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Probabilistic Approach to Feedback Control
Enhances Multilegged Locomotion on
Rugged Landscapes

Juntao He
Jianfeng Lin
Hosain Bagheri

Abstract—Achieving robust legged locomotion on complex
terrains poses challenges due to the high uncertainty in robot—
environment interactions. Recent advances in bipedal and
quadrupedal robots demonstrate good mobility on rugged terrains
but rely heavily on sensors for stability due to low static stability
from a high center of mass and a narrow base of support (Ijspeert
and Daley, 2023).We hypothesize that a multilegged robotic system
can leverage morphological redundancy from additional legs to
minimize sensing requirements when traversing challenging ter-
rains. Studies suggest (Chong et al., 2023), (Chong et al., 2023) that
a multilegged system with sufficient legs can reliably navigate noisy
landscapes without sensing and control, albeit at a low speed of up
to 0.1 body lengths per cycle (BLC). However, the feedback control
framework to enhance speed of multilegged robots on challenging
terrains remains underexplored due to diverse environmental in-
teractions. Such complexity makes it difficult to identify the key
parameters to control in these high-degree-of-freedom systems.
Here, using laboratory and field experiments, we demonstrate
that a vertical body undulation wave helps mitigate environmental
disturbances that affect robot speed. These findings are supported
by probabilistic models. Using such insights, we introduce a con-
trol framework, which monitors foot-ground contact patterns on
rugose landscapes using binary foot—ground contact sensors to
estimate terrain rugosity. The controller adjusts the vertical body
wave based on the deviation of the limb’s averaged actual-to-ideal
foot—ground contact ratio, achieving a significant enhancement of
up to 0.235 BL.C on rugose laboratory terrain. We observed a 50 %
to 60% increase in speed and a 30% to 50% reduction in speed
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variance compared to the open-loop controller. In addition, the
controller operates in complex terrains outside the lab, including
pine straw, robot-sized rocks, mud, and leaves.

Index Terms—Feedback control, legged locomotion, multilegged
robot.

NOMENCLATURE

Summary of the Main Variables Used in the Gait Formulation
and Modeling Sections

Symbol  Description
Oleg Amplitude of the shoulder angle.
Obody Amplitude of lateral body undulation.

A, Amplitude of vertical body undulation wave.

Oeg Leg shoulder angle.

Onody Lateral body joint angle.

0, Vertical body joint angle.

Te Contact phase of gait cycle.

Th Phase of lateral body undulation.

13 Number of spatial waves on legs.

I Number of spatial waves on body.

Rg Terrain rugosity.

AH Height difference between adjacent terrain blocks.

T Gait cycle duration.

c Binary leg contact state.

5y Effective foot-ground contact ratio.

Yo Desired contact ratio in controller.

Vs Sensed contact ratio from binary sensors.

K, Proportional gain of feedback controller.

v Actual average robot speed over gait cycle.

Uopen Average robot speed on flat ground over gait cycle.

Fy Ground supporting force on foot.

1 Friction coefficient.

10) Leg tip slipping angle.

Bi Discretized slipping angle bin.

w; Proportion of undisturbed contact for slipping direc-
tion f3;.

SoF Disturbance in average friction.

6v Disturbance in robot speed.
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1. INTRODUCTION

EGGED robots offer a compelling alternative to wheeled
L robots, particularly when navigating unstructured terrain.
Recent advances in few-legged robots demonstrate their adapt-
ability to diverse and unstructured terrains. Bipedal robots excel
at obstacle avoidance and stair climbing [4], [5], [6], but their
static instability necessitates substantial effort to maintain bal-
ance in an upright posture. Disruptions in body or leg trajectories
can lead to instability [7], [8], limiting mobility on highly
uneven terrains. Quadruped robots, known for greater stability,
perform well on challenging terrains like snow, wet moss, mud,
and rocky surfaces [9], [10], [11]. However, many advanced
robotic systems rely on force sensors, accelerometers [12],
[13], [14], [15], cameras, and LiDAR [16], [17], [18], [19],
[20] for analyzing foot—environment interactions and estimating
terrain geometry. That said, not all legged robots require these
systems. Systems with high static stability and morphological
redundancy, such as hexapods [21], [22] or robots with more
legs [2], [3], [23], often traverse rugged terrain effectively with
simpler sensing and control frameworks. These simpler sys-
tems minimize sensory complexity while still achieving reliable
locomotion.

Recent studies [2], [3] indicate that a serially connected
multilegged robotic system with high static stability and mor-
phological redundancy can reliably traverse noisy landscapes
without requiring sensing and control. These systems success-
fully transport between two points on rough terrain without
feedback control. However, their speed on such terrain with an
open-loop controller is relatively low and depends on multiple
legs to maintain it.

To address these limitations and improve the effectiveness of
multilegged locomotion in complex environments, designing a
feedback control framework is essential. Specifically, designing
an simple feedback controller to enhance the robot’s perfor-
mance with minimal sensing is a challenging yet fascinating
problem. To the best of our knowledge, feedback control for
such multilegged robotic systems remains a challenging research
area, particularly due to their high degrees of freedom (DoF)
(over 25), complex environmental interactions, and the difficulty
of identifying key parameters requiring control. While several
studies [24], [25] have proposed different approaches, these
efforts are often limited by computational complexity, energy
efficiency concerns, and poor adaptability to highly unstructured
terrains.

Empirical evidence [2] suggests that multilegged robots can
benefit from vertical body motion modulation when navigating
rugged terrains with uneven surfaces and various obstacles.
However, a notable gap exists in the literature regarding a
systematic investigation of how vertical body undulation affects
a robot’s motion on rough terrain. Furthermore, the integration
of vertical body undulation into a feedback control framework
remains underexplored.

This article systematically investigates the benefits of vertical
body undulation in enhancing the speed of multilegged robots
using stochastic analysis, a widely adopted method for address-
ing uncertainties in robot—environment interactions [26], [27],
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[28], [29], [30], [31], [32], [33]. Specifically, we develop two
probabilistic models to analyze how the amplitude of vertical
body waves affects the robot’s speed on rough terrain and
integrate this modulation into a feedback controller to improve
robot’s performance on rugged landscapes.

To summarize our contribution, we first introduce a robotic
system capable of generating coordinated body undulation and
leg-stepping waves to enable forward motion. Next, we develop a
binary contact sensing system to detect foot—ground contact. We
then propose two probabilistic models to quantify the benefits of
vertical wave modulation for multilegged locomotion on rugged
terrains. The first model predicts the robot’s forward speed based
on the actual-to-ideal foot-ground contact ratio, while the second
model estimates this contact ratio given the terrain distribution
and vertical wave amplitude. By combining these models, we
demonstrate that: 1) a higher contact ratio generally leads to
increased speeds, and 2) appropriately adjusting the vertical
wave amplitude can effectively achieve this higher contact
ratio. Utilizing these models, we design a feedback controller
that allows the robot to optimize its vertical amplitude based on
terrain roughness, estimated in real-time through contact ratio
measurements. While our models and experiments primarily fo-
cus on terrains with varying height differences — one of the key
causes of contact loss — the proposed framework is designed to
address a broader class of rugged landscapes, where such vertical
irregularities are prevalent. We discuss the generalizability and
limitations of this approach in Section VIII. Finally, we validate
the controller’s effectiveness through laboratory and outdoor
experiments (Fig. 1).

II. ROBOT HARDWARE DESIGN

In this section, we explore the key design elements of our
robotic model. Our approach builds on recent advancements in
centipede-inspired robotics [2], [3], [23], [34], [35]. As shown
in Fig. 2, our robophysical model combines coordinated body
undulation with limb movement to achieve forward motion. We
incorporate compliant legs into the multilegged robotic system
to enhance the robot’s navigation on challenging terrain [35].
This design philosophy aims to create a versatile platform adapt-
able to a wide range of environments.

Our robotic system’s thrust primarily originates from foot—
ground interaction, in contrast to body-driven propulsion, which
is more typical in robots operating continuously in environments
like fluids or granular media [36], [37], [38]. When a leg contacts
the ground and slips backward, it generates Coulomb friction
with a forward-directed force. Terrain heterogeneity can dis-
rupt the planned foot—ground contact, potentially reducing the
robot’s forward speed. Therefore, tracking the contact state to
mitigate perturbations with a controller is an effective approach
to enhance the robot’s body forward velocity.

To further improve the robot’s capabilities with feedback
control, binary contact sensors are installed on each leg, as
depicted in Fig. 3. These sensors play a significant role in
detecting foot—ground contact states, providing feedback signals
crucial for the system’s operation.
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Fig. 1.

Multilegged robots navigating rugged landscapes. To demonstrate the effectiveness of the proposed probabilistic model and feedback controller, we tested

the robot in laboratory-based rough terrains (shown in the bottom right corner) and outdoor environments. Details of the lab-based terrain construction can be
found in Section IV-A. The outdoor tests were conducted on rugged landscapes with a mixture of random tree debris, grass, boulders, mud, leaves, and rocks.
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Robophysical model description. (a) Design of a single module of the robophysical model, includes four active DoF: leg up and down, leg swing, and

body lateral and vertical rotation. (b) The compliant leg feature is achieved by a connected rubber band in 1, enabling the robot to overcome obstacles like those
in 2. (c) (1) Overhead view of the robotic system. Snapshots of the forward gait illustrate the coordination between horizontal body undulation and leg stepping.
(2) Side view of the robotic system. Snapshots depicts variations in the vertical body undulation wave with different amplitudes (A,).

A. Robophysical Model

Our robophysical model features a modular design with re-
peating segments, each containing three motors that control
pitch and yaw of the body and leg assembly, resulting in four
active DoF per module (see Fig. 2). Each module has two legs
on opposing sides, with the front and back serving as connec-
tion points for subsequent modules. All modules components

and connectors were 3-D printed from polylite polylactic acid
(PLA).

We incorporated compliant legs inspired by the passive mor-
phology of centipedes observed during their interactions with
its surroundings [35], enhancing the robots’ ability to traverse
rough terrain. Each leg consists of a two-bar linkage with a
unidirectional hinge (knee joint) that bends opposite to the
direction of forward motion. An elastic rubber band (Alliance
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Fig. 3.

Binary contact foot sensor system. (a) Design of a binary contact sensor for each foot, based on capacitive sensing. (b) Contact state of the leg: 0 indicates

no contact, while 1 indicates contact. (c) Experimental and predicted foot-ground contact states of an 8-legged robot during one cycle of forward gait.

Rubber 26324 Advantage Rubber Bands Size 32) restores the
linkage to a neutral position after the leg encounters obstacles,
aligning the links. This design ensures sufficient thrust during
retraction, which is crucial for navigating uneven surfaces. The
directional compliance facilitates a more evenly distributed con-
tact area [39], improving the robot’s ability to traverse obstacles
without significantly disrupting its gait. Experiments comparing
the performance of rigid and compliant legs on rough terrain can
be found in the Appendix A.

Each leg connects at a pivot joint, allowing it to pitch up
to a maximum angle of 60° (7 cm above the ground). A motor
(AX-12A, DYNAMIXEL) cable-driven system alternates lifting
opposing legs: rotating counterclockwise raises the left leg,
while the right remains grounded, and rotating clockwise raises
the right leg while the left remains grounded. When cable tension
decreases, another rubber band restores the leg to its original
pitch angle. A second motor (AX-12A, DYNAMIXEL) controls
the yaw (0ye, ) of the leg assembly, facilitating leg swing. The yaw
angle (i) is defined as the shoulder angle for corresponding
segment. Last, a 2-DoF motor (2XL430-W250, DYNAMIXEL)
controls the yaw [fpoqy, Fig. 2(c.1)] and pitch [0, Fig. 2(c.2)] of
the module, and connecting multiple modules facilitates lateral
and vertical undulation [see Fig. 2(c.1) and (C.2)].

Through the assembly of multiple units, our robophysical
model achieves locomotion via leg stepping, lateral, and vertical
body undulation. Inspired by centipedes [2], [3], the synchro-
nized motion of leg stepping and lateral body undulation gen-
erates propulsive force necessary for forward movement [see
Fig. 2(c.1)]. In addition, the control over the vertical wave, as
depicted in Fig. 2(c.2), provides valuable insights for future
controller design endeavors.

B. Binary Contact Sensing System Design

We implemented a low-bandwidth binary contact sensor sys-
tem [see Fig. 3(a)] to monitor foot—ground interaction for each
leg, allowing us to assess terrain heterogeneity and using this
information as a feedback into our control system. Contact
capacitive sensors (MPR121) embedded at the tip [highlighted
in yellow in Fig. 3(a)] of each leg detect capacitance variance.

The toe [highlighted in pink in Fig. 3(a)] has a slight range of
linear motion, resulting in minimal capacitance when the leg
is suspended and maximal capacitance when it is grounded.
The analog value shows a significant difference between the
suspended state (greater than 200) and the grounded state (less
than 5). Therefore, we classify any analog value below 50 as in-
dicating contact. Fig. 3(c) illustrates experimental and predicted
contact states during the forward gait on level ground for an
8-leg robot, demonstrating strong alignment between the two.

III. ROBOT GAIT DESIGN

Building on the previously developed gait framework [2],
[3], [23] for generating forward motion through coordinated leg
movement and horizontal body undulation, we enhance multi-
legged locomotion across intricate landscapes by incorporating
vertical body undulation. Empirical results [2] demonstrate that
integrating vertical body undulation in multilegged robots with
more than six legs plays a central role in feedback control strate-
gies [2], enabling effective adaptation to varying terrains and
mitigating environmental disturbances that impact the robot’s
speed.

A. Leg and Body Wave Coordination

We employ a binary variable c to represent the leg’s contact
state, with ¢ = 1 denotes the stance phase and ¢ = 0 denotes the
swing phase. In accordance with the methodology presented
in [23], the contact pattern for a multilegged robot can be
expressed as follows:

(o.1) 1, if mod(7.,27) < 27D
C T ) = .
e 0, otherwise

ci(Tesi) = ¢ (TC — 2#%(2’ —1), 1)

cr(Tey i) = (1o + 7, 1) )

where ¢ represents the number of spatial waves on legs, D the
duty factor, and ¢;(7¢, %) (¢, (7¢, %)) denotes the contact state of
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the ith leg on the left (right) at gait phase 7, with i € {1,...n}
for a 2n-legged systems (see Fig. 2).

Legs generate self-propulsion by retracting from anterior to
posterior during the stance phase to engage with the environment
and protracting from posterior to anterior during the swing
phase to disengage. Considering this, we employ a piecewise
sinusoidal function to define the anterior/posterior excursion
angles (0,¢.) for a given contact phase (7.), as previously defined

if mod(r., 2m) < 2wD
otherwise,

Oleg €08 (35),
TC—QTK'D)
b

—Oeg €08 ( 5D

(9]eg,l(7'07 Z) =6, (TC — 271'%(1 — 1)’ 1)

eleg,r(Ta Z) = 9[(7‘5 + m, Z) 2)

eleg,l(TCa 1) = {

where O, represents the amplitude of the shoulder angle, while
Oreg,1(Te, 1) and byeg - (Te, 1) denote the shoulder angles of the ith
left and right legs, respectively, at the contact phase 7.. The
shoulder angle reaches its maximum (6 = ©1¢,) at the swing-
to-stance phase transition and its minimum (¢, = — O, ) at the
stance-to-swing phase transition. In addition, we set D = 0.5
[2], [3], [23], unless stated otherwise.

We then introduce lateral body undulation by propagating a
wave from head to tail

b
ebody(Tba Z) = @bodyCOS (Tb — 27‘1’%@ — 1)) (3)

where Oyoay (T3, 1) represents the angle of the ith body joint at
phase 73, and £° indicates the number of spatial waves on the
body. For simplicity, we assume equal spatial waves in both body
undulation and leg movement, denoted as £¥ = &, allowing us
to prescribe lateral body undulation based on its phase 7;.

Consequently, the gaits of multilegged locomotors, achieved
through the superposition of body wave and leg waves, are
characterized by the phases of contact, 7., and lateral body undu-
lation, 73. As outlined in [23], the optimal body-leg coordination,
which phases body undulation to facilitate leg retraction, is
givenby 7. = 1, — (/N + 1/2)m. We fixed both Opoqy and Oee
at 30° for all the experiments, as this coordination effectively
mitigate environmental disturbances that impacted the robot’s
speed [2].

B. Vertical Body Undulation Wave

Here, we introduce vertical body undulation by propagating
a wave along the body from head to tail

b
Oy (Tp,1) = Aycos <27’b - 47r%(i - 1)> 4)

where 0, (73, 1) represents the vertical angle of the ith body joint
at phase 7, with an amplitude A,,. The vertical wave has a spatial
frequency twice that of the lateral wave. This choice enables each
body segment to oscillate vertically during the retraction phase,
aiding the robot maintain foot—ground contact on rough terrain
with varying elevations. More details can be found in Section V.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 41, 2025

IV. CORRELATION BETWEEN ROBOT SPEED AND
FOOT-GROUND CONTACT STATE

In a dissipation-dominated multilegged system, thrust gener-
ation heavily depends on foot—ground contact states [2], [3]. In
this section, we introduce a parameter, -y, which represents the
fraction of robot contact with the ground during the retraction
phase on rough terrain and characterizes the similarity between
actual and flat ground contact states. Higher values of v indicate
greater similarity to the flat ground contact state, suggesting im-
proved locomotion efficiency and higher robot speed. However,
no quantitative model currently exists to describe this correla-
tion. To address this gap, we propose a probabilistic model to
quantify the relationship between robot speed and . To aid the
reader, we include all notation and symbols in Nomenclature.

A. Rugose Terrain Construction

We constructed two terrains [see Fig. 4(a)] with different
levels of rugosity for the lab-based experiments. Each terrain is
made of multiple 10 cm x 10 cm blocks with different heights.
The height difference AH between adjacent blocks follows a
normal distribution, denoted as AH ~ N (0, 0(R,)), where the
standard deviation of the height difference, O'(Rg ), is determined
by the terrain rugosity R, and is calculated as follows:

o = 15R, (cm). &)

For the R, = 0.17 terrain [see Fig. 4(a)], the terrain dimen-
sions are (W, H) = (80, 160) cm, while for the R, = 0.32
terrain, (W, H) = (50, 300) cm. More details regarding terrain
construction can be found in the Supplementary Information (SI)
of [2].

B. Contact State Contamination

When locomoting on rough terrain, irregularities perturb the
robot’s foot—ground contact state from the flat contact state,
causing what we call contact state contamination. Fig. 4(b)
illustrates examples of contact states contaminated affected by
terrain rugosity. Since thrust generation in our robotic system
heavily depends on the foot—ground contact state, contact state
contamination may negatively impact the robot’s speed. Fig. 4(c)
illustrates how the robot’s forward speed varies with different
levels of contact state contamination.

C. Contact Ratio ~y

Section III-A suggests that legs generate self-propulsion by
retracting during the stance phase to establish contact with the
environment and protracting during the swing phase to dis-
engage. Thus, the proportion of foot—ground contact retained
during the retraction period directly influences robot’s final
thrust.

To quantify the likelihood between the actual and ideal contact
state, we introduce a parameter -y, the effective contact ratio. We
define the duration of the retraction period as 7},, corresponding
to the duration of the black region in the ideal contact state
map shown in Fig. 5(a.1). We then discretize this period into K
independent time steps, dented as t;. At each time step, ¢, ()
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Fig. 4. Laboratory models of rugose terrain to study how rugosity affects locomotion dynamics and performance of the robot. (a) Two laboratory-based rugose
terrains with varying levels of rugosity. Here, R, denotes the level of rugosity, while A H represents the height difference between two adjacent blocks along the
longitudinal direction. The red arrow indicates the direction of the robot’s movement during testing on these terrains. (b) Depicting the contact states of the left
half of a 12-legged robot on terrain with varying rugosity. A comparison between the flat terrain (R4 = 0) and rough terrain (24 > 0) highlights examples of
contact contamination (foot-ground contact state deviate from expected patterns due to terrain heterogeneity). (c) The forward displacement of the 12-legged robot
is measured across terrains of varying rugosity, showing the mean and standard deviation from 10 trials in each plot. Here, D represents the forward travel distance,
while T represents one gait cycle, corresponding to 6 s in real time.
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Fig. 5. Definition of the contact ratio y and experimental data correlating speed with -y in the absence of vertical undulation. (a) (1) Comparison between
the ideal and actual foot—ground contact states is illustrated. In the ideal contact map, transitions from contact to no contact is categorized as “contact loss” and
highlighted in red in the actual contact map. (2) The contact ratio, -y, represents the likelihood of the ideal and actual contact states matching, calculated as the
average proportion of contacts that remain unchanged (areas not transitioning from black to red). (b) A sketch depicting thrust generation by each leg of the robot.
During the retraction or stance phase, the robot’s leg contacts the ground and moves backward (vs|ip), generating Coulomb friction that contributes to the forward
velocity (v). (c) Experimental data reveal a correlation between the robot’s speed and its contact ratio -y. Here, ¥ represents the robot’s average forward speed over
a gait cycle, and vopen denotes its forward speed in open space or on flat ground.

represents the actual contact state, where ¢,(7) = 1 indicates As depicted in Fig. 5(a), contact loss is defined as the tran-
contact, and ¢,(¢) = 0 signifies no contact. Thus, mathemati- sition from contact to no contact compared to the ideal contact
cally, the contact ratio v can be expressed as state map. The contact ratio is then computed as the average
ZK L calty) proportion of contact maintained during the retraction period

v = K (6)  across all legs over a cycle of motion. We disregard the impact
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Probabilistic model for correlation between robot speed and ~y. (a.1) The slipping trajectory of a leg during the retraction period is depicted. The slipping

angle ¢ is defined as the angle between the robot’s forward speed direction and leg’s slipping direction. (a.2) Illustrated is the probability distribution of the slipping
angle ¢ along the leg’s slipping trajectory. (b.1) and (b.2) show the correlation between the actual average friction F,, and the contact ratio -, as well as the
correlation between forward speed © and actual average friction F),, . (b.3) The prediction (purple shaded area) of the probabilistic model for the speed- correlation

is shown, along with experimental data (scatter plots) for validation.

of contact during the protraction period on reducing thrust, as
the flexible leg can minimize contact forces during this phase.
Specifically, when the leg makes contact with the ground during
the protraction period, it undergoes deformation as it moves from
the posterior to the anterior end. This deformation causes the
supporting force to decrease, as its origin shifts from supporting
body weight to the torque from a soft rubber band.

D. Probabilistic Model for Relation Between Robot Speed
and vy

Thus far, we have defined a parameter ~y that directly influ-
ences the thrust generation of the robot. As shown in Fig. 5(b),
during the retraction period or stance phase, the robot’s leg
makes contact with the ground and swings backward (vyp),
resulting in Coulomb friction components in the direction of for-
ward speed (v). The contact loss could decrease v and potentially
reduce the forward speed of the robot. The subsequent objective
is to elucidate the relationship between the velocity of the robot
and 7. Our experimental results in Fig. 5(c) demonstrate a
positive correlation between the robot’s speed and ~y. Next, we
derive a probabilistic model to describe the correlation between
the robot’s speed v and +y in sequential order:

1) Correlation between friction and ~y.

2) Correlation between friction and v.

3) Correlation between v and +.

1) Correlation Between Friction and ~y: Fig.6(a.1) shows the
typical trajectory of a foot of a 12-legged robot during retraction
period or stance phase. We quantify the slipping direction,
denoted by ¢, as the angle between the direction of motion of a tip
and the forward movement direction of the robot. We discretize
the continuous slipping trajectory into K discrete points. Thus,
the average friction of the mth leg over a cycle of motion can be
computed as

Fo— ZZK:1 pFy cos(9;)
" K

where 1 is the friction coefficient and F, [see Fig. 5(b)] denotes
the average ground supporting force on the foot when the robot’s
weight is evenly distributed across each landing foot. It is
noteworthy that £}, = 0 signifies the robot reaching a steady
state, where the thrust and drag nullify each other over a cycle
of motion. [37], [40], [41]

Fig. 6(a.2) shows the probability distribution of the slipping
angle ¢ for the first leg (Fig. 4) of a 12-legged robot. To derive
this distribution, we conducted three cycles of motion with the

@)
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robot on flat ground, each repeated for 10 trials. The trajectory
of the leg was meticulously tracked using our motion tracking
system (OptiTrack; see Appendix). By computing the tangential
direction of the nearest point on the trajectories, we obtained the
distribution of slipping angles.

Note that the probability distribution of ¢ is invariant to
the choice of leg because each leg repeats the cyclical motion
with a phase lag according to Section III-A. We represent the
probability for a specific slipping angle 5, € [—180°,180°] as
Pr(8) = Pr(¢ = (). Thus, we can formulate  as follows:

y= Pr(B)-w ®)
=1

where w; € [0, 1] denotes the proportion of contact remaining
undisturbed by terrain rugosity for a specific slipping angle j3;.
For instance, w; equals 1 on an ideal terrain. However, when
the robot traverses rough terrain, the foot may lose some contact
proportion, leading to a probable decrease in w;. n denotes the
number of bins used to partition the probability distribution.
Given a contact ratio + and the empirical distribution of Pr(j3),
we did perform numerical search to obtain all possible numerical
solution for w;.

Similarly, the average friction F can be rewritten in a proba-
bilistic way

n
Fp =Y puF, - cos(¢ = ;) Pr(B:). ©)

i=1
To simplify our calculations, we assume that when contact
loss occurs, the support force exerted by the affected landing leg
is transferred to the belly of the robot and acts as a frictional
drag against the robot’s moving direction. The actual averaged

friction for the mth leg is then computed as

F = Zquwi ~cos(¢p = Bi)Pr(B;) — pFu(l — w;).

i=1
(10)
As defined previously, w; represents a weighting factor indi-
cating the extent of disturbance on a particular slipping direction,
with w; < 1.Ifw; = 1forall i € [1,n], where n is the number
of slipping direction bins, then F,,, = F! . If w; < 1, the force
disturbance can be computed as 6F = F,, — F/, . Given that
F,, = 0, it follows that §FF = —F . By tracking the variation
of F,’n due to contact state contamination, we could compute
how the force disturbance (5 F) changes with disturbances in
the contact state.
Since F,’n is determined by w; and w; can be determined
by ~, we establish the relationship between F,’n and ~. Here,
F,

2 This correlation is
w

we normalize F) by uF,, denoted as 3

illustrated in Fig. 6(b.1).

A recent study by Chong et al. [3] established a linear rela-
tionship between the actual speed of a robot and its disturbed
averaged friction OF). Leveraging these findings, we now in-
vestigate the correlation between velocity and friction within the
context of our specific scenarios.

2) Correlation Between Friction and v: The models pre-
sented in [2], [3] offer insights into predicting a robot’s speed v
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based on its averaged friction F. Specifically, they propose an
effective force-velocity relationship expressed as follows:

§F = —C6v. (11)

Here, 6F represents the disturbance to the average fric-
tion, while 60 = ¥ — vopen denotes the disturbance to the
speed. The constant C' is determined by the robot’s dimen-
sions and its ideal steady-state speed vopen. Specifically, C' =
Jo" 11F s /Vopen sin(tan ™! (vopen v () )d7. Here, v, (7) is the lat-
eral speed of the leg tip over time and can be obtained by
analyzing robot’s geometry [3].

In the previous section, we discussed how disturbances to
the contact state result in a change in friction. Specifically, we
can observe dF by considering the ratio #FT”"UJ Eq. (11) allows
us to anticipate the relationship between friction and velocity.
Fig. 6(b.2) illustrates our prediction of the correlation between

F, v
and
wFy Uopen

consideration, we approximate this relationship as follows:

using this model. For the robotic system under

F/
Y ~1.065 ( + 1) :
Vopen ik,
3) Correlation Between v and ~y: In the previous sections,

we introduced a model to predict average friction based on the
contact ratio . By analyzing the friction disturbance using the

12)

dimensionless ratio MTM we can calculate the force disturbance
w

§F as a function of +y. Since (12) establishes a linear relationship
between robot’s speed and the actual friction, this enables us to
link the robot’s speed to the contact ratio ~.

We assume that the linear force—velocity relationship in (12)
remains valid even on rough terrain. Experimental data presented
in the following sections support this assumption. Consequently,
we can determine the relationship between v and ~y by integrating
the correlations derived in the previous subections. Fig. 6(b.3)
illustrates our predicted correlations between v and v, alongside
experimental results for comparison.

V. VERTICAL BODY MOTION MITIGATES ENVIRONMENTAL
DISTURBANCE

In Section IV, we demonstrated that the robot’s velocity
is approximately proportional to the effective contact ratio .
Therefore, mitigating environmental disturbance on ~ effec-
tively reduces disturbance on velocity. As shown in Fig. 7(a),
contact loss can occur in two scenarios due to the terrain level
shifts. First, when the leg length is insufficient to reach the
ground. Second, when the leg deforms, leading to a reduction in
support force. In the latter case, the supporting force shifts from
the body weights to the elastic force generated by the rubber
band attached to each flexible leg joint. To quantify the terrain
level shift, We define the height difference as follows:

AH =H(tT) — H(t) (13)

where H (t) and H (™) represent the terrain height at the current
and next time steps, respectively.

We observe that implementing vertical motion in each body
joint enhances the robot’s ability to maintain contact on chal-
lenging and uneven terrain. As shown in Fig. 7, the robot can
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Fig. 7. Vertical body undulation serves as a mechanism to alleviate foot-ground contact state distortion. (a) Examples of contact loss on rough terrain. (left)
Contact loss occurs when the leg’s length is insufficient to reach the ground. (right) Contact loss occurs when the flexible leg is deformed by shifts in terrain level.
In this scenario, the supporting force F;. diminishes as it transitions from supporting the body weight to generating torque on the rubber band. (b) Vertical body
undulation reduces the contact contamination. (left) By lowering the leg deeper, contact contamination is minimized. (right) Conversely, lifting the leg facilitates its
return to its initial undeformed state, thereby reducing contact contamination. (c) Sketch for deriving probabilistic models: An illustration depicting the geometric
relationship between the robotic structure and variations in terrain height. (left) This sketch illustrates the maximum depth (k) that the leg can reach with the
vertical joint pitch motion. (right) This sketch demonstrates how leg retraction restores the leg from deformation to its straight state. Given the retraction distance
Dy, the compliance (knee) joint is lifted by §h'. Circles without fill on the dashed line represent the pivot joint for leg lifting, while solid circles indicate the knee
joint for leg compliance. h; 7 is distance between the pivot joint and knee joint while h; o is the distance between the knee joint and leg tip. Squares represent the

stroke for leg retraction, showing the range of leg swing from anterior to posterior during the stance phase of one motion cycle.

recover its contact state by pitching the body segment downward,
bringing the leg into contact with the ground, or pitching it
upward to correct any deformation in the leg. Unlike the discrete
foothold planning used in bipedal or quadrupedal robots, our
approach models the vertical body undulation of a multilegged
robot using sinusoidal traveling waves.

A. Probabilistic Model Predicts vy on Rough Terrain

1) Gait Without Vertical Wave: We begin our analysis by
considering the simplest scenario: the robot’s gait without ver-
tical body undulation waves. To address the variations in height
difference, we categorize them into two cases: AH > 0 and
AH < 0. To dynamically control the sign of AH, we introduce
a switch denoted as .S

for AH <0
for AH > 0.

1 Pr:ipy
2 Pr:1—p;

5= (14)

This switch enables us to control the sign of AH according to
the specified probabilities.

If AH < 0, itindicates that the terrain at the next time step is
lower than the current one. Contact loss occurs when the robot
leg is not long enough to touch the ground [see Fig. 7(a)]. In
probability terms

Boss,l = PT(AH > hl|S = 1) (15)

where h; [see Fig. 7(b)] is the maximum depth the robot can
reach without utilizing any vertical body movement.

If AH > 0, it indicates that the terrain at the next time step
is higher than the current one. In this case, the situation is more
complex because the leg can still make contact with the ground.
Our robot’s flexible legs can bend when encountering higher
terrain. We assume a contact loss occurs if the robot leg deforms
upon encountering higher terrain [see Fig. 7(b), right].

The contact is then restored by the leg’s retraction movement,
represented by the retraction distance D (t). During the retrac-
tion process, we assume the leg remains fixed at the foot—ground
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contact point [see Fig. 7(c), right]. Then, we discretize the
retraction period over a motion cycle into m time steps. For a
given time step ¢; during the retraction period of the robot’s leg,
we define the maximum height difference that can be recovered
by retraction as 0h(t;)’, which is computed as

Ds t;
Sh(t;) = hio (1 — cos(arcsin( h( )))) . (16)
1,2
The probability for contact loss could be expressed as
o Pr(AH > 6h(t;)|S =2
P]OSS,Q = Zlil ( ( ) | ) (17)

m

The cumulative probability of contact loss, P, arising from
two distinct sources can be expressed as the sum of the products
of the probability of encountering each source (p; and 1 — p;)
and the corresponding probability of contact error (FPess,1 and
Ploss,2). This relationship is given by the equation

]Dloss = plploss,l + (]— - pl)Ploss,2~ (18)

Note that in Section IV, Fig. 5(a), we define contact loss as
regions where contact is lost—specifically, transitions from con-
tact (on flat ground) to no contact (on rugged terrain)—relative to
the ideal contact pattern. In Section V, we extend the definition
of contact loss to include both

1) Contact — No contact: This results in a missed step, as
shown in Fig. 7 (left).

2) Contact — Contact, but with leg deformation: Although
the foot maintains contact with the ground, the leg fails
to maintain its intended shape or posture. In the stance
phase, where ground contact is planned, such deformation
is considered a form of contact loss, as illustrated in Fig. 7
(right).

2) Gait With Vertical Wave: We introduce an additional body
undulation wave, the vertical wave, to mitigate contact loss.
Intuitively, the vertical wave helps the leg reach deeper areas
when AH < 0, and it can lift the robot leg to avoid or reduce
bending when AH > 0. The amplitude of these vertical waves
is defined as A,,.

If AH <0, the maximum depth that the leg can reach is
defined as h,.(t) [see Fig. 7(c), left]. This depth, k., is computed
as

hy(t) = d;sin(8,(t)) + hy cos(0,(t)). (19)

Thus, the new probability of contact loss, considering the
vertical wave modulation, can be expressed as

ie1 Pr(AH > h,(t:)]S = 1)

Ross,l = m .

(20)

If AH > 0, the vertical wave introduces an offset to AH
by lifting the robot leg [see Fig. 7(c), right]. The new height

difference with the offset can be expressed as
AH' = AH + h(t) (21)

where h(t) represents the offset controlled by the vertical wave
amplitude A, and time ¢. The probability of contact error due to
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this offset can be expressed as
S, Pr(AH' > 6h(t;)'|S = 2)
- .

}Dloss,2 = (22)

3) Contact Ratio ~y Prediction: As a reminder, the contact
ratio, denoted as v, is defined as the likelihood between the actual
contact state and the ideal contact state during the retraction
period. The computation of the contact ratio is expressed by the
formula

Y= 1 — Poss- (23)

In Fig. 7(a), we define contact error as contact flipped by
terrain noise compared to the contact state on flat ground. Thus,
we can calculate the probability of contact error

1_
p=—"1
v

where ' is the contact ratio over one gait cycle on ideal terrain.
~' is controlled by the vertical wave amplitude, A,. As A,
increases, 7/ decreases when locomoting on ideal terrain. This
happens because the vertical body undulation can cause the leg
to lift off the ground during the retraction period or stance phase,
leading to a reduced contact ratio, with +' being less than 1.

4) Experiment Validation: As defined in Section IV-A, we
assume that the height difference A H follows a normal distri-
bution (0, o), where the variance o is regulated by the terrain
noise level R,. Specifically, we define 0 = 15R,,. Thus, we can
write

(24)

AH ~ N(0,0(Ry)).

Note that A H exhibits an equal likelihood of being positive or
negative when it follows a normal distribution. Consequently, p;
in (14) equals 0.5. By substituting the dimensions of the robot
into the probabilistic models, we obtain predictions for P, and ~y
on terrains of different rugosity, as shown in Fig. 8(b). To validate
our model, we conducted laboratory experiments using our
12-legged robot on terrains with rugosities 2, = 0,0.17,0.32
and different vertical wave amplitudes. The experimental results,
presented in Fig. 8(c), closely match our theoretical predictions.

(25)

B. Vertical Motion Reduces Environmental Disturbance

Contact loss, shown in Fig. 7(a), occurs due to terrain level
shifts in two scenarios: insufficient leg length preventing ground
contact and leg deformation. Vertical body undulation helps the
robot restore contact by either increasing leg placement depth
for ground contact or lifting the leg to correct deformation.
Similar to leg stepping and horizontal body undulation, we
program vertical body undulation as a traveling sinusoidal
wave, but with twice the spatial frequency of the horizontal
wave. This design allows each robot segment to move both
upward and downward during the retraction phase. Since rugose
terrain often exhibits alternating level shifts, encoding vertical
body motion helps the robot address both types of contact loss
caused by these terrain variations.

As defined in Section IV-A, terrain rugosity (I2,) is deter-
mined by the variance in height difference between two adja-
cent blocks. A higher vertical body undulation amplitude (A,)
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Fig. 8.  Theoretical predictions and experimental validation of probabilistic
models forthe v — A, correlation. (a) Definition of contact error: the probability
of contact error, denoted as P, is the portion of contacts that deviate from
their corresponding flat terrain contact states. (b) Probabilistic predictions of
P, and ~ for various vertical amplitudes (A, ) across terrains with different
rugosity. (c) Experimental validation of the probabilistic models. We conducted
10 experimental trials for each parameters. The error bars represent the standard
deviation.

enables the robot to maintain contact even when there are sig-
nificant height differences between blocks. However, increasing
A, reduces the contact ratio «y on flat or less rough terrain, as the
vertical body wave lifts the leg during the retraction phase. Intu-
itively, a higher A, increases the probability of contact error (P,)
more gradually as terrain rugosity increases. In addition, while
higher A, causes the contact ratio y to start at a lower value, it
decreases more slowly as terrain rugosity increases. Therefore,
increasing the vertical amplitude can reduce environmental dis-
turbances, improving both the robot’s contact state and its speed.

We first verify this assumption using probabilistic model from
Section V-A. As depicted in Fig. 8(b), with a high vertical
amplitude A,, the probability of contact error P, increases more
gradually as terrain rugosity increases, and the contact ratio 7y is
less sensitive to terrain noise shifts.

To verify our hypothesis through laboratory experiments, we
tested our 12-legged robot on terrain with varying rugosity using
different vertical amplitudes A,. A motion tracking system and
binary contact sensors were used to monitor the robot’s speed
and contact ratio v, respectively. The results see Fig. 9(a)] show
as A, increases, both the robot’s speed and contact ratio -y tend to
concentrate around the central area near (0.5, 0.5). Specifically,
on terrain with R, = 0.17, the optimal vertical amplitude A,
increases the average contact ratio y by 25% and speed by 30%,
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Fig. 9.  Experimental data and probabilistic model predictions for speed-~y

correlations. (a) Experimental data were collected by testing the robot on
terrains with varying rugosity while adjusting the vertical amplitude A,,. (b)
The experimental results validate the accuracy of the probabilistic model in
predicting the relationship between the robot’s forward speed v and the contact
ratio .

compared to the gait without vertical wave (A, = 0). On terrain
with R, = 0.32, the optimal A, increases the average y by 18%
and speed by 20% . These findings suggest that vertical body
undulation effectively helps the robot mitigate environmental
disturbances, improving both its speed and contact state.

VI. ENHANCE ROBOT PERFORMANCE ON RUGGED
LANDSCAPES THROUGH FEEDBACK CONTROL

In Section V, we show how vertical body motion effectively
mitigates environmental disturbances on the robot’s speed. Our
experimental findings, depicted in Fig. 10, highlight the impor-
tance of adapting vertical motion to optimize speed in response
to changes in terrain rugosity. Specifically, the empirical data
suggests that robot’s speed v is reduced by increasing vertical
amplitude A, on flat ground (R, = 0). However, on rough
terrain (R, = 0.17 or 0.32), increasing A,, canincrease v. These
findings indicate that implementing feedback control of A,
based on terrain rugosity could be beneficial for maximizing the
robot’s forward speed. The sensitivity of the robot’s performance
to temporal frequency is discussed in the Appendix. B.

In this section, we develop a feedback control framework
that adapts vertical body motion by monitoring the foot—ground
contact state and approximating terrain rugosity. To demonstrate
the effectiveness of our feedback controller, we test both our
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] N ] b1 L]

Fig. 10.  Empirical evidence supporting the necessity of vertical motion mod-
ulation. (a) Empirical results demonstrate the relationship between the robot’s
speed v and the vertical amplitude A,. Here, N represents the number of leg
pairs on the robot. For example, if N = 4, the robot has 8 legs. We conducted
10 experimental trials for each data point. Error bars represent the standard
deviation. (b) Snapshots show the differences in speed for a 12-legged robot
with varying vertical amplitudes A,,.

8-legged and 12-legged robots on lab-based and outdoor terrains.
We compare the performance of an open-loop controller with
the feedback controller to asses how the implementation of the
feedback control improves the robot’s speed.

A. Vertical Motion Adaptation Based Feedback Controller

Based on the predictive analysis illustrated in Fig. 8(b),
optimizing - necessitates modulation of vertical motion. The
findings in Fig. 9(b) reveal a correlation between the robot’s
velocity and the contact ratio v, indicating higher contact ratios
lead to increased speed. Consequently, adapting vertical motion
becomes crucial for optimizing the robot’s traversal speed on
rough terrains.

Following this framework, we developed a linear controller
[illustrated in Fig. 11(a.1)] to autonomously adjust the robot’s
vertical wave amplitude (A,) when traversing rugged terrain.
The onboard controller calculates the real-time contact ratio, s,
using data from binary contact sensors and compares 75 to the
predetermined set contact ratio, yy. This comparison determine
the appropriate vertical motion adjustment for the next cycle.
The vertical wave amplitude is then computed as follows:

A (TT) = Kp(vo — 7s(T))

where in K, signifies the proportional gain for the linear con-
troller, and 7" and T+ denote the current and next motion cycles,
respectively. In this feedback controller, the parameter v, serves
as an approximation of terrain rugosity. Since the contact ratio
~ quantifies the likelihood of the actual foot—ground contact
state compared to the ideal state, rugged terrain expected to

(26)
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exhibit lower values of 7, where flatter terrains expected to
yield higher values. Based on this relationship, the controller
adjusts the vertical wave amplitude A, accordingly, increasing
it when ~y, is low to improve contact and reducing it when 4 is
high.

B. Lab-Based Experiment

The feedback controller’s efficacy was assessed through
experimentation conducted on laboratory-based rough ter-
rain, specifically focusing on terrain with higher rugosity
(R4 = 0.32). Over seven motion cycles, the contact state of each
leg and robot’s forward displacement were recorded. Fig. 11(a)
shows the temporal evolution of the measured v, alongside
the corresponding A, for a representative trial of the feedback
control experiments. We tuned K, from 0° to 180 to obtain
the optimal performance for the feedback controller. We set
K, as 90° for the lab-based experiments. We also conducted
experiments for K, sensitivity analysis and the results can be
found in Appendix C.

Comparing the contact states obtained using the feedback
controller to those under an open-loop controller [see Fig. 11(b)]
reveals significant improvements. The feedback controller ef-
fectively mitigates the discrepancy between the actual contact
state and the ideal counterpart. Fig. 12(a) illustrates the disparity
in the robot’s speed between the two controllers. Remarkably,
for both the 8-legged and 12-legged robot configurations, the
feedback controller not only enhances the robot’s speed but
also reduces speed variance. These observations highlight the
effectiveness and consistency of the feedback control mecha-
nism in optimizing locomotion performance across various robot
configurations.

To evaluate the real-time performance of the feedback con-
troller, we tested the robot on a composite terrain combining
sections of R, = 0.17 and Ry, = 0.32 (see Fig. 13). The rapid
transition in terrain rugosity at the junction of these two surfaces
presents additional challenges for the controller. We ran the robot
for eight motion cycles on this composite terrain using both
open-loop and feedback controllers, conducting five trials for
each condition. As shown in Fig. 13, the feedback controller im-
proved the robot’s speed by approximately 50%, demonstrating
its effectiveness even under rapidly changing terrain conditions.

In previous feedback experiments, the robot adjusted its
vertical amplitude on a per-cycle basis. To determine if its
modulation frequency was optimal, we conducted additional
tests on both 8-legged and 12-legged configurations with varying
modulation frequencies. Our empirical findings (see Fig. 14)
suggest that cycle-wise vertical motion modulation emerges as
the optimal approach. This method not only enhances the robot’s
performance on rough terrain, but also ensures computational
efficiency.

C. Outdoor Experiments

We tested the feedback controller’s performance on five out-
door terrains with varied obstacles, including tree debris, grass,
boulders, mud and rocks (see Fig. 15). Terrain a consists of
a mixture of robot-sized boulders, leaves, and mud. Terrain
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Fig. 11.

Block diagram for the feedback controller and corresponding experimental results. (a) (Left) The block diagram illustrates the feedback controller,

where 7o represents the expected contact ratio and s is the actual contact ratio measured by the binary contact sensors. K, is the proportional gain for the

linear controller. The vertical amplitude (A,) for the next motion cycle is computed as A, = K (yo

— 7s)- (Right) The history of s and A,, is shown for a

representative trial in the feedback control experiments. (b) (Left) Snapshots compare the performance of open-loop control and feedback control on rough terrain
in terms of the average forward speed. (Right) The corresponding histories of the contact state of the left half of the robot’s legs.
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Fig. 12.  Controller comparison in laboratory experiments. Experiments were

conducted on 12-legged (N = 6) and 8-legged (N = 4) robots to compare
the performance of open-loop and feedback controllers. Here, D represents the
forward displacement of the robots. Each condition was tested in 10 trials, and
the shaded region represents the standard deviation.

b combines robot-sized boulders with tree debris. Terrain ¢
includes leaves, robot-sized boulders, and weeds. Terrain d fea-
tures a mix of robot-sized boulders, rocks, grass, and pine straw.
Terrain e contains a dense combination of highly entangled
weeds and robot-sized boulders. In these highly unpredictable
environments, the feedback controller increased the robot’s
speed by 30% —60%, reaching up to 60% of its maximum
velocity in open areas. Additional details and visual demon-
strations of the outdoor experiments can be accessed in the SI
videos.

i Dpen koo
Feedback
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Fig. 13.  Controller comparison in composite terrain. The left plot shows the
forward displacement over time for both open-loop and feedback controllers
as the robot traverses a composite terrain consisting of two roughness levels
(Rg = 0.17 and R, = 0.32). Shaded regions represent the standard deviation
over five trials. The right image shows the 12-legged robot navigating the
composite terrain, which features abrupt transitions in elevation and surface
characteristics.

VII. CONCLUSION

This article presents a framework to enhance multilegged
robot locomotion. We developed a binary contact sensing system
to detect foot—ground contact, forming the basis for feedback
control mechanisms. Building on this, we devised probabilistic
models based on stochastic leg contact states, derived from
testing various vertical body wave amplitudes on terrains with
different rugosities. By averaging the likelihood between actual
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Fig. 14.  Robot performance across vertical wave modulation frequencies.
Experimental results offer empirical insights into how the frequency of vertical
wave modulation affects the performance of the feedback controller.

and ideal contact states, we predict the robot’s speed on these
terrains, revealing how environmental disturbance impact loco-
motion dynamics.

Our theoretical analysis and experimental validation demon-
strate the critical role of vertical body wave modulation in opti-
mizing robot speed on rough terrain. This led to the development
of a feedback control framework for automatic vertical motion
modulation, which, when extensively tested in both laboratory
and outdoor environments, significant improved performance
performance. In laboratory trials, we observed a 50% —60%
increase in robot speed and a 30% —50% reduction in speed
variance compared to open-loop control. Similarly, outdoor ex-
periments, conducted on terrains with rugosity regimes different
from those in the laboratory trails, showed a 30% —60% increase
in speed, with the robot reaching up to 60% of its maximum
velocity in open terrain.

VIII. DISCUSSION AND LIMITATIONS
A. Model Limitations

In this work, we developed two probabilistic models: one
capturing the correlation between the robot’s speed and contact
ratio, and another predicting the contact ratio based on terrain
rugosity and vertical amplitude. However, there are several
limitations to these models that are worth noting and addressing
in future work.

Our analysis in Section I'V for the first model contained errors
due to two key assumptions, along with other factors. First, we
assumed that when a leg loses contact, the support force is lost
rather than redistributed to other legs, based on the hypothesis
that the force transfers to the robot’s belly. Second, we assumed
the probability distribution of the slipping angle on flat terrain
remains constant, though it may change on rough terrain. In
addition, sensor noise introduces errors in measuring the contact
ratio, . To simplify calculations, we neglected the impact of
collisions between the robot and the environment, despite their
effect on thrust generation. These factors contributed to approx-
imately 15% of the data points falling outside our predictions
[see Fig. 9(b)].

Further, We also assume that two models can be applied
to robots with different numbers of legs. However, results in
Fig. 10(a) indicate that robots with fewer legs are more sensitive
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to terrain rugosity. This is primarily because our model assumes
negligible yaw motion—an assumption that becomes less valid
as the number of legs decreases. Observations show that when
the head segment collides with an obstacle, yaw motion is in-
duced, particularly in robots with fewer segments. For example,
in the four-segment (eight-legged) configuration, yaw motion
becomes significant, leading to lateral deviations and a more
rapid reduction in forward speed as terrain rugosity increases
from 0.17 to 0.32 (see Fig. 10).

To improve predictive accuracy across different robot mor-
phologies, future work could introduce an additional term to
account for leg number, modifying the speed function from
v = f(vy) to v = f(y) + g(n;), where n; represents the num-
ber of legs. This refinement would enhance the model’s ap-
plicability to robots with different configurations and improve
its ability to predict locomotion performance across varied
terrains.

In addition, two models in the article rely on the contact ratio
v, without explicitly accounting for the quality of contact. In
particular, the model does not differentiate between stable (firm
ground) and unstable (e.g., slippery or loose) contacts, which
can influence thrust generation.

For terrains with low friction coefficients, the gait framework
used in this article is designed to accommodate slipping during
locomotion. In our previous work [3], we showed that thrust
is governed by rate-independent Coulomb friction. During lo-
comotion, the foot periodically slips forward and backward,
balancing thrust and drag. Experimental results demonstrated
that the robot’s speed (displacement per cycle) was relatively
insensitive to terrain friction variations, provided there are no
significant local shifts in friction. In this article, all laboratory
based experiments were conducted on surfaces with constant
friction conditions. Nonetheless, we acknowledge that rapid
changes in friction—such as alternating patches of mud, ice,
or sand—may challenge this assumption [42], and we plan to
explore these conditions in future work.

Importantly, even with friction variability, our feedback con-
troller is expected to enhance performance by maintaining a
higher contact ratio v, resulting in greater thrust and forward
speed compared to open-loop control. This is supported by our
outdoor experiments (see Fig. 15), where terrains (a, b, and
e) included both mud and slippery boulders, and the feedback
controller still achieved up to a 50% improvement in speed.

For loose granular media such as sand, where the leg—ground
interaction exhibits both solid- and fluid-like behavior, we rec-
ognize that a new modeling framework will be necessary, as
Coulomb-based assumptions may no longer hold. Exploring this
direction is part of our ongoing and future work.

In Section III, we set the phase lag between the horizontal
body wave and the limb stepping wave to (£/N + 1/2)m, which
was previously identified as optimal through numerical simula-
tions [23]. However, certain types of “contact contamination”
may effectively shift the phase lag in practice, potentially bring-
ing it closer to a more optimal value than the one currently
prescribed. Investigating how such unintentional terrain-induced
phase adjustments might enhance performance is an intriguing
direction for future work.
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Fig. 15.

Outdoor experiments testing feedback control vs. open loop in a six-segment, 12 leg robot. (a) Images depict the terrestrial features of five outdoor

terrains. (b) Snapshots capture representative trials of open-loop and feedback control in terrain b. (c) Forward speed data from experiments conducted across all
five outdoor terrains. ¥ represents the average speed over a cycle of motion, while vopen denotes the speed in open space.

B. Control Framework Limitations

In this article, we developed a linear controller to improve the
robot’s speed on rugged terrain; however, this simple approach
has certain limitations, and there remains room for further per-
formance enhancement.

To support our hypothesis that vertical body undulation en-
hances robot performance, we assume that the heights of rough
terrain follow a normal distribution — a condition that aligns
with our lab-based experimental setup. However, real-world
terrain is typically more diverse and complex. While we demon-
strated the effectiveness of our controller in more challenging
outdoor tests, future work will focus on evaluating the model
across a broader range of terrain types to better capture real-
world variability.

We employed a sinusoidal traveling wave model to drive the
robot’s vertical body undulation. While effective in mitigating
environmental disturbances through amplitude adjustments, this
approach cannot generate more complex vertical body shapes.
Future research will investigate the impact of more discrete ver-
tical body shape on robot performance, focusing on how subtle
variations can optimize locomotion efficiency and adaptability
on complex terrains. Our recent work has produced promising
results [43].

While this study utilized a basic linear controller to enhance
performance on rugged terrain, we propose that integrating the
two probabilistic models with a more advanced control strategy,
such as a learning-based algorithm, could significantly enhance
the robot’s ability to navigate complex environments. We are
actively exploring this approach [44].

C. Applicability to General Platforms

Although the control framework is demonstrated to be ef-
fective in this article, it remains an open question whether it

is applicable to legged robots with different morphologies and
dimensions.

Following this study, our group has developed additional
multilegged robots with varying numbers of legs [43], body
dimensions, and leg-to-body length ratios. Across these plat-
forms, we consistently observe that vertical body undulation
enhances locomotion speed, suggesting that the benefits of
this mechanism are not limited to a specific morphology. For
quadrupedal and hexapod robots, we posit that introducing ver-
tical body undulation could similarly improve performance—
particularly by increasing stability on uneven or bumpy terrain.
While the exact parameters may need to be tuned based on each
platform’s kinematics, the underlying principle of using body
undulation to mitigate environmental disturbances is expected
to be broadly applicable.

APPENDIX A
MOTION TRACKING FOR EXPERIMENTS

Reflective markers were affixed to each robot module to track
its position and orientation over time. The OptiTrack motion
capture system, consisting of four Prime 17 W cameras record-
ing at 360 frames per second and Motive software, tracked the
markers positions within the workspace. The collected data was
then analyzed using MATLAB.

APPENDIX B
ADDITIONAL EXPERIMENTS

A. Complaint Leg Test

In Section II-A, we introduced the compliant leg design,
inspired by the design in [35], to increase robot’s obstacle ne-
gotiation capability. We also conducted experiments to compare
the performance of rigid leg and complaint leg on rough terrain
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Fig. 16.  Robot performance with and without compliant legs. The robot com-
pleted three motion cycles on rough terrain (124 = 0.32) using both compliant
and rigid leg configurations. Across all tested vertical amplitudes, the robot
equipped with compliant legs achieved more than a 200% increase in speed
compared to the rigid-legged configuration.
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Fig. 17.  Gait performance at higher temporal frequencies. The plot shows the
average forward displacement per cycle v as a function of vertical body wave
amplitude A, evaluated at three temporal frequencies: 1/6 Hz (6 seconds per
cycle), 1/3 Hz (3 s per cycle), and 1 Hz (1 s per cycle), on rough terrain with
Ry = 0.17. Each data point represents the average over five trials, with error
bars indicating standard deviation. Results show that gait performance remains
stable when increasing frequency from 1/6 to 1/3 Hz. At 1 Hz, performance drops
significantly at low amplitudes but remains relatively high when larger vertical
amplitudes are used, suggesting that greater body undulation helps maintain
stability and efficiency at higher speeds.

(g = 0.32). We varied the vertical amplitude from 0 to 40°,
with 10° increment. For each condition, we performed five trials,
and in each trial, the robot completed three motion cycles. The
plot below presents the results of these experiments. As Fig. 16

shows, the complaint leg increases the forward speed of the robot
by around 200% .

B. Gait Stability at Higher Speeds

In the lab-based and outdoor experiments presented in this
article, the robot operated at a temporal frequency of 1/6 Hz
(6 s per motion cycle). To further investigate the effect of
higher speeds, we conducted additional experiments at increased
frequencies: 1/3 Hz (3 s per cycle) and 1 Hz (1 s per cycle), on
rough terrain with R, = 0.17. We tested three different vertical
amplitudes: 10°, 20°, and 30°. For each condition, we conducted
five trials, with the robot completing three motion cycles per
trial.

The results (see Fig. 17) show that gait performance remains
consistent when the temporal frequency increases from 1/6 to
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Fig. 18.  Sensitivity analysis of K. The plot shows the average forward speed
per cycle ¥ as a function of K, which determines the vertical body undulation
amplitude according to A, = K}, (o — vs). Each data point represents the
mean speed over five trials, with each trial consisting of three motion cycles.
Error bars indicate the standard deviation across trials. The results show that
performance improves with increasing K, peaking around K, = 90°, after
which the speed slightly declines. This trend highlights the importance of
appropriate gain tuning in the feedback controller.

1/3 Hz. However, at 1 Hz, the robot’s displacement per cycle
decreases to approximately 50% of the 1/6 Hz value for the
smallest vertical amplitude (10°), and to about 85% for the
highest vertical amplitude (30°). These findings suggest that
larger vertical amplitudes help maintain gait performance at
higher speeds. We plan to further investigate this phenomenon
in future work.

C. K, Sensitivity Analysis

To evaluate the impact of the proportional gain parameter k),
in our feedback controller, we conducted a series of sensitivity
experiments. Recall that the vertical body wave amplitude is
computed as follows

Ao = kp(v0 = 75)

where 7y is the nominal contact ratio and -y is the sensed contact
ratio.

We varied k, from 0° to 180° in 30° increments. For each
value, the robot completed five motion cycles per trial, and
each condition was tested across five repeated trials to ensure
robustness.

When £k, is small, the resulting vertical amplitude A, remains
near zero, and the robot’s behavior closely resembles a gait
without vertical undulation. Conversely, at higher &, values
(approaching 180°), even a small difference between ~y and
~s produces a large A,. Since we cap the vertical amplitude
at 50° to prevent self-collision, setting k,, near 180° effectively
causes the robot to operate at its maximum vertical amplitude
throughout the motion cycle.

Fig. 18 illustrates how the average forward speed per cycle
varies with k,. As shown, speed increases with k,,, reaching a
peak around k, = 90°, after which it slightly declines. These
results underscore the importance of gain selection and demon-
strate the sensitivity of the controller to the k, parameter.
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