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ABSTRACT. We prove a strong maximum principle for mini-
mizers of the one-phase Alt-Caffarelli functional. We use this
to construct a Hardt-Simon-type foliation associated with any
1-homogenous global minimizer.
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1. INTRODUCTION

In this paper we prove a strong maximum principle for variational solutions of
the one-phase Bernoulli problem. For an open set U → Rd and for a function
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u ∈ W 1,2(U), we consider the following functional introduced by Alt and Caf-
farelli in [1]:

JU(u) :=
∫

U
(|Du|2 + 1{u>0})dx.

We recall that a nonnegative function u ∈ W 1,2(U) is a minimizer of JU (in U) if

JU(u) ≤ JU(u+ v) for every v ∈ W 1,2
0 (U).

Similarly, we say that a nonnegative function u ∈ W 1,2
loc (U) is a (local-)minimizer

of JU if minimizes JU ′ for all U ′ % U ; if U = Rd and u ∈ W 1,2
loc (R

d) is a local-
minimizer of JRd , then we say that u is global minimizer.

It is well known that if u ∈ W 1,2
loc (U) is a minimizer of JU , then it is locally

Lipschitz in U and that, denoting with Ωu := {u > 0} the positivity set of u, its
free boundary ∂Ωu ∩ U can be decomposed into the disjoint union ∂Ωu ∩ U =
reg(u)∪ sing(u), where reg(u) is a relatively open and smooth subset of ∂Ω and
sing(u) is a closed set of dimension at most d − 5 (see, e.g., Theorems 1.2 and
1.4 in [15] and the references therein). Moreover, u solves the overdetermined
boundary value problem






∆u = 0 in Ωu ∩U,
u = 0 on ∂Ωu ∩U
Dνu = −1 on reg(u)∩U,

where ν denotes the outer unit normal of Ωu ∩U .
If u,v ∈ W 1,2(U) are minimizers of JU such that u ≤ v (so that Ωu → Ωv)

and if Ωv is connected, then by the classical Hopf maximum principle it follows
that

either u ≡ v or reg(u)∩ reg(v) =∅.

In this paper we prove a strong “geometric” maximum principle, similar to the
one known in the minimal surface case (see, e.g., [10,12,14,17]), which rules out
the singular parts of the free boundaries touching either.

Theorem 1.1. Let U → Rd be an open set and u,v ∈ W 1,2
loc (U) be minimizers of

JU . Suppose thatu ≤ v and reg(u)∩reg(v) =∅ in U . Then, ∂Ωu∩∂Ωv∩U =∅.
As an immediate consequence we obtain the following alternative statements

of the strong maximum principle.

Corollary 1.2. Let U be an open set in Rd and u,v ∈ W 1,2
loc (U) be minimizers

of JU . Suppose u ≤ v, and Ωv is connected. Then, we have the following dichotomy,
where only one of the following is true:

(i) u ≡ v in U .
(ii) ∂Ωu ∩ ∂Ωv ∩U =∅ and u < v on Ωv ⊃ Ω̄u ∩ U .
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Corollary 1.3. Let U be a bounded Lipschitz domain, and let u,v ∈ W 1,2(U)
be minimizers of JU . Suppose u ≤ v, and u < v on {x ∈ ∂U : v(x) > 0}. Then,

∂Ωu ∩ ∂Ωv ∩U =∅ and u < v on Ωv ⊃ Ω̄u ∩U.

Remark 1.4. The same conclusions of Theorem 1.1 can be reached for local
minimizers u ∈ W 1,2

loc (U) of the functional

u!

∫

U
|Du|2 +Q2 · 1{u>0} dx,

where Q ∈ C2,α(U) is a positive function.
We expect Theorem 1.1 to be a useful technical tool, as has been the case

for the analogous result in minimal surface theory. In particular, we demonstrate
an application of our strict maximum principle in the following Theorem 1.5,
which proves the existence of a “Hardt-Simon”-type foliation associated with any
1-homogenous minimizer, again analogous to the one known for area-minimizing
hypercones (see, e.g., [2, 9, 16]). We mention that [6] contains versions of The-
orem 1.1, and Theorem 1.5 for minimizers with isolated singularities (see also
Remark 1.6); our maximum principle, for general minimizers, is proven using a
fundamentally different approach, and the increased generality is the reason we are
able to prove existence (but not uniqueness!) of the foliation in greater generality
also. It was also pointed out to us that the techniques used in [5, Theorem 6.3]
would provide an alternative approach to Theorem 1.1.

Theorem 1.5. Let u0 ∈ W
1,2
loc (R

d) be a global 1-homogeneous minimizer of JRd .
Then, there exist global minimizers u, ū ∈ W 1,2

loc (R
d) such that the following hold:

(1) u ≤ u0 ≤ ū.
(2) d(0,Ωu) = d(0,Ωū) = 1.
(3) −u(x) + x · Du(x) > 0 for x ∈ Ω̄u, and −ū(x) + x · Dū(x) < 0 for

x ∈ Ω̄ū;
(4) sing(u) = sing(ū) =∅.
(5) u0,r → u0 and ū0,r → u0 in (W 1,2

loc ∩ C
α
loc)(R

d) as r →∞.
In particular, the hypersurface ∂Ωu (respectively, ∂Ωū) is an analytic radial graph over
Ωu0 ∩ ∂B1 (respectively, ∂B1 \ Ω̄u0 ), and the dilations

{λ∂Ωu : λ > 0}∪ {λ∂Ωū : λ > 0}

foliate Rd \ ∂Ωu0 .
Remark 1.6. Note that, unlike the case when u0 is regular away from 0 as

considered in [6], we do not claim any uniqueness of the foliation generated by
u, ū. We expect the foliation should be unique, like in [6], in the sense that any
minimizer lying to one side of u0 should be a dilation of either u or ū, but this
seems to be a much more subtle question.
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Outline of the proof and organization of the paper. The key technical
tools in the proof of Theorem 1.1 are two relative isoperimetric inequalities (Sec-
tion 3), which allow us to deduce Gagliardo-Nirenberg-Sobolev-type inequalities
(Section 4) and to develop a De Giorgi-Nash-Moser theory (Section 5) for sub-
and supersolutions on domains Ωu, generated by minimizers u of the one-phase
functional J. To prove these we use ideas from [3] and [13].

Beyond the Harnack inequalities, our strategy of proof for Theorem 1.1 es-
sentially follows the method of [12] (see Section 7). We assume that u ≠ v and
reg(u) ∩ reg(v) = ∅ but ∂Ωu ∩ ∂Ωv ∩ U ≠ ∅, and derive a contradiction. We
first show using domain monotonicity of Dirichlet eigenvalues that there is no
loss in assuming that U = B1 and 0 ∈ ∂Ωu ∩ ∂Ωv , and both u, v have the same
tangent cone at 0 (for any choice of rescalings). This implies that the difference
u − v behaves like o(r), and so by choosing a good sequence ri → 0 and suit-
able factors λi, we can find a blowup u0 of both u and v at 0, and can take a
limit of λ−1

i (v0,ri − u0,ri ) to obtain a positive Jacobi field w on {u0 > 0} ∩ B1

which behaves like O(r) as r → 0. However, as w is a positive (distributional)
supersolution of the Neumann Laplacian (see Section 6, Section 7), that is,

∆w ≤ 0 and w ≥ 0 on {u0 > 0}∩ B1,

the De Giorgi-Nash-Moser Harnack inequality implies that w admits a uniform
lower bound, contradicting the fact w = O(r).

In Section 2 we recall some useful facts about minimizers of the one-phase
Bernoulli energy J. In Section 3 we prove a relative isoperimetric inequality and a
relative Neumann-type isoperimetric inequality for compact domains in Ωu, u a
minimizer of J; and then use these in Section 4 to prove a Sobolev and Neumann-
Sobolev inequality. Section 5 summarizes how these Sobolev inequalities imply the
De Giorgi-Nash-Moser estimates. In Section 6 we show how sequences uµ < vµ

of minimizers to J can be rescaled to obtain a Jacobi field on the limit, largely
following work of [6]. Finally, in Section 7, Section 8 we combine the results of
the previous two sections to prove Theorem 1.1, Theorem 1.5.

2. PRELIMINARY RESULTS

In this section we recall some facts about minimizers of the one-phase energy JU .
Given a minimizer u of JU , we shall always write Ωu = {u > 0} for the positive
set, and ux,r (y) := r−1u(x + ry) for the scaled/translated function. For a
general function f we write f+ = max{f ,0}, and f− = −min{f ,0}. For a set
A → Rd, write d(x,A) for the Euclidean distance from x to A.

We start by recalling the standard compactness for minimizers of the one-
phase problem.

Lemma 2.1 (Compactness of minimizers). Let {ui ∈ W 1,2
loc (B1)}i be a se-

quence of minimizers of JB1 , and suppose that 0 ∈ ∂Ωui for all i. Then, after passing
to a subsequence, we can find a u ∈ W 1,2

loc (B1) such that the following hold:
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(1) ui → u in (Cαloc ∩W
1,2
loc )(B1) for all α < 1.

(2) The characteristic functions 1Ωui → 1Ωu in L1
loc(B1).

(3) The free-boundaries ∂Ωui → ∂Ωu in the local Hausdorff distance in B1.
(4) u minimizes JB1 .

Proof. This is proven in [1, Lemmas 3.2, 3.4, and Section 4.7]. !

To prove the desired isoperimetric inequalities in Section 3, we will also need
the following density bounds.

Lemma 2.2 (Density bounds). There is a dimensional constant β = β(d) > 0
so that if u ∈ W 1,2(B2) minimizes JB2 , 0 ∈ Ωu, then

H d−1(∂Ωu ∩ B1) ≤ωd−1β
d−1,(2.1)

and if Ω′ is any connected component of Ωu ∩ B2 satisfying 0 ∈ Ω′, then

H d(Ω′ ∩ B1) ≥
ωd

βd
.(2.2)

In fact, we can find a ball Bβ−1(y) → Ω′ ∩ B1 in which u ≥ 1/β.

Proof. The upper bound (2.1) follows from [1, Theorem 4.5 (3)] (or Corol-
lary 5.8 in [15]). The lower bound (2.2) follows from the Lipschitz nature of u
and a minor modification of [1, Lemma 3.4] (or [15, Lemma 5.1 (d)]). Specifi-
cally, observe that if v ∈ W 1,2(B2) satisfies v|∂B2 = u|∂B2 , then the function

v′(x) =

{
u(x) x /∈ Ω′.
min{u(x), v(x)} x ∈ Ω′,

also lies in W 1,2(B2) and agrees with u on ∂B2. Therefore, we have the inequality

JΩ′(v
′) ≤ JΩ′(u).

Since we also have u · 1Ω′ ∈ W 1,2(B2), we can therefore apply the same proof of
[1, Lemma 3.4] to u|Ω′ in place of u to deduce

sup
Ω′∩B1/2

u ≥ 1/c(n).

Since (by [1, Corollary 3.3]) we also have ′Du′L∞(B1) ≤ c(n), it follows that we
can find a y ∈ Ω′ ∩ B1/2 and a β(n) ≥ 4 so that u ≥ 1/β on B1/β(y), which
concludes the proof of the lower bound (2.2). !

A general minimizer u on some bounded open domain U might have numer-
ous connected components of Ωu. However, if u is a 1-homogenous and U = Rd,
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then Ωu must be connected, essentially due to the fact that any eigenfunction on
the sphere Sd−1 with eigenvalue (d − 1) must be the restriction of a linear func-
tion. This implies the following connectivity result for global minimizers, which
is analogous to [3, Theorem 1].

Theorem 2.3. Let u ∈ W 1,2
loc (R

d) be a global minimizer of JRd . Then, Ωu is
connected.

Remark 2.4. The same proof (taking rk → 0 instead of → ∞) implies that if
u ∈ W 1,2(B1) minimizes JB1 , then for any p ∈ B1 there is at most one connected
component of Ωu whose closure contains p.

Proof. We first prove the theorem for u being 1-homogenous. In this case
the argument is similar to [7, Lemma 2.2]. Indeed, suppose by contradiction
Ωu has two non-empty disjoint connected components Ω1,Ω2. Since u is 1-
homogenous and solves ∆u = 0 in Ωu, we can write u(rθ) = rz(θ), where
z ∈ W 1,2

0 (Ωu ∩ ∂B1) solves

(2.3) ∆Sd−1z + (d− 1)z = 0 on Ωu ∩ ∂B1.

Write zi = z|Ωi , so that each zi is a non-negative Dirichlet eigenfunction of the
spherical Laplacian ∆Sd−1 on Ωi ∩ ∂B1 with eigenvalue d− 1.

Choose a > 0 so that
∫

∂B1

(z1 − az2)dH
d−1 = 0,

and then observe that by (2.3) and an integration by parts, we have

∫

∂B1

|Dθ(z1 − az2)|
2
dH d−1 = (d− 1)

∫

∂B1

|z1 − az2|
2
dH d−1.

That is, z1 − az2 is a first (non-trivial) eigenfunction of ∂B1, and hence must be
the restriction to ∂B1 of a linear function. After a rotation, we deduce umust take
the form

u = αx+d + βx
−
d

for some α,β > 0. But now H d(Ωu) = 0, and u is not itself harmonic, and so if
v is the harmonic extension ofu|∂B1 to B1 we have JB1(v) < JB1(u), contradicting
minimality of u. This proves Theorem 2.3 when u is 1-homogenous.

Now take a general u as in the statement of the theorem, and suppose,
towards a contradiction, there are two disjoint, non-empty connected compo-
nents Ω1,Ω2 → Ωu. Pick any sequence rk → ∞. For k ∞ 1 and i = 1,2,
r−1
k Ωi∩B1/100 ≠∅; thus, by Lemma 2.2 we can find balls B1/β(yik) → r

−1
k Ωi∩B2

on which urk ≥ 1/β.
Passing to a subsequence, by standard compactness (Lemma 2.1) and the

Weiss monotonicity formula, we can assume that there exists a 1-homogeneous
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u0 ∈ W
1,2
loc (R

d), minimizing JRd , so that u0,rk → u0 in Cαloc. By our choice of yik
and the C0

loc convergence of the u0,rk , after passing to a further subsequence we
can additionally assume that yik → yi ∈ Ωu0 ∩ B2, for each i = 1,2.

By Step 1 there is a path γ : [0,1] → Ωu0 ∩ B2 connecting y1 to y2. By
the C0

loc convergence of the u0,rk , we deduce that γ([0,1]) → r−1
k Ωu for k∞ 1.

Provided k ∞ 1 so that, additionally, each yi ∈ B1/β(yik), we deduce there is a
path in r−1

k Ωu connecting y1k to y2k. This is a contradiction, and finishes the
proof of Theorem 2.3. !

We will also need the following property of global minimizers.

Lemma 2.5. Let u ∈ W 1,2
loc (R

d) be a global minimizer for JRd ; then, we have
that supΩu |Du| = 1. As a consequence, if H is the mean scalar curvature of reg(u)
with respect to the outer unit normal, then H ≤ 0 (and H < 0 if u is not linear).

Proof. Define

Λ = sup{sup
Ωu
|Du| : u ∈ W 1,2

loc (R
d) a global minimizer of JRd},

and notice that, since |Du| = 1 on reg(u), we have that Λ ≥ 1.
Suppose, towards a contradiction, that Λ > 1. Then, there is a sequence of

global minimizers ui ∈ W
1,2
loc (R

d) and points xi ∈ Ωui so that |Dui(xi)| → Λ.
Let yi ∈ ∂Ωui realize d(xi, ∂Ωui). After a translation/rotation/dilation, since
|Du| is scale-invariant, we can assume xi = ed and yi = 0.

Passing to a subsequence, by Lemma 2.1 we assume there is a u ∈ W 1,2
loc (R

d)

minimizing JRd so that ui → u in (Cαloc ∩ W
1,2
loc )(R

d), and ∂Ωui → ∂Ωu in the
local Hausdorff distance, and ui → u in C∞loc(Ωu). Since d(ed, ∂Ωui) = 1, we
have d(ed, ∂Ωu) = 1. Thus, ed ∈ Ωu and |Du(ed)| = Λ. (Note this implies
Λ < ∞). On the other hand, |Du| ≤ Λ. Therefore, ed is an interior maximum
for |Du|2.

Since ∆|Du|2 ≥ 0, |Du|2 must be locally constant, and hence u = x+d . This
implies |Du(ed)| = 1 < Λ, which is a contradiction and concludes the proof
of the first claim of the lemma. We are now in position to prove the second
assertion of the lemma. By the previous one, we have that ∆|Du|2 ≥ 0 and
|Du| ≤ 1 in Ωu. On the other hand, on the regular part of the free boundary,
we have |Du| = 1 and Dν |Du|2 = −H on reg(u), so the conclusion follows
from the Hopf lemma. !

Finally, we recall the following ε-regularity theorem due to Alt-Caffarelli [1],
which we state in the version of De Silva [4].

Theorem 2.6 (Alt-Caffarelli ε-regularity). Given ε > 0, there is a δ > 0,
depending on ε, d, such that if u ∈ W 1,2(B1) is a minimizer of JB1 and if also
′u− x+d′L∞(B1) < δ, then u ∈ C∞(B1−ε ∩ {u > 0}), and there is a C∞ function

ξ : B1−ε ∩ {xd = 0}→ R



1068 NICK EDELEN, LUCA SPOLAOR & BOZHIDAR VELICHKOV

such that

∂Ωu ∩ B1−ε = graph(ξ)∩ B1−ε,

with ′ξ′C3,1(B1−ε∩{xd=0}) ≤ ε,

′u′C3,1(Ωu∩B1−ε) ≤ C(d),

′Du− ed′L∞(B1−ε∩{u>0}) ≤ ε.(2.4)

Proof. This theorem with C1,α norms replacing C3,1 was proved by De Silva in
[4]. The higher-order regularity is a standard consequence of Theorem 2 in [11].

!

3. ISOPERIMETRIC INEQUALITIES

In this section we prove two types of isoperimetric inequalities for domains Ωu,
with u a minimizer of J.

3.1. Relative isoperimetric inequality. The proof of the following theorem
follows ideas from [13].

Theorem 3.1 (Relative isoperimetric inequality). There are dimensional con-
stants R1 > 0 and C1 > 0 so that if u ∈ W 1,2(BR1) is a minimizer for JBR1

, then

H d(Q∩Ωu)(d−1)/d ≤ C1(d)H
d−1(∂Q ∩Ωu),

for any set Q → Ωu ∩ B1, with ∂Q∩Ωu being countably (d− 1)-rectifiable.

Proof. Let β = β(d) > 0 be as in Lemma 2.2, and define

θ =
1
2

min{2−dβ−d,1} and R =max{4(θ/2)−1/d,8}.

Suppose, towards a contradiction, Theorem 3.1 failed. Then, there is a sequence
uk∈W 1,2(BR)minimizing JBR , and a sequenceQk of compact subsets ofΩk ∩ B1,
for Ωk := Ωuk , with ∂Qk ∩Ωk rectifiable, such that

(3.1) H d(Qk ∩Ωk)(d−1)/d ≥ kH d−1(∂Qk ∩Ωk).

Notice that

lim
r→0

H d(Qk ∩ Br (x))

ωdrd
= 1 > θ, H d-a.e. x ∈ Qk.

On the other hand, since Qk → B1 and recalling our choice of R,

H d(Qk ∩ BR/4(x))

ωd(R/4)d
< θ, ∈x ∈ Qk.
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Therefore, there is a subset Q̃k → Qk with H d(Qk \ Q̃k) = 0, so that for every
x ∈ Q̃k we can find an rx ∈ (0, R/4) satisfying

inf
r<rx

H d(Qk ∩ Br (x))

ωdrd
=
H d(Qk ∩ Brx(x))

ωdr
d
x

= θ.

Fix momentarily a k. By the Besicovich covering theorem, we can find a subcol-
lection {Bri(xi)}i → {Brx(x) : x ∈ Q̃k} so that Q̃k →

⋃
i Bri(xi) and the balls

{Bri(xi)}i divide into at most N(d) disjoint subfamilies. We claim that if k∞ 1,
then for at least one i we must have

(3.2) H d(Qk ∩ Bri(xi))
(d−1)/d ≥

√
kH d−1(∂Qk ∩Ωk ∩ Bri(xi)).

Otherwise, we could estimate

H d(Qk)
(d−1)/d ≤

(∑

i

H d(Qk ∩ Bri(xi))
)(d−1)/d

≤
∑

i

H d(Qk ∩ Bri(xi))
(d−1)/d

≤
√
k
∑

i

H d−1(∂Qk ∩Ωk ∩ Bri(xi)) by (3.2)

≤
√
kN(d)H d(∂Qk ∩Ωk),

which contradicts (3.1), if k is chosen sufficiently large, depending on the dimen-
sion.

After translating and homogeneously rescaling uk, Ωk, Qk, and considering
only k sufficiently large, we can therefore assume that uk ∈ W 1,2(B2) is a mini-
mizer of JB2 , with 0 ∈ Ωk and

H d(Qk ∩ B1)
(d−1)/d ≥

√
kH d−1(∂Qk ∩Ωk ∩ B1),(3.3)

and

inf
r<1

H d(Qk ∩ Br )

ωdrd
=
H d(Qk ∩ B1)

ωd
= θ.(3.4)

Passing to a subsequence, we can assume that for all k we have either B3/2 → Ωk
or B3/2 /→ Ωk. Suppose the latter occurs. By Lemma 2.1, there is a minimizer
u ∈ W 1,2

loc (B2) of JB2 , so that up to subsequences uk → u in Cαloc(B2)∩W
1,2
loc (B2),

1Ωk → 1Ω in L1
loc(B2) and the free boundaries converge in the local Hausdorff

distance in B2, where Ω := Ωu (and is such that 0 ∈ Ω̄).
Notice that ∂Qk = (∂Qk ∩Ωk) ∪ (Qk ∩ ∂Ωk) is closed, (d − 1)-rectifiable,

with finite (d − 1)-Hausdorff measure, so that using (2.1) and (3.3) we deduce
that each Qk is a set of finite perimeter in B1, with

H d−1(∂∋Qk ∩ B1) ≤H
d−1(∂Qk ∩Ωk ∩ B1)+H

d−1(∂Ωk ∩ B1) ≤ C(d).
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Therefore, the compactness theory for sets of locally-finite perimeter implies there
is a set Q → Ω ∩ B1 so that (after passing to a further subsequence) 1Qk → 1Q in
L1

loc(B1). From (3.3), and the local Hausdorff convergence ∂Ωk → ∂Ω, we have

∫

Q
div(φ)dx = 0 for every φ ∈ C1

c (Ω∩ B1;Rd).

Therefore, 1Q is locally constant on Ω∩ B1, and hence Q is a union of connected
components of Ω∩ B1.

From (2.2), there are only finitely-many connected components of Ωu meet-
ing B1/100. Since by (3.4) we have H d(Q ∩ Br ) ≥ θωdrd > 0 for all r < 1, we
deduce Q must contain a connected component Ω′ of Ω∩ B1 such that 0 ∈ Ω′.
Applying again (2.2) we deduce that

(3.5) H d(Q∩ B1/2) ≥H
d(Ω′ ∩ B1/2) ≥

ωd

2dβd
.

On the other hand, from (3.4) we have

H d(Q∩ B1) ≤ωdθ,

which by our choice of θ contradicts (3.5).
Finally, we notice that if B3/2 → Ωk for all k, then in the above discussion we

can simply replace Ωk and Ω with B3/2, and deduce the same contradiction. This
concludes the proof of Theorem 3.1. !

3.2. Neumann-isoperimetric. In this subsection we follow [3].
Theorem 3.2 (Neumann-type isoperimetric inequality). There is a positive

constant γ = γ(d) so that if u ∈ W 1,2(BR1) minimizes JBR1
, with R1 > 0 as in

Theorem 3.1, then

min{H d(Bγ ∩Q),H
d(Bγ ∩Ωu \Q)}(d−1)/d

≤ γ−1H d−1(∂Q ∩Ωu ∩ B1)

for all Q → Ωu ∩ B1 such that ∂Q ∩Ωu ∩ B1 is countably (d− 1)-rectifiable.

Proof. Suppose Theorem 3.2 failed. Then, we could find uk ∈ W 1,2(BkR1)—a
sequence of minimizers of JBR1

—and a sequenceQk → Ωk∩Bk, where Ωk := Ωuk ,
so that

min{H d(B1/k ∩Qk),H
d(B1/k ∩Ωk \Qk)}(d−1)/d(3.6)

≥ kH d−1(∂Qk ∩Ωk ∩ Bk),

and ∂Qk ∩Ωk ∩ Bk is (d− 1)-rectifiable. Let us write Q′k = Bk ∩Ωk \Qk.
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Notice that (3.6) implies

(3.7) H d−1(∂Qk ∩Ωk ∩ Bt) ≤
1
k
H d(Qk ∩ Bt)

(d−1)/d

for all 1/k ≤ t ≤ k. Then from the isoperimetric inequality of Theorem 3.2, and
the coarea formula, we estimate for almost every 1/k ≤ t ≤ k:

H d(Qk ∩ Bt)
(d−1)/d

≤ C1H
d−1(∂(Qk ∩ Bt)∩Ωk)

≤ C1H
d−1(∂Qk ∩Ωk ∩ Bt)+ C1H

d−1(Qk ∩ ∂Bt)

≤
C1

k
H d(Q ∩ Bt)

(d−1)/d + C1
d

dt
H d(Qk ∩ Bt) by (3.7),

and therefore, for sufficiently large k, we can estimate

H d(Qk ∩ Bt) ≥
1

2C1d

(
t −

1
k

)d
for all

1
k
≤ t ≤ k.(3.8)

Since (3.6) implies that (3.7) holds with Q′k in place ofQk, with the same reason-
ing as above we have

H d(Q′k ∩ Bt) ≥
1

2C1d

(
t −

1
k

)d
for all

1
k
≤ t ≤ k.(3.9)

Note (3.8) implies Ωk ∩ B1 ≠∅ for all k∞ 1.
After passing to a subsequence, we can assume that

either d(0, ∂Ωk)→∞ or sup
k

d(0, ∂Ωk) < ∞.

Suppose the latter occurs. Passing to a further subsequence, by Lemma 2.1 we can
assume there is a minimizer u ∈ W 1,2

loc (R
d), so that uk → u in Cαloc ∩W

1,2
loc . Write

Ω = Ωu; then, ∂Ωk → ∂Ω in the local Hausdorff distance and 1Ωk → 1Ω in L1
loc.

Arguing as in the proof of Theorem 3.1, from (3.6), Lemma 2.2, and the
compactness theory for sets of locally-finite perimeter (passing to a yet further
subsequence), we can assume there are sets of locally-finite perimeter Q,Q′ → Ω
so that

1Qk → 1Q, 1Q′k → 1Q in L1
loc.

From (3.8) and (3.9), we have

H d(Q∩ Bt) ≥
td

c(d)
, H d(Q′ ∩ Bt) ≥

td

c(d)
∈ t > 0,
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while from (3.7), each 1Q,1Q′ is locally constant in Ω. Since by Theorem 2.3 Ω is
connected, we deduce thatQ = Q′ = Ω up to a set ofH d-measure zero. However,
since every Qk ∩Q′k =∅, we have Q∩Q′ = ∅ up to a set of H d-measure zero.
This is a contradiction.

Suppose d(0, ∂Ωk) → ∞. Then, from (3.8), we can find a sequence tk → ∞
so that Btk → Ωk. In the above discussion we can replace Ωk with Btk and Ω with
Rd to deduce a contradiction as before. This proves Theorem 3.2. !

4. SOBOLEV INEQUALITIES

The isoperimetric inequalities of Section 3 imply a Sobolev and a Neumann-
Sobolev inequality.

Theorem 4.1. There are dimensional constants R,C ≥ 1, and γ ∈ (0,1] so that
if u ∈ W 1,2(BR) minimizes JBR and f ∈ W 1,1(Ωu ∩ B1), then

inf
k

(∫

Ωu∩Bγ
|f − k|d/(d−1)

)(d−1)/d

≤ C

∫

Ωu∩B1

|Df |.(4.1)

If sptf → B1, then

(∫

Ωu∩B1

|f |d/(d−1)
)(d−1)/d

≤ C

∫

Ωu∩B1

|Df |.(4.2)

By a standard application of Holder’s inequality (see, e.g.,Theorem 1 in [8,
Section 5.6.1]), we have the following result.

Corollary 4.2. In the notation of Theorem 4.1, if f ∈ W 1,2(Ωu ∩ B1) is sup-
ported in B1, then

(∫

Ωu∩B1

|f |2χ
)1/χ

≤ C(d,χ)

∫

Ωu∩B1

|Df |2,

where χ = d/(d− 2) if d ≥ 3, or χ > 1 is arbitrary if d = 2.
In the proof of Theorem 4.1 we will make use of the following well-known

inequality.
Lemma 4.3 (Hardy-Littlewood-Polya). Let V : [0,+∞) → [0,+∞) be a

continuous decreasing function. Then, for every n > 1, we have

(4.3)
∫ +∞

0
V(t)t1/(n−1)

dt ≤
n− 1
n

(∫ +∞

0
V(t)(n−1)/n

dt

)n/(n−1)

.

Proof. Consider the function

v(T) :=
∫ T

0
V(t)t1/(n−1)

dt −
n− 1
n

(∫ T

0
V(t)(n−1)/n

dt

)n/(n−1)

.
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Taking the derivative in T and using the monotonicity of V , we have

v′(T) = V(T)T 1/(n−1) − V(T)(n−1)/n
(∫ T

0
V(t)(n−1)/n

dt

)1/(n−1)

≤ V(T)T 1/(n−1) − V(T)(n−1)/n(TV(T)(n−1)/n)1/(n−1) = 0,

which concludes the proof since v(0) = 0. !

Proof of Theorem 4.1. We follow [3, Theorem 3]. We divide the proof in two
steps. For ease of notation write Ω := Ωu.

Step 1. We first prove (4.1), (4.2) for f ∈ C∞(Ω∩ B1). Let k be so that

max{H d({f > k}∩ Bγ),H
d({f < k}∩ Bγ)} ≤

1
2
H d(Bγ ∩Ω),

and let f1 := (f − k)+ and f2 := (k− f )+. Note that by our choice of k we have

H d({fi > t}∩ Bγ) ≤H
d({fi ≤ t}∩ Bγ),

for all t > 0, i = 1,2,

so that, by the Neumann-isoperimetric inequality of Theorem 3.2 we get

H d({fi > t}∩ Bγ)
(d−1)/d ≤ C(d)H d−1(∂{fi > t}),(4.4)

for all t > 0, i = 1,2.

Therefore, by the coarea formula, (4.3), and (4.4), we have

∫

Ω∩B1

|Dfi| =

∫∞

0
H d−1(∂{fi > t})dt

≥ C(d)

∫∞

0
H d({fi > t}∩ Bγ)

(d−1)/d
dt

≥ C(d)

(∫∞

0
H d({fi > t}∩ Bγ)t

1/(d−1)
dt

)(d−1)/d

= C(d)

(∫

Ω∩Bγ
|fi|

d/(d−1)
)(d−1)/d

.

Since by construction |f − k| = |f1| + |f2| and |Df | = |Df1| + |Df2|, we get
(4.1).

Finally, we notice that (4.2) follows by the same argument. In fact, if f is
supported inside B1, then we can use the isoperimetric inequality of Theorem 3.1
to do the same computation as above with f in place of fi.
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Step 2. Conclusion of the proof. Take f ∈ W 1,1(Ω∩ B1). If sptf → B1, then we
can find an approximating sequence φi ∈ C∞c (B1 \ sing(u)) so that φi → f in
W 1,1(Ω∩ B1) (see Lemma 4.4 below). Moreover, since inequality (4.1) holds for
each φi, the convergence φi → f is also strong in Ld/(d−1)(Ω∩ B1). We deduce
(4.2).

We prove (4.1). Let ζ be a smooth cut-off function supported in B1 which is
identically equal to 1 in B1/2. Pick φi ∈ C∞c (B1 \ sing(u)) so that φi → fζ in
W 1,1(Ω∩ B1) (see Lemma 4.4). For each i there is a constant ci so that

(4.5)
(∫

Ω∩Bγ/2

|φi − ci|
d/(d−1)

)(d−1)/d

≤ C(d)

∫

Ω∩B1/2

|Dφi|.

From (4.2) we also have that φi → fζ in Ld/(d−1)(Ω∩ B1).
Now if H d(Ω∩ Bγ/2) = 0, then (4.1) trivially holds with γ/2 in place of γ.

Assume therefore that H d(Ω∩ Bγ/2) = θ > 0. For any i∞ 1 we use (4.2), (4.5)
to compute

θ(d−1)/d|ci| ≤ ′ci′Ld/(d−1)(Ω∩Bγ/2)

≤ ′φi − ci′Ld/(d−1)(Ω∩Bγ/2) + ′φi′Ld/(d−1)(Ω∩B1)

≤ C(d)′φi′W 1,1(Ω∩B1)

≤ 2C(d)′fζ′W 1,1(Ω∩B1).

Therefore the constants ci are uniformly bounded independent of i, and (after
passing to a subsequence) we can assume that ci → c. Recalling our definition of
ζ, and convergence φi → fζ in Ld/(d−1)(Ω∩B1), we get (4.2) with γ/2 in place
of γ. !

In Step 2 of the proof above we used the following approximation theorem.

Lemma 4.4. Let u ∈ W 1,2(B1) be a minimizer of JB1 , and f ∈ W 1,p(Ωu∩B1),
for some 1 ≤ p < 5. Then, for any θ < 1 we can find a sequence

φi ∈ C
∞
c (B1 \ sing(u)) so that φi → f in W 1,p(Ωu ∩ B1−θ).

If sptf → B1, then we can take θ = 0.

Proof. As usual we let Ω := Ωu. For any k ∈ R, note that

fk := min{k,max{f ,−k}} ∈ W 1,p(Ω∩ B1),

and
∥∥f − fk

∥∥p
W 1,p(Ω∩B1)

≤

∫

{|f |>k}
(|f |p + |Df |p)→ 0 as k →∞.

Therefore, there is no loss in assuming f ∈ L∞(Ω∩ B1).
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We next claim we can additionally assume that sptf ∩ Bε(sing(u)) = ∅ for
some ε > 0. Trivially, since sing(u) → ∂Ω, we have

∫

Ω∩B1∩Bε(sing(u))
(|f |p + |Df |p) ≤ τ(ε)p,

for some τ(ε) → 0 as ε → 0.
Since sing(u) has Hausdorff dimension ≤ d − 5 and p < 5, for any ε > 0

we can find a finite cover {Bsi(yi)}
M
i=1 of sing(u)∩B1 satisfying

∑
i s
d−p
i ≤ ε and

yi ∈ sing(u). For each i choose an ηi ∈ C∞ satisfying

ηi ≡ 0 in Bsi(yi), η ≡ 1 outside B2si(yi), |Dηi| ≤
10
si
.

Define η = infηi. Then, η is a Lipschitz function satisfying

sptη ∩ sing(u) =∅, η ≡ 1 outside B2ε(sing(u)),

|Dη(x)| ≤ sup
i

10
si

1B2si (yi)
(x).

Now fη ∈ W 1,p(Ω∩ B1), spt(fη)∩ sing(u) =∅, and

′f − fη′W 1,p(Ω∩B1) ≤ τ(2ε)+
(∫

Ω∩B1

|fDη|p
)1/p

≤ τ(2ε)+ c(d)′f′L∞(Ω∩B1)

∑

i

s
d−p
i

≤ τ(2ε)+ c(d)′f′L∞(Ω∩B1)ε,

which → 0 as ε → 0. This proves our claim.
We now proceed assuming that sptf ∩ Bε(sing(u)) = ∅, for some ε > 0.

Since ∂Ω \ sing(u) is smooth, after perturbing B1−θ to a smooth domain of
B1−θ/2 ⊃ U ⊃ B1−2θ, we assume ∂(U∩Ω) is locally-Lipschitz in B1\Bε/4(sing(u)).

Now choose a finite cover {Bri(xi)}
N
i=1 of ∂(Ω ∩ U) \ Bε(sing(u)) such that

xi ∈ ∂(Ω∩U), B2ri(xi) → B1 \ Bε/2(sing(u)), and each ∂(Ω∩U)∩ B2ri(xi) is a
Lipschitz graph. Pick smooth functions ζ0, . . . ,ζN such that

sptζi → B2ri(xi),

sptζ0 → Ω∩ B1 \ Bε/2(sing(u)),
N∑

i=0

ζi = 1 on Ω∩U \ Bε(sing(u)).

By the usual extension/approximation theorems for Sobolev functions applied to
each fζi, we can find a sequence φk ∈ C∞c (B1 \ sing(u)) of smooth functions
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so that φk → f in W 1,p(Ω ∩ U). This proves the first assertion of the lemma,
with 2θ in place of θ. The second assertion follows because sptf → B1 implies
sptf → B1−θ for some θ > 0. !

5. DE GIORGI-NASH-MOSER THEORY

By now-standard iteration methods (see, e.g., Theorems 5 and 6 in [3]), the in-
equalities of Section 5 imply the standard integral/Harnack estimates of De Giorgi-
Nash-Moser. For the reader’s convenience, in Section A we reproduce a proof
(different from [3] and originally due to L. Simon) of the John-Nirenberg lemma
adapted to our setting.

Theorem 5.1 (Subsolutions). Let u ∈ W 1,2(BR1) be a minimizer of JBR1
.

Suppose that f ∈ W 1,2(Ωu ∩ B1) satisfies

(5.1)
∫

Ωu
Df ·Dφ ≤ 0

for all non-negative φ ∈ C1
c (B1 \ sing(u)). Then,

sup
Ωu∩Bθ

f ≤ c(θ, p, d)

( ∫

Ωu∩B1

|f |p
)1/p

,

for all 0 < p < ∞ and all θ < 1.

Proof. This follows from (4.2) and (5.1) by well-known iteration methods. !
Theorem 5.2 (Supersolutions). Let u ∈ W 1,2(BR1) be a minimizer of JBR1

.
There is a dimensional constant γ > 0 so that if f ∈ W 1,2(Ωu ∩ B1) is non-negative
and satisfies

(5.2)
∫

Ωu
Df ·Dφ ≥ 0

for all non-negative φ ∈ C1
c (B1 \ sing(u)), then

(∫

Ωu∩Bγ
fp
)1/p

≤ c(p,d) inf
Ωu∩Bγ

f for all p ∈
(

0,
d

d− 2

)
.

Proof. This follows from Theorem 5.1 and Lemma A.1 by a well-known ar-
gument. !
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6. ONE-SIDED BLOWUPS NEAR REGULAR POINTS

In this section we study one-sided blowups to 1-homogeneous minimizers of J.

Assumptions 6.1. We let u0 ∈ W 1,2(B1) be a non-zero minimizer of JB1 , and
uµ,vµ ∈ W 1,2(B1), µ ∈ N, be sequences of functions minimizing JB1 such that

uµ ≤ vµ in B1; uµ,vµ → u0 in (Cαloc ∩W
1,2
loc )(B1); uµ < vµ on Ωuµ .

In this section we will prove the following theorem. The main idea is similar
to [6, Proposition 5.1], but our situation is more general and does not follow
directly from [6]; thus, we will provide the details of the proof.

Theorem 6.2 (One-sided blow-up). Let u0, uµ, vµ be as in Assumption 6.1.
Let the point p ∈ Ωu0 be fixed, and define

λµ := vµ(p)−uµ(p) and wµ := λ−1
µ (v

µ −uµ) ∈ W 1,2
loc (B1).

Then, there is a function w ∈ C2,α(Ω̄u0 \ sing(u0) ∩ B1) ∩ C∞(Ωu0 ∩ B1) so that
wµ → w in C∞loc(Ωu0 ∩ B1), and w solves

(6.1)






∆w = 0 in Ωu0 ∩ B1,

Dνw +Hw = 0 on reg(u0)∩ B1,

w ≥ 0 in Ωu0 ∩ B1,

where ν and H denote, respectively, the outer unit normal and the scalar mean curva-
ture of reg(u0) → ∂Ωu0 .

Remark 6.3. Recall that if u0 ∈ W 1,2
loc (R

d) is a global minimizer, then by
Lemma 2.5 H ≤ 0 on reg(u0).

Combining (6.1) and the theory developed in the previous sections, we can
prove the following key estimate.

Proposition 6.4 (Harnack inequality). Let u0 ∈ W
1,2
loc (R

d) be a global mini-
mizer of JRd , and w ∈ C2,α(Ω̄u0 \ sing(u0)∩ B1)∩C∞(Ωu0 ∩ B1) be a solution of
(6.1). There exist dimensional constants C,γ > 0 such that

(6.2)
∫

Ωu0∩Bγ
w ≤ C inf

Ωu0∩Bγ
w.

The rest of this section is devoted to the proofs of Theorem 6.2 and Proposi-
tion 6.4.

6.1. Proof of Theorem 6.2. We divide the proof in two steps.
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Step 1. We start by analyzing the behavior of the blowup sequence at reg-
ular points of the free boundary. Thus, let u be as in Theorem 2.6. Write
Rd+1 = {(x′, xd, xd+1) ∈ Rd−1 × R × R}. Choosing ε > 0 sufficiently small
in Theorem 2.6, by (2.4), we can consider the hodograph transform x′ = y ′ and
yd = u(x), to find a function

Hu : B1−2ε ∩ {yd ≥ 0}→ R,

satisfying

Hu(x
′, u(x′, xd)) = xd, and u(x′,Hu(x

′, yd)) = yd,

so that the free boundary of u is given by (the graph of ) the trace of Hu over the
hyperplane {yd = 0}. Standard calculations yield

(6.3)






∑

i,j

aij(DHu)D
2
ijHu = 0 in B1−2ε ∩ {yd > 0},

DdHu = B(D1Hu, . . . ,Dd−1Hu) on B1−2ε ∩ {yd = 0},

with aij, B analytic and aij(DHu) uniformly elliptic.
Next, suppose u0 is ε/2-flat in a ball B1 with ε as in the statement of Theo-

rem 2.6. Then, for µ sufficiently large, also the functions uµ,vµ are ε-flat in B1,
so we can apply Theorem 2.6. Let Hu0 , H

µ
u, and Hµ

v be the holograph transforms
of u0, uµ, and vµ on B+1−2ε; we set for simplicity H0 := Hu0 . Since uµ ≤ vµ, we
have

H
µ
u(x

′,0) ≥ Hµ
v(x

′,0) for every (x′,0) ∈ B1−2ε ∩ {yd = 0}.

From Theorem 2.6 we can also assume that Hµ
u,H

µ
v → H0 in C3,1(B1−2ε).

Since aij, B (in (6.3)) are analytic functions of DHu, we can use the funda-
mental theorem of calculus to deduce that the difference w̃µ = H

µ
u −H

µ
v solves a

PDE of the form






∑

i,j

ãijD
2
ijw̃

µ = 0 in B+5/6 := B5/6 ∩ {yd > 0},

Ddw
µ =

∑

i

b̃iDiw̃
µ on B5/6 ∩ {yd = 0},

where ãij is uniformly elliptic and depends analytically on DH
µ
u, D2H

µ
u, DHµ

v ,
D2H

µ
v , and where b̃i are analytic functions of DHµ

u,DH
µ
v . In particular, by The-

orem 2.6, ãij, b̃i have (respectively) uniform Cα and C1,α bounds, depending
only on the dimension d. Using the Harnack inequality and Schauder theory for
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strong solutions with oblique boundary conditions (see, e.g., Theorem 5.2 in [6]),
we get

(6.4)






sup
B+3/4

w̃µ ≤ C(d) inf
B+3/4

w̃µ,

′w̃µ′C2,α(B+1/2)
≤ C(d)′w̃µ′L∞(B+3/4)

.

Next, let (x′, xd)∈{vµ > 0}∩B1/2 and yd :=uµ(x′, xd). Then, (x′, yd) ∈ B+3/4
and

vµ(x′, xd)−u
µ(x′, xd)(6.5)

= vµ(x′,H
µ
u(x

′, yd))−yd

= vµ(x′,H
µ
u(x

′, yd))− v
µ(x′,H

µ
v(x

′, yd))

=

∫Hµu(x′,yd)

H
µ
v(x′,yd)

Ddv
µ(x′, t)dt.

Combined with (6.4) and the fact that vµ satisfies (2.4), the above (6.5) implies

sup
B1/2

(vµ −uµ) ≤ C(d)(vµ(0,1/8)−uµ(0,1/8)),(6.6)

′H
µ
u −H

µ
v′C2,α(B+1/2)

≤ C(d)(vµ(0,1/8)−uµ(0,1/8)),(6.7)

for a dimensional constant C(d) > 0.
Set Ω0 := Ωu0 and let (x′, xd) ∈ Ω0 ∩ B1/2. Then, for µ > 1 sufficiently

large,
(x′, xd) ∈ Ωuµ ∩ B1/2 → Ωvµ ∩ B1/2.

As µ → +∞, Hµ
u(x′, yd)−H

µ
v(x′, yd) → 0 and vµ → u0 smoothly on compact

subsets B1/2 ∩ {yd > 0} and Ω0 ∩ B1/2, respectively. Thus, for µ large, we can
compute

vµ(x′, xd)−u
µ(x′, xd)(6.8)

= (H
µ
u(x

′, yd)−H
µ
v(x

′, yd))

×

∫ 1

0
Ddv

µ(x′,H
µ
v(x

′, yd)+ s(H
µ
u(x

′, yd)−H
µ
v(x

′, yd)))ds

= (H
µ
u(x

′, yd)−H
µ
v(x

′, yd))(Ddu0(x
′, xd)+ εµ(x

′, xd)),

for εµ(x′, xd)→ 0.
By Theorem 2.6, we can write

∂Ωµu ∩ B3/4 = graph∂Ω0
(ξµ), ∂Ωµv ∩ B3/4 = graph∂Ω0

(ηµ),
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where we graph over the normal pointing in the positive ed direction. Our con-
vergence Hµ

u,H
µ
v → H0 implies ′ξµ′C3,1(B3/4),′η

µ′C3,1(B3/4) → 0 as µ →∞.
By elementary geometry, for x′ ∈ Bd−1

1/2 and y ′ = x′+H0(x′,0) ∈ ∂Ω0∩B3/4

we can write

(6.9) (ξµ(y ′)− ηµ(y ′))(1+ Rµ(x′)) =
H
µ
u(Fµ(x′))−H

µ
v(Fµ(x′))√

1+ |D′H0(x′,0)|2
,

where each Fµ : Bd−1
1/2 → Rd−1 is a smooth diffeomorphism onto its image, where

Rµ : Bd−1
1/2 → Rd−1 is smooth, and where

(6.10) ′Fµ − Id′C2,1(B1/2) → 0, ′Rµ′C2,1(B1/2) → 0,

and D′f = πRd−1(Df ). Therefore, by (6.6), (6.7), (6.9), (6.10) we have

′ξµ − ηµ′C2,α(B1/2−δµ∩∂Ω0) ≤ C(d)′H
µ
u −H

µ
v′C2,α(B1/2)

where δµ → 0, and, for any (x′, xd) ∈ ∂Ω0 ∩ B1/2,

ξµ(x′, xd)− η
µ(x′, xd) = Ddu0(x

′, xd)(H
µ
u(x

′,0)−Hµ
v(x

′,0))(6.11)

+ ε′µ(x
′, xd),

where |vµ(0,1/8) −uµ(0,1/8)|−1ε′µ(x
′, xd)→ 0.

Assume that vµ(0,1/8) − uµ(0,1/8) > 0 for all µ. Let λµ ∈ R be any
sequence such that

1
Γ
≤ λ−1

µ (v
µ(0,1/8) −uµ(0,1/8)) ≤ Γ for all µ,

for some Γ > 0. Define wµ = λ−1
µ (v

µ − uµ), kµ = λ−1
µ (H

µ
u − H

µ
v), and τµ =

λ−1
µ (ξ

µ − ηµ).
From (6.6), we have

(6.12) ′wµ′L∞(B1/2) ≤ c(d, Γ ).

By (6.12), (6.7), (6.11), after passing to a subsequence we can find w ∈ C∞(Ω0∩
B1/2), k ∈ C2,α(B1/2), and τ ∈ C2,α(∂Ω0 ∩ B1/2) so that

wµ → w in C∞loc(Ω0 ∩ B1/2),(6.13)

kµ → k in C2,α′(B1/2),(6.14)

τµ → τ in C2,α′

loc (∂Ω0 ∩ B1/2),(6.15)

for all α′ < α. Moreover, from (6.8), (6.11) we have w = kDdu0 on Ω0 ∩ B1/2

and τ = kDdu0 on ∂Ω0 ∩ B1/2. We deduce that

(6.16) w ∈ C2,α(Ω0 ∩ B1/2) and w
∣∣
∂Ω0∩B1/2

= τ.
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Step 2. Suppose now we have u0, uµ, vµ, λµ, and wµ ∈ W 1,2(B1) as
in Assumption 6.1 and Theorem 6.2. As above, we shall write Ω0 = Ωu0 . Fix
U % B1 \ sing(u0). By Theorem 2.6, for µ sufficiently large we can write

∂Ωuµ ∩U = graph∂Ω(ξ
µ) ∂Ωvµ ∩U = graph∂Ω(η

µ)

with respect to the inner normals. From (6.12) and the usual Harnack inequality
in the interior of Ω0, we have

(6.17) sup
µ
′wµ′L∞(U) < ∞,

and so we can find a non-negative w ∈ C2,α(Ω0 ∩ U) ∩ C∞(Ω0 ∩ U) so that
wµ → w in C∞loc(Ω0 ∩ U), where we used (6.16) to obtain the C2,α regularity up
to the regular part of the boundary of Ω0.

Fix φ ∈ C1
c (U). Since we have uµ|∂Ωuµ∩U = 0 and the outer derivative

Dνuµ|∂Ωuµ∩U = −1 (and the same for vµ with respect to Ωvµ ) we compute

∫
∆φ(vµ −uµ)

= −

∫

Ωvµ
Dφ ·Dvµ +

∫

Ωuµ
Dφ ·Duµ

=

∫

∂Ωvµ
φ−

∫

∂Ωuµ
φ

=

∫

∂Ω0

φ(x − ηµ(x)ν(x))Jηµ(x)−φ(x − ξµ(x)ν(x))Jξµ(x).

Here, ν denotes the outer unit normal of Ω0, and Jηµ is shorthand for the Jaco-
bian of the map ∂Ω0 5 x ! x − ηµ(x)ν(x) (and the same for ξµ).

There are functions εµ, ε′µ, ε
′′
µ , ε

′′′
µ → 0 as µ → ∞ so that

∫
∆φ(vµ −uµ)

=

∫

∂Ω0

(Dνφ+ εµ)(ξ
µ − ηµ)(1+ ε′µ)+ (φ+ ε

′′
µ )(Jη

µ − Jξµ)

=

∫

∂Ω0

(Dνφ+ εµ)(ξ
µ − ηµ)(1+ ε′µ)+ (φ+ ε

′′
µ )(H + ε

′′′
µ )(ξ

µ − ηµ)

where H = div∂Ω0(ν) is the mean curvature with respect to the outer normal.
If we divide both sides by λµ, then by (6.17), (6.13)–(6.15), (6.16) we can

take a limit as µ →∞ to deduce, using (6.16), that

∫

Ω0

w∆φ =
∫

∂Ω0

wDνφ+Hφw.
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Since w is C2 up to Ω̄0 ∩ U , and ∆w = 0 in Ω0, we can integrate by parts to
get ∫

Ω0

Dφ ·Dw = −

∫

∂Ω0

Hφw, or
∫

∂Ω0

φ(Dνw +Hw) = 0.

Since φ is arbitrary we deduce that w satisfies Dνw +Hw = 0 on reg(u0)∩U .
Since U % B1 \ sing(u0) was arbitrary, by a diagonalization argument we

deduce there is a non-negative w ∈ C2,α(Ω0 \ sing(u0) ∩ B1) ∩ C∞(Ω0 ∩ B1)
solving (6.1) so that wµ → w in C∞loc(Ω0 ∩ B1). !

6.2. Proof of Proposition 6.4. If we let wk = min{w,k} for k ≥ 0, then
by (6.1) and Lemma 2.5 we get that

∫

Ω0

Dφ ·Dwk ≥ 0 ∈φ ∈ C1
c (B1 \ sing(u0)) non-negative.

By Lemma 4.4 we can replace φ with (wk + 1)−1ζ2 for any fixed, non-negative
ζ ∈ C1

c (B1 \ sing(u0)), to get

∫

Ω0

(wk + 1)−2|Dwk|
2ζ2 ≤ 4

∫

Ω0

|Dζ|2.

Arguing as in the proof of Lemma 4.4, we can find ζi ∈ C1
c (B1 \ sing(u0)) so

that
∫

Ω0

|Dζi|2 → 1 and ζi → 1 almost everywhere on B1/2. Therefore, we get the

bound ∫

Ω0∩B1/2

|Dwk|
2 ≤ 4(k+ 1)2,

and hence wk ∈ W 1,2(Ω0 ∩ B1/2).
By Theorem 5.2 we deduce there are dimensional constants C,γ > 0 so that

∫

Ω0∩Bγ
wk ≤ C inf

Ω0∩Bγ
wk,

and hence, taking k →∞, we get (6.2).

7. PROOF OF THEOREM 1.1

Here, we put together the various ingredients of the previous sections to prove
Theorem 1.1. The argument follows [12]. As outlined in the Introduction, we
first show that violating the strict maximum principle of Theorem 1.1 effectively
implies there is a point where the blow-ups of u,v agree. By a suitable blowup
argument, we can obtain a positive Jacobi field w that decays like O(r), which
will contradict the Harnack theory which says w must be uniformly bounded
below.
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Lemma 7.1. There is a positive dimensional constant θ0 so that ifu ∈ W 1,2
loc (R

d)
is a non-zero 1-homogenous global minimizer of JRd , then

{x ∈ Ωu : d(x, ∂Ωu) > θ0|x|} ≠∅.

Proof. If the lemma failed, we could find a sequence ui of 1-homogenous
minimizers such that

(7.1) d(x, ∂Ωui) ≤
1
i
|x| ∈x ∈ Ωui .

Passing to a subsequence, we can assume there is a 1-homogenous minimizeru0 so
that ui → u0 in Cαloc, by Lemma 2.1. Since 0 ∈ ∂Ωu0 ,Ωu0 is a non-empty open set
containing some ball Bε(p) with |p| = 1. But then we must have Ωui ⊃ Bε/2(p)
for i∞ 1, contradicting (7.1) for i > 2/ε. !

Proof of Theorem 1.1. Assume that 0 ≠ u ≤ v and reg(u)∩ reg(v) =∅, but
∂Ωu ∩ ∂Ωv ∩U ≠∅. We aim to obtain a contradiction. Note that, since reg(u)
is dense in ∂Ωu∩U , the interior maximum principle implies u < v on Ωu → Ωv .
After translating and rescaling, we can assume that U = B1, and 0 ∈ ∂Ωu ∩ ∂Ωv .

Step 1. Scale-invariant decay of u − v. We claim that u,v have the same tangent
cone at 0, in the sense that for any ri → 0, there is a subsequence r ′i and a 1-
homogenous minimizeru0 so that u0,r ′i

→ u0 and v0,r ′i
→ u0. To see this, observe

that if u0 ≤ v0 are 1-homogenous minimizers, then by Theorem 2.3 u0|∂B1 ,
v0|∂B1 are first Dirichlet eigenfunctions of Ωu0 ∩ ∂B1 → Ωv0 ∩ ∂B1 (respectively),
both with eigenvalue d− 1. Domain monotonicity implies Ωu0 = Ωv0 and u0 =
v0. Our claim follows if we then pick any subsequence r ′i for which both u0,r ′i
and v0,r ′i

are convergent.

Step 2. Construction and decay of the linearized solution w. Fix θ = θ0/2, for θ0 as
in Lemma 7.1, and set Ωθ := {x ∈ Ωu : d(x, ∂Ωu) > θ|x|}, so by construction
Ωθ → Ωu → Ωv .

Since u and v have the same tangent cone at 0, we get that

sup
Ωθ∩∂Br

r−1(v −u) ≡ sup
(r−1Ωθ)∩∂B1

(v0,r −u0,r )→ 0 as r → 0.

As a consequence, for every R > 0, the supremum

sup
r∈(0,R]

( sup
Ωθ∩∂Br

r−1(v −u))

is a maximum achieved at some radius r ∈ (0, R]. This implies we can select a
sequence ri → 0 so that

(7.2) sup
r≤ri

( sup
Ωθ∩∂Br

r−1(v −u)) ≤ 2 sup
Ωθ∩∂Bri

r−1
i (v −u).
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Passing to a subsequence, by Lemma 2.1 we can assume there is a 1-homogenous
minimizer u0 so that u0,ri → u0 and v0,ri → u0 in Cαloc, and the free-boundaries
converge in the local Hausdorff distance. Fix a point p ∈ Ωu0 ∩ ∂B1, and define

λi := v0,ri (p)−u0,ri (p) > 0.

Write Ω0 := Ωu0 . By Theorem 6.2, applied in B2 rather than B1, we can find a
non-negative functionw ∈ C2(Ω0 \sing(u0)∩B2)∩C∞(Ω0∩B2) satisfying (6.1)
and so that the rescaled functions

(7.3) λ−1
i (v0,ri −u0,ri )→ w in C∞loc(Ω0 ∩ B2).

By our normalization,w(p) = 1, and so, sinceΩ0 is connected (by Theorem 2.3),
w > 0 on Ω0 ∩ B2. For a number θ′ > 0, we will use the notation

Ω0,θ′ := {x ∈ Ω0 : d(x, ∂Ω0) > θ
′|x|}.

By the convergence of the blow-up sequence u0,ri to u0, we have that

(7.4) (r−1
i Ωθ)∩ ∂B1 → Ω0,θ/2 ∩ ∂B1,

for i large enough. Analogously, for any ρ > 0 and i sufficiently large,

(7.5) (r−1
i Ωθ)∩ B2−ρ \ Bρ ⊃ Ω0,2θ ∩ B2−ρ \ Bρ.

Now, our choice of ri in (7.2), combined with (7.3), (7.4), (7.5), implies that

sup
Ω0,2θ∩∂Br

r−1w ≤ 4 sup
Ω0,θ/2∩∂B1

w for all r ≤ 1.

Since Ω0,2θ ≠∅ (and is obviously dilation-invariant), we get that

(7.6) inf
Ω0∩∂Br

w ≤ Cr for all r ≤ 1,

for some constant C > 0.

Step 3. Harnack inequality and conclusion of the proof. By Proposition 6.4, we have

inf
Bγ∩Ω0

w ≥
1
C

∫

Bγ∩Ω0

w > 0

with C,γ positive dimensional constants, which clearly contradicts (7.6). !

Proof of Corollary 1.2. A direct consequence of Theorem 1.1, the Hopf maxi-
mum principle, and the connectivity of Ωv . !
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Proof of Corollary 1.3. First, observe that if Ω′ is any connected component
of Ωv , then v|∂U∩Ω′ cannot be identically zero. For otherwise, we would have
v|Ω′ ∈ W

1,2
0 (U), and hence by replacing v with v′ = v · 1U\Ω′ we would have

v′ − v ∈ W 1,2
0 (U) and JU(v′) < JU(v), contradicting minimality of v.

Now by Theorem 1.1, if the conclusion of Corollary 1.3 failed we would
necessarily have u = v on some connected component Ω′ of Ωv . But then on
some subset Γ → ∂U ∩Ω′ of positive H d−1-measure we would have 0 < u = v,
contradicting our hypothesis. !

8. PROOF OF THEOREM 1.5

Our proof follows the same blowup principle as [6, 9, 16], which is to find a
sequence of minimizers vµ of JB1 lying to one side of u0, argue that vµ → u0 but
d(0,Ωvµ) > 0, and then take a limit of a suitable sequence of dilates vµ0,rµ → u.
The key simplification observed by [16] is to prove the “radial graph” property
before blowing up rather than after, and thereby avoid having to understand the
precise asymptotics of the limitu (at the “expense” of having to know C0 regularity
of vµ up to ∂B1).

Proof of Theorem 1.5. Fix γ < 1, and let vγ minimize JB1 subject to vγ|∂B1 =

γu0|∂B1 (of course JB1(γu0) < ∞ since u0 ∈ W
1,2
loc ). Since vγ|∂B1 ≤ u0|∂B1 and

u0 is minimizing, after replacing vγ with min{vγ , u0} there is no loss in assuming
vγ ≤ u0. By Lemma B.1, vγ ∈ C0(B1).

We first claim vγ ≤ γu0 also. To see this, observe Ωγu0 = Ωu0 and vγ ≤ u0,
and hence if U ′ = {vγ > γu0} then U ′ → Ωγu0 and (vγ−γu0)+ ∈ W

1,2
0 (U ′) and

∆(vγ − γu0) = 0 in U ′. Therefore, the weak maximum principle for harmonic
functions implies (vγ − γu0)+ = 0, proving our claim.

Now, Dν(γu0) = −γ ≠ −1 on reg(γu0) ≡ reg(u0), and so we have that
reg(vγ) ∩ reg(u0) = ∅. By Theorem 1.1 (applied to vγ and u0), we must have
∂Ωvγ∩∂Ωu0∩B1 =∅. Together with the interior maximum principle, we deduce
that vγ < γu0 on Ωvγ ∩ B1. In particular, since γu0 is 1-homogenous, we have

(8.1) v
γ
0,r < γu0 ≡ v

γ on r−1Ωvγ ∩ ∂B1, ∈ r < 1.

We secondly claim that vγ0,r ≤ v
γ in B1 for all r < 1. Since d(0,Ωvγ ) > 0,

this is trivially true for all r sufficiently small. If r∋ is the largest radius so that
v
γ
0,r ≤ v

γ on B1 for all r < r∋, then necessarily since vγ ∈ C0(B1) we must have
v
γ
0,r∋ ≤ v

γ on B1, and there must be an x ∈ B1 ∩ r−1
∋ Ωvγ for which vγ0,r∋(x) =

vγ(x). By (8.1) and Corollary 1.3, this is a contradiction unless r∋ = 1.
For a fixed x ∈ B1, our second claim implies r−1vγ(rx) ≤ vγ(x) for all

r ≤ 1. Therefore, at any point x where Dvγ exists we must have

0 ≤
d

dr

∣∣∣∣
r=1
r−1vγ(rx) = −vγ(x)+ x ·Dvγ(x).
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We claim third that vγ → u0 in W 1,2(B1) as γ → 1. Otherwise, by standard
compactness there would be γi → 1 so vγi → v for some minimizer v ∈ W 1,2(B1)
satisfying v|∂B1 = u0|∂B1 and v ≤ u0 but v ≠ u0. But since u0 is the unique
minimizer of JB1 for its boundary data (see, e.g., [6, Lemma 2.5]), this is a contra-
diction, and proves our third claim.

For each γ < 1 we have rγ := d(0,Ωvγ ) > 0, and from our third claim
we have rγ → 0. We can therefore find a sequence γi → 1 so that the functions
v
γi
0,rγi

converge in (W 1,2
loc ∩C

α
loc)(R

d) to some global minimizer u satisfying u ≤ u,
d(0,Ωu) = 1, and

(8.2) −u(x)+ x ·Du(x) ≥ 0 Ld-a.e. x ∈ Rd.

This u is our required solution, satisfying Theorem 1.5 (1), (2). We now show u
satisfies the other asserted properties.

We prove sing(u) = ∅ (i.e., Theorem 1.5 (4)). To see this, observe that if
x ∈ ∂Ωu, then for r sufficiently small (8.2) implies

−rux,r (y)+ (x + ry) ·Dux,r (y) ≥ 0 Ld-a.e. y ∈ B1.

Now if w is any tangent solution to u at x, then w is a 1-homogeneous global
minimizer of JRd satisfying

(8.3) x ·Dw(y) ≥ 0 Ld-a.e. y ∈ Rd.

Here, (8.3) implies that Ωw → {y : y · x ≥ 0}, and hence we must have Ωw =
{y : y · x ≥ 0} and w(y) = (y ·x)+. This proves x ∈ reg(u).

We prove (8.2) holds with > 0 in place of ≥ 0 (i.e., Theorem 1.5 (3)). This
follows because w(x) := −u(x) + x · Du(x) is a non-negative Jacobi field on
Ωu; that is, w satisfies, for w ≥ 0,

∆w = 0 in Ωu, Dνw +Hw = 0 on ∂Ωu,

where H is the mean curvature scalar of ∂Ωu with respect to the outer unit nor-
mal ν. Non-negativity is obvious, and harmonicity is an easy computation. The
boundary condition follows because, along ∂Ωu, we have

Du = −ν, D
2
ν ,νu = H, D

2
ν ,eu = 0 if e ⊥ ν.

Now, the Harnack inequality of Proposition 6.4 implies that either w ≡ 0, or
w > 0 on Ωu. But w cannot be identically zero, as this would contradict (e.g.)
the fact that d(0,Ωu) = 1.

We next prove that u0,r → u0 as r → ∞ (i.e., Theorem 1.5 (5)). Take any
sequence ri → ∞. Passing to a subsequence we can assume u0,ri → u′0 for some
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1-homogenous minimizer u′0 ≤ u0. But now by eigenvalue monotonicity for
domains in the sphere, we must have u0 = u

′
0. Since the sequence ri is arbitrary,

this proves our assertion.
Lastly, the fact that the dilations of ∂Ωu foliate Ωu0 by smooth, analytic hy-

persurfaces, which are radial graphs, follows directly from Theorem 1.5 (1)–(5).
The construction of ū is essentially the same. Here, we take γ > 1, and define

vγ as before. The same arguments imply that vγ ≥ γu0 on B1, and vγ0,r ≥ v
γ

on B1 for every r < 1, and hence

−vγ(x)+ x ·Dvγ(x) ≤ 0 Ld-a.e. x ∈ B1.

Taking an appropriate sequence γi → 1 and rγi = d(0,Ωvγi ) → 0, we can take
a limit of vγi0,rγi

to obtain a global minimizer ū ≥ u. The rest of the argument
proceeds as in the case of u, except using the Jacobi field −w in place of w. !

APPENDIX A. JOHN-NIRENBERG LEMMA

We provide here a self-contained proof in our setting of the John-Nirenberg-type
lemma used in proving Theorem 5.2. The proof is a very (very) minor modifica-
tion of a proof due to L. Simon. We reproduce it here for the convenience of the
reader.

Lemma A.1. Under the same hypotheses as in Theorem 5.2, there is a dimen-
sional constant γ(d) > 0 so that

(A.1)
(∫

Ω∩Bγ
fp
)(∫

Ω∩Bγ
f−p

)
≤ c(d,p) for all 0 < p <

d

d− 2
.

Proof. Let Ω := Ωu, and let ε > 0 be fixed. For ζ ∈ C1
c (B1 \ sing(u)) non-

negative, note that φ = (f + ε)−1ζ2 ∈ W 1,2(Ω ∩ B1), and is supported in B1.
Therefore, we can approximate φ in W 1,2(B1) by admissible test functions, and
from (5.2) get

∫

Ω
−(f + ε)−2|Df |2ζ2 + (f + ε)−12ζDf · ζ ≥ 0,

and hence

(A.2)
∫

Ω
(f + ε)−2|Df |2ζ2 ≤ 4

∫

Ω
|Dζ|2.

For λ ∈ R to be determined later, define w := log(f + ε)− λ. Then, (A.2) gives

(A.3)
∫

Ω
|Dw|2ζ2 ≤ 4

∫

Ω
|Dζ|2 ∈ζ ∈ C1

c (B1 \ sing(u)) non-negative.
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By the same approximation argument as in Lemma 4.4, we now deduce that
w ∈ W 1,2(Ω∩Br) for all r < 1. In particular, ifwk =min{k,max{−k,w}}, then
|wk|p ∈ W 1,2(Ω ∩ Br ) for any p ≥ 0, r < 1. Using (4.1), Holder’s inequality,
and (A.3), we can choose (and fix) a λ so that

(A.4)
∫

Ω∩Bγ/2

|w|n/(n−1) ≤ c(d)

∫

Ω∩B1/2

|Dw| ≤ c(d).

Take φ ∈ C1
c (Bγ/2, [0,1]), p ≥ 2, β = 1/(χ − 1), and α = 2β + 2. From (4.2)

we have

(∫

Ω
|wk|

2pχφ2αpχ−βχ
)1/χ

(A.5)

≤ c(d)p2
∫

Ω
|wk|

2p−2 |Dw|2φ2αp−2β + c(d,χ)p2
∫

Ω
|wk|

2pφ2αp−2β−2.

On the other hand, replace ζ with |wk|p−1φαp−β in (A.3), and obtain

∫

Ω
|wk|

2p−2 |Dwk|
2φ2α−2β

(A.6)

≤ 8p2
∫

Ω
|wk|

2p−4 |Dwk|
2φ2αp−2β + c(χ)p2

∫

Ω
|wk|

2p−2φ2αp−2β−2.

Using the interpolation aµb1−µ ≤ µa + (1 − µ)b for a,b ≥ 0, µ ∈ (0,1), we
have

(A.7) p2|wk|
2p−4 ≤

1
16
|wk|

2p−2 + 16pp2p.

Therefore, combining (A.5), (A.6), (A.7), (A.4), we get
(∫

Ω
|wk|

2pχφ2αχ−2βχ
)1/χ

≤ c(d)pp2p
∫

Ω∩Bγ/2

|Dw|2 + c(d,χ)p2
∫

Ω
|wk|

2p−2φ2αχ−2β−2

≤ c(d)pp2p + c(d,χ)p2
∫

Ω
|wk|

2p−2φ2αp−2β−2.

Recall by our choice of β that βχ = β+ 1; also, (a+ b)µ ≤ aµ + bµ for a,b ≥ 0
and µ ∈ [0,1]. Defining the measure dη = φ−2βχ dx ≡ φ−2β−2 dx, we deduce

(∫

Ω
|wk|

2pχφ2αpχ
dη

)1/2pχ

(A.8)

≤ c(d)p + c(d,χ)1/pp1/p
(∫

Ω
|wk|

2pφ2αp
dη

)1/2p

.
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For any δ ∈ (0,1) and non-negative measurable F , we have by Holder’s inequality

(∫

Ω
F2p

dη

)1/2p

(A.9)

≤

(∫

Ω
F2pχ

dη

)δ/2pχ(∫

Ω
F2p(1−δ)χ/(χ−δ)

dη

)(χ−δ)/2χp
.

Since the map δ ! 2p(1 − δ)χ/(χ − δ) takes the value 2p ≥ n/(n − 1) when
δ = 0 and 0 when δ = 1, we can choose a δ = δ(p,χ) so that

2p(1− δ)χ/(χ − δ) = n/(n − 1).

Now combine (A.8), (A.9), (A.4) with p = 2, F = |wk|φα, and δ(p,χ) as in the
previous paragraph to get

(∫

Ω
|wk|

4χφ4αχ
dη

)(1−δ)/4χ
≤(A.10)

≤ c(d)+ c(d,χ)

(∫

Ω
|wk|

n/(n−1)φαn/(n−1)−2β−2
dx

)(χ−δ)/4χ

≤ c(d)+ c(d,χ)

(∫

Ω∩Bγ/2

|w|n/(n−1)
dx

)(χ−δ)/4χ

≤ c(d,χ).

(Break into two cases: either
∫

Ω
F2pχ dη ≥ 1 or ≤ 1.)

For ν = 1,2, . . . , define

Ψ(ν) =
(∫

Ω
|w|4χ

ν
φ4αχν

dη

)1/4χν

.

From (A.10), taking k →∞, we have Ψ(1) ≤ c(d,χ). From (A.8) we have

Ψ(ν + 1) ≤ cχν + cχ
−ν
χνχ

−ν
Ψ(ν)

for c = c(d,χ). Now,
∞∏

µ=0

cχ
−µ
χµχ

−µ
≤ c(d,χ),

and so we have

Ψ(ν) ≤
ν∑

µ=1

cχµ ≤ c(d,χ)χν .
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Recalling that 4αχν − 2β− 2 > 0 for all ν, we get by Holder’s inequality

(∫

Ω∩Bγ/2

|w|j dx

)1/j

≤ c(d,χ)j ∈ j = 1,2, . . . .

And hence, using Stirling’s approximation and ensuring δ ≤ 1/2e, we have

∫

Ω∩Bγ/2

eδ|w| dx ≤
∞∑

j=0

∫

Ω∩Bγ/2

δj|w|j

j!
≤ c

∞∑

j=0

(δj)j

j!
≤ c(d,χ).

Therefore,

(A.11)
(∫

Ω∩Bγ/2

(f + ε)δ dx

)(∫

Ω∩Bγ/2

(f + ε)−δ dx

)
≤ c(d,χ)2,

and, taking ε → 0, by the monotone convergence theorem we get (A.1) for p ≤
1/2e and γ/2 in place of γ.

To prove (A.1) for all 0 < p < χ Simon argues as follows. For θ < 1, θ ≠ 0,
and ζ ∈ C1

c (B1), we can plug in (f + ε)θ−1ζ2 into (5.2) to obtain

(1− θ)
∫

Ω
(f + ε)θ−2|Df |2ζ2 ≤

∫

Ω
(f + ε)θ−12ζDf ·Dζ.

If we set w = (f + ε)θ/2 and rearrange, then we obtain
∫

Ω
|D(wζ)|2 ≤ c(θ)

∫

Ω
w2|Dζ|2.

This implies wζ ∈ W 1,2(Ω ∩ Br ) for all r < 1. If we replace ζ with φα−β for
βχ = β+ 1 and α− β− 1 > 0 and φ as before, then we get

(∫

Ω
w2χφ2αχ

dη

)1/χ

≤ c(θ, d,χ)

∫

Ω
w2φ2α

dη

for dη = φ−2β−2 dx = φ2βχ dx. Now, apply Holder as in (A.10) to get, for any
δ ∈ (0,1),
(∫

Ω
w2χφ2αχ

dη

)(1−δ)/χ
≤ c(θ, d,χ)

(∫

Ω
(w2φ2α)(1−δ)χ/(χ−δ) dη

)(χ−δ)/χ
.

Recalling that α−βχ = α−β−1 > 0 and our definition ofw, and taking ε → 0,
we then have

(∫

Ω∩Bγ/4

f θχ
)(1−δ)/χ

(A.12)

≤ c(θ, d,χ)

(∫

Ω∩Bγ/2

f θ(1−δ)χ/(χ−δ)
)(χ−δ)/χ

.
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Given any 0 < p < χ, we can write p = θχ for θ ∈ (0,1). We can then
choose a δ = δ(p,χ) so that

θ(1 − δ)χ/(χ − δ) = min{1/2e,θ/2}.

Combining (A.12), (A.11) with our choice of δ, we obtain

(∫

Ω∩Bγ/4

fp
)(∫

Ω∩Bγ/4

f−p
)

≤ c(p,d,χ)

(∫

Ω∩Bγ/2

fmin{1/2e,θ/2}
)(χ−δ)/(1−δ)

×

(∫

Ω∩Bγ/2

f−min{1/2e,θ/2}
)(χ−δ)/(1−δ)

≤ c(p,d,χ),

which proves (A.1) with γ/4 in place of γ. !

APPENDIX B. CONTINUITY UP TO THE BOUNDARY

In this section, we prove a uniform Hölder estimate for minimizers of the Alt-
Caffarelli functional with Lipschitz data on the boundary of a smooth domain,
which we use in the proof of Theorem 1.5.

Lemma B.1. Let g : Rd−1 → R be a C1,α function, and let

Ω := {(x′, xd) ∈ Rd−1 ×R : xd > g(x′)},

Γ := {(x′, g(x′)) : x′ ∈ Rd−1}.

Letϕ : Rd → R be a non-negative Lipschitz continuous function, and u : Ω∪ Γ → R

be a non-negative function inW 1,2
loc (Ω) such that u = ϕ on Γ . Suppose that u satisfies

the following minimality condition in a ball BR:
∫

K
|Du|2 dx ≤

∫

K
|D(u+ψ)|2 dx + |K|

for every ψ ∈ W 1,2
0 (K) and every open set K → Ω∩ BR.

Then, u is γ-Hölder continuous in BR/2 ∩ (Ω∪ Γ ) for any γ ∈ (0,1).

Proof. We define the C1,α map

Ψ : Ω∪ Γ → H := {(x′, yd) : yd ≥ 0}, Ψ(x′, xd) := (x′, xd − g(x′)),

and its inverse

Φ : H → Ω∪ Γ , Φ(x′, yd) := (x′, yd + g(x′)).
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We will prove that the function u satisfies the estimate

(B.1)
∫

Br (x0)
|Du|2 dx ≤ Crd+2(γ−1)

for all x0 ∈ Ω̄∩ BR/2, r < R/4, and some constant C > 0 independent of x0, r .
Thus, we can apply the Morrey lemma (see, e.g., Lemma 3.12 in [15]) to the
function u − ϕ, obtaining that it is γ-Hölder continuous, which will conclude
the proof. To prove (B.1), it will suffice to take x0 ∈ ∂Ω, and for simplicity we
can assume x0 = 0, Φ(0) = 0, and DΦ(0) = DΨ(0) = Id, and R = 2. We also set
A(x) := DΦ(x)DΦ(x)t, and we notice there is a constant CA such that

(B.2) (1− CArα) Id ≤ A(x) ≤ (1+ CArα) Id for every x ∈ Br .

For simplicity, we will denote by Cd any constant depending only on the dimen-
sion d; by Cg we denote constants depending only on g, Φ, Ψ , and A; by Cϕ we
denote constants depending only on ′ϕ′L∞ and ′Dϕ′L∞ .

The harmonic extension of ϕ ◦ Φ. Let hϕ : H ∩ B2 → R be a function such that
′hϕ′L∞(H∩B2) ≤ ′ϕ′L∞(H∩B2) and

∆hϕ = 0 in H ∩ B2,

hϕ = ϕ ◦Φ on ∂(H ∩ B2).

Given ε > 0 and r > 0, we consider the test function h̃ϕ solution to

∆h̃ϕ = 0 in H ∩ B2r 1−ε ,

h̃ϕ = hϕ −ϕ ◦ Φ on ∂(H ∩ B2r 1−ε).

Then, using the subharmonicity of |Dh̃ϕ|2 and the gradient estimate, we get

∫

H∩Br
|Dhϕ|

2
dx ≤

∫

H∩Br
|D(ϕ ◦ Φ + h̃ϕ)|2 dx

≤ 2
∫

H∩Br
|D(ϕ ◦Φ)|2 dx + 2

∫

H∩Br
|Dh̃ϕ|

2
dx

≤ Cdr
d
∥∥D(ϕ ◦ Φ)

∥∥2
L∞(H∩Br )

+ Cd
|Br |

|Br 1−ε |

∫

H∩Br1−ε

|Dh̃ϕ|
2
dx

≤ Cd,ϕ,gr
d + Cdr

dε 1
r 2(1−ε)

∥∥h̃ϕ
∥∥2
L∞(H∩B2r1−ε )

≤ Cd,ϕ,g(r
d + r (d+2)ε−2).
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Now, for any fixed β > 0, we can choose ε := (d+ 2β)/(d+ 2), obtaining

(B.3)
∫

H∩Br
|Dhϕ|

2
dx ≤ Cd,ϕ,gr

d+2(β−1) for every r ∈ (0,1/2).

Almost-minimality of u. Let r ∈ (0,1) and let h be the harmonic extension:

∆h = 0 in H ∩ Br ,

h = u ◦ Φ − hϕ in ∂(H ∩ Br ),

so in particular, h ≡ 0 on Br ∩ ∂H. Let f := h ◦ Φ−1. Then,

div(A(x)Df ) = 0 in Ωr ,

u = f on ∂Ωr ,

where Ωr := Φ(H ∩ Br ). Using the equation for f , the ellipticity condition (B.2)
and the optimality of u tested with f in the set Ωr , we get that

∫

Ωr
D(u− f ) ·A(x)D(u − f )dx

=

∫

Ωr
Du ·A(x)Dudx −

∫

Ωr
Df ·A(x)Df dx

≤ (1+ Cgrα)
(∫

Ωr
|Du|2 dx −

1− Cgrα

1+ Cgrα

∫

Ωr
|Df |2 dx

)

≤ (1+ Cgrα)
(
|Ωr | + Cgrα

∫

Ωr
|Df |2 dx

)
.

Using
∫

Ωr
Df · A(x)Df dx ≤

∫

Ωr
Du · A(x)Dudx and the ellipticity of A, we

get

(B.4)
∫

Ωr
|D(u − f )|2 dx ≤ Cgr

d + Cgr
α

∫

Ωr
|Du|2 dx.

Main estimate. We fix a constant κ ∈ (0,1). Using (B.4) and (B.3), we compute

∫

Φ(H∩Bκr )
|Du|2 dx

≤ 2
∫

Φ(H∩Br )
|D(u− f )|2 dx + 2

∫

Φ(H∩Bκr )
|Df |2 dx

≤ Cgr
d + Cgr

α

∫

Φ(H∩Br )
|Du|2 dx + Cg

∫

H∩Bκr
|Dh|2 dx
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≤ Cgr
d + Cgr

α

∫

Φ(H∩Br )
|Du|2 dx

+ Cg

∫

H∩Br
|Dhϕ|

2
dx + Cg

∫

H∩Bκr
|D(h+ hϕ)|

2
dx

≤ Cd,ϕ,gr
d−2(1−β) + Cgr

α

∫

Φ(H∩Br )
|Du|2 dx

+ Cg

∫

H∩Bκr
|D(h + hϕ)|

2
dx.

Now, since h+ hϕ is harmonic in H ∩ Br and vanishes on ∂H ∩ Br , we obtain
∫

Φ(H∩Bκr )
|Du|2 dx

≤ Cd,ϕ,gr
d−2(1−β) + Cgr

α

∫

Φ(H∩Br )
|Du|2 dx

+ Cg
|Br |

|Bκr |

∫

H∩Br
|D(h + hϕ)|

2
dx

≤ Cd,ϕ,gr
d−2(1−β) + Cgr

α

∫

Φ(H∩Br )
|Du|2 dx + Cg

|Br |

|Bκr |

∫

H∩Br
|Dh|2 dx

≤ Cd,ϕ,gr
d−2(1−β) + Cg


rα + κd

) ∫

Φ(H∩Br )
|Du|2 dx.

Iteration estimate and conclusion. We take γ ∈ (0,β), and we set

rn = κ
n and Mn :=

1

r
d−2(1−γ)
n

∫

Φ(H∩Brn)
|Du|2 dx.

Then, setting A := κ−2Cd,g,ϕ and b := 2Cgκ2(1−γ), we have

Mn+1 ≤ Aκ
2n(β−γ) + bMn for every n ≥

d

α
.

We now choose κ in such a way that b ≤ 1. Then, Mn remains bounded by a
universal constants. Indeed, if n0 is the smallest integer greater than d/α, then

Mn ≤
A

1− κ2(β−γ)
+Mn0 for every n ≥ n0,

which concludes the proof of (B.1). !
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