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ABSTRACT. We prove a strong maximum principle for mini-
mizers of the one-phase Alt-Caffarelli functional. We use this
to construct a Hardt-Simon-type foliation associated with any
1-homogenous global minimizer.
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In this paper we prove a strong maximum principle for variational solutions of
the one-phase Bernoulli problem. For an open set U ¢ R4 and for a function
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u € WH(U), we consider the following functional introduced by Alt and Caf-
farelli in [1]:

Jotw)i= | (DUP + 1s0) dx.
We recall that a nonnegative function u € W2(U) is a minimizer of Jy (in U) if
Juuw) < Ju(u+v) forevery v € Wy (U).

Similarly, we say that a nonnegative function u € Wli’cz(U) is a (local-)minimizer
of Jy if minimizes Jy forall U € U; if U = R% and u € Wli’cz([Rd) is a local-
minimizer of Jga, then we say that w is global minimizer.

It is well known that if u € Wli’CZ(U) is a minimizer of Jy, then it is locally
Lipschitz in U and that, denoting with Qy := {u > 0} the positivity set of u, its
free boundary 0Qy N U can be decomposed into the disjoint union 0Qy, N U =
reg(u) U sing(u), where reg(u) is a relatively open and smooth subset of 0Q and
sing(u) is a closed set of dimension at most d — 5 (see, e.g., Theorems 1.2 and
1.4 in [15] and the references therein). Moreover, u solves the overdetermined
boundary value problem

Dyu=-1 on reg(u)nU,

where v denotes the outer unit normal of O, N U.

If u,v € WH2(U) are minimizers of Jy such that u < v (so that Qy, € Q)
and if Qy is connected, then by the classical Hopf maximum principle it follows
that

eitheru = v or reg(u) Nreg(v) = 3.

In this paper we prove a strong “geometric” maximum principle, similar to the
one known in the minimal surface case (see, e.g., [10,12, 14, 17]), which rules out
the singular parts of the free boundaries touching either.

Theorem 1.1. Let U C R be an open set and w,v € Wli‘cz(U) be minimizers of
Ju. Suppose thatu < v and reg(u) Nreg(v) = @ inU. Then, 0Q,N0Qy NU = @.

As an immediate consequence we obtain the following alternative statements
of the strong maximum principle.

Corollary 1.2. Let U be an open set in RY andu,v e Wli’cz(U) be minimizers
of Ju. Suppose u < v, and Qy is connected. Then, we have the following dichotomy,
where only one of the following is true:

1) u=vinU. )

(1) 0Qu, NIQ, NU =D andu <v onQy DQu N U.
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Corollary 1.3. Let U be a bounded Lipschitz domain, and let w,v € W12(U)
be minimizers of Ju. Suppose w < v, and u < v on {x € 0U : v(x) > 0}. Then,

00, N3O, NU=C and u<vonQy>d>Q,nU.

Remark 1.4. The same conclusions of Theorem 1.1 can be reached for local
minimizers U € WIL’CZ(U) of the functional

u— J IDul? + Q2 - 1iyso; dx,
U

where Q € C>%(U) is a positive function.

We expect Theorem 1.1 to be a useful technical tool, as has been the case
for the analogous result in minimal surface theory. In particular, we demonstrate
an application of our strict maximum principle in the following Theorem 1.5,
which proves the existence of a “Hardt-Simon”-type foliation associated with any
1-homogenous minimizer, again analogous to the one known for area-minimizing
hypercones (see, e.g., [2,9, 16]). We mention that [6] contains versions of The-
orem 1.1, and Theorem 1.5 for minimizers with isolated singularities (see also
Remark 1.6); our maximum principle, for general minimizers, is proven using a
fundamentally different approach, and the increased generality is the reason we are
able to prove existence (but not uniqueness!) of the foliation in greater generality
also. It was also pointed out to us that the techniques used in [5, Theorem 6.3]
would provide an alternative approach to Theorem 1.1.

Theorem 1.5. Letuy € W2 (R?) be a global 1-homageneous minimizer of Jpa.
Then, there exist global minimizers w, i € W-> (R4) such that the following hold:

(1) u<ug=<.

(2) d(0,Qy) = d(0,Q4) = 1.

(3) —u(x) +x - Du(x) > 0 for x € Qu, and —i(x) + x - Dit(x) < 0 for

X € Qu;

(4) sing(u) = sing(it) = .

(5) o, — wo and oy — g in (W7 0 CE)(RY) as ¥ — o,
In particular, the hypersurface 0Qy (respectively, 0Qy) is an analytic radial graph over
Qu, N OBy (respectively, 0By \ Qu,), and the dilations

{A0Qyu : A >0} U{A0Q4 : A > 0}

foliate R4\ 0Qy,.

Remark 1.6. Note that, unlike the case when ug is regular away from 0 as
considered in [6], we do 7or claim any uniqueness of the foliation generated by
u, . We expect the foliation should be unique, like in [6], in the sense that any
minimizer lying to one side of 1y should be a dilation of either u or , but this
seems to be a much more subtle question.
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Outline of the proof and organization of the paper. The key technical
tools in the proof of Theorem 1.1 are two relative isoperimetric inequalities (Sec-
tion 3), which allow us to deduce Gagliardo-Nirenberg-Sobolev-type inequalities
(Section 4) and to develop a De Giorgi-Nash-Moser theory (Section 5) for sub-
and supersolutions on domains Q,, generated by minimizers u of the one-phase
functional J. To prove these we use ideas from [3] and [13].

Beyond the Harnack inequalities, our strategy of proof for Theorem 1.1 es-
sentially follows the method of [12] (see Section 7). We assume that u + v and
reg(u) Nreg(v) = & but 0Qy N 0Qy NU + &, and derive a contradiction. We
first show using domain monotonicity of Dirichlet eigenvalues that there is no
loss in assuming that U = B; and 0 € 0Qy N 0Qy, and both u, v have the same
tangent cone at 0 (for any choice of rescalings). This implies that the difference
u — v behaves like 0(¥), and so by choosing a good sequence 7; — 0 and suit-
able factors A, we can find a blowup uo of both u and v at 0, and can take a
limit of Ai_l (Vo,; — Uo,r,) to obtain a positive Jacobi field w on {ug > 0} N B;
which behaves like O(r) as ¥ — 0. However, as w is a positive (distributional)
supersolution of the Neumann Laplacian (see Section 6, Section 7), that is,

Aw <0 and w =0on {uy> 0}n By,

the De Giorgi-Nash-Moser Harnack inequality implies that w admits a uniform
lower bound, contradicting the fact w = O (7).

In Section 2 we recall some useful facts about minimizers of the one-phase
Bernoulli energy J. In Section 3 we prove a relative isoperimetric inequality and a
relative Neumann-type isoperimetric inequality for compact domains in Qy, u a
minimizer of J; and then use these in Section 4 to prove a Sobolev and Neumann-
Sobolev inequality. Section 5 summarizes how these Sobolev inequalities imply the
De Giorgi-Nash-Moser estimates. In Section 6 we show how sequences u# < v¥
of minimizers to J can be rescaled to obtain a Jacobi field on the limit, largely
following work of [6]. Finally, in Section 7, Section 8 we combine the results of
the previous two sections to prove Theorem 1.1, Theorem 1.5.

2. PRELIMINARY RESULTS

In this section we recall some facts about minimizers of the one-phase energy Ju.
Given a minimizer u of Jy, we shall always write Q, = {u > 0} for the positive
set, and Uy, () := ¥~ 'u(x + ry) for the scaled/translated function. For a
general function f we write f* = max{f,0}, and f~ = —min{f,0}. For a set
A C R4, write d(x, A) for the Euclidean distance from x to A.

We start by recalling the standard compactness for minimizers of the one-

phase problem.

Lemma 2.1 (Compactness of minimizers). Ler {u; Wli‘cz(Bl)}i be a se-
quence of minimizers of Jp,, and suppose that 0 € 0Qy, for all i. Then, after passing

to a subsequence, we can find aw € W2 (By) such that the following hold:
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(1) wi —uin (CE. AW (BY) forall « < 1.

(2) The characteristic functions lo, — lo, in Lloc(Bl)'

(3) The free-boundaries 0Q, — 0y in the local Hausdor(f distance in B, .
(4) u minimizes Jp, .

Proof- This is proven in [1, Lemmas 3.2, 3.4, and Section 4.7]. O

To prove the desired isoperimetric inequalities in Section 3, we will also need

the following density bounds.

Lemma 2.2 (Density bounds). There is a dimensional constant B = B(d) > 0
so that if u € WL2(B,) minimizes Jg,, 0 € Qy, then

2.1 H¥ 100y N B1) < wa-1p47,
and if Q' is any connected component of Qu N By satisfying 0 € Q', then

(2.2) HAQ By = &L Bd

In fact, we can find a ball Bg-1 (y) C Q' N By in whichu = 1/.

Proof. The upper bound (2.1) follows from [1, Theorem 4.5 (3)] (or Corol-
lary 5.8 in [15]). The lower bound (2.2) follows from the Lipschitz nature of u
and a minor modification of [1, Lemma 3.4] (or [15, Lemma 5.1 (d)]). Specifi-
cally, observe that if v € W12(B,) satisfies Va5, = Ul35,, then the function

, {u(x) x & Q.
v'(x) =

min{u(x),v(ix)} xeQ’,

also lies in W12(B;) and agrees with 1 on 0B,. Therefore, we have the inequality
Jor (V") < Jor (u).

Since we also have u - 1o- € W12(B,), we can therefore apply the same proof of
[1, Lemma 3.4] to ulq in place of u to deduce

sup u = 1/c(n).
Q'ﬁBl/z

Since (by [1, Corollary 3.3]) we also have [[Du|lr~,) < c(n), it follows that we
can finday € Q" N Byjz and a B(n) = 4 so that u = 1/B on Byp(y), which
concludes the proof of the lower bound (2.2). 0

A general minimizer u on some bounded open domain U might have numer-
ous connected components of Q. However, if # is a 1-homogenous and U = R4,
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then Q, must be connected, essentially due to the fact that any eigenfunction on
the sphere S -1 with eigenvalue (d — 1) must be the restriction of a linear func-
tion. This implies the following connectivity result for global minimizers, which
is analogous to [3, Theorem 1].

Theorem 2.3. Let u € Wli‘cz([Rd) be a global minimizer of Jga. Then, Qy is
connected.

Remark 2.4. The same proof (taking 7% — 0 instead of — o) implies that if
u € WI2(B;) minimizes Jp,, then for any p € B; there is at most one connected
component of Q;, whose closure contains p.

Proof- We first prove the theorem for u being 1-homogenous. In this case
the argument is similar to [7, Lemma 2.2]. Indeed, suppose by contradiction
Qy has two non-empty disjoint connected components Qi,Q;. Since u is 1-
homogenous and solves Au = 0 in Qy, we can write u(r0) = rz(0), where

ze Wol‘z(Qu N 0By) solves
(2.3) Agiiz+(d—1)z=0 onQy NOB;.

Write z; = z|q,, so that each z; is a non-negative Dirichlet eigenfunction of the
spherical Laplacian Aga-1 on Q; N 0B, with eigenvalue d — 1.
Choose a > 0 so that

J (Z] —CLZZ)dj'[d71 =0,
aBl
and then observe that by (2.3) and an integration by parts, we have
L IDo(z1 — azy)|PdH* = (d-1) L |21 — azy |2 dH AL,
Bl Bl

That is, z; — az, is a first (non-trivial) eigenfunction of 0B;, and hence must be
the restriction to 0B; of a linear function. After a rotation, we deduce © must take
the form

u=ox;+px;

for some &, B > 0. But now H%4(Qy) = 0, and u is not itself harmonic, and so if
v is the harmonic extension of u3p, to By we have Jp, (v) < Jp, (1), contradicting
minimality of u. This proves Theorem 2.3 when u is 1-homogenous.

Now take a general u as in the statement of the theorem, and suppose,
towards a contradiction, there are two disjoint, non-empty connected compo-
nents Q1,Q C Q. Pick any sequence 1y — . For k > land i = 1,2,
lelQiﬁBl/loo + O; thus, by Lemma 2.2 we can find balls By g (yikx) C T,QlQiﬁBz
on which u,, > 1/B.

Passing to a subsequence, by standard compactness (Lemma 2.1) and the
Weiss monotonicity formula, we can assume that there exists a 1-homogeneous
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Uy € Wloc 2(RY), minimizing Jga, so that Ug,, — Uo in CX .. By our choice of yix
and the Cloc convergence of the Ugy,, after passing to a further subsequence we
can additionally assume that yix — ¥i € Qu, N By, foreach i = 1,2.

By Step 1 there is a path y : [0,1] — Qu, N B, connecting ¥1 to y,. By
the Cl%c convergence of the U,y , we deduce that y([0,1]) C Tk_lQu for k > 1.
Provided k > 1 so that, additionally, each y; € Bj;g(vik), we deduce there is a
path in 7 10, connecting Y1k to Y2k. This is a contradiction, and finishes the
proof of Theorem 2.3. O

We will also need the following property of global minimizers.

Lemma 2.5. Let u € Wli’cz([Rd) be a global minimizer for Jra; then, we have
that supq, |Dul| = 1. As a consequence, if H is the mean scalar curvature of reg(u)
with respect to the outer unit normal, then H < 0 (and H < 0 if w is not linear).

Proof. Define

= sup{sup [Dul:u € Wloc ([Rd) a global minimizer of Jga},
Qu

and notice that, since |[Du| = 1 on reg(u), we have that A > 1.

Suppose, towards a contradiction, that A > 1. Then, there is a sequence of
global minimizers u; € Wl})’cz([Rd) and points x; € Qy; so that [Dui(x;)| — A.
Let ;i € 0Qy, realize d(x,0Qy,). After a translation/rotation/dilation, since
|Du| is scale-invariant, we can assume x; = ¢4 and y; = 0.

Passing to a subsequence, by Lemma 2.1 we assume there isa u € Wll 2(R4)

minimizing Jga so that u; — u in (Cloc N Wloc 2)(R4), and 0Qy, — 0Qy in the
local Hausdorft distance, and u; — u in C.(Qy). Since d(eq,0Qy,) = 1, we
have d(eq,0Qy) = 1. Thus, eq € Qu and [Du(eq)| = A. (Note this implies
A < o). On the other hand, |Du| < A. Therefore, e; is an interior maximum
for |Du|?.

Since A|Du|? = 0, |[Du|? must be locally constant, and hence u = x}. This
implies |[Du(eq)| = 1 < A, which is a contradiction and concludes the proof
of the first claim of the lemma. We are now in position to prove the second
assertion of the lemma. By the previous one, we have that AlDul|?> = 0 and
[IDul <1 in Q. On the other hand, on the regular part of the free boundary,
we have [Du| = 1 and D, |Dul?> = —H on reg(u), so the conclusion follows
from the Hopf lemma. O

Finally, we recall the following &-regularity theorem due to Alt-Caffarelli [1],
which we state in the version of De Silva [4].

Theorem 2.6 (Alt-Caffarelli s-regularity). Given € > 0, there isa 6 > 0,
depending on €,d, such that if u € WV2(By) is a minimizer of Jp, and if also
lu—x}lleeB,) <0, thenu € C®(Bi—¢ N {u > 0}), and there is a C™ function

E:BieNn{xa=0}-R
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such that
0Qu NBi_¢ = graph(g) N By_¢,
with [[Ellc31(8,_,nixg=0}) < &
lullesi @, ng, ) < C(d),
(2.4) IDu —eqllr=B,_.niuso0}) < €&

Proof. This theorem with C1* norms replacing C>! was proved by De Silva in
[4]. The higher-order regularity is a standard consequence of Theorem 2 in [11].
O

3. ISOPERIMETRIC INEQUALITIES

In this section we prove two types of isoperimetric inequalities for domains Q,
with ©# a minimizer of J.

3.1. Relative isoperimetric inequality. The proof of the following theorem
follows ideas from [13].

Theorem 3.1 (Relative isoperimetric inequality). There are dimensional con-
stants Ry > 0 and Cy > 0 so that if u € WV2(Bg,) is a minimizer for JBg, > then

HAUQ N Q)4 V4 < CL( @) HE 1 (3Q N Qu),
Jor any sex Q C Qy N By, with 0Q N Qy being countably (d — 1) -rectifiable.
Proof. Let B = B(d) > 0 be as in Lemma 2.2, and define

0 = %min{Zfdﬁfd, 1} and R =max{4(0/2)7"4,8}.

Suppose, towards a contradiction, Theorem 3.1 failed. Then, there is a sequence
ug € WH2(Bg) minimizing Jp,, and a sequence Q of compact subsets of Qx N By,
for Qx := Qu,,, with 0Qx N Q rectifiable, such that

(3.1 HAEQ n Q)44 > kHA1(BQk N Q).

Notice that

[ HAQeN B (X)) _
m =

lim g 1>0, H%%ae x € Q.

On the other hand, since Qk C B; and recalling our choice of R,

HA(Qx N Bri4(x))
wa(R/4)4

<0, VxeQQ.
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Therefore, there is a subset Qx C Qi with H(Qx \ Qk) = 0, so that for every
x € Qx we can find an 7 € (0,R/4) satisfying

f HAYQrNBr(x))  HYUQrNBy (X))
1n = a =

= 0.
Y<Trx war wWarx

Fix momentarily a k. By the Besicovich covering theorem, we can find a subcol-
lection {By,(xi)}i C {Br. (X) : x € Q} so that Qx C Ui Br, (xi) and the balls
{By,(x;)}i divide into at most N (d) disjoint subfamilies. We claim that if k > 1,
then for at least one i we must have

(3.2  HUQk N By, (x) V4 = JkH T (3Qr N Qx N By, (x7)).

Otherwise, we could estimate

HUQ @V < (X HUQrnBy, (xi)))(d_l)/d
< D HH(Qr N By, (7)) 4114
<Vk> H¥(@0Qk N QN By (x1) by (3.2)

< VKN(d)H*(3Qx N ),

which contradicts (3.1), if k is chosen sufhiciently large, depending on the dimen-
sion.

After translating and homogeneously rescaling uy, Qk, Qk, and considering
only k sufficiently large, we can therefore assume that ux € W'2(B,) is a mini-
mizer of Jp,, with 0 € Qi and

(3.3) HYQr N BV = V3471 (3Qx 0 Qi N BY),
and
d o d J—
(3.4) inf Q0B HUQOB)
r<l1 war w4

Passing to a subsequence, we can assume that for all k we have either B3/, C Qi
or B3;» ¢ Q. Suppose the latter occurs. By Lemma 2.1, there is a minimizer
u € W 2(B,) of Jp,, so that up to subsequences ur — u in CX.(By) N W22 (By),
lg, - lgin Llloc(Bz) and the free boundaries converge in the local Hausdorff
distance in By, where Q := Q, (and is such that 0 € Q).

Notice that 0Qx = (0Qx N Q) U (Qx N Q) is closed, (d — 1)-rectifiable,
with finite (d — 1)-Hausdorfl measure, so that using (2.1) and (3.3) we deduce
that each Qy is a set of finite perimeter in By, with

HA1(0*Qr nBy) < HY10Qr N Qi N By) + HA1(0Qx N By) < C(dA).
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Therefore, the compactness theory for sets of locally-finite perimeter implies there
isaset Q C QN By so that (after passing to a further subsequence) 1o, — 1¢ in
Llloc(Bl). From (3.3), and the local Hausdorff convergence 0Qy — 0Q, we have

[ div(¢p)dx =0 forevery ¢p € CHQ N By; R4).
Q

Therefore, 1 is locally constant on Q N By, and hence Q is a union of connected
components of Q N By.

From (2.2), there are only finitely-many connected components of Q; meet-
ing Bi;100. Since by (3.4) we have HUQNB,) = 0war?d>0forallr <1, we
deduce Q must contain a connected component Q' of Q N By such that 0 € Q.
Applying again (2.2) we deduce that

(3.95) Hd(QﬂBl/z) Zﬂd(Q,ﬁBuz) = ;i)—l?d
On the other hand, from (3.4) we have
HYQ N BY) < wab,

which by our choice of 6 contradicts (3.5).

Finally, we notice that if B3, C Qi for all k, then in the above discussion we
can simply replace Qx and Q with B33, and deduce the same contradiction. This
concludes the proof of Theorem 3.1. O

3.2. Neumann-isoperimetric. In this subsection we follow [3].
Theorem 3.2 (Neumann-type isoperimetric inequality). There is a positive

constant 'y = y(d) so that if u € WL2(Bg,) minimizes JBg, > with Ry > 0 as in
Theorem 3.1, then
min{j'[d(By N Q),j‘[d(By NQy \Q)d-/d
<y 'H¥"1B3Q nQu N By)

Jor all Q C Qu N By such that 0Q N Qy N By is countably (d — 1)-rectifiable.

Proof. Suppose Theorem 3.2 failed. Then, we could find uy € Wb?(Byg,)—a
sequence of minimizers of J, —and a sequence Qx C Qx N Bk, where Q := Qy,,
so that

(3.6) min{H*(Byjx 0 Qr), H(Byjp 0 Qe \ Qi) }d-1/4
> kH 41 (0Qk N Qi N By,

and 0Qx N Q N By is (d — 1)-rectifiable. Let us write Qj, = Bx N Qg \ Qk.
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Notice that (3.6) implies
(3.7) HA(@Qk 0 Qe By) S L HAQx 0 BV

forall 1/k <t < k. Then from the isoperimetric inequality of Theorem 3.2, and
the coarea formula, we estimate for almost every 1/k <t < k:

j_[d(Qk th)(d—l)/d
< CiHYN(B(Qk N B) N Q)
<CHYBQK N Qk N By) + CLHY 1 (Qx N 3By)

< %ﬂd(q N By)d-Drd 4 Cli}[‘i(Qk NB:) by (3.7),
and therefore, for sufficiently large k, we can estimate

a (e 1)‘*
(3.8) HYQrNBy) = 2 t X for all
Since (3.6) implies that (3.7) holds with Q}, in place of Q, with the same reason-

ing as above we have

, 1 1\4
(3.9) Hd(Qk N Bt) = m (t - E) for all

Note (3.8) implies Qx N By = & forall k > 1.
After passing to a subsequence, we can assume that

either d(0,0Qx) — c  or supd(0,0Qx) < co.
k

Suppose the latter occurs. Passing to a further subsequence, by Lemma 2.1 we can
assume there is a minimizer u € Wli’cz([Rd), so that ux — u in Cf. N Wli}‘cz. Write
Q = Qy; then, 0Qk — 0Q in the local Hausdorff distance and 1, — 1g in Llloc.

Arguing as in the proof of Theorem 3.1, from (3.6), Lemma 2.2, and the
compactness theory for sets of locally-finite perimeter (passing to a yet further
subsequence), we can assume there are sets of locally-finite perimeter Q,Q" C Q
so that

lo, = 1o, lop = 1o inLjg.

From (3.8) and (3.9), we have

d d
HUQAB) = —— HYUQ N By) > —

C(d) m Vt>0,
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while from (3.7), each 1¢, 1 is locally constant in Q. Since by Theorem 2.3 Q is
connected, we deduce that Q = Q" = Q up to a set of H ?-measure zero. However,
since every Qx N Q) = @, we have Q N Q' = @ up to a set of H 4-measure zero.
This is a contradiction.

Suppose d(0,0Qk) — co. Then, from (3.8), we can find a sequence tx — oo
so that By, C Qk. In the above discussion we can replace Qk with By, and Q with
R4 to deduce a contradiction as before. This proves Theorem 3.2. O

4. SOBOLEV INEQUALITIES
The isoperimetric inequalities of Section 3 imply a Sobolev and a Neumann-
Sobolev inequality.

Theorem 4.1. There are dimensional constants R,C = 1, and 'y € (0, 1] so that
ifu € WY2(BR) minimizes Jg, and f € WH1(Qy N By), then

(d-1)/d
4.1) igf(JQ S kld/(d‘”> <C IDfI.

QuNBy

Ifsptf C By, then

(d-1)/d
(4.2) (J |f|d/(d71)> <C IDf].
QunBy QuNB;

By a standard application of Holder’s inequality (see, e.g.,Theorem 1 in [8,
Section 5.6.1]), we have the following result.

Corollary 4.2. In the notation of Theorem 4.1, if f € WL2(Q, N By) is sup-
ported in By, then

(o, 'f'z")l/x <cdx) | DfP,

where x = d/(d —2) ifd = 3, or x > 1 is arbitrary if d = 2.

In the proof of Theorem 4.1 we will make use of the following well-known
inequality.

Lemma 4.3 (Hardy-Littlewood-Polya). Let V : [0,+c0) — [0,+0) be a

continuous decreasing function. Then, for every n > 1, we have

n

>n/(n1)

+ 00 +oo
(43) [ V(t)tl/(n—l) dt < ([ V(t)(n—l)/n dt
0 0

-1
n
Proof. Consider the function

g n-1/(T n/(n-1)
v(T) := J V() m= at — T(J V(t)n-Din dt)
0 0
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Taking the derivative in T and using the monotonicity of V, we have

T 1/(n-1)
v'(T) = V(T)TY ™D — V(T)W”/"(J V(t)n-bin dt)
0

< V(T)Tl/(‘nfl) _ v(T)(‘VL*I)/T’L(Tv(T)(‘VLfl)/n)l/(‘nfl) — 0,

which concludes the proof since v (0) = 0. O

Proof of Theorem 4.1. We follow [3, Theorem 3]. We divide the proof in two

steps. For ease of notation write Q := Q.

Step 1. We first prove (4.1), (4.2) for f € C®(Q N By). Let k be so that
max{H4({f >k} N By), H*({f <k} nBy)} < %Hd(gy nQ),

and let f1:= (f — k)" and f5 := (k — f)*. Note that by our choice of k we have

HAS; >t} 0 By) < HALf; <t} N By),
forallt >0,i=1,2,

so that, by the Neumann-isoperimetric inequality of Theorem 3.2 we get

(4.4) HAfi >t} N By) 4= D14 < C(d)H¥ L1 fi > t}),
forallt >0, i=1,2.

Therefore, by the coarea formula, (4.3), and (4.4), we have

[ IDfi| = Jmﬂd—l(a{ﬁ St dt
QNB; 0

> C(d) J: HA{fi >t} nBy) @D/ gt

o0 (d-1)/d
> C(d)(JO HAfi >t} n By)t!/d-D dt)

_ C(d)(JQn |fi|d/(d—1)>(d1)/d_

By

Since by construction | f — k| = [fil + |f2] and IDf| = |[Dfi| + IDfal, we get
4.1).

Finally, we notice that (4.2) follows by the same argument. In fact, if f is
supported inside By, then we can use the isoperimetric inequality of Theorem 3.1
to do the same computation as above with f in place of f;.
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Step 2. Conclusion of the proof. Take f € WH1(Q n By). If spt f C By, then we
can find an approximating sequence ¢p; € C°(B; \ sing(u)) so that ¢p; — f in
WL1(Q N By) (see Lemma 4.4 below). Moreover, since inequality (4.1) holds for
each ¢;, the convergence ¢p; — f is also strong in L4/@-1 (0 n B;). We deduce
(4.2).

We prove (4.1). Let € be a smooth cut-off function supported in B; which is
identically equal to 1 in Byj,. Pick ¢p; € CZ(B; \ sing(u)) so that ¢; — fC in
WHI(Q N By) (see Lemma 4.4). For each i there is a constant ¢; so that

)(d—l)/d - cw L} Dl

NBy/2

4.5) (J |bi — c;|4/(@D
QNBy /2

From (4.2) we also have that ¢p; — £C in L4/@=D(Q n By).

Now if H4(Q n By2) = 0, then (4.1) trivially holds with y/2 in place of y.
Assume therefore that 74(Q N By2) = 0 > 0. Forany i > 1 we use (4.2), (4.5)
to compute

9@-1/d|c;| < lcill Lara-n @nsy,y)

<|¢pi — Ci“Ld/(d—l)(QmBy/z) + il para—n ong,)
< C(d) I Pillwirng)
<2C(A) I fCllwrina,)-

Therefore the constants ¢; are uniformly bounded independent of i, and (after
passing to a subsequence) we can assume that ¢; — c. Recalling our definition of
€, and convergence ¢; — fC in L44=1D(Q N By), we get (4.2) with y/2 in place
of y. O

In Step 2 of the proof above we used the following approximation theorem.

Lemma 4.4. Letu € W2(B)) be a minimizer of Jp,, and f € WLr(Q, NB;),
forsome 1 < p < 5. Then, for any 0 < 1 we can find a sequence

¢i € CZ(By \sing(u)) so that ¢; — fin WLP(Qu N Bi_g).
If spt f C By, then we can take 0 = 0.

Proof- As usual we let Q := Q. For any k € R, note that

Si := min{k, max{f, —k}} € W'P(Qn By),

and

— fillb sj P+ IDfIP) -0 ask — .
ILf = frllwir s, {\f\>k}(|f| IDfIF) as o0

Therefore, there is no loss in assuming f € L®(Q N By).
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We next claim we can additionally assume that spt f N B¢ (sing(u)) = @ for
some € > 0. Trivially, since sing(u) C 0Q, we have

(If17 + IDfIP) = T ()P,

LZmBmBs(sing(u))

for some T(g) - 0 as € — 0.
Since sing(u) has Hausdorff dimension < d — 5 and p < 5, for any € > 0

we can find a finite cover {Bs, (Vi) }11}4:1 of sing(u) N By satisfying >; S?_p < gand
i € sing(u). For each i choose an n; € C* satistying

. . 10
ni =01in By, (i), n =1 outside By, (i), |Dnil < o
1
Define n = infn;. Then, n is a Lipschitz function satisfying
sptn Nsing(u) =@, n=1 outside By (sing(u)),

10
|Dn(x)| < Sup_lBZSi(yi) (X)'
i Si
Now fn € WLP(Qn By), spt(fn) nsing(u) = &, and

1/p
lfDnW)
QNB;

<12¢) + c(@IfllLenBy) Zsfip
i

If = fnllwie@np) < T(2€) + <J

< T1Q28) + c(@D I fllz=@na) &,

which — 0 as € — 0. This proves our claim.

We now proceed assuming that spt f N Be(sing(u)) = &, for some € > 0.
Since 0Q \ sing(u) is smooth, after perturbing Bi_¢ to a smooth domain of
Bi_0/2 D U D Bi_»9, we assume 0(UNQ) is locally-Lipschitz in By \ Bg /4 (sing(u)).

Now choose a finite cover {B;, (Xi)}]i\]=1 of 9(Q N U) \ Be(sing(u)) such that
xi € 0(QNU), By, (xi) C Bi \ Beja(sing(u)), and each 0(Q N U) N By, (x;) is a
Lipschitz graph. Pick smooth functions Ty, ..., Cn such that

Spt Cl - BZ’I’i (xl),
spt C() CcQNBy\ Bg/z(sing(u)),

N
z Ci=1 onQnU\B(sing(u)).
i=0

By the usual extension/approximation theorems for Sobolev functions applied to
each fT;, we can find a sequence ¢px € C(B; \ sing(u)) of smooth functions
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so that ¢ — f in WP (Q N U). This proves the first assertion of the lemma,
with 26 in place of 6. The second assertion follows because spt f C B; implies
spt.f C Bi_g for some 0 > 0. |

5. DE GIORGI-NASH-MOSER THEORY

By now-standard iteration methods (see, e.g., Theorems 5 and 6 in [3]), the in-
equalities of Section 5 imply the standard integral/Harnack estimates of De Giorgi-
Nash-Moser. For the reader’s convenience, in Section A we reproduce a proof
(different from [3] and originally due to L. Simon) of the John-Nirenberg lemma
adapted to our setting.

Theorem 5.1 (Subsolutions). Let u € WY2(Bg,) be a minimizer OfJBRl-
Suppose that f € W12 (Qy N By) satisfies

(5.1) L)Df-D¢sO

for all non-negative p € CL (B \ sing(u)). Then,

sup f =< c(@,lﬂ,d)(LzumBl |f|’”>1/p,

QunBe
Jorall0 < p < coandall 0 < 1.
Proof- This follows from (4.2) and (5.1) by well-known iteration methods. D
Theorem 5.2 (Supersolutions). Let uw € W'*(Bg,) be a minimizer of Jp,, .

There is a dimensional constant y > 0 so that if f € W12(Qu N By) is non-negative
and satisfies

(5.2) L)Df-D¢zO

for all non-negative p € Cl(By \ sing(u)), then

1/p d
(J fl’> <c(p,d) inf f forallp e (0,—>-
QuNBy d-2

QuNBy

Proof. This follows from Theorem 5.1 and Lemma A.1 by a well-known ar-
gument. O
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6. ONE-SIDED BLOWUPS NEAR REGULAR POINTS

In this section we study one-sided blowups to 1-homogeneous minimizers of J.

Assumptions 6.1. We let wy € WY2(By) be a non-zero minimizer of Jp,, and
uk, v € WL2(By), u € N, be sequences of functions minimizing Jp, such that

. . 1,2
u! <v*inBy;  uf,vH - upin (CS. N W, 0)(Br);s  ut < v¥ on Quu.

In this section we will prove the following theorem. The main idea is similar
to [6, Proposition 5.1], but our situation is more general and does not follow
directly from [6]; thus, we will provide the details of the proof.

Theorem 6.2 (One-sided blow-up). Ler o, ut, v¥ be as in Assumption 6.1.
Let the point p € Qu, be fixed, and define

A= VH(p) —ur(p) and wH:= A7 (v —uk) € WA (BY).

Then, there is a function w € C2*(Qy, \ sing(ug) N B1) N C®(Qy, N By) so that
wH — w in Ci.(Qu, N By), and w solves

Aw =0 in Qq, N By,
(6.1) Dyw+Hw =0 on reg(ug) N By,
w =0 in Qy, N By,

where v and H denote, respectively, the outer unit normal and the scalar mean curva-
ture of reg(Up) C 0Qy,.

Remark 6.3. Recall that if ug € W'2(R%) is a global minimizer, then by
Lemma 2.5 H < 0 on reg(uy).

Combining (6.1) and the theory developed in the previous sections, we can
prove the following key estimate.

Proposition 6.4 (Harnack inequality). Letu, € Wli‘cz([Rd) be a global mini-

mizer of Jra, and w € C2%(Qy, \ sing(uo) N B1) N C®(Qy, N B1) be a solution of
(6.1). There exist dimensional constants C,y > 0 such that

(6.2) J w=<C inf w.
QuyNBy QqyNBy

The rest of this section is devoted to the proofs of Theorem 6.2 and Proposi-
tion 6.4.

6.1. Proof of Theorem 6.2. We divide the proof in two steps.
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Step 1. We start by analyzing the behavior of the blowup sequence at reg-
ular points of the free boundary. Thus, let u be as in Theorem 2.6. Write
Rt = {(x',x4,X4+1) € RI1 x R x R}. Choosing € > 0 sufficiently small
in Theorem 2.6, by (2.4), we can consider the hodograph transform x” = y” and
V4 = u(x), to find a function

Hy :Bi 2N {ys =0} - R,
satisfying
Hy(x',u(x',xq)) = xa, and u(x',Hy(x',ya)) = Va,

so that the free boundary of u is given by (the graph of) the trace of Hy, over the
hyperplane {y; = 0}. Standard calculations yield

> aij(DHy)D;;Hy = 0 in By_2: N {yq > 0},
(6.3) i
DaHy = B(D1Hy,...,Da-1Hy) onBj_2: n{yq =0},

with aij, B analytic and a;j(DH,,) uniformly elliptic.

Next, suppose U is €/2-flat in a ball B; with € as in the statement of Theo-
rem 2.6. Then, for p sufficiently large, also the functions u#, v# are e-flat in Bj,
so we can apply Theorem 2.6. Let Hy,, HY,, and HY be the holograph transforms
of ug, uy, and vy on Bi_,; we set for simplicity Hy := Hy,. Since ut < v#, we
have

HY(x',0) = HY(x',0) forevery (x',0) € Bj_z¢ N {y4 = 0}.

From Theorem 2.6 we can also assume that HL, HY — Hy in C31(B;_2¢).
Since aij, B (in (6.3)) are analytic functions of DHy, we can use the funda-

mental theorem of calculus to deduce that the difference wH = HY — HY solves a
PDE of the form

> a;DjwH =0 in Bd s := Bss N {ya > 0},
i,Jj
Daw* = Z EiDilI}“ on Bs;g N {yva =0},

1

where @;; is uniformly elliptic and depends analytically on DHY, D2H{;, DHY,
D2HY, and where b; are analytic functions of DHY,DHY. In particular, by The-
orem 2.6, dij, b; have (respectively) uniform C* and C'® bounds, depending
only on the dimension d. Using the Harnack inequality and Schauder theory for
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strong solutions with oblique boundary conditions (see, e.g., Theorem 5.2 in [6]),
we get

K
B34 3/4

supwH < C(d) igfﬁ/“,
(6.49) <[

I0H [l coaasy) < CLA Il gy .

Next, let (x', x4) € {v# > 0} NB1j2 and yq:=ut(x’,x4). Then, (x', ¥a) € B4
and
(6.5) vH(x', xq) — ut(x', xq)
= vH(x', Hi(X", ¥a)) — va
= vH(x',Hi (X", va)) — vM(x',HE (X', va))
Hi(x"\ya)

= J DavH(x’,t) dt.
HY(x",vq)

Combined with (6.4) and the fact that V¥ satisfies (2.4), the above (6.5) implies

(6.6) sup(v¥ —ut) < C(d)(v#(0,1/8) —ut(0,1/8)),
B2
6.7) IHY = Hy llc2qs7,) < C(d) (0#(0,1/8) — uk(0,1/8)),

for a dimensional constant C(d) > 0.
Set Qo := Qu, and let (x',x4) € Qo N Bij2. Then, for p > 1 sufficiently
large,
(X/,Xd) € Quun Bl/2 CQuun Bl/z.

As p — +oo, Hi (X', vq) — Hy (x', ¥4) — 0 and v* — ug smoothly on compact

subsets Bij2 N {ya > 0} and Q¢ N B2, respectively. Thus, for p large, we can
compute

6.8) vH(x',xq) —ur(x',xq)
= (Hi (X', ya) = HY (X", va4))

1
X J DavH(x', HY (X', va) + s(Hi (X', va) — HY (X', v4))) ds
0
= (Hi(x",ya) — HY (x', va)) Dauo(x', xq) + eu(x',x4)),

for g, (x",x4q) — 0.
By Theorem 2.6, we can write

0Qu N B4 = graphyg (8),  9Q% N B34 = graphyg, (n*),
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where we graph over the normal pointing in the positive e4 direction. Our con-
vergence HY, HY - H, implies [|EX]lc31(By0), 1Nl 31 (By) — 0 as 4 — oo,
By elementary geometry, for x” € Bflle and ' = x"+Hy(x',0) € 0QyN B34
we can write
_ Hu(FF(x")) — Hy (F¥(x))

u A ’ H (" =
(6.9) (EH (") = n*(y"))(1 + R*(x")) \/1 + D Hy(x',0)]2 )

where each F# : B{;! — R4~ is a smooth diffeomorphism onto its image, where
R¥: B! — R4 is smooth, and where

(6.10) IFH —1Idllc21B,,,) — 0, [IR*llc21(8,,,) — 0,

and D' f = mga-1 (D f). Therefore, by (6.6), (6.7), (6.9), (6.10) we have
IEH = nHllc2e(B, s, no0) < C()IHy — Hy ll 28, )

where 6, — 0, and, for any (x’,x4) € 0Qy N By2,

(6.11)  EH(x',xa) — n*(x',xq) = Dauo(x’, xq) (Hi (x",0) — H5 (x',0))
+&,(x", xa),

where [U#(0,1/8) — u#(0,1/8)| e, (x",x4) — 0.
Assume that v#(0,1/8) — u#(0,1/8) > 0 for all u. Let A, € R be any
sequence such that

% < A;l(v“(O,l/S) —u*(0,1/8)) <T forall pu,

for some I' > 0. Define w# = A 1 (vH — uH), k¥ = A;l(Hﬁ — HY), and T+ =
AL (EH —nH).
From (6.6), we have

6.12) lwHll=B,,) < c(d,T).

By (6.12), (6.7), (6.11), after passing to a subsequence we can find w € C*(Qp N
Bl/2)> k e Cz‘(x(Bl/z), and T € CZ’“(aQO N Bl/z) so that

(613) wy - w in CIOOOC(QO N Bl/z),
(6.14) ky —k in C>(By)2),
(615) ™7 in Cli’f"(aQo ﬁBl/z),

for all ® < &. Moreover, from (6.8), (6.11) we have w = kDgyuy on Qp N Byz
and T = kD4ug on 0Qg N By;». We deduce that

(6.16) we ™ (QonBiz) and wlzg g, =T
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Step 2. Suppose now we have ug, uH, v#, Ay, and wH € WH2(By) as
in Assumption 6.1 and Theorem 6.2. As above, we shall write Qy = Q. Fix
U € B \ sing(ug). By Theorem 2.6, for p sufliciently large we can write

0Quu NU = graphy (EH) 0Quu N U = graphyg, (n*)

with respect to the inner normals. From (6.12) and the usual Harnack inequality
in the interior of Qg, we have

(6.17) sup [[wH][=y < oo,
u

and so we can find a non-negative w € C2%(Qy N U) N C®(Qp N U) so that
wH — w in G (Qo N U), where we used (6.16) to obtain the Ccxo regularity up
to the regular part of the boundary of Q.

Fix ¢ € CL(U). Since we have ut|30,,~v = 0 and the outer derivative
Dyutlsa,unu = —1 (and the same for v¥ with respect to Qyu) we compute

AP (vH —uH)
J

—J D¢-Dv“+J D¢ - Dut
Quu Quu

B LQW ¢- Jaguu ¢

- LQ b(x — NP ()V (X)) TH () — b(x — E(x)v (%)) JEH (x).

Here, v denotes the outer unit normal of Qq, and Jn* is shorthand for the Jaco-
bian of the map 0Qy > x — x — n#(x)v(x) (and the same for ).

There are functions &, €}, &,/, &), — 0 as 4 — oo so that
Hr o Eps &y

[apewr - un)
= | v aE - )+ b+ ) UM - TEN
Qo

= LQ Dy + &) (EH =) + &) + (b + &) (H + &, ) (E* —n*)

where H = divaq, (V) is the mean curvature with respect to the outer normal.
If we divide both sides by Ay, then by (6.17), (6.13)—(6.15), (6.16) we can
take a limit as g4 — oo to deduce, using (6.16), that

JQO wAPp = LQO wD, ¢ + Hpw.
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Since w is C? up to Qo N U, and Aw = 0 in Qq, we can integrate by parts to
get
D¢ - Dw = —J Hepw, or J ¢ (Dyw + Hw) = 0.
Qo aQ() aQO

Since ¢ is arbitrary we deduce that w satisfies Dyw + Hw = 0 on reg(ug) N U.
Since U € By \ sing(uo) was arbitrary, by a diagonalization argument we

deduce there is a non-negative w € C>*(Qo \ sing(u) N By) N C*(Q N By)

solving (6.1) so that w* — w in C};, (Qp N By). |

6.2. Proof of Proposition 6.4. 1If we let wy = min{w, k} for k > 0, then
by (6.1) and Lemma 2.5 we get that

J Dp-Dwy=0 Vo€ CC1 (B \ sing(10)) non-negative.
Qo

By Lemma 4.4 we can replace ¢ with (wy + 1)71C? for any fixed, non-negative
CeCl(By\ sing(uo)), to get

j (Wi + 1) 2 Dwe 222 =< 4j IDC|%.
Qo QO

Arguing as in the proof of Lemma 4.4, we can find C; € Cl(B; \ sing(ug)) so
that IDZ;i|?> — 1 and C; — 1 almost everywhere on By,,. Therefore, we get the
Qo

bound
J |Dwy|? < 4(k +1)?,
Q{)ﬁBl/z

and hence Wk € WI’Z(Q() N Bl/z).
By Theorem 5.2 we deduce there are dimensional constants C,y > 0 so that

[ wi < C inf wy,
QoNBy QoNBy

and hence, taking k — o, we get (6.2).

7. PROOF OF THEOREM 1.1

Here, we put together the various ingredients of the previous sections to prove
Theorem 1.1. The argument follows [12]. As outlined in the Introduction, we
first show that violating the strict maximum principle of Theorem 1.1 effectively
implies there is a point where the blow-ups of u, v agree. By a suitable blowup
argument, we can obtain a positive Jacobi field w that decays like O (), which
will contradict the Harnack theory which says w must be uniformly bounded
below.
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Lemma 7.1. There is a positive dimensional constant 6y so that if u € Wli’cz (RY)
is a non-zero 1-homogenous global minimizer of Jga, then

{x € Qu:d(x,0Qy) > Oylx|} = .

Proof- If the lemma failed, we could find a sequence u; of 1-homogenous
minimizers such that

1
(7.1 d(x,0Qy;) < ;le VxeQy,.
Passing to a subsequence, we can assume there is a l-homogenous minimizer U SO
that u; — o in C, by Lemma 2.1. Since 0 € 0Qy,,, Qy, is a non-empty open set
containing some ball B¢ (p) with |p| = 1. But then we must have Qy, D B¢/2(p)
for i > 1, contradicting (7.1) for i > 2/¢. O

Proof of Theorem 1.1. Assume that 0 # u < v and reg(u) Nreg(v) = &, but
0Qy N 0Qy NU # &. We aim to obtain a contradiction. Note that, since reg(u)
is dense in 0Qy N U, the interior maximum principle implies u < v on Qy C Q.
After translating and rescaling, we can assume that U = By, and 0 € 0Qy N 0.

Step 1. Scale-invariant decay of w — v. We claim that u, v have the same tangent
cone at 0, in the sense that for any 7; — 0, there is a subsequence 7 and a 1-
homogenous minimizer ug so that ug,; — 1o and v ,; — uo. To see this, observe
that if uy < vy are 1-homogenous minimizers, then by Theorem 2.3 ulas,,
Vola, are first Dirichlet eigenfunctions of Qy, N 0B C Qy, N 0By (respectively),
both with eigenvalue d — 1. Domain monotonicity implies Qy, = Qy, and ug =
vo. Our claim follows if we then pick any subsequence 7; for which both -
and v,/ are convergent.

Step 2. Construction and decay of the linearized solution w. Fix 6 = 0y/2, for 0y as
in Lemma 7.1, and set Q¢ := {x € Qy : d(x,0Qy) > 0|x|}, so by construction
Qp C Oy C Q.

Since u and v have the same tangent cone at 0, we get that

sup r v -—u)= sup  (Voy —Uoy) =0 asr — 0.
QpNOBy, (r=1Qp)NoBy

As a consequence, for every R > 0, the supremum

sup ( sup ¥ (v —u))
re(0,R] QpnoB,

is a maximum achieved at some radius ¥ € (0,R]. This implies we can select a
sequence ¥; — 0 so that

(7.2) sup( sup ¥ '(v—u)) <2 sup ¥ '(v-u).
=% QpNoB, ngaByi
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Passing to a subsequence, by Lemma 2.1 we can assume there is a 1-homogenous
minimizer Uy so that uo,;, — Ug and Vo, — U in CS, and the free-boundaries
converge in the local Hausdorff distance. Fix a point p € Qy, N 0By, and define

Ai := Vo, (p) — U0y (p) > 0.
Write Qo := Qu,. By Theorem 6.2, applied in B, rather than Bj, we can find a
non-negative function w € C2(Qo\ sing(ug) N By) N C™(Qo N By) satisfying (6.1)
and so that the rescaled functions

(7.3) A (o —wo) = win Gy (Qo N Ba).

By our normalization, w(p) = 1, and so, since Q is connected (by Theorem 2.3),
w > 0 on Qp N B,. For a number 8" > 0, we will use the notation

Qoo 1= {x € Qo:d(x,000) > 0"|x|}.
By the convergence of the blow-up sequence 1y, to ug, we have that
(7.4) (r71Qe) N 0By C Q92 N 0By,
for i large enough. Analogously, for any p > 0 and i sufficiently large,
(7.5) (r7'Qe) N Ba—p \ By D Qo20 N Ba—p \ By.
Now, our choice of #; in (7.2), combined with (7.3), (7.4), (7.5), implies that

sup v 'w<4 sup w foralr <1
Qo20N0By Qo,6/2N0B;

Since Q20 # @ (and is obviously dilation-invariant), we get that

(7.6) inf w=<Cr foralr<l,
QoﬂaBy

for some constant C > 0.

Step 3. Harnack inequality and conclusion of the proof. By Proposition 6.4, we have

. 1
inf w>— w>0
B,NQ C JB,nay,

with C, y positive dimensional constants, which clearly contradicts (7.6). O

Proof of Corollary 1.2. A direct consequence of Theorem 1.1, the Hopf maxi-
mum principle, and the connectivity of Q. O
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Proof of Corollary 1.3. First, observe that if Q" is any connected component
of Qy, then vl|y;,g cannot be identically zero. For otherwise, we would have
Vg € WOI’Z(U), and hence by replacing v with v’ = v - 1y\o we would have
v —v e WOI’Z(U) and Jy(v') < Jy(v), contradicting minimality of v.

Now by Theorem 1.1, if the conclusion of Corollary 1.3 failed we would
necessarily have 4 = v on some connected component Q" of Q,. But then on
some subset I C 0U N Q' of positive H 4~ !-measure we would have 0 < u = v,
contradicting our hypothesis. O

8. PROOF OF THEOREM 1.5

Our proof follows the same blowup principle as [6, 9, 16], which is to find a
sequence of minimizers VH of Jp, lying to one side of 1o, argue that v# — ug but
d(0,Qquu) > 0, and then take a limit of a suitable sequence of dilates v(‘f’m - U.
The key simplification observed by [16] is to prove the “radial graph” property
before blowing up rather than after, and thereby avoid having to understand the
precise asymptotics of the limit u (at the “expense” of having to know C? regularity
of v# up to 0By).

Proof of Theorem 1.5. Fix 'y < 1, and let v¥ minimize Jp, subject to v |35, =
YUolap, (of course Jp, (Yuo) < oo since ug € Wl})’cz). Since VY38, < Uolap, and
U is minimizing, after replacing v¥ with min{v¥,uo} there is no loss in assuming
vY < ug. By Lemma B.1, v¥ € C%(By).

We first claim v¥ < yuy also. To see this, observe Q. = Qu, and V¥ < u,,
and hence if U" = {v¥ > yuo} then U’ C Qyy, and (V¥ —yuo)* € WOI‘Z(U’) and
A(WY — yugy) = 0in U’. Therefore, the weak maximum principle for harmonic
functions implies (VY — yuo)* = 0, proving our claim.

Now, Dy (yug) = —y # —1 on reg(yuo) = reg(uy), and so we have that
reg(vY) Nreg(ug) = &. By Theorem 1.1 (applied to v¥ and up), we must have
0Qyy N0Qy, NB1 = &. Together with the interior maximum principle, we deduce
that v¥ < yug on Qu» N By. In particular, since yuy is 1-homogenous, we have

(8.1) vy, <yuo=vY onr 'QuynoBy, Vr<l.

We secondly claim that vé’m <vY in B; forall v < 1. Since d(0,Q,y) > 0,
this is trivially true for all » sufficiently small. If 7y is the largest radius so that
véy‘, < vY on By for all ¥ < 7, then necessarily since v¥ € C%(B;) we must have
véy‘y* < vY on By, and there must be an x € By N 7;'Q,y for which vé/,r* (x) =
vY(x). By (8.1) and Corollary 1.3, this is a contradiction unless ¥y = 1.

For a fixed x € By, our second claim implies ¥ “1v¥ (rx) < v¥(x) for all
¥ < 1. Therefore, at any point x where DvY exists we must have

dr [y=1
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We claim third that v¥ — 1 in W'2(B;) as y — 1. Otherwise, by standard
compactness there would be y; — 1 so v¥i — v for some minimizer v € W12(B;)
satisfying vlap, = Uolap, and v < U but v # ug. But since ug is the unique
minimizer of Jp, for its boundary data (see, e.g., [6, Lemma 2.5]), this is a contra-
diction, and proves our third claim.

For each y < 1 we have ¥y := d(0,Quy) > 0, and from our third claim
we have 1, — 0. We can therefore find a sequence y; — 1 so that the functions
v({ iryi converge in (Wli‘cz NCY) (RY) to some global minimizer u satisfying u < u,

d(0,Qy) =1, and
(8.2) —u(x)+x-Du(x)=0 f4ae xR

This u is our required solution, satisfying Theorem 1.5 (1), (2). We now show u
satisfies the other asserted properties.

We prove sing(u) = @ (i.e., Theorem 1.5 (4)). To see this, observe that if
X € 0Qy, then for v sufficiently small (8.2) implies

VU (V) + (X +7Y) - DUy (¥) =0 L%ae y € B.

Now if w is any tangent solution to u at x, then w is a 1-homogeneous global
minimizer of Jra satisfying

(8.3) x-Dw(y) =0 f4ae yeRe

Here, (8.3) implies that Q,, € {¥ : ¥ - x = 0}, and hence we must have Q,, =
{y:y-x=0}and w(y) = (¥ - x)*. This proves x € reg(u).

We prove (8.2) holds with > 0 in place of > 0 (i.e., Theorem 1.5 (3)). This
follows because w(x) := —u(x) + x - Du(x) is a non-negative Jacobi field on
Q,,; that is, w satisfies, for w = 0,

Aw =0inQy, Dyw+ Hw =0 on 0Qy,

where H is the mean curvature scalar of 0Qy with respect to the outer unit nor-
mal v. Non-negativity is obvious, and harmonicity is an easy computation. The
boundary condition follows because, along 02y, we have

Du=-v, Di,u=H, Diu=0ifeLv.

Now, the Harnack inequality of Proposition 6.4 implies that either w = 0, or
w > 0 on Qu. But w cannot be identically zero, as this would contradict (e.g.)
the fact that d(0,Q,,) = 1.

We next prove that ug, — ug as ¥ — o (i.e., Theorem 1.5 (5)). Take any
sequence ¥; — oo. Passing to a subsequence we can assume U ,, — U, for some
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1-homogenous minimizer uy < uo. But now by eigenvalue monotonicity for
domains in the sphere, we must have ug = uy. Since the sequence 7; is arbitrary,
this proves our assertion.

Lastly, the fact that the dilations of 0Q foliate Oy, by smooth, analytic hy-
persurfaces, which are radial graphs, follows directly from Theorem 1.5 (1)—(5).

The construction of # is essentially the same. Here, we take y > 1, and define
VY as before. The same arguments imply that v¥ > yug on By, and v, = v
on B for every ¥ < 1, and hence

—vY(x)+x-DvY(x) <0 [L%ae x€B.

Taking an approprlate sequence ¥; — 1 and ¥y, = d(0,Q,v) — 0, we can take
a limit of vy’ v, to obtain a global minimizer # > u. The rest of the argument
proceeds as in the case of U, except using the Jacobi field —w in place of w. DO

APPENDIX A. JOHN-NIRENBERG LEMMA

We provide here a self-contained proof in our setting of the John-Nirenberg-type
lemma used in proving Theorem 5.2. The proof is a very (very) minor modifica-
tion of a proof due to L. Simon. We reproduce it here for the convenience of the
reader.

Lemma A.1. Under the same hypotheses as in Theorem 5.2, there is a dimen-
sional constant y(d) > 0 so that

(A1) (Lm fv)”m f-v) <c(d,p) fora110<p<d”_lz.

Proof: Let Q := Qy, and let € > 0 be fixed. For T € C! (B \ sing(u)) non-
negative, note that ¢ = (f + €)71C% € W'2(Q n By), and is supported in B;.
Therefore, we can approximate ¢ in W'2(B;) by admissible test functions, and

from (5.2) get

L) (F+ O 2D+ (f + &) 12CDf - T = 0,
and hence

(A.2) jQ(f+s)—2|Df|2§2 s4L2|DC|2.
For A € R to be determined later, define w := log(f + €) — A. Then, (A.2) gives

(A.3) JQ IDw|*C? < 4 L) IDCI? VI eClB \ sing(1)) non-negative.



1088 NICK EDELEN, LUCA SPOLAOR ¢ BOZHIDAR VELICHKOV

By the same approximation argument as in Lemma 4.4, we now deduce that
w € WH2(QnBy) forall ¥ < 1. In particular, if wy = min{k, max{—k, w}}, then
lwk|P € W2(Q N By) forany p > 0, ¥ < 1. Using (4.1), Holder’s inequality,
and (A.3), we can choose (and fix) a A so that

(A.4) J lw | ™M=D < c(d) IDw| < c(d).
QNBy), QNByy,

Take ¢ € CL(By/2,[0,11), p =2, B =1/(x — 1), and & = 28 + 2. From (4.2)

we have

(A.5)
1/x
(J |wk|2nx¢2avx—ﬁx>
Q
< C(d)lﬂzj lwi |27 72 [Dw |2 p2*P 2P c(d,x)pZJ 1w |2 p2ep—26-2
Q Q

On the other hand, replace T with lwi|P~1p*P~B in (A.3), and obtain
(A.06)

[ 1ok D pres
Q
<89 | Tkl IDwn P28 4 c(op? | w22,
Q Q

Using the interpolation a#b'™* < pa + (1 — pw)b for a,b > 0, u € (0,1), we
have

(A7) plwg )P4 < 1—16|u/k|2’7‘2 + 167 p??.

Therefore, combining (A.5), (A.6), (A.7), (A.4), we get

1/x
< [ lwi |2nx¢2ax—2ﬁx>
Q

<c(d)Pp? o Ilez+c(d,x)192JQqukIZ”‘zqﬁz‘x"‘zﬁ‘2
Y/2

<c(d)Pp? +c(d, x)p? JQ |wi| P2 p2er=26-2,

Recall by our choice of B that Bx = B + 1; also, (a + b)# < a* + b¥ fora,b = 0
and p € [0, 1]. Defining the measure dn = ¢=2PX dx = ¢p~25~2 dx, we deduce

1/2px
(A8) (L2 |y |2PX 2P dn)

1/2p
sc(d)p+c(d,x)”"’p””(J Iwklz’”d)m”dn) )
Q
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Forany 6 € (0, 1) and non-negative measurable F, we have by Holder’s inequality

(A.9) (JQ F2r dn) "

3/2px (x=6)/2xp
< (J anxdn> (J F2P(1-8)x/(x-0) dn) _
Q Q

Since the map 6 — 2p(1 — 8)x/(x — O) takes the value 2p = n/(n — 1) when
6 = 0 and 0 when 6 = 1, we can choose a § = §(p, X) so that

2p(1-0)x/(x —6)=n/(n-1).

Now combine (A.8), (A.9), (A.4) with p = 2, F = |wy|¢p*, and §(p, X) as in the
previous paragraph to get

(1-8)/4x
a10) ([ nwrgpioxan) <
Q
(x—9)/4x

<c(d) + C(d,x)([ |wk|n/(n—1)¢(xn/(n—1)—26—2 dX)

Q

(x—6)/4x

<c(d) +c(d,x)<[ lwl"/(”‘”dx>

QﬂBy/z
<c(d, x).

(Break into two cases: either J F2PXdn=lor<1.)
Q
Forv =1,2,..., define

Y(v) = (JQ |w|4xv¢4(xxv dr,)wxv_
From (A.10), taking k — oo, we have ¥(1) < c(d, X). From (A.8) we have
V(v +1) <cx +cX xVXTE(v)
forc = c(d, x). Now,

[TeX "X < cd, x),
u=0

and so we have
v

Y(v) < > ext <cld, x)x".
pu=1
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Recalling that 4xx” — 2 — 2 > 0 for all v, we get by Holder’s inequality

, 1/j
<J lefdx> <cld,x)j Vj=1,2,....
QﬂBy/z

And hence, using Stirling’s approximation and ensuring 6 < 1/2e, we have

© j Jj ® i)J
[ e®Wldx < ZJ : |?| <c2, CIE < cax).
QﬂBy/z j:0 QnBy/Z J'

Therefore,

A.11) (Lm e dx) (Lm (e dx) <cd, x)

and, taking € — 0, by the monotone convergence theorem we get (A.1) for p <
1/2e and y/2 in place of y.

To prove (A.1) for all 0 < p < x Simon argues as follows. For 0 < 1, 6 + 0,
and € € C}(By), we can plug in (f + €)971C? into (5.2) to obtain

(1- 9)[ (f + )02 DF2C? < [ (f + £)°-12CDF - DL.
Q Q
If we set w = (f + €)92 and rearrange, then we obtain
J |D(wc>|2sc<e>j w2 DL,
Q Q

This implies wC € WH2(Q n B,) for all < 1. If we replace € with ¢p*~# for
Bx =B+ 1and x— B — 1> 0and ¢ as before, then we get

1/x
(J w2 dn) < c(9,d,x)J wie*dn
Q 0
for dn = ¢=2$"2dx = ¢p?AX dx. Now, apply Holder as in (A.10) to get, for any
o€ (0,1),

>(1—5)/X )(X—5)/X

( J w2x¢20(x dfl
Q

Recalling that « — Bx = «— B —1 > 0 and our definition of w, and taking € — 0,
we then have

(A.12) ( me f 9") o

<c(0,d,x) (J f9<175)x/<x75)

QﬁBy/z

<c(0,d,X) ( Jg(wz(,)zcx)u—mx/(xm an

)(X—5)/X
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Given any 0 < p < X, we can write p = 0x for 0 € (0,1). We can then
choose a 6 = 6(p, x) so that

0(1 -0)x/(x —96) =min{l/2e,0/2}.

Combining (A.12), (A.11) with our choice of §, we obtain

(ot ) U, )

= C(P,d,x)(f fmin{1/2e,0/2}

QﬂBy/z

« <[ - min{1/2,6/2}
QﬁBy/z

<c(p,d,x),

) (x=6)/(1-6)

)(X5)/(15)

which proves (A.1) with y/4 in place of y. O

APPENDIX B. CONTINUITY UP TO THE BOUNDARY

In this section, we prove a uniform Holder estimate for minimizers of the Alt-
Caffarelli functional with Lipschitz data on the boundary of a smooth domain,
which we use in the proof of Theorem 1.5.

Lemma B.1. Let g : R — R be a CY* function, and let

Q:={(x',xq3) e R T xR: x4 > g(x')},
[:={(x,g(x")):x R},

Let @ : R4 — R be a non-negative Lipschitz continuous function, andu : QUT — R

be a non-negative function in Wl}J’C2 (Q) such thatu = @ onT. Suppose that u satisfres
the following minimality condition in a ball Bg:

J [Dul?dx < J ID(u + @)|?dx + |K|
K K
for every @ € WOI’Z(K) and every open set K C Q N Bg.

Then, w is y-Hélder continuous in By, N (QUT) forany y € (0,1).
Proof We define the C1'® map

Y:QuUTl - H:={(x",23) : ya=0}, Y(x',xq):=(x",xq-9(x")),
and its inverse

®:H - QUI, &(x',yq):=(x',ya+9(x")).
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We will prove that the function u satisfies the estimate
(B.1) J IDul?dx < Crd+2y-1
By (x0)

for all xg € QN Brj2, ¥ < R/4, and some constant C > 0 independent of xo, 7.
Thus, we can apply the Morrey lemma (see, e.g., Lemma 3.12 in [15]) to the
function u — @, obtaining that it is y-Hélder continuous, which will conclude
the proof. To prove (B.1), it will suffice to take xy € 0, and for simplicity we
can assume Xg = 0, ®(0) = 0, and D®(0) = DY (0) = Id, and R = 2. We also set
A(x) := D®(x)D®(x)!, and we notice there is a constant C4 such that

(B.2) (1 -Car®1Id < A(x) < (1 +Car*)1Id  for every x € B,.

For simplicity, we will denote by C4 any constant depending only on the dimen-
sion d; by C4 we denote constants depending only on g, ®, ¥, and A; by Cyp we
denote constants depending only on |||z~ and [[D@||1~.

The harmonic extension of @ o ®. Let hgp : H N B, — R be a function such that
lhollL=(HnB,) < @~ HAB,) and

Ahgp =0 in H N By,
hp=@od on 0(H N By).

Given € > 0 and ¥ > 0, we consider the test function h¢ solution to

Afl(p =0 in H N Byy1-e,
fl(p =hy—@od® ond(HNBy-).

Then, using the subharmonicity of |Dhg|? and the gradient estimate, we get

[ IDh(plzdst ID( o ® + hg)|? dx
HAB, HNB,

< 2J ID(@ o ®)|2dx +2J |Dhg | dx
HNB, HNB,

2
< Car?|ID(@ o @) |1+ (55,
|Br| 12
+ Cyj—— Dhy |~ dx
41Bi] HOB, 1 Dhol

1 Fo2
= Cd,(p,grd + Cd”dgmnh(pHLw(HmBer)

< Cd,(p,g(rd + T(d+2)€72)_
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Now, for any fixed f > 0, we can choose € := (d +2p)/(d + 2), obtaining

(B.3) J IDhg |2 dx < Ca,p g7 2PD  forevery v € (0,1/2).
HNB,

Almost-minimality of u. Let v € (0, 1) and let h be the harmonic extension:

Ah =0 in HnNB,,
h=uod—hy in 0(H N By),

so in particular, h = 0 on B, N 0H. Let f :=h o &1, Then,

div(A(x)Df) =0 inQ,,
u=f on 0Q)y,

where Q, := ®(H N By). Using the equation for f, the ellipticity condition (B.2)
and the optimality of u tested with f in the set Q, we get that

JQ D(u— f) - AGX)D(u — f) dx

= JQ Du - A(x)Dudx - JQ Df - A(x)Df dx
1—-Cyr®
« 2 90 g 2
<(1+Cyr )<JQV [Du|” dx T Cyro JQV IDf] dx)
< (1+Cyr%) (IQTI + Cgr® L} |Df|2dx>.
Using L} Df - A(x)Df dx < Lz Du - A(x)Du dx and the ellipticity of A, we

gCt

(B.4) JQ ID(u — f)I?dx < Cgr® + Cgr™ L} IDu|? dx.

Main estimate. We fix a constant k € (0, 1). Using (B.4) and (B.3), we compute

J IDu|? dx
®(HNByy)
szj |D(u—f)|2dx+2j IDFI? dx
S(HNBy) S (HNByey)
scgrd+cgrwj |Du|2dx+CgJ D% dx
d(HNBy) HNByy
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ngrd+Cgr°‘J IDu|? dx
®(HNB,)

+CJ Dh 2dx+CJ
g HﬁBy| §D| g

HNBy

ID(h + he)|* dx
< Chopar?20-B 4 C V“J [Du|? dx
499 g ®(HNBy)

+CJ D(h + ho) | dax.
g leBw| ( )l

Now, since h + h¢ is harmonic in H N B, and vanishes on 0H N By, we obtain

J |IDu|? dx
®(HNByy)
< Cap g7t 217P 1 C T“J IDu|? dx
4,9,9 g S(HAB,)
|By| 5
+C ID(h + hy)|*dx
g |BK‘)’| HNB, i
—2(1- |By|
< Chopar?21-P 4 C r"‘[ IDul?dx + C IDh|? dx
4pa 9% Jewns, 9\Byr| Jrns,
< Cap g7t 2P + Cy(r* + k%) [ |IDu|? dx.
®(HABy)

Iteration estimate and conclusion. We take y € (0, B), and we set

1

—_— IDu|? dx.
yd-20-y) L(HmBm

Tn = Kn and Mn =
Then, setting A := k" 2C,9,p and b := 2Cyk*17Y), we have

da
Mpi1 < AKTVB=Y) 4 bM,  for every n = o

We now choose k in such a way that b < 1. Then, M, remains bounded by a
universal constants. Indeed, if 1y is the smallest integer greater than d/«, then

M, < + My, forevery n = ny,

1 = k2(B-y)
which concludes the proof of (B.1). O
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