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Background: Understanding genetic underpinnings of immune-mediated
inflammatory diseases is crucial to improve treatments. Single-cell RNA
sequencing (scRNA-seq) identifies cell states expanded in disease, but often
overlooks genetic causality due to cost and small genotyping cohorts. Conversely,
large genome-wide association studies (GWAS) are commonly accessible.

Methods: We present a 3-step robust benchmarking analysis of integrating
GWAS and scRNA-seq to identify genetically relevant cell states and genes in
inflammatory diseases. First, we applied and compared the results of three recent
algorithms, based on pathways (scGWAS), single-cell disease scores (scDRS), or
both (scPagwas), according to accuracy/sensitivity and interpretability. While
previous studies focused on coarse cell types, we used disease-specific, fine-
grained single-cell atlases (183,742 and 228,211 cells) and GWAS data (Ns of
97,173 and 45,975) for rheumatoid arthritis (RA) and ulcerative colitis (UC).
Second, given the lack of scRNA-seq for many diseases with GWAS, we further
tested the tools’ resolution limits by differentiating between similar diseases with
only one fine-grained scRNA-seq atlas. Lastly, we provide a novel evaluation of
noncoding SNP incorporation methods by testing which enabled the highest
sensitivity/accuracy of known cell-state calls.

Results: We first found that single-cell based tools scDRS and scPagwas called
superior numbers of supported cell states that were overlooked by scGWAS.
While scGWAS and scPagwas were advantageous for gene exploration, scDRS
effectively accounted for batch effect and captured cellular heterogeneity of
disease-relevance without single-cell genotyping. For noncoding SNP
integration, we found a key trade-off between statistical power and confidence
with positional (e.g. MAGMA) and non-positional approaches (e.g. chromatin-
interaction, eQTL). Even when directly incorporating noncoding SNPs through 5’
scRNA-seq measures of regulatory elements, non disease-specific atlases gave
misleading results by not containing disease-tissue specific transcriptomic
patterns. Despite this criticality of tissue-specific sScRNA-seq, we showed that
scDRS enabled deconvolution of two similar diseases with a single fine-grained
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scRNA-seq atlas and separate GWAS. Indeed, we identified supported and novel
genetic-phenotype linkages separating RA and ankylosing spondylitis, and UC
and crohn'’s disease. Overall, while noting evolving single-cell technologies, our
study provides key findings for integrating expanding fine-grained scRNA-seq,
GWAS, and noncoding SNP resources to unravel the complexities of
inflammatory diseases.

scRNA-seq, GWAS, SNP-gene linking, autoimmune diseases, benchmarking, omics

1 Introduction

The efficacy of treatments for immune-mediated inflammatory
diseases, such as rheumatoid arthritis (RA) and ulcerative colitis
(UC), varies across patients (1). Single-cell RNA sequencing (scRNA-
seq) technology enables the development of effective treatments for
patients with immune-mediated inflammatory diseases by allowing
the identification of specific cell states expanded in diseased tissue or
blood (2). However, most scRNA-seq analyses do not consider
genetic causality, and due to its high expense, available single cell
datasets are often confined to small patient cohorts. Understanding
the genetic underpinnings of diseases is key for preventative care,
unraveling physiological and environmental contributions to
pathology, and allowing personalized treatments. Genome wide
association studies (GWAS) have been the gold standard to identify
disease-associated genetic loci and summary statistics for large
cohorts are often publicly accessible (3). Therefore, recent work has
gone into combining the physiological insights from scRNA-seq with
genetic associations from GWAS for unraveling disease causality (4-
10). Indeed, attempts to integrate bulk RNA-seq studies with GWAS
have been implemented, yet still only explain about 30% of the
heritability by gene expression for complex traits (11). This pitfall is
likely explained by the less fine-scale cell states available with bulk
RNA-seq compared to scRNA-seq, where immune cells exhibit
divergent expression profiles at nuanced cell states, and different
cell phenotypes are uniquely associated with disease (12-14).

Recently, several computational tools have been developed to link
disease relevant loci from GWAS to nuanced cell states revealed by
scRNA-seq to identify disease-associated cell states and genes with both
transcriptomic and genomic support (4-7, 9, 15). For each tool, major
steps include summarizing variably expressed genes/pathways from
single cell expression data, using a third-party method to link GWAS
based single nucleotide polymorphisms (SNPs) to genes/pathways, and
then using statistical tests to identify significant associations. However,
a thorough comparison and assessment of these tools is lacking.
Additionally, a critical step for all these tools, linking SNPs from
GWAS to the genes they potentially impact, has been challenging with
no clear solution (16-20). With more than 90% of immune-disease
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associated SNPs falling into noncoding regions, most of which are in
cis-regulatory regions, the need to link these SNPs to physiological
mechanisms cannot be overstated (21). The most common method for
linking SNPs to genes does so according to a user-selected window size
outside the gene. MAGMA, one of the most common tools that does
this, can take both genotype data and summary statistics as input while
accounting for Linkage Disequilibrium (16). It outputs a list of
thousands of genes with the corresponding GWAS statistics
reestablished at the gene level. However, many target genes of cis-
regulatory regions are not the closest gene and can even be farther than
1 Mb away, contradicting the assumptions of tools like MAGMA (18).
Therefore, alternative methods focusing on eQTL, chromatin contact
(e.g. Hi-C), and similarly relevant enhancer-gene linking data have
been introduced (17, 22). Additionally, newer studies have begun
introducing single-cell transcriptomics methods that measure cis-
regulatory elements to directly consider noncoding SNPs (10). The
influence of incorporating noncoding SNPs using non-positional
compared with positional methods, specifically within the context of
these algorithms, has not been formally evaluated.

Beyond SNP-gene linking complexities, transcriptomics-genomics
integration algorithms have currently been assessed for capturing
broad associations (e.g. metabolic cells for metabolic diseases) (4, 5,
9). This limited analysis is primarily due to the usage of non-disease
specific scRNA-seq atlases rather than disease-specific atlases with
highly refined cell states identified. Disease specific, scRNA-seq atlases
are quickly being developed and revolutionizing the understanding of
diseased tissue heterogeneity. Yet the ability for tools tested on broader
cell types to work with these more refined atlases with disease
confounders has not been tested. Additionally, these tools might still
be usable for diseases without atlases currently available by using atlases
of similar diseases but the appropriate GWAS summary statistics.

Overall, despite the recent influx of tools integrating genetics
and single-cell transcriptomics, a thorough comparison and
assessment of different types of recent algorithms and major
challenges of the domain is lacking. To address this, we
conducted a benchmark analysis of the three most recent, open-
source algorithms, scGWAS, scPagwas and scDRS, by objectively
linking GWAS data with single-cell phenotypes across four
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immune-mediated disease datasets (4, 5, 9, 14, 23). We further
annotated our results based on literature support of calls (detailed in
Methods and Supplementary Tables 1, 2), and evaluated the
computational efficiency and result interpretability. Given most
immune relevant SNPs are noncoding, we then evaluated the
influence of different methods incorporating these SNPs for use
in the algorithms (16, 17). As a result, we first showed that all three
tools successfully identified expected significant cell types for tested
diseases when using fine-grained scRNA-seq atlases, although with
varying consistency and agreement. Single-cell scoring tools scDRS
and scPagwas identified more significant results with literary
support, although pathway-based scPagwas invokes a higher
computational cost and cannot effectively consider batch effects.
We also found that scDRS can be used to distinguish cell
phenotypes for different diseases while using the same fine-
grained scRNA-seq atlas. Finally, we provided evidence
supporting the usage of positional based methods to incorporate
noncoding SNPs until other methods can increase in statistical
power and include more relevant atlases. Overall, our in-depth
benchmarking and application on disease-tissue data demonstrated
that current tools could identify associations between cell
phenotypes and disease with high resolution and specificity. Our
work pinpoints the capabilities and benefits of using atlases with
fine-grained cell subtype annotations, while also showing that a
single atlas could still be used to understand multiple diseases.

2 Materials and methods

We first benchmarked the three most recent and representative
algorithms in the field according to the number of literature
supported clusters called significant, computational efficiency, and

A Benchmarking methods for identifying : B Application to diseases G
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result interpretability (Figure 1A). Brief descriptions of the tools can
be found in sections 2.1 and 2.4. Expected results were based on a
literature search for each individual cell phenotype for expansion in
a disease and/or genetic connections, the results of which can be
found in Supplementary Tables 1 and 2. If a general cell state with
multiple, more detailed cell states was significant, the cell states were
marked as having “general” literature support while if a specific cell
state was supported, it had “specific” literature support. Due to the
robustness of the available atlases and studies, we used scRNA-seq
data generated from inflamed RA synovial and UC colon to
determine disease-associated cell states (14, 23). Next, we assessed
the feasibility of using identical scRNA-seq atlases to distinguish
between two clinically similar diseases, using RA inflamed synovial
tissue for RA and ankylosing spondylitis (AS), and UC colon for UC
and Crohn’s disease (CD) (Figure 1B). Finally, we evaluated the
incorporation of noncoding SNPs when using positional
(MAGMA) vs non-positional based SNP-gene linking methods or
cis-regulatory element focused single-cell omics like ATAC-seq or
5’-scRNA-seq (Figure 1C). We deploy all the code and analytical
pipelines at our Github repository for reproducible research at
https://github.com/fanzhanglab/SCRNA-GWAS-Benchmarking.

2.1 Selection of tools

We summarized the attributes of six currently available and
supported packages that integrate scRNA-seq data and GWAS
summary statistics to identify significant cell types and/or the
GWAS-linked genes that best explain these cell types (Table 1).
Other methods like RolyPoly, CocoNet, and sc-linker are described
in Supplementary Table 3, and are either no longer maintained or not
designed as user-friendly packages but instead open-source code (22,
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Overview of study design. (A) We first benchmarked the three most recent tools built to identify cell states and genes associated to disease
according to both genetics (GWAS) and transcriptomics (scRNA-seq). (B) We next assessed if a single scRNA-seq atlas could be used with summary
statistics from two diseases to reveal well separated disease associated cell states of the different diseases. (C) Finally, we assessed the robustness
and accuracy of results of these tools when using different SNP-Gene linking methods. Figure made in Biorender.
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TABLE 1 Summary table of the currently maintained and operable packages for identifying significant cell types and/or genes based on the
integration of GWAS and single-cell RNA-seq data.

Package
(Citation)
Interface

Relevant
Outputs

SNP-Gene
Linking

Summary

Highlights

scPagwas (9)
R package

1. Seurat Object
2. GWAS summary stats

1. Cell score file

2. Cell Pathway Scores
3. Opt: Cell group score
4. Opt: Gene PCCs

Window-based

Pathway-based polygenic
regression: linear regression of
GWAS signals with pathway
activation in cells.

Pathway-based while
maintaining single-
cell analysis

scGWAS (5) CL
JAR, pre/post
processing in R

1. Boxcox transformed
gene p-values

2. Pseudobulk

3. Gene-gene

network file

1. Significant gene
modules in each

cell type

Window-
based: MAGMA

Network-based approach to
identify cell types overexpressed
with disease-significant genes

Pathway based for more
meaningful output

scDRS (4) 1. Anndata single cell 1. Cell score file for a Window- Monte Carlo simulation method Single-cell level allows
CLI or API expression data given trait based: MAGMA that scores individual cells for unique post analyses
2. Gene p-values or 2. Opt: Cell group score disease association based on
z-scores and heterogeneity increased expression of sets of
3. Opt: Cell variable putative disease genes
(e.g. gene) correlation to
disease scores
EPIC (6) 1. Pseudobulk gene 1. Enrichment score of Sliding-window Gene-level chi-square association = Adapted for rare and
R package expression trait for each cell type based LDSC testing, then gene-level common variants

2. GWAS summary stats

2. Relevant genes
from DFBETAS

regression- association testing for
each cell type

ECLIPSER (7)
Scripts on Github

1. GWAS summary stats
2. Gene differential
expression table

1. Prioritized cell types
2. Leading edge causal
genes and eQTL impact

eQTL and other
functional evidence

Cell-type specificity score for
each GWAS locus, cell-type
specific genes (from differential

Provides putative
regulatory impact
of genes

CELLECT (15) CLI 1. Specificity input from
CELLEX

2. GWAS summary stats

1. Prioritized cell types
2. Opt: Gene heritability

LDSC or MAGMA

expression analysis mapped
to locus)

Heritability regression based
method with CELLEX gene
specificity scores

Allows easy usage of
LDSC or MAGMA

A similar table for methods no longer maintained (RolyPoly) or not designed as packages for complete analysis workflows (CocoNet and SC-Linker) is available in Supplementary Table 3.

24, 25). Briefly, RolyPoly was one of the first tools to employ the use of
polygenic modeling to identify trait-relevant cell states, CocoNet
pioneered gene-network based analyses, and sc-linker leveraged
enhancer-gene linkages to assign SNPs to genes. The three tools
chosen for more detailed benchmarking were the most recent tools
and provide unique results as either gene-gene networks or single-cell
based scores. The other methods differ most by their incorporation of
noncoding SNPs which is addressed separately in this work.

2.2 Data availability

The GWAS data used in this work can be found in Supplementary
Table 4. Due to the most robust LD score data belonging to those with
European descent, and the larger sample size of this group in both
GWAS and scRNA-seq data, we focused on this subpopulation for the
purpose of this benchmarking analysis. The major histocompatibility
complex region was not included due to its complex genetic
architecture. For GWAS summary statistics without rsids for RA,
SNPs were assigned to rsids using BEDOPs and for duplicate/
synonmous rsids, those with the lowest p-values were kept. The code
for these steps can be found on our github under SCRNA-GWAS-
Benchmarking/src/00B_Preprocess GWAS.
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For RA and AS, we analyzed a scRNA-seq data set developed by
(14). To stay consistent with GWAS data, we only included cells from
individuals of European descent with RA, leaving 183,742 cells. We
used their most updated cell-state and cell-type annotations
determined by their analysis of 314,011 cells with scRNA-seq,
CITE-seq, experimental evidence and batch control to ensure the
best validation. All expression was normalized with log(1 + UMIs for
gene/totl UMISs in cell *10,000), and cells expressing fewer than 500
genes or that contained more than 20% if their total UMIs mapping
to mitochondrial genes were removed. Further QC analysis is
described in their paper (14). For UC and CD, we analyzed the
scRNA-seq dataset from (23) which contained 228,211 cells passing
quality control by using the raw counts and metadata they provide.
For batch correction in both datasets, we applied Harmony, one of
the best recommended methods for correcting for technical batch
effect in single-cell batch data analysis and integration (26, 27). We
used identical batch variables for correction as used in the original
analysis for RA: the individual from which the cells were isolated
(“sample”) (28). Combat was used for batch correction originally in
Smillie et al.,, but is not designed for single-cell data, therefore we
applied Harmony with “sample” to the UC scRNA-seq data instead
(23, 29). Both scRNA-seq data only contained individuals of non-
Hispanic, European descent. For scPagwas, we created Seurat objects
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with the same QC-based cells but using the Seurat based
normalization. Due to the high computational expense of
scPagwas, we excluded certain cell states from the RA and UC
datasets that were not found significant by the literature on RA
and UC, including Endothelial (RA & UC), Glia, Macrophages, TA 1
& TA 2(UC), and fibroblast cell states except for F-7: NOTCH3+
sublining and F-2: CD34+ sublining (RA). The code for these steps
can be found on our github repository under SCRNA-GWAS-
Benchmarking/src/00A_Preprocess_scRNA.

2.3 SNP-gene linking

MAGMA-based SNP-gene linking was done using version v1.10
with NCBI37.3.gene.loc and NCBI38.gene.loc downloaded from the
MAGMA website as the gene locations files, and European UK
Biobank Phase 3 LD scores. The window sizes of 10-10kb and 50-
35kb were chosen for final comparison of significant cell states as the
most common window size and that used in the original sScGWAS
paper, respectively. When assessing the impact of this window size
parameter on scDRS, sizes Okb, 5kb, and 100kb were also chosen
based on the window sizes used across the literature (Supplementary
Table 5). For this parameter stability assessment, the top-ranking
genes according to MAGMA that were also found in the scRNA-seq
expression data were used, with a final total of 1000 genes. Synonyms
according to genecards.org and humanproteinatlas.com were also
considered to verify proper comparison of genes between MAGMA
and scRNA-seq. Genes from the scRNA-seq dataset still not found in
the MAGMA file were added to allow their inclusion in the analysis.
The genes identified by MAGMA but not found in scRNA-seq data
are discussed further in the Supplementary Material, with numbers
dictated in Supplementary Table 6.

The code for all these steps can be found on our github under
SCRNA-GWAS-Benchmarking/src/01_MAGMA_Gene_Alias.

FUMA is a web-based tool that determines statistically significant
disease associated genes using positional, eQTL, and 3D chromatin
based mapping, but does not calculate a summary p-value like
MAGMA (17). Therefore, to explore the implications of including
these forms of mapping, we used the minimum GWAS SNP P-value
(minGwasP in genes.txt output file) for each gene as a proxy for a
disease-association p-value to allow input for scDRS and scGWAS.
FUMA identifies lead SNPs, maps to rsIDs, addresses duplicate and
synonymous 1sIDs, and filters out the MHC region in its analysis from
the summary statistics. Default parameters were used including a
MAGMA window of 10kb, with MAGMA expression data being
based on GTEx v8. We also used eQTL and Chromatin Interaction
Mapping, both including the options of available blood cell eQTL data.
Versions include FUMA v1.5.3, MAGMA v1.08, GWAScatalog
e0_r2022-11-29, and ANNOVAR 2017-07-17.

2.4 scGWAS, scDRS, & scPagwas

scGWAS uses a network-based approach to uncover cell types
that significantly express disease-associated genes and identify gene
modules representing disease-specific processes (5). Unlike other
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methods where cell types are assigned a disease-significance score,
scGWAS assigns significance scores to gene modules with strong
representation in both scRNA-seq cell type expression and GWAS
based on a proportional test (Figure 1A). scGWAS is implemented in
Java via a JAR package (ver. scGWAS_r1.jar) on the authors’ GitHub
repository (https://github.com/ElkonLab/scGWAS) and can be run
through the command line. Based on author recommendations on
their GitHub repository, configuration file parameters were kept at
default values. Further, we first used the same PathwayCommons
input network file as Jia et al. (5), with gene-gene relationship
information used for constructing the background network. We
also created a second PathwayCommons input network file
following their same steps but with v14 rather than v12 (what
they used originally). Briefly, housekeeping and ribosomal genes
were removed as well as any genes within 50kb of one another
(detailed jupyter notebook and output pathway file found on our
github under SCRNA-GWAS-Benchmarking/data/Pathway). We
followed the analysis pipeline described on the authors’ GitHub
repository for the following steps. For the screen expression input
file, we processed the scRNA-seq dataset using their R-script to
calculate the average log-transformed gene-based CPM per defined
cell type. We processed the MAGMA output using the box-cox
transformation script as the GWAS node input file. We ran
scGWAS on the same scRNA-seq dataset first with general cell
types and then on fine-scale defined cell states. The code for these
steps can be found on our github under SCRNA-GWAS-
Benchmarking/src/03_scGWAS.

scDRS assesses disease-associations at the individual cell level
using a gene set enrichment analysis with genes with scored
associations to the trait of interest according to a third party
method (4) (Figure 1A). It then presents downstream analyses
that use unified Monte Carlo tests to identify significant pre-
annotated cell states according to a group Z score, and the genes
whose expressions correlate with disease scores. It is the only tool
designed to take cell-level covariates to address potential batch
effects. The CLI version (Version v102 v1.0.2) of scDRS was used
according to their GitHub repository (https://github.com/
martinjzhang/scDRS). All default parameter values were used,
and P-value files output from MAGMA served as input to scdrs
munge-gs. The covariates files used in computing scDRS scores
included nUMI, number of genes, and sex for both RA & UC, and
age and duration for RA, and sample location, percent of
mitochondrial reads, and smoking status for UC (found in our
github at SCRNA-GWAS-Benchmarking/data/SC_data). We ran
downstream analyses to identify significant cell groups on the same
scRNA-seq dataset using annotations of general cell types and then
with fine-scale defined clusters. The code for these steps can be
found on our github repository under SCRNA-GWAS-
Benchmarking/src/02_scDRS.

scPagwas associates cells and cell types to traits through
pathways rather than only individual genes, while maintaining
associations at the individual cell level (9). Rather than using a
pre-determined GWAS based gene set list with scores like scDRS
and scGWAS, scPagwas calculates genetically associated pathway
activity scores (gPAS). Briefly, the gPAS is the product of a per-cell
coefficient of a linear regression between SNP effect sizes and gene
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expression within a pathway, and the pathway activity score of the
cell (first principal component of an SVD). Finally, following a
similar logic of scDRS, a trait-relevance score is calculated using the
Seurat cell scoring method which considers the expression of the
top 1,000 genes most correlated with the summed gPAS in cells
(Figure 1A). We followed installation instructions from the
scPagwas github (https://github.com/sulab-wmu/scPagwas) for
version 1.3.1, using Seurat version 5.1.0 and SeuratObject version
5.0.2. Code for these steps can be found on our github repository
under SCRNA-GWAS-Benchmarking/src/04_scPagwas. To run
scDRS with scPagwas genes, the 1,000 genes with the highest
Pearson correlation coefficient (PCC) values output by scPagwas
were used without weights (scDRS automatically assumes all
weights are 1 if none are provided) (4). The use of PCC values as
weights did not lead to a significant difference, so only unweighted
based results are discussed. Code to generate the scDRS
input can be found in SCRNA-GWAS-Benchmarking/analysis/
0A_Tool_Benchmarking/Genes/Gene_comparison.ipynb.

2.5 Benchmarking methods

All packages provide results indicating which cell clusters are
significant for the disease, but the exact format and calculation of
these results differs. sScGWAS provides significance in the form of
gene modules within clusters that have disease-relevance, whereas
scDRS and scPagwas provide disease scores at the single cell and
cluster levels. scDRS additionally provides measurements regarding
the heterogeneity of these disease scores within each cluster. To
compare results across the three packages, we defined significant
cell clusters in scGWAS as clusters with at least one disease-
significant gene module. We then assessed whether the packages
identified significant cell types similarly across a given disease. We
also evaluated possible bias of scores from the health status of
individuals and the sensitivity of scDRS to different numbers of top-
ranking MAGMA genes (100, 300, 500, 1000, 1500, 2000).
Additionally, we assessed the change in results of scGWAS to
different pathway files (details in scGWAS and scDRS section
above) according to both the significant gene modules and
significant cell-states. Jupyter notebooks outlining these
comparisons can be found at our github under SCRNA-GWAS-
Benchmarking/analysis/0A_Tool_Benchmarking/Sensitivity and
CT_Clusters. We also compared the genes considered most linked
to the traits by the tools: sScGWAS gives the significant gene
modules, scDRS gives the correlation of gene expression to
disease scores, and scPagwas gives the PCCs of gene expression
according to a singular value decomposition method to calculate
pathway activity scores in cells. We assessed the expression and
correlation of significant gene modules identified by scGWAS or
MAGMA top-ranking genes with scDRS and scPagwas disease
scores, and compared scDRS and scPagwas correlation
coefficients under SCRNA-GWAS-Benchmarking/analysis/
0A_Tool_Benchmarking/Genes. Finally, the relationship of scDRS
heterogeneity scores with cell-state population sizes and granularity
was done with code under SCRNA-GWAS-Benchmarking/analysis/
0A_Tool_Benchmarking/.
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To compare genes, we analyzed the top 1,000, 500, and 100
genes ranked by MAGMA, scDRS, and scPagwas, as well as all
significant gene modules identified by scGWAS. Using Gene Set
Enrichment Analysis (https://www.gsea-msigdb.org/gsea/msigdb/
human/compute_overlap), we examined gene sets enriched across
our genes belonging to the Cell type (C8) collection, just Curated
Pathways (C2-CP), or a combination of Hallmark, Curated (C2),
Regulatory (C3), Biological Process (GOBP), and IMMUNESIGDB
(C7-IMMUNE) (30, 31). GSEA allows a maximum of 500 genes.
We ran scGWAS with all significant gene modules collectively
or individually for C8 to ensure logical results given the
smaller gene numbers. We also conducted GO analysis with
clusterProfiler_4.12.2 and org.Hs.eg.db_3.19.1 (32, 33). Code for
this analysis can be found in SCRNA-GWAS-Benchmarking/
analysis/0A_Tool_Benchmarking/Genes/Gene_comparison.ipynb.

To determine whether a single atlas could distinguish between two
similar diseases, we ran scDRS on the RA and UC cell atlases using
MAGMA results from summary statistics of AS and CD GWAS,
respectively. The code for analyzing scDRS results for this can be found
under SCRNA-GWAS-Benchmarking/analysis/0OB_Dist_path. The
code for analyzing the effects of using different MAGMA window
sizes and FUMA can be found under https://SCRNA-GWAS-
Benchmarking/analysis/0C_Preproc.

3 Results

3.1 Single-cell disease scores allow greater
sensitivity while gene-network analyses
allow greater interpretability of

gene targets

We built our initial benchmarking pipeline on evaluating both
cell types and finer grained cell states as well as gene modules using
RA and UC datasets.

3.1.1 Comparison of disease-significant cell
types/cell states

At the scale of cell types, all tools imply significance of NK cells
in RA (Supplementary Figure 1). Both scDRS and scPagwas
identified T cells as significant, while scPagwas and scGWAS
identified B cells as significant. scDRS alone determined Myeloid
cells to be significant for RA (Supplementary Figure 1). For more
specific cell-states, the three tools shared the same significance calls
for 24/63 (38%) fine-grained cell states. In general, all three tools
identified significant cell states within the T and B cell
compartments. This overlap was particularly notable in the results
from scDRS and scPagwas. scGWAS called only 20 significant cell
states (45% with literary support) compared to the 46 (54% with
literary support) and 43 (53% with literary support) calls from
scDRS and scPagwas (Figure 2). scDRS alone identified MERTK+
myeloid cell states as significant (14, 34, 35). scDRS still identified
MERTK+ myeloid cell states as significant when using the same
genes used by scPagwas (top 1000 correlated with gPAS cell scores)
as input rather than the top 1000 MAGMA genes (Supplementary
Figure 2). Additionally, scPagwas called all NK cell cell states
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significant for RA, while opposing subsets of NK cell states were
called by scGWAS and scDRS (Figure 2).

There were a smaller number of significant cell types/states
identified for UC. All tools identified epithelial cells as significant
and T cells as not; all other cell types had mixed calls from tools
(Supplementary Figure 1). For fine-grained cell states, all tools
shared the same significance calls for 20/43 (47%), including M
epithelial cells, Immature Enterocytes, and Secretory TA cells.
Again, scPagwas called a high number of significant cell states
(25, 44% with literary support) and was the only tool to identify
most myeloid and fibroblast cell states as significant, including the
inflammatory subtypes. scDRS and scGWAS showed similar
numbers for significant cell states with seven (57% with literary
support) and eight (50% with literary support), respectively
(Figure 2). When running scDRS with the genes used by
scPagwas, scDRS also identified the fibroblasts and non-mast
myeloid cell states as significant (Supplementary Figure 2).

3.1.2 Significant genes

Significant modules identified by scGWAS are networks of genes
that may represent a biological pathway and contain genes important
for disease pathogenesis. SCGWAS assesses these gene modules with
each annotated cell type cluster. Notably, significant gene modules
strongly align with functional annotations of their corresponding cell-
states, as confirmed by gene set overlap analysis (30, 31)
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(Supplementary Table 7). For example, T cell gene modules were
frequently enriched with cytotoxic or T helper cell surface molecules
while gene modules associated with NK cell states were enriched in
genes involved in upregulating CD4 T cells and cellular responses to
cytokines, chemokines, and cellular ligands. Many of these gene
modules had overlapping genes and similar functions; despite having
a total of 204 and 472 genes in NK and T cell cluster significant
modules, there were only 63 and 87 unique genes, respectively. One
gene in particular was found in nearly every significant gene module
across cell states—CD2, which encodes for a surface antigen in all T cells
and is involved with triggering T cells (36). Both scDRS and scPagwas
provide genes whose expressions correlate with the scDRS cell disease
scores and scPagwas gPAS, respectively (4, 9). The majority (59-85%)
of the top 1,000 scoring genes in MAGMA, scPagwas, and scDRS are
unique to each tool, while 75-90% scGWAS significant genes are
identified by at least one other tool (Figure 3A). Additionally,
significant genes from MAGMA and scGWAS show low median
correlations to scDRS and scPagwas disease Z-scores (MAGMA:
0.02,0.05 for RA and 0.02,0.01 for UC; scGWAS: 0.06,0.09 for RA
and 0.04,0.01 for UC) (Figure 3B). For RA, scDRS, scGWAS, and
MAGMA but not scPagwas top ranked genes were enriched in myeloid
cell type genesets (Supplementary Table 8). For UC, all tools except
scGWAS showed myeloid cell-specific gene set enrichment, with
scPagwas being the only tool to show significant enrichment for
stromal terms in the top 50 pathways (Supplementary Table 9).
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The top 100 ranking genes for scPagwas were largely ribosomal genes
regardless of the disease (43% and 68% in RA and UC, respectively)
while scDRS’s top 1,000 genes contained very few if any (Figure 3B).
Indeed, the top 20 enriched gene ontology terms for scPagwas were
related to translation or general differentiation while scDRS was
dominated by leukocyte-specific pathways (Supplementary Figure 3).
Gene sets uniquely enriched in scPagwas genes focused on translation,
ribosomes, and general cell differentiation, unlike those specific to
scDRS, MAGMA, and scGWAS which were immune-cell state or
process focused (Supplementary Tables 8, 9). Removal of the ribosomal
genes when using scPagwas genes as input to scDRS only led to one
and four cell states to change in significance in RA and UC,
respectively, compared to scDRS results using all scPagwas genes
(Supplementary Figure 2).

3.1.3 Investigating result differences between
pathway-based tools and scDRS

We first explored if variance in significant genes between
methods might explain the different significant cell states identified
by scGWAS and scDRS. We evaluated if the genes that most highly
correlated with scDRS disease scores for cells in the MERTK+ cell
states were found in networks in the original scGWAS pathway file

10.3389/fimmu.2024.1454263

and KEGG pathways. Indeed, pairs of genes that are strongly
associated with scDRS disease scores were connected in the
scGWAS pathway file, however, relationships between the genes
beyond two were not supported and the 40 genes with the highest
correlation to scDRS disease scores had only 6 pairings between them
in the pathways file (Supplementary Table 10). The top 20 KEGG
pathways uniquely enriched for MERTK+ cells according to
scPagwas genetically associated pathway activity scores included
Wnt signaling, cGMP-PKG signaling, and Inositol phosphate
metabolism. We also explored the large discrepancy between NK
calls across scGWAS and scDRS. As a controlled comparison, we
looked at a cell cluster with strong agreement between scGWAS and
scDRS: CD4+ Tph (T-7). scDRS disease scores in all cells positively
correlated with the expression of the NK scGWAS module genes
although T-7 scGWAS module genes had a slightly higher median
correlation (0.08 vs 0.13) (Supplementary Figures 4A, B). This
relative increase was maintained when the eight genes identified by
scGWAS as significant for both groups were removed (median
correlations 0.005 NK vs 0.02 T-7). Importantly, these correlations
were comparable to that observed for all sScGWAS genes and the top
100 genes ranked by MAGMA with scDRS disease scores (Medians of
0.01-0.09) (Figure 3B). Median correlations decreased when only

A) 820
° 750
N
b RA
S 5001 T-8: CD4+ CD25-high Treg
1
g
5 2501 T-20: CD38+ Literary
2
- 2070430 o amypg p 20 T-10: CD4+ OX40+NR3C1+ Support
- . General
—_— A ! l | I | f l i N T-7:CD4+ Tph I specific
T e ) 3 T-18: Prolferating
Set Size Set Size
= T-3: CD4+ T/Tph
B) 04 RA — uc T-2: CD4+ IL7R+CCRS+ memory Num sig
49 @ significant 2% COROTA © Significant ! gene
0o scGWAS s SO o SCGWAS T-13: CD8+ GZMIVB+ memory modules
’ ‘P.: .PT;PRC genes T-17: CD8+ activated/NK-like 0
® 1
0.01 0 029 T-5: CD4+ GZMK+ memory 2
. 3
024 004 T-16: CD8+ CD45ROlow/naive l 4
6

T-14: CD8+ GZMK+ memory

T-15: CD8+ GZMB+/TEMRA

@ Top 100
04l MAGMA
genes

@ Top 100
MAGMA

o
o

Max
T-22: Vdettal module
T-19: MT-high (low quality) Z score
o 25
NK-0: CD56dim CD16+ IFNG— O 3.0
O 85
NK-2: CD56dim CD16+ IFNG+CD160— O 40

NK-4: CD56bright CD16— GZMA+CD160+

Correlation with scPagwas disease scores
Correlation with scPagwas disease scores

w
024 . X 2 o S NK-3:CD56dim CD16+ GZMB-
ve ™%, gLz 8
] x NK-9: MT-high
Top 1000 genes Top 1000 genes © Ribosomal =z .
© scPagwas ) scPagwas genes Myeloid M-13:pDC
© scDRS 047 @scDRS
@ Both B-5: CD11c+LAMP1+ ABC
0.21 B—4: AICDA+BCL6+ GC-like
2 B_0:CD24+CD274CD11b+
0.0 8 switched mel
@Rbosomal| | M B-3: IgM+IigD+CD1c+ MZ-like
H genes ) B-1: CD24++CD27+IgM+
061 - . . . . . —_— . unswitched memory
0.50 0.25 0 025 0.50 0.2 0.1 0.0 0.1 0.2 B-2: IgM+IgD+TCL1A+ naive
Correlation with scDRS disease scores Correlation with scDRS disease scores

FIGURE 3

Gene comparisons show low correlation across tool-based genes and single-cell disease scores. (A) UpSet plots of the top 1000 ranked genes for
scDRS (highest correlation to scDRS disease scores), scPagwas (highest correlation to genetically associated pathway activity scores) and MAGMA as
well as the significant scGWAS genes. RA=Rheumatoid arthritis, UC=Ulcerative colitis. (B) Scatter plots of the correlations of all studied genes with
scDRS disease scores and scPagwas gPAS with (top) scGWAS genes, (middle) MAGMA genes, or (bottom) ribosomal genes highlighted. Genes
reaching the top 1000 ranked genes for scPagwas and scDRS are colored in light and dark turquoise, respectively. (C) scGWAS results when using a
pathway file based on Pathway Commons v12 or 14. Results are highlighted according to the number of significant gene modules called per RA cell
state and max disease Z score across the modules for each cell state. Only cell states with a significant gene module from using either pathway file
are shown. Cell states without a significant gene module called when only one of the pathway files was used are bolded.
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considering cells within the corresponding cell states (NK-cells & T-
7) unlike those of the top ranking scDRS genes for each cell state
(Supplementary Figures 4C, D, 5). These findings led us to assess the
impact of the pathway file used by scGWAS on results. When using
gene pairings from Pathway Commons v14 instead of v12 (see
Methods for details), 20 RA and 8 UC cell states changed in
whether they had at least one significant gene module identified. Of
these, 13 RA cell states and 1 UC cell state had been originally called
significant by scDRS, scGWAS, and scPagwas (Figures 2, 3C,
Supplementary Figure 6A). Extending the gene-SNP linking
window from 10-10kb to 50-35kb resulted in 14 cell states no
longer having a significant gene module (Supplementary
Figure 6B). Despite having 319,042 more gene pairings, use of
Pathway Commons v14 led to an overall decrease in significant
gene modules called regardless of window size used. Even when cell
states were called with both pathway files, the genes within significant
gene modules were also dependent on pathway input despite all
changing genes being found within both pathway input files
(Supplementary Figures 7, 8).

While scDRS single cell disease scores followed an expected
normal distribution, disease scores from scPagwas or from scDRS
run with scPagwas genes showed large polarization (Figure 2,
Supplementary Figures 2, 9). Specifically, 23% and 12% of cells in
RA and UG, respectively, had scPagwas Z-scores of -10 despite the
next nearest Z-score being -5. These percentages decreased to 17.5%
and 3% when applying the scDRS framework to scPagwas genes,
and further to 15% and 3% when ribosomal genes were removed for
RA and UG, respectively. These cells were distributed across cell
states, although most were found in plasma and MERTK+ cells for
RA (Supplementary Figures 9, 10).

Finally, although all tools may be impacted by covariates within
the data, only scDRS allows for their inclusion for batch-effect
analysis. In both RA and UC datasets, certain cell states contain
significantly different proportions of cells from individuals
according to health status (Supplementary Figure 11). scPagwas
shows clear, significant differences in its single cell trait relevant
scores, whereas scDRS exhibits minimal to no batch effects
(Supplementary Figures 12, 13). When scPagwas genes are used,
biases in scDRS disease scores related to health status become more
pronounced but remain less substantial than those in scPagwas
disease scores (Supplementary Figures 12, 13).

10.3389/fimmu.2024.1454263

3.1.4 Additional features

Although all scDRS additional features are outside the scope of
this work, we evaluated the usage of the tools’ group-level metric to
consider the heterogeneity of disease scores within a cell state (4).
This metric can hypothetically indicate if a provided cell state has
inner-clusters of cells that should be further separated out based on
the groupings of disease score. All large-scale cell types in RA (T
cell, B cell, Myeloid, NK, Fibroblast, Endothelial) had significant
heterogeneous disease scores that positively correlated with the
number of cells (adjusted R? 0.29) and annotated clusters in each
group (adjusted R* 0.37) (Supplementary Figure 14). Eighty-seven
percent (67/77) of RA fine-scale cell states had significant levels of
heterogeneity in disease score with similarly low positive correlation
with the number of cells (Figure 2, Supplementary Figures 15, 16).

3.1.5 Resources

Despite these additional features and working at the single-cell
level, scDRS was the most robust in memory usage and speed, although
this is primarily due to the initial preprocessing step for scGWAS
(Table 2). scPagwas took the longest by 45 hours compared to scDRS
and 32 hours compared to scGWAS (Table 2). Notably, the number
and size of cell states had a negligible effect on resource usage in scDRS
and scGWAS unlike scPagwas.

3.2 scDRS can distinguish similar diseases
from pathological cell clusters

While atlases with fine-grained annotations may allow more
detailed analyses, it raises the question of whether a single atlas can
still be used to study multiple diseases. This is particularly relevant
for diseases without single-cell data available. Given the high
sensitivity of single-cell disease scores, we used scDRS to assess
the feasibility of using one atlas to identify pathological cell clusters
distinguishing similar diseases. We used summary statistics from
GWAS for RA and ankylosing spondylitis (AS) on the scRNA-seq
data from inflamed RA synovial tissue to determine if scRNA-seq
from a clinically similar disease can provide fine-grained insight on
disease-relevant clusters (14, 37, 38). We also applied the GWAS
statistics from UC and crohn’s disease (CD) on the scRNA-seq data
from UC colon tissue (23, 39). We considered both 10-10kb and 50-

TABLE 2 Resource usage of each package when running for the RA cluster-level data.

Package CPU used (time)  Wall clock time Memory Used Relevant Function (script)

scDRS 00:00:05 00:00:07 488 KB Preprocess GWAS stats (run_scdrs.sh)

scDRS 00:54:13 00:38:43 12.26 GB Compute single cell scores (run_scdrs.sh)

scDRS 00:23:41 00:25:11 17.89 GB Cell-type scores & Gene analysis (run_scdrs.sh)
scGWAS 04:32:03 04:33:37 208.4 GB Preprocessing single cell data (process_sc_data_R.sh)
scGWAS 08:50:26 08:50:24 2.55 GB Running scGWAS (run_scGWAS_2023_clusters.sh)
scPagwas 1-16:48:25 1-21:47:25 185 GB Running scPagwas

scPagwas 1-19:00:00 Link GWAS and Pathway block annotations

Memory used refers to the max amount of memory required for a single step. All tools were run with 15 CPUs.
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35kb window sizes on these analyses, focusing main figures on 50-
35kb window results due to the larger number of significance calls.

3.2.1 RA and AS

Although both analyses used the same scRNA-seq atlas references,
scDRS successfully distinguished RA from AS. We identified 46
candidate cell clusters in RA and 23 in AS, with 10 clusters shared
between the two diseases. We found that while most T, myeloid, and B
cell cell-states were significant for RA, very few were significantly
associated with AS (Figure 4A). CD8+ activated/NK-like (T-17), pDC
(M-13), and unswitched memory cells (B-1) were significant for AS. AS
and RA showed the greatest differences across the T, NK, and myeloid
cells. While essentially all T cell states showed significance for RA, only
CD8+ activated NK-like (T-17) and proliferating (T-18) T-cells
showed significance for AS. Conversely, far more NK cell clusters
were called significant for AS (43, 44). Specifically, most of the
CD56bright CD16- (NK4,6,8) NK cell clusters were called significant
for AS. This AS and RA separation was consistent when using different
MAGMA windows (Supplementary Figure 17).
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3.22UC and CD

Although fewer significant cell states were identified for UC and
CD (eight and six, respectively) (Figure 4B), we still observed
differences in pathological cell types. None of the significant cell-
states were shared between UC and CD. Epithelial cells linked to
UC and fibroblasts linked to CD most clearly distinguish the
diseases, a finding maintained when using different MAGMA
windows (Supplementary Figure 18). For example, we found that
NK cells, CD4+ activated, and CD8+ lamina propria (LP) cells were
enriched in CD compared to UC while only Tregs, CD8+ IL17+,
and Cycling T cells were enriched in UC.

3.3 Positional SNP-gene linking methods
provide greater statistical power than
tested alternatives

Methods integrating scRNA-seq and GWAS summary statistics
rely largely on the same preprocessing steps, yet a standardized

Comparison of similar diseases with scDRS. Summary statistics unique to each disease were used on the same scRNA-seq data for each pair (14, 23).
scDRS defines significant clusters (annotated according to original papers) with a group disease Z-score as shown in the gradient legend. Cell
clusters with literary support for either disease are labeled in purple/orange for RA/UC and green/blue for AS/CD, respectively. General literary
support means that a cell type with multiple cell states is supported by the literature while specific means a specific single cell state was supported.
(A) Rheumatoid arthritis (RA) vs Ankylosing Spondylitis (AS). (B) Ulcerative Colitis (UC) vs Crohn's Disease (CD).
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guidance for these steps is lacking. Therefore, we evaluated the
impact of inputs and preprocessing steps on results, focusing on
scDRS due to its high sensitivity and covariate analysis.

First, we considered the robustness of results when using solely
positional information to connect noncoding SNPs to genes. The
primary positional method to link SNPs to genes is MAGMA which
relies on a window size parameter determining the distance a SNP
can be from a gene to be incorporated (16). Because there is no
standardization on MAGMA window size beyond the notion that a
larger window size incorporates SNPs falling in cis-regulatory
elements, we evaluated the impact of the most used window sizes
on results (details in Methods) (4, 5, 8, 17, 49-53). Different window
sizes for RA analyses only changed the significance calls for 16 of
the 77 cell states in at least one of the window-sizes, half of which
are only different in one window size (Figure 5). Importantly, none
of these cell states had the top 20 group disease scores in our
original results (50-35kb window). There also did not appear to be a
clear pattern across the window sizes in terms of the numbers of
significant cell states or the cell states changing in significance.
These findings were similar with our three other diseases of study,
with results for CD having the greatest differences across window
sizes (Supplementary Figures 17, 18). Despite only 54% of genes
being shared across the top 1000 MAGMA ranked genes in all
window sizes, these shared genes consistently had most of the
lowest p-values (Supplementary Figure 19). In comparison,
scGWAS showed 20 cell states with change in significance just
between 10-10kb and 50-35kb window sizes in RA, including four
cell states originally identified as significant by all three tools: T-22,
B-5, B-0, and B-1 (Figure 3C, Supplementary Figure 6).

Given the growing concern over positional methods
inaccurately assigning SNPs to genes, we next explored the usage
of non-positional based data within the framework of FUMA.
Although other SNP-gene linking tools can be found in Table 3,
we focused on FUMA as a commonly used alternative to MAGMA
and because it can incorporate eQTL, chromatin contact data and
positional information from MAGMA to express summary
statistics at the gene-level (16-20). Therefore, while FUMA uses a
different summary statistics processing that doesn’t allow direct
comparison to our own MAGMA based analyses, we used its
MAGMA pipeline to consider the impact of alternative linkage
methods (details in Methods). The 1000 genes with the lowest p-
values were significantly different between positional and non-
positional methods, regardless of exact summary statistics used
(Supplementary Figure 20). When only considering genes
supported from non-positional methods, 445 genes were
significant, a number consistent across usual non-positional
methods (Supplementary Table 9, Table 3). : The smaller number
of genes was maintained regardless of p-value cutoff
(Supplementary Table 11). Indeed, FUMA analysis that combined
positional with non-positional methods showed similar results to
purely using MAGMA but with only 28 of the 52 original cell states
called significant (Supplementary Figure 21). Conversely, scDRS
only lost nine and five significant cell state calls when only using the
top 300 and 500 ranking genes according to MAGMA, respectively
(Supplementary Figure 21). Only restricting scDRS to the top 100
ranking genes allowed loss of significant results at the same
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magnitude (23 vs 24 by FUMA) (Supplementary Figure 22). Still,
incorporating non-positional methods added 2 significant clusters:
HLA-DR+IgG+ plasmablasts (B-7) and MKI67+ Proliferating NK
cells (NK-11), which were still not called significant when
increasing the MAGMA window size to 100kb, a size commonly
used to capture cis-regulatory element SNPs (Figure 5).

4 Discussion

In this study, we evaluated three software for linking genetics to
single-cell phenotypes according to the enrichment of literature
supported calls, robustness, and interpretability of results. Although
all strategies identified disease-relevant cell states, single-cell based
scDRS and scPagwas identified the greatest number supported by
previous findings. B and T cell subsets were identified as significant
for RA across all tools, aligning with the literature highlighting the
disease relevance of lymphocytes (13, 14, 28, 35, 54, 55). Gene set
enrichment analyses indicated the significance of monocytes and
macrophages across all tools for RA, consistent with the recent work
discovering the cell phenotype expanded in inflamed synovial
tissue. However, only scDRS called the best defined RA induced
cell states, MERTK+ myeloid cells, significant (14, 34, 35). In
addition, all methods recognized autoimmune-associated B-cells
(ABCs) as significant, a cell phenotype recently shown to be
expanded in RA inflamed synovial tissue (14, 34, 35).
Importantly, none of the algorithms identified significant
fibroblast cell types despite the expansion of NOTCH3+ and
CD34+ sublining fibroblasts in RA (28, 56). This finding supports
previous hypotheses that these phenotypes arise only after the
expansion of other genetically driven cell states called significant
by scDRS (56). For UC, we found few disease-significant cell states.
However, all methods identified M cells — a recently discovered cell
group with the highest expression of putative IBD risk genes in
inflamed vs healthy tissue corroborated by two separate cohorts (23,
57). Interestingly, no algorithm called CD8+ IL17+ T cells despite
their significantly different proportions between individuals with
and without UC (23, 58). However, transcriptional changes in this
group occur downstream of proportional shifts of Tregs and
epithelial cells, both of which were called by scDRS (59-61).

scGWAS is more distinctly built to identify probable gene sets
relevant to pathological cell states, but is significantly impacted by the
pathway networks on which it bases its analyses. While removing false
positives by requiring a known set of connected genes to have increased
expression compared to single genes, the algorithm also assumes that
the pathway file contains all possibly relevant gene connections.
Therefore, true positives can be lost such as was likely with MERTK
+ cells. Additionally, many of the significantly called scGWAS gene
modules overlapped, depleting information content, perhaps due to the
lack of cell type specificity in the pathways. This finding underscores
the importance of not necessarily using the number of significant gene
modules identified as a relative metric of significance for a cell type.
Although scGWAS provides gene modules more conducive for certain
analyses, the original network file should be considered according to a
researcher’s specific focuses. In contrast, scDRS focuses on single cell
based exploration by only providing genes correlated with single-cell
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FIGURE 5

scDRS results for RA of clusters that show different levels of significance with different MAGMA windows being used to generate the GWAS inputs
(0-0kb, 5-5kb, 10-10kb, 50-35kb, 100-100kb). scDRS defines significant clusters with a group disease Z-score as shown in the gradient legend
(significant scores marked with square). Cell states with significant heterogeneity scores are marked by an X. General literary support means that a
cell type with multiple cell states is supported by the literature while specific means a specific single cell state was supported. Cell states with
changes in just scDRS disease score, heterogeneity score, or both significance calls across MAGMA windows are marked in bold and with grey or

turquoise squares.

disease scores (4). Historically, purely correlational approaches tend to
be noisy and significantly impacted by data heterogeneity (62, 63). This
fact might explain why both MAGMA and scGWAS genes showed
relatively low correlation with single-cell disease scores, even within the
annotated cell-state.

Although scPagwas uniquely integrates gene pathways with
single-cell scoring, it currently has three limitations compared to
scDRS. First, the computational expense of scPagwas makes scDRS
far more feasible for large scale analyses; this could potentially be
addressed by enabling multiprocessing for the current bottleneck in
linking pathway blocks and GWAS, as done in the regression portion.
Second, scPagwas currently lacks covariate adjustment, making it
susceptible to batch effects, which may explain the highly polarized
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disease scores observed in scPagwas mitigated by scDRS. Finally,
while both scDRS and scPagwas consider genes correlated with
single-cell disease scores, scPagwas relies on these genes—rather
than SNP-linked genes—for final cell-type analysis. Our results
suggest that gene correlations can be heavily influenced by dataset
heterogeneity and often poorly reflect SNP-based gene associations
(e.g. MAGMA). This finding may help explain the overrepresentation
of ribosomal genes among scPagwas genes despite their minimal
impact on cell-state identification. Importantly, these results might
also be based on the pathway size of scPagwas (default 5-300 genes);
this range was optimized by the original authors but may require
further optimizing for more heterogeneous datasets like those tested
here. The scDRS simulated control set may also allow a more accurate
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TABLE 3 Current methods to link SNPs to genes and the estimated number of genes output, form of significance output, and interface.

Name (Citation) Method

Est. Gene list size = Score Interface

cS2G (18) Linear combination of linking scores from main S2G <500 (depends on # ¢S2G score Scripts provided
strategies, exon, promoter, eQTLGen, and GTEx cis- lead variants)
eQTL, EpiMap, ABC, and Cicero. Restricts each strategy
to gene w/highest linking score.

PoPs (19) Similarity based filtering of MAGMA results (although <200 (depends on # PoPs score (for CLI

paper described other input options).

nMAGMA (20) Network-enhanced MAGMA links SNPs to genes by

considering tissue specificity (Hi-C and eQTL) and

functional interactions (WGNCA), then use MAGMA to

get significance of genes.

lead variants) relative ranking)

1000+ Z-scores and P-values Scripts provided

FUMA (17) SNP2GENE Module: Identifies lead SNPs, can run MAGMA based 1000+, MAGMA Z-scores/P- Web tool
MAGMA or map using eQTL, position, and otherwise <700 values or min p-value of
chromatin-interaction linked SNPs

MAGMA (16) Maps SNPs to genes via positional window, empirical 1000+ Z-scores and P-values CLI

gene p-value via permutation followed by PCA regression

All tools address linkage disequilibrium.

prediction of significance given scDRS using scPagwas gene input,
but not scPagwas, called MERTK+ cells significant despite the
MERTK+ genetically enriched scPagwas pathways being linked to
RA (64-67).

Importantly, the use of broad cell types, as mostly done in
previous applications of scDRS, scPagwas and scGWAS, lacked the
insight provided by fine-tuned cell state annotations. Indeed, all
tools missed calling some cell types significant despite them calling
significant cell states within them. The heterogeneity of disease
scores as called significant by scDRS might indicate when a cell type,
even when not called significant as a group, might contain cell states
with significance. However, statistically significant heterogeneity
does not always imply biological significance, as even small cell
states with as few as 50 cells showed significant heterogeneity.
Similarly, potential biases from including cells from diseased tissue
in these atlases must be considered. For example, scDRS relies on
normalized single-cell scores so statistical significance is partly
driven by the comparison of cells. Despite these caveats, we were
able to explain the lack of significance for certain cell states
according to lack of genotypic support in the literature and their
links to upstream cell states that had genotypic backing.

Given the increased sensitivity when using fine-grained cell
states, we evaluated whether a single atlas could be used to assess
multiple diseases. scDRS clearly distinguished between diseases
with a single atlas, with literary support for the found differences
from other single-cell based analyses. We were able to determine
RA vs. AS and UC vs. CD pathogenesis based on the results of
scDRS, using one scRNA-seq atlas for the respective comparisons.
Cell states causally linked to AS according to a recent Mendelian
randomization study were all called significant in AS: CD8+
activated/NK-like (T-17), pDC (M-13), and unswitched memory
cells (B-1) (40). Additionally, CD8+ activated NK-like (T-17) and
proliferating (T-18) T-cells showed significance here and in other
studies (41, 42). NK cells were heavily implicated in AS. The unique
significance of CD56dim CD16+ GZMB- cells (NK-3) in AS was
supported by GZMB being expressed at much lower levels in AS
patients in previous NK-focused scRNA-seq analysis and ELISA
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studies (43). Similarly, the significantly called IL7R+ ILC (NK-12)
cell state showed similar upregulation of genes, including IL7R, as a
NK cluster upregulated in AS according to previous single cell
analyses (43, 44). Finally, most of the CD56bright CD16- (NK4,6,8)
NK cell clusters were called significant for AS, supported by the
previous findings of upregulation of CD56bright NK cells in AS (43,
44). On the other hand, epithelial cells and fibroblasts most clearly
separated UC and CD respectively. Indeed, the enrichment of CD8+
LP cells, NK cells, and activated CD4+T cells has been supported by
independent CD single cell analyses (45). We were also able to
distinguish fibroblasts with genetic bases for CD and UC. We called
RSPO3+ fibroblasts significant when multiple CD specific SNPs
have previously connected this phenotype (48). Similarly, WNT2B+
fibroblasts were only called significant for CD, matching the
previous finding that the group only shows genetic connection to
CD despite it being expanded in both UC and CD (46, 47). Publicly
available scRNA-seq data is not always available or sufficient for a
certain disease, so instead researchers might need to apply the
existing and relevant GWAS summary statistics to the scRNA-seq
data generated from a clinically similar disease. Our findings
support the ability for researchers previously constrained by the
lack of appropriate scRNA-seq atlases to study diseases while not
sacrificing fine-scale analyses.

Finally, we also evaluated methods incorporating noncoding
SNPs for identifying pathogenic cell states. Unsurprisingly, the
input gene set used can have major implications on results,
regardless of the tool. We determined that MAGMA-based results
in scDRS are robust to window sizes while sScGWAS appeared to
have larger changes. This different robustness might be explained by
our finding that the genes consistent across window sizes had the
highest significance scores while scGWAS considers the full list of
MAGMA based scores rather than the top 1000. We also considered
non-positional methods to link SNPs to genes with FUMA and
found the decreased power from these tools have significant impacts
on results. Non-positional methods provide significantly smaller
genesets due to a focus on highly confident linkages and noisy data
sources (Table 3). Our findings show that these low gene numbers,
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regardless of confidence, lead to significant decline in sensitivity.
Ideally, one would be able to combine strict window MAGMA
results with that of a non-positional method, however the need to
combine different significance scales complicates this. The p-values
output by FUMA and similar methods also often do not account for
the uncertainty in the predicted SNP-gene linkages. For now, if
using tools reliant on a long list of genes, we suggest focusing on cell
types consistent across window sizes for MAGMA and adding genes
called by other tools like FUMA. It’s important to note that
regardless of the window sizes used, many SNPs were still not
assigned to a gene with MAGMA. For example, with a moderately
large window size of 50-35kb, about 60% of SNPs for RA and UC
were linked to a gene which decreased to about 40% when that
window was reduced to 10-10kb. Outside of these methods,
repeating analyses with multiple GWAS summary statistics and
scRNA-seq cohorts is equally relevant to ensure repeatability
of results.

One way to circumvent linking SNPs to genes is using cis-
regulatory elements (cREs) SNPs fall in directly. Given cRE activity
is highly dependent on cellular behavior and allows accurate
deconvolution of cell types, this switch could also allow
separation of more nuanced cellular states (68). Additionally,
tools like Cicero link cREs to their regulated genes from single
cell data (69). While classic scRNA-seq data cannot capture the
activity of these elements well, 5 scRNA-seq is more sensitive to
them. Moody et al. successfully applied 5’ sc-RNA-seq to detect the
transcription of cREs and genes simultaneously and developed a
metric to identify cell types enriched in trait heritability (10).
Interestingly, they used the same summary statistics as our work
for crohn’s disease (CD) and ulcerative colitis (UC). Despite using
gene-based methods, we captured the same fibroblast and dendritic
cell enrichment for CD that they found. However, unlike their
results, we did not find an overall enrichment of T/NK cells in UC
compared to CD but found some specific states in these cell types
oppositely enriched and supported by the literature (45). These
differences can be explained by the fact that Moody et al. relied on
general lymphocyte 5-scRNA-seq for analysis while we used
scRNA-seq specifically from the colon mucosa of UC patients.
The cell states we identified as seeming to conflict with findings
from Moody et al. are unique to intraepithelial lymphocytes and
likely would not be in their data. Overall, these results showcase the
need for careful interpretation when relying on non-disease tissue
specific scRNA-seq data. Exciting insight will come from evaluating
the adaptation of algorithms like scDRS, scPagwas, and scGWAS to
the growing cRE-based single cell data (10, 70-72).

While disease-specific and fine-scaled single-cell cRE atlases
continue being developed, tools like MAGMA, scGWAS, scPagwas
and scDRS provide key opportunities to identify cell states and
genes associated with disease through both transcriptomics and
genomics. We’ve also showed that these tools can even allow single-
cell level analyses for diseases without fine-scaled sc-RNA-seq
atlases currently accessible if an atlas for a similar disease is
available. We note that our focus on four immunological diseases,
including RA, AS, UC, and CD, may not be generalizable to all other
disorders. However, these analyses represent the consistency of key
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genetic-relevant cell phenotypes across autoimmune disorders,
providing valuable guidance for future investigations to other
similar diseases. Overall, the development of tools like scDRS,
scGWAS, scPagwas, along with improved SNP-Gene-cell state
linking methods, are essential steps for using existing data to
pinpoint the search of biological targets for treatment development.
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