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Abstract. Knowledge Graph (KG) powered question answering (QA)
performs complex reasoning over language semantics as well as knowl-
edge facts. Graph Neural Networks (GNNs) learn to aggregate informa-
tion from the underlying KG, which is combined with Language Models
(LMs) for effective reasoning with the given question. However, GNN-
based methods for QA rely on the graph information of the candidate
answer nodes, which limits their effectiveness in more challenging set-
tings where critical answer information is not included in the KG. We
propose a simple graph pooling approach that learns useful semantics
of the KG that can aid the LM’s reasoning and that its effectiveness is
robust under graph perturbations. Our method, termed SemPool, repre-
sents KG facts with pre-trained LMs, learns to aggregate their semantic
information, and fuses it at different layers of the LM. Our experimen-
tal results show that SemPool outperforms state-of-the-art GNN-based
methods by 2.27% accuracy points on average when answer information
is missing from the KG. In addition, SemPool offers interpretability on
what type of graph information is fused at different LM layers.

1 Introduction

Question answering (QA) is a complex reasoning task that requires understand-
ing of a given natural language query, as well as domain-specific knowledge. For
instance, answering biomedical questions requires understanding of biomedical
terms as well as knowledge about biomedicine. Language models (LMs) [3,22]
are pre-trained on large corpora to understand their underlying semantics. Thus,
fine-tuning LMs for the given reasoning tasks [14,9] is the dominant paradigm
in NLP for QA.

Despite their success, LMs struggle on intensive reasoning tasks that require
good in-domain knowledge [15]. As a result, recent methods incorporate Knowl-
edge Graphs (KGs) during the QA task [19,4], which are graphs that capture
factual knowledge explicitly as triplets. Each triplet consists of two entities and
their corresponding relation. Most successful KG-based methods [34] leverage
Graph Neural Networks (GNNs) [28], which have shown remarkable performance
at reasoning tasks with graph information [17,37].
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Fig. 1: Our SemPool method performs simple graph pooling to enhance the LM’s
reasoning. Facts of the KG are represented by their semantic information with
pre-trained LMs. SemPool aggregates the graph’s semantic information into a
single representation that is fed into the LM for QA.

Nevertheless, GNNs operate on graph data while LMs use natural language
sequences, which makes information exchange between the two modalities chal-
lenging. In fact, our empirical findings (Section 4) suggest that GNNs mainly
provide graph statistical information for the QA task [29] rather than informa-
tion that grounds the LM’s reasoning and is robust under graph perturbations.
In addition, the representation space mismatch between graph (KGs are usually
represented with external node embeddings) and language (represented with pre-
trained LMs) does not aid the information exchange between the two modalities.

In this work, we present SemPool, a simple graph pooling method that en-
hances the LM’s reasoning with KG textual information. As illustrated in Fig-
ure 1, SemPool represents each fact in the KG with the pre-trained LM, aiming
at semantic alignment between graph and language. SemPool then performs a
global graph pooling operation in order to aggregate semantic information from
the whole graph into a single representation. The aggregated representation is
fused as input into the fine-tuned LM for QA, which grounds the LM’s reasoning
to the information provided. Moreover, we extend SemPool to fuse different type
of semantic information into different LM’s layers (Section 5.3), providing more
flexibility during learning.

SemPool demonstrates robust performance under different settings. We ex-
periment with standard QA benchmarks (OpenbookQA, RiddleSense, MedQA-
USMLE), (i) when complemented by complete in-domain KGs, and (ii) when
complemented by in-domain KGs where critical information about the candi-
date answers is missing. SemPool outperforms the best performing GNN-based
approach by 2.27% accuracy points in the challenging case, while it is compet-
itive (second-best) in the easier case. In addition, our experiments show that
SemPool is effective under different LMs (Section 7.1), highlight the importance
of semantic alignment between language and graph, and illustrate SemPool’s
interpretability (Section 7.2).



SemPool: KG pooling for enhancing language models 3

2 Related Work

Question Answering with KGs. Many KGs have been employed to improve
QA for different domains, such as ConceptNet [24] for commonsense QA. Graph
neural networks [28,23] have been widely used to combine KG information with
language models [10,4,34,35,25,26] leading to SOTA QA systems. In this work,
we give new insights on the sensitivity of GNN-based methods with respect to
the provided graph and propose a simple approach that improves robustness for
QA. Other methods have explored to provide the verbalization of the retrieved
KG facts [1,31] or their embeddings [21] as input sequences to the LM, which,
however, considerably increases the inference cost due to the extended context.
SemPool integrates graph information as a special input token to the LM, offering
low computational cost.

Graph-augmented LMs. Combining LMs with graphs that include textual
features is an emerging research area [20,13]. Recent methods have explored
fine-tuning LMs on graph data [16,36] as well as aiding the pre-training of LMs
with graph information [33,7,32,30]. SemPool provides a new simple approach
to fuse graph information into the LM, easily integrated to existing approaches.

3 Problem Statement & Preliminaries

Multi-choice QA. We study the problem of multiple-choice question answering
(QA), where given an optional context ¢, a question ¢, and a set of candidate
answers A, the goal is to select the correct answer a* € A. Multiple-choice QA
is transformed into a classification problem by (i) concatenating the question’s
context with each of the candidate answer a € A into a statement q,, e.g., ¢, =
[c,q,a] = “When birds migrate south for the winter, they do it because (A) they
are genetically called to”, and (i) selecting the most probable statement from
{l¢,q,a] : a € A}. Given each input [c, ¢, a], a fine-tuned LM is used to determine
whether the textual input is plausible. The output token representations q(*) =
LM([e, q,a]) are used for classifying the statement as the correct one, usually
followed by a pooling operation. We point the readers for more details to the
corresponding papers [3,14].

Knowledge Graphs (KGs). Knowledge Graph (KG) powered QA aims at
leveraging external factual information from a KG in order to improve the LM’s
reasoning ability. For instance, the KG might contain the factual information
(winter, causes, bird migration), which is relevant for the question ¢ = “When
birds migrate south for the winter, they do it because?” . Formally, KG is a multi-
relational graph G := (V,£) that contains a set nodes (entities) V and a set of
edges (facts) €. Set £ C V x R x V contains facts in the tuple form (h,r,t),
where h,t € V and r € R is the relation between nodes h and ¢ (R denotes the
relation set).

Subgraph Retrieval. For each statement [c,q,a], a subgraph G,, C G is re-
trieved based on the input’s context, which may include nodes that correspond
to question entities or answer entities. For example, [34] performs entity linking
between the question’s and the KG’s entities, and extracts the two-hop nodes
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Fig. 2: Setting when critical answer information is removed from the KG. Orig-
inally, GNNs propagate information from the answer nodes ( ) to
other nodes of the graph, and the candidate answer with more links is more likely
to be the correct answer [29]. If we remove the answer node’s edges, information
propagation becomes challenging and GNNs struggle to discriminate between
correct and incorrect answers (Section 4).

between the linked entities, filtering out question-irrelevant edges. The context-
specific subgraph G,, = (V,,,&,.) contains a set of nodes V,,, the set of relations
R and a set of facts &, C V 4e X R x Vg, . Note that different candidate answers
a € A for question ¢ lead to different subgraphs G, as the context changes. Sim-
ilar to previous works [35], a virtual question node is added to each subgraph
and is linked to question and answer entities, by adding (question, entity, birds)
and (question, a_entity, children) to the edge set &, , for example.

Graph Neural Networks (GNNs). GNNs learn to update the representation
of a node v by aggregating representations of its neighbors, set A (v), in a re-
cursive manner. Following the message passing strategy [5], GNNs update the

representation hq(,l) of node v at layer [ as
h — 1/)(;7,5}—”, o({ml) v’ € N(v)})), (1)

where m(, ) is the message between two entities v and v', linked with a re-
lation r, and depends on their corresponding representations. Function ¢(-) is
an aggregation, e.g., sum, of all neighboring messages and function ¥(-) is a
neural network. In order to enable language to graph information fusion, many
QA GNN-based approaches [34,35] set the question node’s embedding to the
question representation obtained by the LM.

4 Empirical Findings on Robustness

As discussed in Section 3, GNNs leverage the graph information of the re-
trieved KG to update the node embeddings. However, current QA GNN-based
approaches use external node embeddings to represent the nodes’ information.
The representation space of these embeddings is not necessarily aligned with the
representation space of the LM, which limits the effectiveness of fusing seman-
tic information between natural language and graph. For example, [29] and [21]
show that replacing the node embeddings with simple node features, such as
node types (node coloring in Figure 2), leads to better QA performance. These
findings indicate that GNNs rely on the underlying graph statistics, e.g., the
number of connections between answer nodes and other graph nodes [29], to
discriminate between correct and incorrect answers.
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Table 1: QA performance comparison when complete information about candi-
date answers are in the graph (w/ ans) and when their edges are removed (w/o
ans). A, denotes the relative performance degradation.

OBQA RiddleQA

w/ ans w/o ans Aacc |[W/ ans w/o ans Aacc

64.8 64.8 0.0 | 60.7 60.7 0.0
68.3 65.0 -4.8%| 66.7 64.8 -2.8%

LM (w/o KG)
LM + GNN*

*Results are averaged over three representative QA-
GNNs (Section 7.1). The seed LM is RoBERTa-Large.

To test our hypothesis, we experiment with a setting for multiple-choice QA,
where critical information is missing from the KG. For each retrieved KG sub-
graph, we remove the facts (edges) that include the candidate answer a, similar
to the case where answer entities are not linked in the graph. The setting be-
comes challenging as GNNs cannot easily propagate answer-specific information
and need to leverage information about the remaining entities to improve the
LM’s reasoning. The studied setting is illustrated in Figure 2.

We present the results for OBQA and RiddleQA datasets in Table 1. When
removing answer information from the KG, GNNs show significant performance
degradation and cannot effectively discriminate between correct and incorrect
answers. The relative performance degradation is up to 4.8% for OBQA and
using the external KG improves over the LM (w/o KG) by only 0.2% accuracy
points. The experiment suggests that the message passing of GNNs learns to
propagate answer-specific information, depends on the connectivity of the answer
nodes, and is limited when this information is not present or is removed from
the graph.

5 SemPool: Semantic Graph Pooling

We present a graph-based pooling method, termed SemPool, that aims at ro-
bustness during QA with KGs. Unlike message passing methods that depend
on local graph information around the answer nodes, SemPool leverages global
tertual information from the KG to represent its semantics. Global information
is more robust under local graph perturbations, e.g., incomplete edges around
nodes, while the textual representation of the KG aids its integration to the LM.
SemPool’s overall framework is depicted in Figure 1. Next, we provide SemPool’s
components in detail.

5.1 KG Initialization

SemPool retrieves a subgraph G, for context [c, ¢, a] following existing works [34]
(Section 3). From now on, we denote the retrieved subgraph as G, (instead of
G,.) for better readability. SemPool uses the LM to encode the textual infor-
mation of each fact (h,r,t) € &, in the retrieved subgraph, aiming at semantic
alignment between language and graph, as follows. We transform each edge in
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Fig. 3: SemPool architecture with early (left) and late (right) fusion. Number K
represents the number of late fusion layers.

the subgraph, (h,r,t) € &, into natural language based on predefined templates
for each relation r € R. For instance, (winter, causes, bird migration) is trans-
formed to “winter causes bird migration”. Then the verbalized fact, e, for edge
(h,r,t) is encoded by the pre-trained LM. In order to compute a single edge em-
bedding h. for each edge e, we use mean-pooling or cls-pooling of the computed
token embeddings.

5.2 Pooling

SemPool performs global pooling over the edge embeddings {h. : e € &} of the
retrieved subgraph G,. However, G, is determined based on the linked nodes and
their neighbors (Section 3) and as a result, it may contain some noisy facts in
the set &. Thus, we propose a self-attention pooling layer that weights the im-
portance of each fact with respect to the semantics of the subgraph. Specifically,
we compute a global graph representation g, with a weighted aggregation by

9o =Y _ acfulhe), (2)

e€&y

where f,, : R? — R9 is a linear projection and a, € [0, 1] measures the importance
of each fact e € £,. Weight a. is computed by a softmax(-) operation as

a. = softmaxcee, (fk (he)), (3)

where f; : R — R? is a neural network. Learning the importance of each fact
facilitates the identification of facts that provide new information to the LM for
the QA task.

5.3 KG Grounding

We ground the LM to the subgraph’s semantic information g, by inserting a
special [Graph] token in the beginning of the question ¢. The embedding of the
[Graph] token is set to g,. During training, the LM’s transformer layers [27]
learn to fuse information between the question’s tokens and the graph token.
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Early Fusion. In the early fusion approach, the graph representation g, is
prepended to the query. After L transformer layers, the LM outputs the final

hidden states [héfipm h((:fs), ce h(TL)]. We use the [CLS] token as the final ques-

tion representation (%) := héfs) for answer classification. Moreover, we use g,
for the answer classification loss so that the pooling module gives more attention
to facts useful for the QA task. Given an answer candidate a € A, its probability
p(alq) of being the correct answer for question ¢ is computed by

p(a|Q) = exp (fq(q(L)) + fg(gq))v (4)

where fq, fg : R? — R! are MLP networks. During training, we optimize the
parameters via the cross entropy loss.

Early&Late Fusion. The late fusion approach has skip connections [6] that
fuse graph information into deeper layers of the LM. This encourages the LM to
mix useful graph semantics with language before predictions. The hyperparam-
eter K denotes the K last transformer layers where graph information is fused.
For each transformer layer, we have a dedicated pooling module that computes
gék), where k € {0,...,K}. Similar to Equation 2 and Equation 3, each gék) is
obtained via

g = 3" aP ) (he), o) = softmaxece, (£ (he)). (5)
e€&,

In the beginning, we set the embedding of the graph token héo) to g,(zo). At the
(L — k)-th layer of the LM, héﬁ,;fj) is updated via a skip connection as

L—k L—k
h((}RAPH) = h((}RAPH) + hék)- (6)

We compute the final answer probabilities as

plalg) = exp (f,(a@D) + f,(héaen)). (7)

where f,, f; : R — R! are MLP networks. Note that the final representation
g((ZL) used for answer classification depends on the previous states of {g,(lk)}le,

which are optimized altogether during training.

6 Experimental Setting

QA Datasets. We evaluate SemPool on three multiple-choice question-answering
datasets across two domains. OpenBookQA (OBQA; [18]) dataset is a 4-way
multiple-choice QA dataset that requires reasoning with elementary science
knowledge. It contains 5,957 questions along with an optional open book of scien-
tific facts. We use the official data split. RiddleSense (RiddleQA; [11]) dataset
is a 5-way multiple-choice task testing complex riddle-style commonsense rea-
soning. It has 5,715 questions and we split the dev set in half to make in-house
dev/test sets. MedQA-USMLE (MedQA; [8]) dataset is 4-way multiple-choice
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Table 2: Test performance comparison on QA datasets. Purple color denotes
performance degradation at the adversarial setting, while teal color denotes im-
provement.

(w/ ans.) (w/o ans.)

‘OBQA RiddleQA MedQA Avg. ‘OBQA RiddleQA MedQA Avg. ‘ Ave:
message passing
LM + QAGNN  [67.8 (+2.8)" 67.0" 38.0  57.60[67.0 (£0.7) 65.2 (£0.4) 36.8  56.33|56.97
LM + GreaseLM  |66.9* 67.2" 38.5%  57.53(64.4 (£3.2) 63.7 (£1.7)39.0  55.70 [56.61
LM + GSC 70.3 (+£0.8)" 66.0 (£1.5) 38.0  58.10(63.6 (£2.6) 65.6 (£0.7) 37.8  55.66 | 56.88
no message passing
LM (w/o KG) 64.8 (£2.4)" 60.7" 37.2°  54.23(64.8 (£2.4)" 60.7* 37.2°  54.23[54.23
LM + SemPool  |67.7 (£1.2) 67.3 (£0.4) 38.9  57.96[69.5 (£0.5) 67.2 (£1.2) 39.4  58.70|58.33

*Published results. We use the RoBERTa-Large LM for OBQA and RiddleQA (commonsense). We use the
SapBERT-Base LM for MedQA (biomedical).

task that originates from the USMLE practice sets, requiring biomedical and
clinical knowledge. The dataset has 12,723 questions and we use the original
data splits.

Knowledge Graphs. Following prior works, we use ConceptNet [24], a
general-domain knowledge graph, as our external knowledge source G for OBQA
and RiddleQA. ConceptNet has 799,273 nodes and 2,487,810 edges in total. For
MedQA-USMLE, we use the KG provided by [8]. This KG contains 9,958 nodes
and 44,561 edges. For each question, we retrieve subgraphs following the algo-
rithm of [34]. We set the default subgraph size to 32 nodes, which empirically
performs well in all datasets. In addition, we study the setting in Figure 2.

Language & Graph Encoding. We use (i) RoBERTa-Large [14] and Aris-
toRoBERTa [2] for the experiments on OBQA and RiddleQA, and (ii) Sap-
BERT [12] and BioLinkBERT-Base [33] for MedQA, demonstrating SemPool’s
effectiveness with respect to different LM initializations. We encode KG facts
via the respective pretrained LMs for each case: (i) RoBERTa-Large for OBQA
and RiddleQA, (ii) SapBERT and BioLinkBERT-Base for MedQA.

SemPool Implementation. We follow prior work’s implementation for
the QA task [35]. We use RAdam optimizer with learning rates selected from
{1,2,5} x e—5 for the LM and set to le—3 for our pooling encoder with a batch
size of 32, training epochs are selected from {20, 30,70}. For SemPool, we tune
K from {0,2, 3,5} and select cls or mean pooling for the KG edge representation
based on the dev set. Experiments are conducted on a Nvidia GeForce RTX 3090
24GB machine.

Compared Methods. We compare SemPool with representative LM+KG
GNN methods: QAGNN [34], GreaseLM [35], and GSC [29]. QAGNN uses the
question’s representation to guide the GNN updates. GreaseLM fuses informa-
tion from both the language and the graph into the last interaction layers of the
LM. QAGNN and GreaseLM use external node embeddings for the KG. GSC
treats language and graph separately, and relies on the node/edge types for dis-
criminating between correct and incorrect answers. For a fair comparison, we
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Table 3: Performance comparison on QA datasets with different LMs at the
adversarial setting (w/o ans).
OBQA

RiddleQA Av
RoBERTa AristoRoBERTa| RoBERTa AristoRoBERTa| SapBERT BioLinkBERT &
(dev / test) (dev / test) |(dev /test) (dev /test) |(dev /test) (dev /test) | (dev / test)

714 /670 714 /740 |65.7 /665 66.1/69.0 |38.9/39.0 40.7/40.9 |59.03/59.40
704 /69.6 73.0/75.2 |66.2/67.7 682/69.2 |37.0/394 423 /416 |59.66 / 60.45

© We use the best performing GNN from Table 2: QAGNN for OBQA, GSC for RiddleQA, GreaseLM for MedQA.

MedQA

LM 4+ GNNY
LM + SemPool

use the same LM for all compared methods. In addition, we report performance
of fine-tuning the LM without using any KG information, ‘LM (w/o KG)’.

7 Results

7.1 Main Results
We present the results when comparing SemPool with existing GNN-based (mes-
sage passing) approaches. Table 2 shows that SemPool is the most robust method
under different configurations and datasets, although it does not involve any
complex message passing. SemPool improves over GNNs by 1.45-1.72% accu-
racy points on average, while GNNs struggle on the setting when answer node
facts are removed from the KG (w/o ans.). Moreover, the benefit of grounding
the LM’s reasoning to the KG becomes clear when comparing SemPool with LM
(w/o KG), where SemPool significantly improves performance by 4.1% points.
In Table 3, we present results when using different LMs for the QA task. Sem-
Pool outperforms the best performing GNN by 0.63% and 1.05% accuracy points
for the dev and test set, respectively, at the critical setting, when answer infor-
mation is missing. We observe that SemPool’s improvements increase with more
powerful LMs: AristoRoBERTa for OBQA and RiddleQA, and BioLinkBERT
for MedQA. In these cases, SemPool outperforms the GNNs by 1.6% (OBQA),
2.1% (RiddleQA), and 1.7% (MedQA) accuracy points at the dev set.

7.2 Ablation Studies & Analysis .
Semantic Alignment. Table 4 Table 4: Dev set performance of differ-

shows the importance of seman- ent embedding models, averaged over
tic alignment between language and OBQA and RiddleQA datasets.
graph representations. When using Language Encoder

RoBERTa for QA and SBERT for RoBERTa AristoRoBERTa
computing graph embeddings, lan-  Graph Encoder

guage and graphs semantics are not RoBERTa 68.3 70.6
aligned, which leads to poor perfor- SBERT 523 70.8

mance. On the other hand, using
RoBERTa as the graph encoder improves performance by up to 17% accuracy
points. AristoRoBERTa is pre-tuned for QA tasks and thus, it benefits from
both RoBERTa and SBERT graph embeddings.

Graph Fusion. Figure 4 shows the importance of graph to language fusion.
In most cases, late fusion (K > 0) outperforms early fusion (K = 0) as it injects
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irrelevant.

Fig. 5: Working mechanism of SemPool: Top-3 scored facts at each K € {0, 1, 2},
along with their attention weights.

graph information in multiple LM’s layers. The optimal number of fusion layers
K is model and task specific, but can be tuned based on the dev set. For example,
RiddleQA has more complex questions and requires K = 5 fusion layers for the
RoBERTa LM.
Interpretability. Figure 5 illus- [=roberta-large = aristo-robertal

trates the working mechanism of Sem- OBQA RiddleQA
Pool in one examples case from the '+ N 7
OBQA dataset. We observe that dif- 2 68

. 70 66
ferent layers of SemPool extract dif- 68 /\- 64
ferent semantics. At K = 0, SemPool 66 -~
focuses on question entities (relation: 64— 60k .
‘entitY’)v which helps the LM give ad- Fusion Layers Ko Fusion Layers KO
ditional importance to the linked enti-
ties during its first layers of reasoning. Fig. 4: Dev set performance with respect
At K = 1, SemPool focuses on both to the number K of fusion layers, using
question and answer entities (relation: tWo different LMs.
‘a_entity’). Thus, the LM uses additional semantics for the candidate answers.
At the last fusion layer, SemPool learns to aggreagate new information for the
LM, e.g., (bird, related_to, chirp). This helps the LM to ground its predictions
based on the global KG semantics. For the incorrect answer (B), SemPool iden-
tifies the irrelevant concepts ‘ask_for’ and ‘get_money’ that do not provide any
useful information to the LM.

Accuracy (%

8 Conclusions

We study a critical setting for KG-based QA, where information about the can-
didate answer entities is missing from the KG. Our empirical results showed
that graph-based (message passing) approaches struggle on the QA task under
answer-based graph perturbations (Section 4). We propose SemPool, a graph
pooling approach, that is more robust on KG-based QA task as it treats the
graph as a set of facts. Experimental results show that SemPool outperforms
competing methods by 2.27% accuracy points, while offering interpretability
during inference (Section 7.2).
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Appendix

A  SemPool

Table 5: QA examples from OBQA, RiddleQA, and MedQA datasets.

‘When birds migrate south for the winter, they do it because

OBQA (A) they are genetically called to (B) their children ask for them to

(C) it is important to their happiness (D) they decide to each year

Migration is an instinctive behavior. When birds migrate south for the winter, they do it because

(A) they are genetically called to (B) their children ask for them to

(C) it is important to their happiness (D) they decide to each year

RiddleQA  |What turns everything around, but does not move? (A) side (B) mirror (C) street corner (D) drive (E) corner
A 51-year-old female presents with intermittent right upper quadrant discomfort. The physician suspects

she is suffering from biliary colic and recommends surgery. Following surgery, brown stones are removed from
MedQA the gallbladder specimen. What is the most likely cause of the gallstone coloring?

(A) E. coli infection; beta-glucoronidase release (B) Shigella infection; HMG-CoA reductase release

(C) Shigella infection; beta-glucoronidase release (D) Bile supersaturated with cholesterol; beta-glucoronidase release

OBQA-+fact

A.1 Comparison with Existing Approaches

KG Grounding. One benefit of SemPool is that KG information is inserted into
the LM, grounding its reasoning at different layers. Most existing approaches do
not fuse information into the LM’s layers [34,29] or fuse information at last layers
only [35,25,21]. The goal of these methods is to use the question representation
to guide the GNN updates. On the other hand, SemPool aims at improving the
LM’s reasoning, by conditioning its transformer layers to KG information.
Semantic Alignment. SemPool uses the same seed LM to encode textual infor-
mation from the KG facts as well as for initializing the QA-finetuned LM. As a
result, SemPool represents both the graph and the language in the same seman-
tic space, which can facilitate knowledge exchange between the two modalities.
In contrast, most existing approaches [4] use external embeddings to represent
the graph, which might require additional learning for aligning the graph and
the language representations.

A.2 Complexity

GNNs are node-centric and they recursively update the node embeddings at dif-
ferent layers (Section 3). For each node in V,;, GNNs perform O(K') aggregations,
where K is the number of GNN layers, requiring O(|V,|K) total aggregations.
At each aggregation, GNNs aggregate O(A) messages, where A is the maximum
node degree (usually, A < |V,| in sparse graphs). SemPool is graph-centric as
it pre-computes edge embeddings and aggregates them once into a single repre-
sentation during inference. SemPool only requires O(K + 1) total aggregations,
where K is the number of fusion layers. Each aggregation involves |&,| pre-
computed messages.
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Table 6: Hyperparameter settings for experiments.

Category ‘ Hyperparameter OBQA / RiddleQA  MedQA
Model Number of fusion layers {0,2,5} {0, 3}
Token pooling {cls, mean} {cls, mean}
LM learning rate le® {2¢7%,5¢ 77}
Graph encoder learning rate le73 1le73
Optimization Optimizer RAdam RAdam
Epochs 70 / 30 20
Batch size 32 32
Data Max number of nodes 32 32
Max number of tokens 100 512

0016 nodes 032 nodeslI 064 nodes

o 764

SR ol

B 64.806-2

2 65| 62.6 :

S 60l H H 58.5

< 55 T T m
OBQA RiddleQA

(a) Dev set performance with respect to the sub-
graph size, setting the maximum node number to
{16,32,64}.

Fig. 6: Ablation studies of different SemPool’s components.

B Datasets & Experimental Setting

We provide example cases of the QA datasets used in Table 5. Hyperparameter
settings for the experiments are given in Table 6.

C Results & Ablation Studies

C.1 Subgraph Size

In Figure 6a, we study the effect of the subgraph size retrieved, setting the
number of maximum nodes to {16,32,64}. For OBQA, the retrieved subgraphs
are sparser with 110-118 nodes on average, while for RiddleQA, the retrieved
subgraphs are denser with 167-200 nodes on average. As Figure 6a shows, OBQA
benefits from subgraphs with more edges that can provide additional factual
information (|V,| € {32,64}), while RiddleQA benefits from smaller graphs that
include fewer noisy edges (|V,| € {16, 32}).

C.2 Integrating SemPool to QA systems
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We further experiment using AristoRoBERTa
with additional text data for OBQA, simi-
lar to SOTA systems. Table shows the poten-
tial of SemPool: Grounding the LM’s reason-
ing to the KG (SemPool) and combining it
with message passing over the KG (GSC), we
can achieve higher accuracy than billion-scale
LMs or SOTA systems for KG powered QA,
such as DRAGON and QAT.

15

Table 7: SOTA performance on
OBQA using additional scien-

tific text.
System (#Params) ‘Acc.
T5 (3B) [22] 83.2
T5+KB (>11B) 85.4
UnifiedQA (11B) [9] 87.2
GreaseLM (359M) [35] 84.8
DRAGON (359M) [32] 87.8
AristoRoBERTa (355M) [2] | 77.8
+ QAGNN [34] 82.8
+ JointLK [25] 85.6
+ GSC [29] 87.4
+ QAT [21] 87.6
+ SemPool + GSC (ours)|88.2
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