.2. We then
extend the analysis to repeated runs of VSS in Sect.4.3. We discuss the second
mechanism providing the optimal fairness in Sect. 5.

4.1 Single-Shot Collusion Deterrence with an Honest Host

Order of Events. Since we allow colluding parties to use any collusion protocol,

their action space can then be abstracted as follows: collude (C), not collude (C),

report their knowledge (R), and not report (R). Consider the following secret-
shared secret reconstruction game G with a host:

— (Stage 1) Rational parties decide whether to collude to learn about a secret

(C) or not (C).
— (Stage 2) Rational parties decide whether to submit a report to the host

about the learned information (R) or not (R).

Our goal is to make C the equilibrium strategy for rational parties. We first
assume an honest host Hy,.

The Collusion-Deterrent NI-VSS Protocol. As a first attempt, consider the
following intuitive protocol: (1) The dealer shares the secret among the n parties
with TIn1.vss and sends the secret to the honest host Hj. (2) Hp, then accepts
reports of non-trivial knowledge about the secret through private authenticated
channels. (3) When there exist correct reports, Hj, executes the mechanism. The
first party that submits a correct report is picked as the winner and rewarded
an amount A,. Others are all marked as colluders and penalized an amount A,.

There are three immediate issues about framing in the above simple protocol.

— First, parties can submit many guesses of non-trivial information about the
secret even if collusion does mot happen, treating the mechanism as an oracle
for answering queries about the secret.

— Second, if the secret is not a random string, the parties may already have some
non-trivial private knowledge about it (e.g., because they know the dealer),
making framing others possible.

— Third, the dealer can collude with a share-holding party to frame others.

Dealing with False Alarms. To resolve the first issue, we penalize the sender
of each wrong report the amount \,. Further, to discourage random guesses, we
introduce the non-triviality parameter ~ € [0,1), which we provide details in the
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full version. Roughly, if the information specified by the reporter can be guessed
correctly in one shot with probability > ~, then we consider the information
gain to be trivial and label the report as wrong.

Let V > 0 be the upper bound of the worth of secrets that the system sets
out to protect. We then let ), satisfy the following

YV + M) < (T =7)Ap (1)

where the left-hand side is what the party expects to receive from a correctly
guessed report, and the right-hand side is what the party loses in expectation.

For the second issue, we ask the dealer to generate ¢ random string(s) (¢ > 1)
and generate shares for the n parties for both the actual secret and the random
string. The shares are permuted uniformly at random and then sent to the
recipients. We then discourage the informed fake reports by asking a reporter
to specify the corresponding inputs used in learning the non-trivial information
and ensure that they expect a reduced utility by submitting fake reports:

1 q q
—— F+ —— I < ——— L=, = A+ g < g1 — )\, 2
(7 i < DN = QA <al =N @)
Here, qul is the probability of picking the share corresponding to user’s actual

secret (which the informed party has non-trivial prior knowledge of), and q_%lfy
is the probability of picking one of the other shares and guessing some nontrivial
information about a random secret correctly. In these cases, the informed party
earns a reward \,. Otherwise, the party expects the penalty A,. Note that the
random secrets are only to discourage false accusations from informed share-
holding parties without participating in collusion. They are not used to hide the
true secret when collusion actually takes place.

For the last problem, sampling random secrets and permuting shares are not
sufficient anymore. One way is to charge a proper service fee \g from the dealer
so that she expects to pay more than what she expects to earn from fake reports:

(n—1)As > A, 3)

An alternative is to employ MPC in the sharing phase so that the dealer does
not learn the shares or the permutation similar to [25]. We provide details in the
full version.

After adding the above components, we summarize the single-shot collusion
deterrent NI-VSS protocol in Fig. 5. We next determine the parameters.

Parameterize ¢ and Payment Amounts for the Non-collusion Outcome.
If the secret is a random string, e.g., a secret key, we can let ¢ = 0. Otherwise,
we can let ¢ = 1. What remains is deciding the payment amounts A, and A,
such that we achieve the non-collusion outcome.

Under the winner selection rule Wy, there is at most one winner. When there
are up to (k — 2) malicious parties, there are at least 2 rational parties in any
access group in the access structure. Then for rational colluding parties in any
access group, at least one of them becomes the winner with probability < 1/2.
Then we only need to ensure that the relatively “slower” party (who always
exists) is disincentivized from collusion.
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Preprocessing

@ A dealer holds a secret z(?) with worth < V, and obtains ¢ > 0 unbiased random
secrets xm, R 2?9, The dealer permutes the secrets at random. Note that V' is a
system parameter.

Dealing

(D The dealer secret-shares the (g + 1) permuted secrets z©, ..., %9 among the n
parties via IInrvss.®

Mechanism setup

(@ The dealer pays the host Hj service fees nAs; and sends the permuted secrets
and the parameterization of the mechanism (Wy,P) to Hj, including the secret
protection time window A*| triviality parameter v, collusion penalty amount A, and
the winner bonus amount \,.. The service fees (n)\;) will eventually be distributed to
each of the n parties that are not marked as colluders during the A* time window.
(@) If the service fee amount is compatible with A, (Eq. (3)), and other parameters
satisfy Eq. (1), (2) and Proposition 1, Hy, accepts reports about non-trivial knowledge
about any secret from all parties until A* time has passed. Otherwise, Hj aborts.
Mechanism implementation

(@ Let there be m reporters (m > 1). Hy records the m senders and committed
reports in a public FIFO queue,

((p1, Comm(g1), f1,Z50), .., (P, Comm(gum), fins Zo)))

Here, a?;,?) (j € [m],p; € [n],i; € {0,...,q}) is the share that the j-th reporter
p; received for secret (%), and Comm(g;) is the commitment of the the non-trivial
information gain g;, which is the function f; evaluated at secret z(),

(® Parties privately reveal their reports to Hj. For each de-committed report, Hy,
checks if the function is y-non-trivial (described in the full version) and the correctness
of the reported value. If verification passes, H}, considers ¢ for winner selection.

®) H executes Wy: Pick the first party with the correct report as the winner and
mark all other parties as colluders.

Hj, executes P: The winner receives reward \,. Each colluder is fined with penalty
Ap. Each reporter submitting an incorrect report is penalized A,,.

% Because of the ¢ random strings, we let the sample space of the secret satisfy > ¢ + 1.

Fig. 5. II{;_vgg: Single-shot collusion-deterrent NI-VSS with an honest host Hy,. A* is
set by the dealer according to the needs of the application.

Now we are ready to state the equilibria of the game G.

Proposition 1. Consider the secret reconstruction game G with an honest host
in protocoll1&, \,ss and a secret of worth at most V. Given (k — 2) malicious
parties, the SPE under mechanism (Wq, P) is each rational party playing C in
Stage 1 (i.e., the non-collusion outcome) if X, > 0 and $(A, + A — A,) > V.
(W, P) is fair in the same setting. Its fairness hazard is (n — k).

Its formal proof is deferred to the full version and utilizes backward induction.
Intuitively, given (k—2) malicious parties, any access group has at least 2 rational
parties. If collusion has happened, the rational parties are incentivized to report
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collusion to escape the penalty A,: in any other strategy profile, one can improve
its utility by changing their actions to R (if not already). Reasoning backward,
the slower parties who cannot become the winner with a probability higher than
% are disincentivized from collusion. Note that we make black-box use of the
NI-VSS protocol IIniyvss so we only need to prove the non-collusion outcome.

4.2 Distributed Host and Privacy-Preserving Report Verification

Order of Events. We now replace the honest host in I} {45 (Fig.5) with a
secure distributed system and update details concerning report verification. The
updated protocol HE’I%SS is summarized in Fig. 6. Specifically, the report verifier
is an algorithm run by parties in the distributed system. We denote this public
verifier as V. All messages to and from V are observed by all.

In step §), the potentially implicated parties prove their innocence with
zkSNARKs. For k = max{w,1} + 1, only one party needs to generate the
proof, and Groth16 [27] or Plonk [22] can be employed. Otherwise, collaborative
zkSNARKSs [42] can be utilized for proof generation. If there are non-responding
parties during the proof generation, one can resort to publicly auditable MPC
for generating the proof. The silent parties are marked as colluders.

We can now remove the trusted host and re-state the result.

Theorem 1. Consider the secret reconstruction game G with a distributed host
n pmtocolH}/\,’I‘_A‘/}’SS and a secret of worth at most V. Given (k — 2) malicious
parties, the SPE under mechanism (Wg, P) is each rational party playing C in
Stage 1 if Ay > 0 and $(\, + As — Ar) > V. (Wq,P) is fair in the same setting.
Its fairness hazard is (n — k).

Setting Proof Collection Window A. When setting A, we take into account
the offline time of participants 1, network delays d that can be induced by
potential distributed denial-of-service (DDoS) attacks, and proof generation time
d3. Specifically, we set A = max{d;,d2} + d3. 0; depends on the application
scenario. For typical blockchain applications, we can give a conservative estimate
of multiple weeks. For d5, based on the DDoS attack report in 2024 Q2 released
by Cloudflare [28], less than 1% of the network-layer DDoS attacks last over
3 hours. We can set it conservatively to multiple weeks as well. For d3, the
relatively more expensive collaborative zkSNARKs [42] only takes hundreds of
microseconds per constraint. Overall, we can set A to be multiple weeks.

Online Dealer. If the dealer can be online periodically or at a known time
(before a pre-determined proof collection window), we can adopt an alterna-
tive approach for report verification in step (5): the dealer can directly generate
equality or inequality proofs for submitted reports.
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Dealing

(D The dealer generate shares for the (g 4 1) permuted secrets (%, ..., @ for the
n parties via IInr.vss. The dealer sends cmt to V, including the commitments of the
shares which we denote as (Comm(fﬁgo)), ey Comm(igfn)). The dealer then sends de-
commit information to the corresponding servers.

Mechanism setup

(@ The dealer pays V service fees n\; and sends the parameterization of the mecha-
nism (W, P) to V, including the secret protection time window A*, triviality param-
eter -, collusion penalty amount A\, and the winner reward amount \,.

(® If the service fee amount is compatible with A, (Eq. (3)), and other parameters
satisfy Eq. (1), (2) and Theorem 1, V accepts reports about non-trivial knowledge
about any secret from all parties until A* time has passed. Otherwise, V aborts.
Mechanism implementation

(@ Let there be m reporters (m > 1). V records the m senders and committed reports
in a public FIFO queue,

{(pr, Comm(gn). fr, (. 75)), - (i, Comm(gmn), fon, (F5707 7400))
Here, (SC( ]),fffj)) (j € [m],p; € N,i; € {0,...,t}) is the de-commit information for

the commitment of share & ~( /)

~(1J

with rm) being the randomness used in committing

. The rest are the same as Fig. 5.
@ If the de-commit information in a report is incorrect, V directly marks the sender as

colluder For each revealed report (pj, g5, f5, (xz(f]]),f;,i ))) with correctly de-committed

share xp , V waits for an evidence collection time window of A. During the period,
any (k — 1) parties in any authorized group with p; can submit a zero-knowledge
proof 7 that proves the following: Either the function f; is trivial (described in detail
in the full version), or f;(Z%)) # g, and

— Their inputs are correct with respect to the commitment of shares.

— Function f; is being evaluated at the reconstructed secret.

If no valid proof is provided in time, V considers p; as a candidate for winner selection.
Otherwise, V marks p; as colluder.

®) V executes mechanism (W, P).

Fig. 6. T\ Weg: Single-shot collusion deterrence with distributed verifier V. We omit
the pre-processing routines that are the same as ITf} ygs in Fig. 5. The winner selection
rule W can be substituted with Wy or Wj.

4.3 Collusion Deterrence in Repeated VSS Runs

We next discuss the reconstruction game with d secrets (d > 1) where each secret
is of individual worth < V.

Order of Events. We denote this d-secret game as G4, consisting of d instances
of the original reconstruction game G. We summarize the repeated collusion-
deterrent NI-VSS in Fig. 7, which is slightly updated from Fig. 6. Overall, repe-
tition essentially only changes the parameterization of the mechanism.
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Preprocessing

(© Each of the d dealers of each secret (> (i € [d]) obtains ¢; > 0 random secrets
20D 2@ yniformly at random. Each dealer permutes their (gi + 1) secrets at
random.

Dealing

(D Each dealer i generate shares for the (g; + 1) permuted secrets OO gl

for the n parties via IInr.vss. The dealer sends cmt to V, including the commitments
of the shares
(Comm(#*"), ..., Comm(&{da:D))

The dealer then sends de-commit information to the corresponding servers.

(® If the service fee amount is compatible with A, (Eq. (3)), and other parameters
satisfy Eq. (1), (2) and Corollary 1, V accepts reports about non-trivial knowledge
about any secret from all parties until A* time has passed. Otherwise, V aborts.
Routines (2) and (4)-(6) are the same as Fig. 6.

Fig. 7. Repeated collusion deterrence with a distributed verifier V.

Given a finite and known d, we achieve the same results as in Theorem 1 as
we can still apply backward induction from the end game. However, given an
infinite or unknown d, as observed in prior works [24], there is no end game,
and the outcome depends on how patient the parties are. Let § € [0, 1] be the
discount factor for how the most patient party among the n parties discounts
future returns. Higher 6 means that they are more patient and value future
returns closer to current returns. We then have the following corollary.

Corollary 1. Consider the d-secret reconstruction game Gq with a distributed
host in pmtocolﬂx’l‘_}\(/oss, where each secret is of worth at most V, and the most
patient party has discount factor 6 € [0,1]. If d is known and finite, Theorem
1 holds. Otherwise, given (k — 2) malicious parties, the SPE under mechanism
(W, P) is each rational party playing C in Stage 1 if A, > 0, 2(Ap+As—A,) >V
and Eq. (4) holds.

) 1 As
T—57 < 5(/\7-+/\s—/\p)—m (4)

(Wy, P) is fair in the same setting. Its fairness hazard is (n — k).

We present its proof in the full version. Intuitively, we make R appealing
in Stage 2 by letting repeatedly colluding with each other without reporting
undesirable compared with receiving reward A, from reporting. Then reasoning
backwards, the slower parties are discouraged from colluding in Stage 1.

Setting Privacy Protection Window A* for Repeated Games. In known
finite runs of VSS, the dealers determine A* according to the needs of the appli-
cations. Otherwise, if one implements the penalty by having each party make a
deposit in the beginning and depriving a party of A, of its deposit if it is marked
as a colluder, the deposit can be set according to the self-insurance in [24].



Disincentivize Collusion in Verifiable Secret Sharing 53

5 The Second Mechanism

We now introduce the second mechanism (W1, P) utilizing trackability of access
structures. We start with a single run of VSS with a distributed host and then
extend the discussion to repeated VSS runs.

5.1 Impossibility

We first define the untrackability of access structures and establish that given
untrackable access structures, one cannot achieve a zero fairness hazard while
ensuring non-trivial effectiveness.

Definition 8 (Untrackability). A k-homogeneous access structure A is
untrackable if there exist a set X of (k— 1) parties such that any subset X; C X
co-exist in at least two distinct minimal sets A, B € A* where AN B = X,.

An example of an untrackable access structure is the threshold access struc-
ture A®) = {A C [n] : |A| > k} where parties can substitute each other. We
now state the impossibility result.

Proposition 2. For VSS defined on an untrackable access structure, there does
not exist an effective collusion deterrence mechanism with O fairness hazard in
the current model.

We present the proof by contradiction in the full version. Informally, let us
assume such a mechanism exists. Denote the untrackable set of (k — 1) parties
as S. By definition, they appear in two minimal sets. If the two non-overlapping
parties in the two sets are slow, then colluding but not reporting gives them
the highest utility. This is because the mechanism has 0 fairness hazard, and it
cannot distinguish between exactly one of the two sets colluding or both sets
colluding. Then for it to be effective, one party in S needs to suffer a utility loss,
which results in this party being unwilling to report. We repeatedly apply this
reasoning until arriving at the contradiction of the existence of such a mechanism.

5.2 Optimally Fair Collusion Deterrence with TAS

Optimally Fair Single-Shot Collusion Deterrence. We adopt the same
protocol in Fig.6 but with two slight changes: First, the winner selection rule
in the mechanism is now parameterized with Wy, i.e., HE’S&%S; second, the
underlying NI-VSS protocol IIN1yss is now constructed on (n, k, w)-TAS.

Recall that W (presented in Sect.2.1) states three rules. Let there be m
reporters. Rule 1.A applies when m > k, and it marks the last free rider (i.e.,
a party that does not make up a complete access group with any other (k — 1)
reporters) as the colluder. Rule 1.B applies when w < m < k or when there is
no free rider, and it marks the last reporter as the colluder. Rule 2 applies when
there are exactly w reporters. It first locates the minimal set that contains these
parties and marks the remaining members in the access group as colluders.

We now formally state the following theorem.
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Theorem 2. Consider the secret reconstruction game G with a distributed host
m protocolHK,’I‘_N‘}SS constructed on an (n, k,w)-TAS and a secret of worth at most
V. Given up to (k—1—w) malicious parties, the SPE under mechanism (W1, P)
is each rational party playing C in Stage 1 if \p > 0 and %H(w)\p—i—w)\s—)\r) >V.
(W1, P) is fair if there are up to (k — 1) malicious parties, yielding a fairness
hazard of 0.

We provide a visual proof in Fig. 1. The formal proof for the effectiveness of the
mechanism given up to (k — 1 — w) malicious parties shares a similar rationale
to the proof in Proposition 1. So we slightly simplify the first part of the proof.

Proof (of Theorem 2). We first solve for the SPE of the sequential game under
mechanism (W7, P) with backward induction. Consider any authorized set.
When there are up to (k—1—w) malicious parties, this authorized set has at least
(w + 1) rational parties. If no group colludes, every rational party receives As.
If one group colludes, in the second stage, reporting is the NE because A\, > 0.
Note that at least one rational party does not win with a probability higher than
1/(w+1). Then in the first stage, this slowest party selects action C because its
expected returns from Cis < V + == (X, + \y) — =25\, < As. If more than one

w—+1 w—+1
access group collude, then in the second stage, we consider the following cases:

(a) All other colluding parties have reported. Then the remaining party picks R
since R results in penalty A, according to rule 1.B in Wj.

(b) All but one of the other colluding parties have reported. Considering that
the last party picks R in case (a), then the other remaining party picks R
because R results in penalty A, according to rule 1.A in W;.

(¢) All other groups have revealed their members. The parties in the remaining
colluding group choose R because R results in penalty Ap after repeatedly
applying the reasoning in case (b).

(d) One group has revealed its members. Any party in other colluding groups
chooses R because R results in penalty Ap after repeatedly applying the
reasoning in scenario (c).

(e) One group X has revealed (k — 1) of its members. Before any party i in
other colluding groups report, the only remaining party = € X picks R to
avoid penalty by rule 1.B in Wy. If any ¢ takes action R, z would pick R.
However, using backward induction, i picks R to avoid the penalty by rule
1.A. As a result, z picks R.

(f) Ome group X has revealed w of its members. Any party ¢ not in X does not
share a group with these w parties by the definition of w-trackability. The
rest members in X and i choose R by repeatedly applying the reasoning in
scenario (e).

(g) One group X has revealed u < w of its members. Any z in the same colluding
group with the u reporters (not necessarily X) picks R because A\, > 0.
Consider any colluding party 4 that does not share a colluding group with
the u reporters. 7 only picks R if along with (w — 1) parties in its collusion
group, it can outrun the fastest remaining (w — u) parties in any group
containing the u existing reporters.
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The implication of the case (g) is that in a group X with the fastest w
parties, these fast parties pick R in Stage 2. Other parties in other colluding
groups choose action R. Then the slowest party in group X picks C in Stage
1. Repeatedly applying backward induction, in each access group, the slowest
parties are disincentivized to collude in Stage 1.

We next examine the fault tolerance of the mechanism for achieving fairness.
Consider up to (k — 1) malicious parties. If they act rational when colluding
with rational parties, then we achieve the non-collusion outcome and as a result,
fairness. Otherwise, collusion takes place in access groups with at least (k — w)
malicious parties, and at most (w — 1) parties can co-exist in multiple groups.
When w = 1, the malicious parties need to be in the same access group to cause
successful collusion. The only remaining rational party picks R in Stage 2, which
results in the malicious parties being marked as colluders. When w = k — 1,
the malicious parties can only possibly frame non-colluding parties by being in
the same access group, leaving no additional party to facilitate collusion outside
of this access group. In both cases, the fairness hazard is 0 regardless of the
malicious parties’ actions. More generally, when 1 < w < ¥£2 (ie., (k—1)— (k—
w)+ (w—1) < (k—w)), there is at most one successful colluding group. (This is
because when a group has more than w rational parties, they are disincentivized
from collusion by the effectiveness of the mechanism.) Rational parties in this
group are incentivized to collude if they are fast. After collusion, if there are
exactly w rational parties in this group, they pick R in Stage 2, become winners
and receive A,. The reporters then implicate a single collusion group and only
malicious parties are penalized. If this collusion group contains < w rational
parties, if only the rational parties report, W1 dismisses the reports. When the
malicious parties also report, either this collusion group is located or a late
(malicious) reporter (from another access group) is marked as a colluder.

When 542 < w < k—1, there can be at least two successful colluding groups.
Same as before, rational parties in any of these groups are incentivized to collude
if they are fast. If there are exactly w rational parties in any of these groups,
rational parties in the fastest such group pick R in Stage 2, become winners and
receive \,.. If all collusion groups contain less than w rational parties, either this
colluding group is located when sufficiently malicious parties in this group report
or a late (malicious) reporter is marked as a colluder. Overall, the mechanism
achieves fairness and has a fairness hazard of 0.

Optimally Fair Collusion Deterrence in Repeated VSS Runs. Now we
consider the d-secret reconstruction game in protocolﬂxixés summarized in
Fig. 7. We state the following result and defer the proof to the full version. The

intuition is similar to the intuition behind Corollary 1.

Corollary 2. Consider the d-secret reconstruction game Gq with a distributed
host in protocoll'[x’[‘_)\"}ss, where each secret is of worth at most V', and the most
patient party has discount factor 6 € [0,1]. If d is known and finite, Theorem 2
holds. Otherwise, given (k—1—w) malicious parties, the SPE under mechanism
(W1, P) is each rational party playing C in Stage 1 if Ap >0, w+1 (WAp +wAs —
Ar) >V, and Eq. (5) holds. (W1, P) is fair if there are up to (k — 1) malicious
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parties, yielding a fairness hazard of 0.

5 1 As

Proof (sketch). Similar to the proof of Corollary 1, we consider the alterna-
tive strategy of always colluding and never reporting. This strategy (C R) gives
returns

X VA
=0

The alternative desired strategy of (C R) yields returns at least

V+pA+As) = (1 =p)A,

where p is the probability of a party becoming the winner. For the slowest
rational party, p < w%rl Letting the second quantity be greater than the previous
quantity gives us Eq. (5). This means that rational parties are discouraged from

playing strategy (C R). The rest follows from Theorem 2.

6 TAS and Trackable Secret Sharing Schemes

6.1 Section-Specific Preliminaries

An (n,k,w) — design is an k-uniform hypergraph with pairwise intersections of
hyperedges of size < w. The independence number a of a hypergraph is the
maximum size of a set of vertices in the graph that contains no edges.

A Steiner system with parameters n, k,w, denoted as S(n,k,w), is an n-
element set S together with a set of k-element subsets of S (called blocks) such
that each w-element subset of S is contained in exactly one block. The partial
Steiner system, denoted Sp(n,k,w) is obtained by relaxing the condition that
each w-element subset is contained in a unique block to the condition that each
w-element subset is contained in at most one block.

Ezample 1. The Fano plane (Fig. la in Sect. 1) is a S(7,3,2) Steiner system.

A secret sharing is ideal if the share size of every party equals to the secret size.
An access structure is ideal if an ideal secret sharing realizes the access structure.
An access structure is a star if a party is contained in every authorized set.

6.2 Bound on Optimal TAS

This section presents an upper bound on the size of TAS. We begin with an
equivalent formulation of TAS from a coding theory perspective and prove it in
the full version. Recall that (n, k,w)-TAS denotes a k-homogeneous w-trackable
access structure over [n], and A* represents the minimal access structure of A.
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Lemma 1 (An equivalent definition of TAS). An access structure A is
(n, k,w)-trackable if and only if A*, represented as a subset of F3', is a binary
k-weight code with a Hamming distance at least 2k — 2(w — 1).

Theorem 3. Let A be an (n, k,w)-TAS. It holds that |A*| < (7) - (f})_l, where

the equality holds if and only if a Steiner system S(n,k,w) ea:i;fs.

Proof. We shall employ the Johnson bound for binary code to derive the result.
By Lemma 1, A* is a binary code with the following properties: (1) Every code-
word in A* has weight k. (2) Distance between any two distinct codewords in
A* is at least 2k — 2(w — 1). Applying the well-known Johnson bound (Theorem
4 for the latter case) yields

n, (n—1) (n—(w-1))
ot L k—(w—1) Il

R = NWEVE

The equality happens if and only if a Steiner S(n, k,w) exists.

|A| < A(na 2k — 2(w - 1)7k) < |_

Johnson Bound. Let C(n,d,w) be the set of all binary codes with length n
and minimum distance d. Let every codeword in C(n,d,w) have weight w. Let
A(n,d,w) be the largest size of a code in C(n,d,w).

Theorem 4 (Johnson bound [30]). Let n,d,w € {1,2,...,} such that d < n
and w < n. If d > 2w, then A(n,d,w) = 1. Otherwise (d < 2w), define a =

d/2 if d i _ _

/2 ifdis (‘aven. Then A(n,d,w) < LQL("71)~- | (=ta) ||| where
(d+1)/2, otherwise. whe @

|| is the floor function. Further, it holds that A(n,26,w) < % - 7=1... n*TM

with equality if and only if a Steiner system S(n,w,w — & + 1) ewists.

6.3 Optimal TAS

This section presents results and constructions of optimal TAS. By Theorem
3, constructing such structure reduces to the constructions of binary constant-
weight codes, particularly Steiner systems for some parameter regime. Construct-
ing the maximum size of constant weight codes A(n,d,w) and Steiner systems
in general is a notoriously challenging problem*. The construction of optimal
A(n,d,w) for large values of n,d,w is a long-standing open problem in cod-
ing theory. We first present some existing constructions on Steiner systems and
binary constant weight codes. The following result characterizes the size of opti-
mal 2-trackable access structures with minimal sets of size 3 for all n, and 3-
trackable access structures with size-4 minimal sets for almost all values of n
except for n =5 mod 6.

* For example, A(111,20,11) < 111, with equality if and only a projective plane of
order 10 exists.
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Theorem 5 ([31,37,49]). The following statement holds.

L%L”Tfl“ ifn#5 mod 6

|A*(n,3,2)| = A(n,4,3) = {LSL”TH —1 4ifn=5 mod6

nn=Un=2)  tp =92 or4 mod 6

24
|A*(n,4,3)| = A(n,4,4) = { 2=D0=38) e =1 043 mod 6

W ifn=0 mod 6

More on Steiner Systems. Steiner systems are not universally attainable for
all parameters; their existence hinges on meeting specific natural divisibility cri-
teria. For example, a S(n, 3, 2) exists if and only if n = 1,3 mod 6. Keevash [33]
demonstrates that, for general S(n,k,t) Steiner systems, these essential condi-
tions also serve as sufficient conditions, granted that n is adequately large.

6.4 Near-Optimal TAS
This section presents constructions of some near-optimal TAS.

Polynomial-Based Constructions. The first construction in Fig. 2 is based
on Reed-Solomon codes. This construction is common in combinatorial design
(see Theorem 4.11 [3]). It is also used as a fundamental building block in Nisan-
Wigderson pseudorandom generators [41]. The construction works when k is
of order y/n. We prove that the robustness of this access structure is n/k. To
handle the case where k is larger, we naturally extend this construction to Fig. 3
based on algebraic geometry codes with a slight loss in other parameters. We
emphasize that these constructions are efficient.

Theorem 6 (Near-optimal TAS with Reed-Solomon codes [3]). For
every k > w > 1 and n > 2k?, there is an efficient construction of (n,k,w)-
trackable access structure A satisfying

|A*] > (n/2k), and r(A) = n/k.

Theorem 7 (Near-optimal TAS with AG codes). For every k > w > 1
and k = O(n), there is an efficient construction of (n,k,w)-trackable access
structure A satisfying

|A*| = p*79, and r(A) =n/k,
where g is the genus of the divisor used in the AG codes.

A Randomized Constructions from Combinatorial Design. Some vari-
ants of the Rodl nibble algorithm [45] are utilized to construct asymptotically
optimal partial Steiner systems. Subsequent works [26,34] have improved the
o(1) term.

Theorem 8 ([26,34,45]). For any fized k > t, there is a partial Steiner system
Sp(n, k,t) of size at least (1 —o(1)) - (7) - (k)_l,

t t
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6.5 TAS with Optimal Robustness

This section presents constructions of TAS with asymptotically optimal robust-
ness based on partial Steiner systems with high independence numbers.

Equivalence Between Robustness and Minimum Vertex Cover of
Hypergraphs. Recall that the robustness of an access structure is the minimum
number of parties to corrupt to make reconstruction impossible. The robustness
is equivalent to the minimum cover of the hypergraph representing the access
structure — each party is a vertex, and each authorized set is a hyperedge. By the
monotone property, the robustness equals the minimum cover of the hypergraph
representing the minimal access structure.

It is well-known that the dual of the minimum cover problem is the maximum
independence set problem. The sum of the minimum cover and the maximum
independence set in a hypergraph equals the total number of vertices. Thus,
a high robustness access structure is equivalent to a hypergraph with a small
independence number — the size of the smallest independent set. We formalize
the above observation as follows.

Proposition 3. For any access structure A C 2", r(A) = n — a(A*).

Our construction of high-robustness structures is then reduced to the con-
struction of partial Steiner systems with small independence numbers, which are
well-studied in combinatorial design literature.

Theorem 9 ([46]). For anyn >k > w € N with w > 2, there exists a partial
Steiner (n, k,w)-system with independence number a(G) < c- ni=t ((log n)ﬁ),
where ¢ = ¢(k,w) is a constant depend only on k,w.

Theorem 9 is tight up to the constant factor c. To prove it, R6dl and Sinajova uti-
lize the Lovasz Local Lemma to demonstrate that a randomly chosen k-uniform
hypergraph qualifies as such a design. Thus, their finding establishes the exis-
tence of such designs but does not offer a direct construction method. In the
context of randomness extractors, [14] presented a deterministic construction.

Theorem 10 ([14]). For any constants k > w € N, there are explicit partial
Steiner (n, k,w)-systems (G, )nen with independence number

2(k41—w)

2(k—w) e
a(G) = Chw N F if k is even,
n) =
Cht1w M T ) if ks odd,

where ¢y, = C - k* for some global constant C.

The construction for the odd case is based on the construction of the even one.
There is a slight loss in the parameters. Observe that the independence number
is sublinear in n if ¥ < 2w. Liu and Mubayi [36] provide constructions when
k > 2w for certain pairs of (k,w). Their proof is based on a recent result about
the maximum size of a set in Z{, avoiding 6-term arithmetic progression.

Consequently, TAS with asymptotically optimal robustness can be obtained
from the above constructions.
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Corollary 3 (Asymptotically optimal robustness). For any n > k >
w € N, there is a (n,k,w)-TAS A with robustness r(A) = n(1l — c-n~%) where
¢ =c(k,w) and € = e(k,w) are constants depend only on k,w.

6.6 Secret Sharing and VSS Schemes

This section presents our constructions of secret sharing schemes.

Realizing Trackable Access Structures Through Generic Construc-
tions. A straightforward method for constructing trackable secret sharing using
generic approaches [9,29] would entail each party’s share size being proportion-
ate to the minimal access structure’s size. For instance, Benaloh and Leichter’s
method for any access structure relies on monotone formulae [9]. It’s evident
that a formula with a size equal to the minimal access structure can represent
any access structure. Employing the Benaloh-Leichter construction, the secret
share’s size is proportional to the minimal access structure’s size, which can be
approximately (Z) for (n, k,w)-trackable access structures with the largest size.

Some Ideal Secret Sharing Constructions. The above construction works
for any access structure, but the information ratio can be huge for access struc-
tures of large size. Our objective is to construct secret-sharing schemes more
efficiently.

The Fano plane access structure (the S(n,3,2) Steiner triple system) admits
an ideal secret-sharing scheme [39,40]. Marti-Farré and Padro [39] provide a com-
plete characterization of the ideal access structures with an intersection number
equal to one—structures in which at most one participant is in the intersec-
tion of any two distinct minimal qualified subsets. Note that this is equivalent
to characterizing which (n,*,w = 2)-TAS® admit an ideal secret sharing. An
(n,*,2)-TAS A is ideal if and only if every connected component of A is a com-
plete bipartite graph, a star, the Fano plane access structure, or some specific
small graphs. This implies that most (n, k,2)-TAS are not ideal. However, using
this characterization and decomposition techniques [9,50], we state the following
result that improves the information ratio of generic constructions and present
the proof in the full version.

Theorem 11. There is an efficient construction of any 2-trackable secret shar-
ing with information ratio O(n), where n is the number of parties.

7 Related Work

Traceable Secret Sharing. When given access to a private reconstruction
program created by colluding parties, the traceable secret sharing (T'SS) primi-
tive [12,25] allows tracing at least 1 colluding party with non-negligible probabil-
ity (defined as traceability) and never implicates non-colluding parties (defined
as non-imputability). Aside from a sharing and a reconstruction algorithm, TSS

5 The size of minimal sets is not necessarily the same.
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specifies a tracing algorithm for generating proofs of guilt from a reconstruc-
tion program and a judging algorithm for verifying the proof. To ensure non-
imputability, the sharing phase in [25] utilizes a secure 2PC such that the dealer
does not learn the complete shares of a party. The size of shares in the con-
structed TSS is quadratic in the size of the secret. [12] improves the quadratic
overhead to linear for the widely used Shamir [48] and Blakley [11] secret sharing
schemes but only if the reconstruction box outputs the entire secret (instead of
anything non-trivial about the secret as in [25]). Overall, the setting in TSS is
more benign: computation circuits are known; one can query the pirate recon-
struction program; and at least one share holder submits a share individually.

Utilize MPC Hardness. Assumeing that computing many hashes on a secret
quickly is hard using MPC but feasible for an individual knowing the secret,
Dziembowski et al. [21] design a secret sharing with snitching scheme under
network synchrony. A snitching party and the dealer can prove to a judge that
another party colluded by computing sufficiently many hashes in a short time.
The scheme has an inefficient reconstruction algorithm that involves repeatedly
computing many hashes. Besides, restricting the collusion method to MPC can
be limiting.
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