Late Breaking Results: Differential and Massively Parallel Sampling
of SAT Formulas

Arash Ardakani , Minwoo Kang , Kevin He, Vighnesh Iyer, Suhong Moon, John Wawrzynek
University of California, Berkeley
{arash.ardakani,minwoo_kang}@berkeley.edu

Check for
Updates

ABSTRACT

Diverse solutions to the Boolean satisfiability (SAT) problem are essential
for thorough testing and verification of software and hardware designs,
ensuring reliability and applicability to real-world scenarios. We intro-
duce a novel differentiable sampling method, called DIFFSAMPLER, which
employs gradient descent (GD) to learn diverse solutions to the SAT
problem. By formulating SAT as a supervised multi-output regression
task and minimizing its loss function using GD, our approach enables per-
forming the learning operations in parallel, leading to GPU-accelerated
sampling and comparable run time performance w.r.t. heuristic samplers.
We demonstrate that DIFFSAMPLER can generate diverse uniform-like
solutions similar to conventional samplers.

ACM Reference Format:

Arash Ardakani, Minwoo Kang, Kevin He, Vighnesh Iyer, Suhong Moon, John
Wawrzynek. 2024. Late Breaking Results: Differential and Massively Parallel Sam-
pling of SAT Formulas. In 61st ACM/IEEE Design Automation Conference (DAC
'24), June 23-27, 2024, San Francisco, CA, USA. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3649329.3663505

1 INTRODUCTION

Boolean satisfiability (SAT) problem solving is a critical technique in soft-
ware and hardware design verification, addressing the challenges posed
by the complexity and scale of modern systems. Uniform sampling is a
core challenge for SAT samplers with applications in a diverse range of
areas such as constrained-random simulation, constraint-based fuzzing,
configuration testing, and bug synthesis [3]. Modern SAT problem sam-
plers leverage sophisticated algorithms and heuristics to efficiently ex-
plore vast solution spaces and provide uniform satisfying solutions to
complex logical formulas.

High-throughput sampling stands as a cornerstone for SAT samplers,
serving a multitude of essential purposes. Primarily, it enhances effi-
ciency and scalability by facilitating rapid exploration of extensive solu-
tion spaces, particularly crucial when tackling real-world problems with
numerous variables and constraints. Furthermore, it increases coverage
across solution spaces, aiding in identifying rare solutions and nuanced
edge cases. Additionally, high-throughput sampling elevates statistical
confidence through the generation of larger sample sizes, thus mitigating
sampling variance.

While GPU acceleration can offer significant performance benefits
across various applications, current state-of-the-art (SOTA) SAT solvers
and sampling algorithms are typically executed on CPUs. This is because
these solvers rely heavily on sequential processes, which are better suited
for CPUs, particularly due to their reliance on branching and backtrack-
ing. Instead, to enable GPU acceleration for SAT sampling, we propose a
fundamentally different approach. Our method introduces a novel tech-
nique that utilizes gradient descent (GD) for learning diverse solutions to
the SAT problem. We re-frame the task of sampling formulas for a SAT
instance as a supervised multi-output regression task and employ GD to

"Both authors contributed equally.

@ 00

This work is licensed under a Creative Commons Attribution-ShareAlike International 4.0 License.
DAC °24, June 23-27, 2024, San Francisco, CA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0601-1/24/06.

https://doi.org/10.1145/3649329.3663505

° o CMSGen
1e6 . s UniGen
1e5 DiffSampler (Ours)
m
£ led L
o
£ 1le3 va o
= Nl |
c e
El le2 . L H
= -
g 1e1 l/'
= . bt |
1e0 § e
le-1 e
'_f
le-2
le3 led le5 le6 le7

(Log) Number of Unique Solutions
Figure 1: Log-Log plot of sampler run time in milliseconds against
the count of unique satisfying solutions found within that run
time. A representative subset of 18 SAT problems from the eval-
uation benchmark are used (or-50-10-7, or-60-20, or-70-5-5, and
or-100-20-8).

minimize its loss function. This differentiable optimization task resem-
bles typical machine learning problems, is inherently parallel, and can
be accelerated using GPUs, allowing for the independent generation of
satisfying solutions through a learning process. Due to GPU-accelerated
training, our differentiable SAT sampling method achieves a comparable
throughput to that of SOTA sampling algorithms, despite implemented
in a higher-level programming language (Python), while also generating
uniform-like solutions across various benchmarks featuring different
numbers of variables and clauses. We refer to our sampling technique
as DIFFSAMPLER in this paper. The code of DIFFSAMPLER is available at
https://github.com/arashardakani/DiffSampler.

2 RELATED WORK

Several SAT formula samplers have been developed in literature, in-
cluding Un1GEN3 [8] with approximate guarantees of uniformity, and
CMSGEN([3] and QuickSAMPLER [2] that emphasize sampling efficiency.
Prior work have also used data-parallel hardware for SAT solving, but
have largely been limited to parallelizing conflict-driven clause-learning
(CDCL) or other heuristic-based SAT solving algorithms [1, 5]. Our
method best aligns with the formulation of a SAT instance as a con-
strained numerical optimization problem as in UNISAT [4], which pre-
dates the advent of today’s massively parallel hardware. While some
work [7] had similarly formulated a relaxed, differential approach to
SAT solving, ours is the first to effectively showcase the utility of GPU-
accelerated formula sampling on standard benchmarks that scale beyond
the small, random instances considered in prior work.

3 METHODOLOGY

SAT problems are typically expressed in conjunctive normal form (CNF)
formulas, comprising m clauses connected by AND operators, with each
clause containing [literals connected by OR operators. A literal repre-
sents either a variable or the negation of a variable. Finding a satisfying
solution to the SAT problem entails assigning values to variables such
that all OR gates yield an output of 1. This enables us to reframe the SAT
problem as a supervised multi-output regression task, where a solution
is derived through a learning process. To facilitate learning, we initially
assign random soft values to each variable. Subsequently, we conduct OR
operations among literals in all clauses simultaneously, utilizing a prob-
abilistic model for the OR gate. Following the computation of OR gate
outputs in terms of probability, we construct a loss function to penalize

https://doi.org/10.1145/3649329.3663505
https://doi.org/10.1145/3649329.3663505
https://github.com/arashardakani/DiffSampler
https://creativecommons.org/licenses/by-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649329.3663505&domain=pdf&date_stamp=2024-11-07

DAC 24, June 23-27, 2024, San Francisco, CA, USA

variables based on the deviation of their associated clauses from generat-
ing a 1 output in OR operations. Variables are then updated iteratively,
and the process is repeated until convergence is achieved.

To formulate our learning approach, we encode n variables of the SAT
instance as parameters (i.e., V € RbXM) of an embedding layer where b
denotes the batch size. Let us express m clauses as the matrix C € AR
where Imax denotes the maximum number of literals in any single clause
in the SAT instance. The clause matrix C contains indices to the variables
where the positive and negative indices denote variables in their true and
complementary forms, respectively. We use padding with 0 to achieve
consistency in the size of all clauses. To ensure the soft values of variables
are represented as a probability value between zero and one, we use the
sigmoid function o. As such, the embedded clauses can be expressed as

E=0o(V)[C] € [0,1] (1)
where the embedded element e;;; € E is equal to v;; € V when its
corresponding index is positive; otherwise 1 — vj; is assigned to e; . We
reserve the padding index 0 for the noncontributory 0-valued e; ;. in the
OR operation. The OR operations are computed by

bXxmXlnax
s

Y=1—1—I(1—E)e[o,1]bxm,)
lmax
and accordingly the #£;-loss function L is obtained by
L= ll1-YI. 3)
b

By computing the loss function’\r:zhich measures the distance between
the matrix Y and expected output 1 for all the clauses across all batches,
the variables V can be updated using GD in an iterative manner. Upon
convergence, the batch of soft values (i.e., V) are converted to hard
values (i.e., V € {0,1}**") based on their distance from binary values as
b solutions to the SAT problem.

4 EXPERIMENTAL RESULTS

Based on our re-formulation of the SAT problem above, we demonstrate
a prototype for DIFFSAMPLER, implemented in Python and using a high-
performance numerical computing library (JAX). In this Section, we
compare our sampler implementation against SOTA baselines (UNIGEN3
and CMSGEN), assessing both in terms of the run time performance and
uniformity of the solutions. For comprehensive evaluation, we use a
public domain benchmark suite utilized in prior work . Both baseline
samplers were executed on server-grade Intel Xeon Gold 6134 CPU with
3.2GHz clock rate and 1TB RAM; DIFFSAMPLER results are from running
on a system equipped with an Intel Xeon E5-2698 with 2.2GHz clock rate
and 8 32GB NVIDIA V100 GPUs.

4.1 Run time Performance

We selected 60 instances from the uniform sampling benchmark used in
prior work, which includes instances from applications as probabilistic
reasoning and bounded model checking. Figure 1 summarizes the scal-
ing trends of run time performance against number of unique formulas
sampled. We see that (1) DIFFSAMPLER is overall much more efficient
than UNIGEN and (2) even compared to CMSGEN, our method scales
more efficiently to sampling greater numbers of solutions. Direct run
time performance, measured in terms of throughput, is also depicted
in Table 1. For a representative subset of 10 benchmarks, we measured
the throughput of each sampler when producing 1000 unique solutions.
Although the baselines are highly optimized C++ implementations, re-
sulting in improved run time performance, our method offers comparable
run time performance and, in certain cases, even surpasses the baselines
for specific instances.

4.2 Uniformity Measurement

We employed the BARBARIK sampler test framework [6] to assess the
uniformity of the generated solutions for each benchmark. For evalua-
tion using BARBARIK, we adhered to the default parameter settings as
recommended by the authors, setting the tolerance parameter € to 0.3,

!https://zenodo.org/records/3793090

Ardakani and Kang, et al.

Table 1: Run time performance, measured in terms of unique
solution throughput. Throughput is measured under the case
where each method is aimed to produce 1000 unique solutions.

Benchmark ‘ DI1FFSAMPLER ‘ UnNIGEN3 ‘ CMSGEN
or-50-10-7-UC-10 75,040.1 64.7 36,693.5
or-70-5-5-UC-30 13,665.6 616.0 36,344.1
or-100-20-8-UC-50 33,728.7 84.4 26,888.6
blasted 1 _b12 1 25.8 400.4 10,767.4
blasted_1_b14_3 88.8 97.8 16,495.0

tire-1 354 36.8 16,271.4
blasted_1_12_even2 0.7 12.2 1,246.9
blasted_1_14_even 3.3 15.9 4,288.2

modexp-8-4-1 NA 2.8 6.4
hash-02 NA 8.0 1.0

Table 2: Hamming distance distribution statistics between satis-
fying solutions sampled by DirrSamPLER (DS), UNIGEN3 (UG), and
CMSGEN (CG).

Benchmark ‘ tire-2 ‘ blasted_case_1_b12_1 ‘ or-100-20-8-UC-10
Sampler | DS | UG | CG | DS | UG | ¢G | DS | UG | CG
Range | [2,121] | [3,123] | [3,131] | [7,157] | [3,30] | [6,200] | [20,75] | [27,91] | [34,111]

Avg 460 | 482 | 69. 727 | 169 | 1164 | 480 | 575 74.2
Std 131 123 | 197 155 33 | 247 5.9 7.1 8.2
Entropy | 57 | 56 | 63 | 60 | 38 | 67 | 46 | 49 | 51

the intolerance parameter 5 to 1.8, and the confidence parameter J to
0.1. For all benchmarks in Section 4.1 where DIFFSAMPLER discovered
solutions, BARBARIK returned “Accept”, confirming the uniformity of
the generated solutions. To further analyze uniformity in a quantitative
way, we measured the entropy of the distribution between Hamming
distances between the generated solutions. The entropy quantifies the
degree of variability in the solutions. Higher entropy suggests that so-
lutions are scattered throughout the search space, making it less likely
for them to be uniformly distributed, whereas lower entropy suggests
more structured and constrained solutions. For majority of benchmark in-
stances, UNIGEN3 shows the lowest entropy suggesting more uniformity
whereas CMSGEN presents the highest entropy suggesting more diver-
sity among the generated solutions. DIFFSAMPLER, on the other hand,
is behaviorally closer to UNIGEN3. Table 2 summarizes the distribution
statistics of Hamming distances between solutions for a representative
subset of 3 benchmarks.

5 CONCLUSION

In this paper, we presented a differentiable sampling method, called Dirr-
SAMPLER, by reframing the SAT problem as a supervised multi-output re-
gression task, allowing the independent generation of satisfying solutions
using GD. We then demonstrated that DIFFSAMPLER can be accelerated
using GPUs due to the parallel nature of its computing paradigm, en-
abling high-throughput generation of solutions. The experimental results
our method show a comparable run time performance and uniformity
compared to SOTA sampling techniques.

REFERENCES

[1] CS Costa. 2013. Parallelization of sat algorithms on gpus. Technical Report. Technical
report, INESC-ID, Technical University of Lisbon.

[2] Rafael Dutra, Kevin Laeufer, et al. 2018. Efficient sampling of SAT solutions for testing.

In Proc. of the International Conference on Software Engineering.

Priyanka Golia, Mate Soos, Sourav Chakraborty, and Kuldeep S. Meel. 2021. Designing

Samplers is Easy: The Boon of Testers. In Proc. of Formal Methods in Computer-Aided

Design (FMCAD).

[4] Jun Gu. 1994. Global optimization for satisfiability (SAT) problem. IEEE Trans. on
Knowledge and Data Engineering 6, 3 (1994), 361-381.

[5] Muhammad Osama, Anton Wijs, and Armin Biere. 2021. SAT solving with GPU acceler-
ated inprocessing. In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 133-151.

[6] Yash Pote and Kuldeep S. Meel. 2022. On Scalable Testing of Samplers. In Advances in
Neural Information Processing Systems (NeurIPS).

[7] Taisuke Sato and Ryosuke Kojima. 2021. MatSat: a matrix-based differentiable SAT solver.
arXiv preprint arXiv:2108.06481 (2021).

[8] Mate Soos, Stephan Gocht, and Kuldeep S. Meel. 2020. Tinted, Detached, and Lazy
CNF-XOR solving and its Applications to Counting and Sampling. In Proceedings of
International Conference on Computer-Aided Verification (CAV).

(3

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	4 Experimental Results
	4.1 Run time Performance
	4.2 Uniformity Measurement

	5 Conclusion
	References

